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1. Introduction 

A wave is a disturbance that propagates through space and time, usually with the transference 

of energy from one point to another without permanent displacement of particles of the 

medium. The particles under this situation only oscillate about their equilibrium positions. If 

the particles oscillate in the direction of wave propagation, then the wave is called longitudinal 

wave. However, if these oscillations take place in perpendicular direction with the direction of 

wave propagation, the wave is said to be transverse in nature. Electromagnetic (EM) waves are 

transverse in nature. In electromagnetic waves such as light waves, it is the changes in electric 

field and magnetic field that represent the wave disturbance. The propagation of the wave is 

described by the passage of a waveform through the medium with a certain velocity called the 

phase (or wave) velocity. However, the energy is transferred at the group velocity of the waves 

making the waveform. Electromagnetic radiation is a form of energy exhibiting wave like 

behavior as it travels through the space. The electromagnetic radiation is classified based on 

the frequency of its wave. Figure 1 shows the electromagnetic spectrum that consists of radio 

waves, microwaves, infrared (IR) radiation, visible light, ultraviolet (UV) radiation, X-rays and 

gamma rays. T-rays shown in the spectrum represent the terahertz (THz) radiations. This 

region of frequency (1011Hz to 1013 Hz) had remained the last unexplored region between 

long wavelength and visible electromagnetic radiation for a long time due to the lack of 

efficient emitters and receptors. Interestingly this region of the THz rays demarcates the 

regions of most fascinating subjects of electronics and photonics. 

2. Propagation of electromagnetic waves  

In order to study the propagation of wave, we first let the sinusoidal variation of oscillating 

quantities as   i k r t
e

 
 

 that are associated with the wave. Here k


 is the wave vector that 



 
Wave Propagation Theories and Applications 74 

tells about the direction of wave propagation and also gives the wavelength of oscillations 

as 2 / k   and  is the angular frequency of the oscillations that gives rise to the time 

period 2 /T   . The relation between   and k  is called the dispersion relation, based on 

which the wave propagation is investigated in a medium. The propagation of 

electromagnetic waves in any medium can be understood based on the fundamental 

equations of electromagnetic wave theory, i.e. the Maxwell’s equations, which were 

established by James Clerk Maxwell in 1873 and experimentally verified by Heinrich Hertz 

in 1888. These Maxwell’s equations are  

 D  


 (1) 

 0B 


  (2) 

 
B

E
t


 




 (3) 

 
D

H J
t


  



 
 (4) 

 

Figure 1. Electromagnetic spectrum. 

Here D


, B


, E


, H


, J


 and   are respectively the electric displacement (C/m2), magnetic 

flux density (Wb/m2), electric field strength (V/m), magnetic field strength (A/m), electric 

current density (A/m2) and electric charge density (C/m3), which are the real functions of 

position and time. For an isotropic medium D E
 

, i.e. the vector E


 is parallel to D


, and 

B H
 

, i.e. the vector H


 is parallel to B


. Here   is the electric permittivity of the medium 

that tells about the polarization of the medium and is determined by the electrical properties 

of the medium.   is the permeability of the medium that tells about the magnetization of 

the medium and is determined by the magnetic properties of the medium. Hence, the 
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properties of the medium associated with the Maxwell’s equations affect the 

electromagnetic wave propagation. Below we discuss the propagation of electromagnetic 

waves in different media. 

2.1. EM wave propagation in free space / vacuum 

For free space or vacuum 0  , 0  , 0J 


 and 0  . If we put these values in Eqs.(1) – 

(4) and take the curl of Eq.(3), we get 

 
2

0( E) E=-μ ( H)
t


   



   
  (5) 

The use of Eqs.(4) and (1) in Eq.(5) yields the following de-coupled equation in E


 

 
2

2
0 0 2

E
E μ ε 0

t


  




  (6) 

Similarly the wave equation for the field H


 is obtained as 

 
2

2
0 0 2

H
H μ ε 0

t


  




  (7) 

Equations (6) and (7) describe respectively the propagation of the fields E


 and H


 in free 

space. For the plane uniform wave, following are the solutions of these second order 

homogeneous differential equations 

 ( ) ( )
0 0E( , ) E and H( , ) Hi k r t i k r tr t e r t e     

        
  (8) 

The above solutions should satisfy the respective wave equations. For example, when we 

put the solution for E


 in Eq.(6) and replace 


 by ik


 and 
t




 by i , we get for harmonic 

wave with single frequency 

 2 2
0 0( ω μ ε )E 0k  


  (9) 

Since E


 cannot be zero for the existence of wave, the wave equation will be satisfied only if 

  2 2
0 0ω μ ε 0k     (10) 

This is the dispersion relation of the electromagnetic wave in free space or vacuum. The 

ratio of    and k  gives rise to the phase velocity (say v ) of the wave, i.e.  

8

0 0

ω 1
3 10 m/sec= ,the speed of light.

μ ε
c

k
       



 
Wave Propagation Theories and Applications 76 

Hence, it is clear that the electromagnetic wave propagates with the speed of light in free 

space.  

In addition, we can examine the nature of the electromagnetic wave based on the directions 

of the fields E


, H


 and the wave vector k


. The use of solution (8) in Eq.(3) yields 

 0E ωμ Hk 
  

  (11) 

Similarly we obtain from Eq.(4) 

 0H ωε Ek 
  

 (12) 

Equation (11) says that the field vector H


 is perpendicular to both k


 and E


 vectors. Also 

the vector E


 is perpendicular to both k


 and H


 vectors [see Eq.(12)]. When we combine 

both the equations (11) and (12), it is inferred that the vectors E


, H


 and k


 form a set of 

orthogonal vectors such that the cross product of E


 and H


 is always in the direction of k


. 

For this reason, the energy associated with the electromagnetic waves is carried in the 

direction of wave propagation. On the other hand, Eq.(1) reveals that 0k E 
 

 whereas 

Eq.(2) yields 0k H 
 

. It means the oscillations of the electric field E


 are perpendicular to 

the direction of wave propagation; the same is the case with the magnetic field. Hence, it is 

evident that the electromagnetic waves are transverse in nature.  

2.2. EM wave propagation in a dielectric 

In an isotropic dielectric medium, the current density J


 and volume charge density   are 

zero. Also the vectors D


 and B


 are defined as  0D E P E   
   

 and 0 0B H M H    
   

 

for the isotropic linear dielectric medium, which is polarizable and magnetic. Here the 

vectors P


 and M


 give respectively the measure of polarization and magnetization of the 

medium. Nonetheless, for the dielectric medium it would be sufficient to remember that 0  

and 0  of free space have been replaced with   and  . Hence, for the dielectric medium 

the Maxwell’s equations (1) – (4) take the form 

 E 0 
 

  (13) 

 H 0 
 

  (14) 

 
H

E μ
t


  



 
  (15) 

 
E

H ε
t


  



 
  (16) 
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Following the similar procedure as done in the case of free space, the wave equations for the 

fields E


 and H


 are obtained as 

 
2 2

2 2

2 2
,

E H
E H

t t
  

   
 

  
  (17) 

A comparison of these wave equations with Eqs.(6) and (7) reveals that the phase velocity v  

of the wave in a linear dielectric medium is 

 

0 r 0 r r r

1 1

με μ μ ε ε μ ε
c      (18) 

From the above equation, it is clear that the propagation velocity of an electromagnetic wave 

in a dielectric medium is less than that in free space. Also the refractive index, say n, can be 

evaluated as r r

c
n

v
   . Since for a non-magnetic dielectric medium 1r  , the 

refractive index is simply given by square root of the relative permittivity, i.e. rn  . This 

is also true for most materials as for them 0   and hence 1r  . 

2.3. EM wave propagation in a conductor 

We consider a conducting linear and isotropic medium whose permeability is , permittivity is 

 and the conductivity is . In the cases of vacuum and dielectrics or insulators, the 

conductivity is zero and hence the current density J


 was neglected in the Maxwell’s 

equations. Moreover, the free charge density  was taken to be zero in these cases. In the case 

of conductors, the flow of charge however is not independently controlled and the current 

density in general cannot be neglected. Since any free charge supplied to a conductor gets 

dissipated, we can rather take 0  . This can be seen based on the continuity equation 

0J
t


 




. The use of Ohm’s law J E

 
 and Gauss law of electricity D  


  in this 

equation leads 
1

t

 
 


 


, the integration of which gives    0
t

t e


 


  together with 

 0  as the initial free charge density. This relation shows that if we put some free charge on a 

conductor, it will flow out to the edges in a characteristic time f




 . For a perfect conductor 

this characteristic time 0f   as    , and for a good conductor f  will be much less than 

the other relevant times, for example 
1


 in an oscillatory system, i.e. 

1
f 
 . Under this 

situation, we can write the Maxwell’s equations as 

 E 0 
 

  (19) 
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 H 0 
 

  (20) 

 
B H

E μ
t t

 
    

 

  
  (21) 

 
E

H σE ε
t


  



  
  (22) 

Taking the curl of Eq.(21) and then making use of Eqs. (19) and (22), we get the following 

electromagnetic wave equation for the field E


 in a conductor 

 
2

2

2

E E
E μσ με

t t

 
  

 

 
  (23) 

Similarly the wave equation for the field H


 is obtained as 

 
2

2

2

H H
H μσ με

t t

 
  

 

 
  (24) 

In one-dimension (along z-axis) the wave equations are written as  

 
2 2

2 2

E E E

tz t
   

 
 

  
 (25) 

 
2 2

2 2

H H H

tz t
   

 
 

  
 (26) 

If we compare Eq.(23) with Eq.(6), we notice that an additional term 
E

t
 




 appears in the 

wave equation for the E


 field; the same is the case with Eq.(24) and an additional term 

H

t
 




 appears. Hence, these wave equations are called modified wave equations for the 

electromagnetic field in a conductor. Owing to the inclusion of conductivity , both the 

additional terms are called the dissipative terms as these allow the current to flow through 

the medium. 

We can assume the following plane wave solution (in one-dimension) to the wave equations 

(25) and (26)  

        
0 0, and ,

i kz t i kz t
E z t E e H z t H e

   
   

  (27) 

Putting the above solution of E


 in Eq.(25) or of H


 in Eq.(26) we get  

 2 2k i    (28) 
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This relation shows that the wave vector is a complex quantity, say r ik k ik  . With this the 

fields E


 and H


 become 

        
0 0, and ,r ri i

i k z t i k z tk z k zE z t E e e H z t H e e
    

   
  (29) 

It is evident from the above expressions that when the electromagnetic wave propagates 

through a conductor, its amplitude decreases and hence the attenuation of the wave takes 

place. The distance through which the amplitude is reduced by a factor of 1 e  is called skin 

depth (say ). The skind depth is decided by the imaginary part of the wave vector, i.e. ik , 

as it can be seen that  

 
1

ik
   (30) 

The real part of the wave vector determines the wavelength, phase velocity, and the 

refractive index in the usual manner, i.e. 
2

rk

  , 
r

v
k


  and rckc

n
v 

  . Putting r ik k ik 

in Eq.(28) we obtain 

 

2 2

1 1 and 1 1
2 2r ik k
    

 

                    
         

 (31) 

It is evident that the propagation of the wave and the skin depth depend on the properties 

of the conductor and the frequency of the wave. Based on the expression of ik , this can be 

seen that the skin depth for the electromagnetic waves having high frequencies is smaller. 

Since the skin depth is a measure of how far the wave penetrates into the conductor, the 

high frequency waves are found to penetrate less into the conductor. For example, in the 

case of copper, the skin depth of approximately 6 cm is obtained at the frequency of 1 Hz 

and it decreases to about 2 mm if the frequency is increased to 1 KHz. The skin depth causes 

the effective resistance of the conductor to increase at higher frequencies where the skin 

depth is smaller, thus reducing the effective cross-section of the conductor. If we talk in 

general about the skin depth, it is the tendency of an alternating electric current to distribute 

itself within a conductor with the largest current density near the surface of the conductor 

and decreased density at greater depths. Under this situation, the electric current flows 

mainly at the skin of the conductor. Hence, the word skin comes into picture. 

During the wave propagation in conductors, unlike the cases of vacuum and dielectrics, the 

electric field and magnetic field vectors do not remain in phase. This can be seen as follows. 

Taking the direction of electric field E


 along the x-axis, we write it as 

   
0

ˆ, ri
i k z tk zE z t xE e e




. Using this in Eq.(21), we get    0ˆ, ri
i k z tk zkE

H z t y e e






. Clearly 

the amplitude of field H


 contains k , which is a complex quantity and can be expressed in 
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terms of its magnitude (say k ) and phase (say k ) as kik k e  . Here 

2
2 2 1r ik k k

 


         
   

 and 1tan i
k

r

k

k
   

   
 

 . With this the field can be written as 

   0ˆ, r ki
i k z tk zk E

H z t y e e
 


 




. A comparison of this expression with 

   
0

ˆ, ri
i k z tk z

E z t xE e e



 clearly infers that H E k    , where H  is the phase of the 

magnetic field and E  is the phase of the electric field. Hence, the magnetic field lags behind 

the electric field during the electromagnetic wave propagation in a conductor. 

3. EM waves and plasma interaction 

Our aim is to disucss the electromagnetic waves and plasma interaction in view of the 

particle acceleration. Hence, now we introduce the plasma as a new medium, which is 

sometimes referred to as the fourth state of the matter. 

3.1. Plasma: Fourth state of matter 

Everybody is well aware of three states of the matter, i.e. the solid, liquid and gas. In solids, the 

atoms are packed very close to each other and are fixed at definite positions. These are 

connected with each other by the interatomic forces. The atoms of solids start oscillating about 

their equilibrium positions when we supply energy to them, and as a result the interatomic 

forces become weaker and the atoms are separated significantly. This way the solid takes the 

form of liquid, where the atoms or molecules override. The liquid has a specific volume but 

does not have precise shape. So it changes shape according to the shape of the container in 

which it is kept. If we further supply energy to the atoms, the interatomic forces become 

insignificant, the atoms get separated and start moving freely. Under this situation, the liquid 

takes the form of gas. In gas, the atoms are not connected with each other and hence can move 

in any direction. The gas neither has precise shape nor the fixed volume. It takes the shape and 

volume of the container in which it is kept. If more energy is supplied to the atoms (or 

molecules) of a gas, the electrons from the outermost level of the atoms get easily detached and 

hence the atoms become ionized. As a result, we are left with the collection of ions, electrons 

and some neutrals (unionized atoms). This collection of charged and neutral particles is 

referred to as plasma. This is sometimes called the fourth state of matter, as it is found in 

natural conditions. For example, the gases near the sun are always in ionized state that 

qualifies for plasma. The species of the plasma being charged are connected with each other by 

the electromagnetic forces. This can be understood as follows. Since the charges separated with 

each other set up the electric field, the plasma species produce the electric field. However, the 

separation of charges of plasma is not fixed (as the species do not remain stationary). So this 

electric field is time varying field, which will generate magnetic field according to the 

Maxwell’s fourth equation. On the other hand, the motion of charges generates current and 
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hence the magnetic field. In view of this, the plasma species produce time varying magnetic 

field that will induce electric field according to the Maxwell’s third equation. Thus, it can be 

said that the plasma species are connected with each other by the electromagnetic fields. In 

view of almost equal number of ions and electrons in the plasma, the plasma as a whole is 

neutral. However, the plasma is quasineutral, as we cannot neglect the internal forces at the 

same time. Moreover, if we attempt to disturb a part of the plasma, the whole body of the 

plasma gets perturbed due to the connection of all the species with each other. This property is 

known as collective behaviour of the plasma. Therefore, an ionized gas can qualify for plasma 

state, if it is quasineutral and it shows collective behaviour.  

Another interesting property of the plasma is its ability to shield out the field that is applied 

on it. This can be better understood, for example, when we insert the electrodes of a battery 

into the plasma. Then the positive (negative) electrode attracts the electrons (ions) whose 

number is decided by the charge carried by the electrode. So an electron cloud is developed 

around the electrode that shields / cancels the external field. The thickness of this electron 

cloud is known as Debye length (say, De). Since the electrons are light species compared 

with ions, the shielding is generally accomplished by the electrons only. It is clear that the 

field exists within the cloud or the Debye sphere (sphere with the radius De). Now imagine 

if the Debye length is much less than the dimension (L) of the plasma. Then the bulk of the 

plasma will remain neutral. Therefore, De << L is the required condition for the 

quasineutrality. In aadtion, if the number of electrons in the Debye sphere (say, NDe) is much 

larger than unity, i.e. NDe >> 1, then the condition of collective behaviour will be fulfilled. 

Any distance in the plasma system is measured in terms of Debye length De and the time is 

measured in terms of reciprocal of plasma frequency (say fpe). The plasma frequency is 

nothing but the natural frequency of the plasma, the same as all the materials have their 

natural frequencies. Actually this is the frequency of oscillations made by the electrons 

about their equilibrium positions. The plasma frequency fpe and the Debye length De in SI 

system of units are given by 

1 12 2
2

0 0
2

0 0

1
and

2
e

pe De
e

n e kT
f

m n e




 

   
    
   
   

 

In these expressions, n0 is the plasma density, which is the common density of ions (ni) and 

electrons (ne), i.e. n0 = ni = ne, Te is the electron temperature, k is the Boltzmann constant  

(k = 1.381023 J/K), e is the electronic charge and me is the electron mass. In plasmas, 

generally we do not talk about the temperature of the ions and electrons, but we specifically 

focus on their energies. It means the temperature is written in terms of the energy. For 

example, 1eV energy of the electron would be equal to its thermal energy kTe (for two-

dimensional system, and in general in plasma physics). So  

e

19 23
e

e

1eV = kT

or 1.6 10 ( ) 1.38 10 T (J/K)

or T 11,600 K.

J   


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It means 1eV energy is equivalent to 11,600 K temperature. The electron temperature in 

laboratory plasmas generally varies from 1 eV to 5 eV. For a plasma with number density of 

1018/m3 and temperature 2 eV, the Debye length comes out to be of the order of m and the 

plasma frequency of the order of GHz (109 Hz). 

Hence, it is clear that only the electrons would be able to respond to the high frequency field 

of the electromagnetic waves, for example, microwaves or lasers. As mentioned, our aim is 

to develop an understanding for the electromagnetic waves and plasma interaction for their 

possible applications to the particle acceleration. Below we discuss about this topic in 

greater detail and summarize the research conducted in this direction. At first we talk about 

the phenomena that may be realized during the interaction of electromagnetic waves and 

plasmas. 

3.2. Some basic phenomena 

According to linear theory, only the electromagnetic wave of frequency   higher than 

plasma frequency
 pe  can propagate through the plasma. The wave whose frequency   is 

below pe  gets reflected and the one with pe   gets absorbed resonantly in collisionless 

plasma. The plasma itself can support several types of electrostatic and electromagnetic 

waves such as electron plasma wave, ion acoustic wave, electron electromagnetic waves, etc. 

The interaction of electromagnetic wave with plasma can take place through the exciation of 

such waves and in this process the exchange of energy can be possible between the 

electromagnetic wave and plasma species. If the amplitude of wave is much higher than its 

nonlinear interaction with other collective modes in plasma, plasma instabilities are 

dominant. On the other hand, the wave can also decay by Landau damping and if plasma is 

underdense ( > pe ) then the wave can decay in electrostatic wave and some other 

electromagnetic waves, resulting in parametric instabilities including Raman scattering, 

Brillouin scattering, etc. In case of large amplitude wave, the effect of ponderomotive force 

also comes into picture. This is very important phenomenon in view of harmonic 

generation, beat wave excitation, wakefield excitation for particle acceleration, self-focusing 

of laser beam, filamentation of laser beam, etc.  

In the theory for resonance absorption, wave propagation in the resonance layer is 

described either by electron-ion collisions and thermal dispersion or by nonlinear effects 

like wave breaking, etc. [1 – 3]. The anomalous absorption of electromagnetic waves on a 

surface of an inhomogeneous unmagnetized plasma was theoretically predicted by 

Gildenburg [4]. Later this phenomenon was confirmed experimentally, out of which some 

experiments have shown that large amount of power can be absorbed by magnetized 

plasma at the electron and ion cyclotron frequencies. A usual way of coupling transverse 

waves into a plasma for the purpose of such resonant absorption has been to use a 

magnetic beach as suggested by Stix [5]. Breizman et al. [6] have presented a self-

consistent theory of the rf-wave propagation and ion motion through the resonance. An 

important ingredient of the problem is the ion flow along the magnetic field. The flow 
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velocity limits the time the ions spend at the resonance, which in turn limits the ion energy 

gain. A feature that makes the problem nonlinear is that the flow accelerates under the 

effect of B


 force and rf-pressure. This acceleration can produce a steep reduction in the 

plasma density at the resonance, resulting in partial reflection of the incident wave. The 

propagation and collisionless absorption of electromagnetic waves propagating in 

nonuniformly magnetized plasmas with regions of cyclotron resonance were computed 

by Kuckes [7]. He considered the particle dynamics associated with motion in a 

nonuniform magnetic field near cyclotron resonance explicitly and predicted the complete 

wave absorption above a critical plasma density.  

The nonlinear behaviour of the large-amplitude plasma wave and the effect of an 

inhomogeneous plasma on its growth and saturation in a collisionless plasma due to the 

beating of two laser beams with frequencies much above the plasma frequency pe  has been 

considered taking into account the modulation of the Lorentz force by the large-amplitude 

plasma wave as well as the temporal variation of its phase [8]. In this case, a novel 

parametric instability as a result of the modulation of the Lorentz force by the large-

amplitude plasma wave is found when the beat frequency is twice the plasma frequency. 

The high phase velocity electron plasma wave excited by collinear optical mixing has been 

detected directly [9], where the frequency, wave number, spatial extent, saturation time, and 

peak amplitude were all measured experimentally and found to be in reasonable agreement 

with the theoretical expectations. The resonant excitation of an electron plasma wave and its 

effects on the density profile steepening have been theoretically studied by using a 

modified, warm-capacitor model [10], where the scaling laws characterizing the process 

were established and the wave structure and density profile were self-consistently 

determined. 

Chang et al. [11] have observed experimentally the parametric excitation of ion acoustic 

waves and cyclotron harmonic waves by a high frequency electric field with frequencies  

near the harmonics of the cyclotron frequency. They have verified both the wave vector 

and the frequency selection rules. Parametric excitation of longitudinal oscillations of 

plasma was studied by Kitsenko et al. [12] in a weak alternating electric field with 

frequency 0  close to that of electron-ion hydrodynamic longitudinal oscillations of cold 

plasma,   2
1 1 cosLH i em m      , where LH  is the lower hybrid resonance 

frequency. In their study, the angle  between the direction of propagation of the 

oscillations and the magnetic field was close to / 2  and it was shown that oscillations 

can be excited in the plasma with frequencies much less than 0 , if the drift velocity of 

the particles in the steady external magnetic field and the alternating electric field is less 

than the thermal velocity of the ions.  

Optical investigations have been reported of the interaction of 0.3 TW, 250 fs Ti: sapphire 

laser pulses with underdense plasmas created from high density gas jet targets [13]. Time 

resolved shadowgraphy using a 2ω probe pulse, images of the transmitted radiation and 

images of 1ω and 2ω side radiations were presented for various gases. Their experimental 
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results and analysis based on a simple numerical Gaussian beam model showed that 

ionization-induced refraction dominates the interaction process for all gases except 

hydrogen. The numerical modeling has also shown that for a given laser power there exists 

only a narrow density range in which self-focusing can be expected to occur. On the other 

hand, it has been observed that the nonlinear frequency shift of a strong electromagnetic 

wave in a plasma due to weak relativistic effects and the v B


 force can cause modulation 

and self-focusing instabilities [14]. Kaw et al. [15] have shown that an electromagnetic wave 

interacting with a plasma is subject to instabilities that leads to light filamentation. 

Numerical studies of beam filamentation in laser produced plasma have been presented by 

Nickolas et al. [16] based on a parabolic wave equation, known as the Schroedinger  

equation, coupled with thermal transport equations for both the ions and electrons in two-

dimensions. Also the results of a numerical code have been described which models the 

relativistic self-focusing of high intensity laser beams in plasmas by the nonlinear relativistic 

dependence of the optical constants on laser intensity [17]. Here rapid relativistic self-

focussing down to a beam diameter of one micron in a distance of the order of the original 

beam diameter was observed. They also observed the production of GeV ions moving 

against the laser light.  

3.3. Particle acceleration  

Particle accelerators are among the largest machines built by humans. In the conventional 

linear accelerators (LINACs), the acceleration gradients are however limited to some tens 

of MeV/m. Since the energy gain of particles is the product of such acceleration gradient 

and the acceleration distance, we need to extend only the acceleration distances in order 

to reach high energies. That’s why these tools for high energy physics are becoming larger 

and larger, and increasingly more expensive. For the first time, it was realized by Tajima 

and Dawson [18] that a laser beam propagating in a plasma can excite electron plasma 

wave, which being longitudinal can be used to accelerate electrons. To understand the 

underline principle for plasma based acceleration, consider the limits of conventional 

particle accelerators based on rf-waves propagating in corrugated metallic cavities. They 

are limited first by the availability of high peak power drivers and ultimately by electrical 

breakdown of the metal structure. These factors correspond to linear accelerating gradient 

of 20 – 100 MeV/m. Plasmas though are not limited by breakdown as they are already 

ionized and indeed can support electric fields of the order 10 – 100 GeV/m. Consequently, 

with regard to the energy gain of particles in accelerators, a plasma accelerator can cut 

down significantly the acceleration distance to boost particles from rest to several MeV 

over a short distance (less than the millimeter range) and still provide high quality 

electron beam. Thus, plasma based particle accelerators opened a new and exciting field 

of extreme gradient (beyond 1TV/m). There has been a tremendous progress in recent 

years, due to the advances in technology, particularly by the development of compact 

terawatt laser systems based on the technique known as chirped-pulse amplification 

(CPA). 
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Figure 2. Laser intensity profile: Ponderomotive force. 

3.3.1. Excitation of Langmuir waves: Wakefield generation 

Although electric fields of the order of 1 TeV/m are readily achievable these days at the 

focus of a laser beam, these fields in vacuum cannot be used directly for the purpose of 

particle acceleration. This is because they are transverse and oscillatory in nature. However, 

if laser light can be used to excite Langmuir waves in plasma, these waves being 

longitudinal can be used to accelerate charged particles.  

The motion of the electron in the presence of electric field is governed by the Lorentz force. 

In the case of high, nonuniform electromagnetic (or purely electric) field, the expression for 

Lorentz force has a second order term, which is proportional to the laser intensity gradient. 

This second order force term is known as the ponderomotive force, given by 

   2 2 2 21 / 4pm eF e m E   
 

 (32) 

Here  is the frequency of laser having the electric field E and α is the ellipticity of the laser 

light, which is equal to zero for the linearly polarized light and is unity for the circularly 

polarized light. The above expression is for ponderomotive force on a single electron. 

However, for the plasma the ponderomotive force on the electrons is defined for unit 

volume as per the following relation 

     2
2/ 1 / 2pm peF c I     

 
  (33) 

Thus, any spatial variation of the laser intensity I will act to push the electrons / ions from 

the region of higher intensity to the region of lower intensity through the ponderomotive 

force (Fig.2). This displacement of electrons creates large amplitude plasma wave, which is 

called the wake. The field corresponding to this wake, i.e. the wakefield, can reach up to 100 

GeV/m provided there is a resonance between the plasma frequency pe and the 

ponderomotive force. The concept of wakefield acceleration can be understood based on the 

following example. When a speed-boat travels in water, it produces two types of waves viz. 

bow waves and wakefield waves. The bow waves are conical waves having tip at the front 

end of the boat. These are produced because the velocity of the boat exceeds that of the 

water waves. The wakefield waves are waves set up at the back (or wake) of the boat, which 
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travels with the velocity equal to the velocity of the boat. According to the principle of the 

Landau damping, a floating ball dropped in the wakefield wave of the boat will get 

accelerated to the velocity of the boat if its initial velocity is slightly less than that of the boat. 

This is exactly the principle of wakefield acceleration. 

Below we discuss a few methods that are used to excite plasma wave and hence the 

wakefield.  

3.3.1.1. Laser beat wave accelerator (LBWA) 

In the LBWA method, the plasma wave is excited by beating two optical waves of slightly 

different frequencies. Two laser waves of frequencies 1  and 2 , having polarization in the 

same direction, traveling in preformed plasma of uniform density 0n  (corresponding 

plasma frequency pe ) will beat at a frequency 1 2     . If this frequency difference is 

exactly equal to the plasma frequency (i.e. pe   ), then strong Langmuir wave will be 

excited in the plasma by the longitudinal ponderomotive force of the beat wave. Since the 

beat wave moves with the laser pulse, the plasma wave will also move with a phase velocity 

equal to the group velocity (near light velocity) of the laser pulses. Then a properly placed 

bunch of electrons with a velocity slightly lesser than the laser group velocity will get 

accelerated by wave-to-particle energy transfer. However, in this process there is a problem 

of detuning of resonance condition, which is attributed to the modified plasma frequency 

 1 /pe em   due to the change in electron mass because of their reltivistic speeds in very 

large amplitude of the wakefield. 

3.3.1.2. Laser wakefield accelerator (LWFA) 

In beat wave acceleration scheme, it is necessary to have plasma of uniform density along 

with strict requirement on plasma density to exactly match with the beat wave frequency 

and clamping of field due to relativistic effects. Hence, laser wakefield acceleration shceme 

was proposed in which all the above problems are absent. For LWFA, one uses a short pulse 

of very high intensity. When such a high intensity laser pulse is incident on a gas, it ionizes 

the gas. The laser light propagates in this plasma with a velocity equal to the group velocity 

 gv  in plasma, which is nearly equal to the velocity of the light. The short laser pulse 

duration   has a strong intensity variation in time and correspondingly in space. This leads 

to a strong longitudinal pondermotive force. The wavelength of this pondermotive force, 

and that of the density perturbation caused by it, is of the order of 2c . If this is made equal 

to the plasma wavelength (defined as 2 /p pec   ), then high amplitude wakefields are 

produced due to resonance (Fig.3). Similar to the case of the boat, the laser wakefield moves 

with the pulse at a velocity equal to the group velocity of the laser pulse. Under this 

situation, a correctly injected bunch of electrons can be accelerated by the longitudinal field 

of the plasma waves (Fig.3), where an electron bunch is injected in the plasma wave midway 

between every two alternate plasma wave peaks. If the plasma wave itself moves with a 

phase velocity pv  and the electron beam moves with a velocity bv , then the beam will be 
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forced by the plasma wave to travel with a velocity equal to that of the plasma wave. This is 

because, if b pv v , the electron bunch at point C (Fig.4) will start trailing from the midpoint 

and will experience a positive force due to electron bunch at point A. This will accelerate it 

in the +z direction till it attains a velocity equal to pv . If b pv v , then it will start drifting 

towards point B and the bunch at B will repel it backward till it slows down to a velocity 

equal to pv . If the electron beam has a velocity much different from that of the plasma 

wave, it will cross the repulsive barriers at point A or B and its velocity will keep oscillating 

about its mean velocity. In other words, such a beam of electrons will not have a net 

exchange of energy with the plasma wave. Hence, a beam of electrons traveling with a 

velocity slightly less than that of the plasma wave will get accelerated. Moreover, if the 

phase velocity of the plasma wave is relativistic, then the slight gain in velocity corresponds 

to a large gain in the energy. 

 

Figure 3. Schematic of LWFA. 

 

Figure 4. Force on an electron bunch trapped in an electron plasma wave. 
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3.3.1.3. Self modulated LWFA (SM-LWFA) 

In this scheme, the electron plasma wave is excited resonantly by the modulation of the laser 

pulse envelope. This occurs for a laser pulse having length  L  few times longer than the 

plasma wavelength  p  and pulse power larger than the power (critical power cP ) 

required to self-focus the laser beam. Owing to the finite pulse shape, a small plasma wave 

is excited non-resonantly, which results in growth of forward Raman scattering (FRS) 

instability. The FRS wave and the laser wave beat at the plasma frequency, which gives rise 

to an enhancement of the electron plasma wave. Thus, there exists an oscillating density 

perturbation within the pulse envelope. The laser pulse therefore sees a refractive index that 

is alternately peaked and dented at interval of / 2p . As the phase velocity of the laser wave 

depends on the density, the modulation in density gives rise to redistribution of the photon 

flux within the laser pulse, which leads to modulations in the envelope with a period of p . 

This modulation gives rise to strong ponderomotive force with wavelength exactly equal to 

the plasma wavelength (as in LWFA). This strongly enhances the plasma wave amplitude. 

This effect grows in time, thereby transforming the initial laser pulse envelope into a train of 

shorter laser pulses with width of p  or duration proportional to 1 / pe . Since 
0

1
~p n

  

and 
0

1
~cP

n
, the conditions pL   and cP P  for fixed laser parameters can usually be 

satisfied by operating at sufficiently high plasma density. Figure 5 shows the self-modulated 

scheme of laser wakefield acceleration.  

The advantages of the self-modulated LWFA over the standard LWFA are the simplicity 

and enhanced acceleration. Simplicity is that a preformed density channel and pulse 

tailoring are not required for the matching condition of ~ pL  . Enhanced acceleration is 

achieved for the following reasons. First, the SM-LWFA operates at a higher density, which 

leads to a larger wakefield ( 0~E n ). Second, the wakefield is resonantly excited by a series 

of pulses as opposed to a single pulse in the standard LWFA, relativistic optical guiding 

allows the modulated pulse structure to propagate for several Rayleigh lengths. This 

extends the acceleration distance and hence the large energy gain is achieved in this scheme. 

 

Figure 5. The self-modulated laser wakefield acceleration scheme. 
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So far we have seen that when a short laser pulse propagates through underdense plasma, a 

large amplitude plasma wave is excited in the wake of the laser pulse by the ponderomotive 

force associated with the temporal profile of the pulse. For tightly focused pulses (

0 1pk w  , where pk and 0w  are the plasma wave vector and the beam size at the waist, 

respectively), both longitudinal and radial components of the ponderomotive force generate 

a density perturbation, whereas in loosely focusing geometry ( 0 1pk w  ), only a 

longitudinal electron plasma wave is generated. The amplitude of the wave is maximum 

when ~ 1pe  , where   is the pulse duration and pe  is the plasma frequency. 

3.3.1.4. Plasma wakefield accelerator (PWFA) 

In a plasma wakefield accelerator (PWFA), the electron plasma wave is driven by one or 

more electron beams. Effectively the wakefield can be excited by a relativistic electron beam. 

This can be achieved if the electron beam terminates in a time shorter than the plasma 

period 1 / pe . In such a scheme, the ratio of energy gain to the drive beam energy (called 

transformation ratio) is limited to  2 for a symmetric driving beam in the linear regime. 

However, it can be increased by using an asymmetric drive beam.  

3.3.2. Studies on particle acceleration  

The researchers all over the world have made various attempts to accelerate the charged 

particles using wakefield and other mechanisms. Below we summarize the work done using 

lasers, microwaves and electron bunches. 

3.3.2.1. Acceleration by wakefield 

The investigations on the excitation of wakefield began with the pioneering work of Chen et 

al. [19], and the first experimental evidence was reported by Rosenzweig and coworkers [20, 

21] followed by Nakajima et al. [22]. The wakefield generation has been widely studied 

experimentally, analytically and using simulations [23 – 29]. Nishida et al. [30] have 

successfully excited wakefield in the ion wave regime with long pulse duration by 

employing a variety of driving bunch shapes. Later, Aossey et al. [31] observed such type of 

wakefield in three-component plasma also. On the other hand, efforts have been made 

related to wakefield excitation by relativistic electron bunch [29], [32], and coupling of 

longitudinal and transverse motion of accelerated electrons in laser wakefield [25]. Lotov 

[24] has analytically studied the laser wakefield acceleration in narrow plasma filled 

channels. Analytical investigations on wakefield acceleration using a dielectric lined 

waveguide structure showed the acceleration gradient for electrons or positrons in the range 

of  50 – 100 MV/m for a few nC driving bunches [33]. In another wakefield accelerator, a 

peak acceleration gradient of 155 MeV/m was predicted for a 2 nC rectangular drive bunch 

[34]. Jing et al. [35] have found transverse wakefield of about 0.13 MeV/mnC (0.2 MeV/mnC) 

due to X-dipole modes (Y-dipole modes) in an X-band structure generated by an electron 

bunch in dipole-mode wakefield in a waveguide accelerating structure. Short microwave 

pulses have also been used in some experiments to excite a nonlinear large amplitude ion 
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wave at resonance absorption region [36]. This has also been suggested that the wakefield of 

an ultra short laser pulse can be amplified by a second laser pulse copropagating behind 

with duration of a few plasma wavelengths or longer [37]. Malik [38] has analytically 

investigated the wakefield in waveguide generated by the different types of microwave 

pulses with moderate intensities.  

For the purpose of efficient acceleration, it is necessary to excite the wakefield of a large 

amplitude along with its speed nearly equal to the speed of light. The wakefield is reported 

to be enhanced by the nonlinearities in response of plasma to ponderomotive force of a long 

smooth laser pulse of relativistic intensity whose pulse length is much larger than the half of 

the plasma wavelength [39]. The amplitude of the laser wakefield has also been found to 

increase by the ionization processes of the gases at comparatively higher laser peak 

intensities [40]. A capillary tube can be used as a waveguide in order to enhance the 

interaction length [41]. Tapered plasma channels have been proposed for the enhancement 

of interaction length to achieve greater acceleration [42]. However, in such interactions, 

when the plasma wave acquires sufficiently large amplitude it becomes susceptible to 

instability, which is also an important issue in nonlinear plasma physics [43 – 53] in addition 

to other types of waves, structures and instabilities [54 – 63] including the laser produced 

plasmas [64] that may support different types of growing waves under the effect of high 

magnetic field [65]. 

3.3.2.2. Acceleration using lasers 

McKinstrie and Startsev [66] have proposed that a laser field can accelerate the pre-

accelerated electron significantly. However, they neglected the effect of longitudinal field of 

the laser pulse. On the basis of 3-D particle-in-cell simulations for the ion acceleration from a 

foil irradiated by a laser pulse, Pukhov [67] has shown that at the front side the laser 

ponderomotive force pushes electrons inward and creates the electric field by charge 

separation, which drags the ions. Yu et al. [68] considered the electron acceleration from the 

interaction of an intense short pulse laser with low density plasma and the optimum 

condition for the acceleration in the wake was obtained. They showed that the electron 

acceleration within the pulse dominates as the pulse becomes sufficiently short. By using 2-

D particle-in-cell simulation, Suk [69] has studied the electron acceleration based on self-

trapping by plasma wake. Sentoku et al. [70] examined experimentally the interaction of 

short laser pulse with dense plasma target for the proton acceleration and found that the 

peak proton energy increases in inverse proportion to the target thickness. Singh and 

Tripathi [71] have studied the laser induced electron acceleration in a tapered magnetic 

wiggler where the IFEL resonance condition was maintained for longer duration. With 

regard to the importance of polarization effects, Kado et al. [72] have observed strongly 

collimated proton beam from Tantalum targets when irradiated with circularly polarized 

laser pulses. With the help of radially polarized ultra relativistic laser pulses, Karmakar and 

Pukhov [73] have shown that collimated attosecond GeV electron bunches can be produced 

by ionization of high-Z material. They also compared the results with the case of Gaussian 

laser pulses and found that the radially polarized laser pulses are superior both in the 

maximum energy gain and in the quality of the produced electron beams. Xu et al. [74] 
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made a comparison between circularly polarized (CP) and linearly polarized (LP) fields 

with regard to the laser driven electron acceleration in vacuum and found that the CP field 

can give rise to greater acceleration efficiency.  

3.3.2.3. Acceleration using microwaves  

The researchers have made efforts to use microwave field for the particle acceleration [35, 

36, 75 – 85]. In microwave plasma interaction experiments, electron acceleration has been 

realized via the pv B


 process [75, 76] and that of resonance absorption during wave 

particle interaction [77]. In the pv B


 process, where pv


 is the phase velocity of the wave, 

an electrostatic wave (e.g. electron plasma wave) propagates in a direction perpendicular 

to a magnetic field B


. Here an electron that is trapped in the wave trough gets accelerated 

in the pv B


direction. In these experiments, the electrons could be accelerated up to 400 

eV. In another experiment, a nonlinear large amplitude ion wave was excited by using 

short microwave pulses at the resonance absorption region [36], where a strong electron 

wave was found to be excited after shut-off of the incident microwave pulse and high 

energy electrons got emitted and accelerated by the electron wave wakefield. Hirshfield et 

al. [80] have proposed a cyclotron autoresonance accelerator using rf gyroresonant 

acceleration, where the resonance for a TE11 mode was maintained along a waveguide by 

the applied magnetic field and group velocity axial tapers, and the maximum energy 

achieved by the electron beam in this process was up to 2.82 MeV. Yoder et al. [86] have 

measured the energy gain from a microwave inverse free electron laser accelerator 

including the energy change as a function of relative injection phase of the electron 

bunches. In this accelerator, the effective accelerating gradient was achieved as 0.43 MV/m 

and the gain for a 6 MeV electron bunch was observed about 360 keV. Carlsten  [81] has 

done modal analysis and gain calculation for a sheet electron beam in a ridged waveguide 

slow wave structure. Kumar and Malik [87] have discussed the importance of obliquely 

applied magnetic field to an electron acceleration and obtained that the larger acceleration 

is possible when the condition pe c   ( pe  is the electron plasma frequency and c  is 

the electron cyclotron frequency) is achieved in the plasma filled waveguide. Also it was 

proposed to use the field of superposed mode in waveguide for the effective electron 

acceleration [88]. 

4. Case study: Wakefield by lasers and microwaves 

Here we take an example of wakefield excitation by short pulse lasers in an infinite plasma 

[38] and by the microwave pulses in a rectangular waveguide [89, 90].  

4.1. Wakefield by different types of laser pulses 

A laser pulse with frequency  (= 2f), intensity I0 (corresponding field E0) and pulse 

duration  (= fp
1 = 2/pe) is considered to propagate in a homogeneous plasma of density n0 
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and excite wakefield Ex (corresponding potential ) behind it. The ions (density ni) in the 

plasma are taken to be immobile on the time scale of the interest and the plasma response to 

the electromagnetic field is given by the following cold and collisionless electron fluid 

equations 

   0e en t n v    
 

 (34) 

  dp dt e E v B   
  

  (35) 

 E B t   
 

  (36) 

  2
0 1 with eB j c E t j n ev      
   

   (37) 

 0B 


 (38) 

  0 i eE e n n   


  (39)  

With the help of above equations one can easily obtain the following dispersion relation for 

the laser propagation in the plasma 2 2 2 2
pec k   , from which the group velocity of the 

laser is found as  2 21g pev c    . Clearly the group velocity depends on the plasma 

density and it can be adjusted as per the requirement.  

We consider one-dimensional weakly relativistic case for the nonevolving system, i.e. when 

all the quantities depend only on gx v t   , and take the electron density 0e en n n   

together with en  as the density perturbation due to the laser pulse and n0 as the 

unperturbed density in a homogeneous plasma where 0 0n    . Then the fluid equations 

are integrated under the condition that the oscillating quantities vanish as   and also 

when the perturbations are not so great  0 1en n  . This yields 
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 (40) 

This is the general equation for the wake potential  which can directly use different 

envelopes of E, i.e. different shapes of the laser pulses. Here we concentrate on three types 

of the shapes, namely Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and 

rectangular-Gaussian (RG) pulse, as shown in Fig.6. 
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Figure 6. Different shapes of the laser pulses with pulse length L (duration ). 

The wakefield EGL for the case of GL pulse is obtained as 

     1 cos 2 cos 2GL p pE a k L k L   , where    2 2 4 2 2 2
1 0 1 /e ga ec E L m v L      

 and kp = 

pe/vg = 2/p together with p as the plasma wavelength, which is described by the group 

velocity of the laser pulse in the plasma. The density perturbations behind the pulse are 

obtained as           2 2 2 2
0 1 2 2cos 2 sin 2e e g p pGL

n n ea m v k L k L L L         .  

The wakefield ERT for the case of RT pulse is obtained as    2 3 cos 2RT pE a a k L   , 

where  2 2 4
2 0 2 e ga ec E m v   and 
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together with  2 2 2 2 2
1 4c L L     and  2 2 2 2 2

2 9c L L    . The density perturbations 

behind the pulse are obtained as      2
0 2 31 sin 2e e g pRT

n n ea m v a k L       . 

For the case of RG pulse the wakefield ERG and density perturbations  0e RG
n n  are 

calculated as    4 5 cos 2RG pE a a k L    , 

        2 2 2 2
0 4 5 5 sin 2e e g pRG

n n ea a m v a k L L         . The constants a4 and a5 in these 

expressions are given by 
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Figure 7. Wakefield EGL and density perturbations  0e GL
n n behind the Gaussian-like pulse up to 

distance 3L for different pulse durations (  = 20 ps, 30 ps) when the laser intensity is 31018 W/m2 and 

laser frequency is 1.6 PHz . 

In Fig. 7 we show the variation of wakefield EGL by solid line graphs and of density 

perturbations  0e GL
n n  by dotted line graphs behind the laser pulse ( 0  ) up to the 

distance  = 3L when f =1.6 PHz and I0 = 31018 W/m2. The wakefield of the strength of 

4.24109 V/m is excited by the GL pulse and the density perturbations ne = 0.0208 times of 

the unperturbed density n0 (= 1.371025/m3) for the pulse duration of 30 fs. A comparison of 

the graphs marked with 30 fs and 20 fs reveals that the effect of pulse duration is to increase 

the wakefield as well as the density perturbations. This may be attributed to the decreased 

plasma density n0 for the larger pulse duration as we considered  = fpe
1 = 2/pe as a 

condition for the wakefield excitation. For the fixed laser intensity, larger perturbations are 

realized in relatively lower density plasma and hence the enhanced field is obtained. Similar 

effects are observed for the cases of RT (Fig.8) and RG (Fig.9) pulses. Here the wakefield of 

the strength of 4.98109 V/m  (4.28109V/m ) and density perturbations of 0.023 (0.0209) times 

of the unperturbed density are obtained in case of RT (RG) pulse of the same duration of 30 

fs. This can also be seen that the pulses of higher intensity produce relatively larger 

wakefields and the density perturbations. However, a very weak effect of the laser 

frequency is noticed on the wakefields. In the present study of three pulses infers that the 

rectangular-triangular (RT) pulse is more suitable for the purpose of wakefield excitation in 

a homogeneous plasma. 
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Figure 8. Wakefield ERT and density perturbations ( en /n0)RT behind the rectangular-triangular pulse 

up to distance 3L for different pulse durations (  = 20 ps, 30 ps) and other parameters the same as in 

Fig.7. 

 

Figure 9. Wakefield ERG and density perturbation  0e RG
n n behind the rectangular-Gaussian pulse 

up to distance 3L for different pulse durations (  = 20 ps, 30 ps) and other parameters the same as in 

Fig.7. 
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4.1.1. Calculation of electron energy gain 

In order to calculate the energy gain achieved by the electron, we proceed with the 

momentum equation  dp
eE

dt
   and the relativistic factor  relation 2 2 21 ep m c   .  

Here E is either EGL, ERT or ERG. We introduce a similarity variable  / 2pk L    that 

represents the phase of the wakefield as seen by the electron. For one-dimensional motion of 

the electron and gx v t   , we obtain 
 
2 2

e

peEd

dt m c




   and  
1

2 21 1 /p g

d
k c v

dt

 
 
   
  

 from 

the above relations. Dividing d dt  by d dt  and integrating the resultant equation by 

taking  1/2
2/ 1 1 /xdx dt v c      and /r gv c   we get 

  
1

2 2
2

1 ( )r

e p

e
E d

m c k
          (41) 

This is the general equation that describes the electron acceleration in the wakefield ( )E  . 

By using the expressions of wakefield E for different shapes of the laser pulses we can 

determine the corresponding relativistic factor (or the energy gain).  

For the case of GL pulse, the integration of the resultant equation with the initial value of   
as 0 at  = 0 yields  

       
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                        
. 

Without loss of generality we can assume 2 2
0, 1   . Hence, 
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. Therefore, the 

energy gain obtained by the electron during its acceleration in the wakefield excited by the 

GL pulse can be given by 2
GL e GLW m c    .  

Similarly the electron energy gain in the case of RT and RG pulses are obtained as 

   
2 3 4 5sin sin and sin sin

2 21 1

p p

RT RG
p r p r

k L k Lea a ea a
W W

k k
 

 

                                  
 . 

Now we examine the effects of pulse duration (plasma density), laser intensity and laser 

frequency on the electron acceleration for different shapes of the laser pulses and make a 

comparative study. 
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4.1.1.1. Effect of pulse duration   

We have already seen that the wakefield gets enhanced with the increased pulse duration   

for all the shapes of the laser pulses. Therefore, it is obvious that the electron will gain larger 

energy in the wakefield, which is excited by the pulses of longer durations. The same has 

been portrayed in Fig.10 for the laser intensity of 31018 W/m2 and its frequency as 1.6 PHz. A 

comparison of the three graphs infers that the energy gains follow the trend 

RT RG GLW W W  . The increased gain for the longer pulse durations is attributed to the 

enhanced plasma wavelength p. Since p is independent of the pulse shapes, the electron 

gets larger energy for the increasing   for all types of the pulses irrespective of their shapes. 

This can also be seen from this figure that the change in energy gain is faster when the 

pulses of longer durations are employed for the wakefield excitation. 

 

Figure 10. Dependence of maximum energy gain of electron on the laser pulse duration for the same 

parameters as in Fig.2. WRT is the gain in case of rectangular-triangular pulse, WRG is for rectangular-

Gaussian pulse and WGL is for Gaussian-like pulse. 

4.1.1.2. Effect of laser frequency f 

The effect of laser frequency f on the maximum energy gain attained by an electron is shown 

in Fig.11, from where it is evident that the gain is larger in case of RT pulse. Moreover, the 

slopes of the graphs reveal that the effect of laser frequency is more significant in the case of 

RT pulse in comparison with RG and GL pulses. Since the wakefield and plasma 

wavelength show weak dependence on the frequency f, it is worth clarifying the main factor 

that leads to significant increase in the electron energy gain with  f. Actually a slight change 

in gv  due to f causes a greater change in the factor (1r) appearing in the denominator of 

the energy gain expressions. Since gv  increases for the larger frequencies, the gain gets 

larger with the increasing laser frequencies.  
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Figure 11. Dependence of maximum energy gain of electron on the laser frequency when the laser 

intensity is 31018 W/m2 and pulse duration is 30 fs. WRT, WRG and WGL have the same meaning as in 

Fig.10. 

 

 

Figure 12. Variation of maximum energy gain of electron with the laser intensity when the pulse 

duration is 30 fs and laser frequency is 1.6 PHz. WRT, WRG and WGL have the same meaning as in Fig.10. 
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4.1.1.3. Effect of laser intensity I0 

The expressions of wakefield for all types of the pulses show that the wake amplitude is 

directly proportional to 2
0E , i.e. the intensity of the laser. It means higher intensity pulses will 

excite larger amplitude wakefield owing to the larger density perturbations in the plasma. 

However, we cannot indefinitely increase the amplitude of the wakefield because there is a 

limit on the maximum field that a plasma can support. Figure 12 shows that the maximum 

energy gain is increased from 9.5 MeV to 33.5 MeV, when the laser intensity is raised from 

11018 W/m2 to 31018 W/m2 in case of RT pulse. A comparison of all the graphs shows that 

the RT pulse supersedes and gives the best results. Also the difference in energy gain 

becomes more and more significant when the intensity of the pulses is increased. The better 

results, i.e. higher amplitude wakefield and larger energy gain, obtained in case of RT pulse 

having smooth/fast rising time are consistent with the observations of Bulanov et al. [91] 

where he observed regular wakefields by a pulse with sharp steepening of its leading front. 

4.2. Wakefield by different microwave pulses in waveguides 

Here we present some results on wakefield excitation in a waveguide by different shapes of 

the microwave pulses, i.e. GL, RG and RT pulses.  

 

Figure 13. Schematic of wakefield generation in plasma filled rectangular waveguide by microwave 

pulse. Here gz v t    and L is the pulse width. 

We consider that a microwave pulse of pulse duration  at a frequency f  propagates in a 

plasma filled b h   rectangular waveguide. This pulse resonantly excites the wakefield 

(corresponding potential  ) in the waveguide under the action of ponderomotive force 

(Fig.13), when the pulse duration  matches with the inverse of the plasma frequency, i.e. 
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1
pef  . The electric and magnetic fields associated with the microwave are represented by 

E


 and B


. We use the Maxwell’s equations and obtain the group velocity of the microwave  

pulse  as  1/2
2 2 2 2 2 21g pv c c b       that coincides with the phase velocity of the 

wakefield. 

For the rectangular waveguide, we take the distribution of the microwave field as 
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E y E
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  
  

 
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   


 Using these relations in the 

basic fluid equations, we integrate them under the conditions that all the oscillating 

quantities tend to zero as    under the weakly nonlinear theory. With this we get the 

following equation 
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                  (42) 

where 
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1 1 1

2 z
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v c
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  
  

. 

This equation can be viewed as the equation governing the forced (driven) harmonic 

oscillator. Here the last term is the force term that evolves due to the microwave field 

(ponderomotive force) and drives the wake in the plasma. The third term is proportional to 

  and hence its coefficient determines the natural frequency of the wake. The second term 

is the damping term through which the nonlinearity enters the system as it is proportional 

to square of     (nonlinear term). Thus, the wake with potential   is evolved in the 

plasma as a combined contribution of each term of Eq.(42).  

We can use the information related to the shape of the pulse through the last term of Eq.(42) 

via the coefficient  F  . Using the fourth-order Runge-Kutta method we simulate this 

equation for the above-mentioned three types of the pulse shapes. Here we take different 

profiles for the electric field of the pulse keeping in mind its shape and calculate  zB   with 

the help of Maxwell’s equation. The relation between  zB   and  E   thereby comes out to 

be    1
z

g

B E d
v b

    . 

4.2.1. Results on wakefield in the waveguide 

As mentioned, we solve Eq.(42) numerically and obtain the potential   from which we look 

for the wakefield amplitude for the mentioned three types of the pulse shapes. Figures 14 – 
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16 show the profile of wakefield generated by GL pulse, RG pulse and RT pulse, 

respectively. It can be easily seen that the amplitude of the wakefield is the largest in the 

case of RT pulse and is the least for the case of GL pulse; in other words, the wakefield 

amplitude follows the trend RT RG GLE E E  .  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 14. Variation of wakefield generated by microwave GL pulse in a waveguide for microwave 

intensity 
22 /I GW m , frequency 30f GHz , pulse duration 2ns  , plasma density 

17 3
0 4.5 10n m   and waveguide width 0.03b m . 
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Figure 15. Variation of wakefield generated by microwave RG pulse in a waveguide for the same 

parameters as in Fig.14. 

 

Figure 16. Variation of wakefield generated by microwave RT pulse in a waveguide for the same 

parameters as in Fig.14. 
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Figure 17. Dependence of wakefield amplitude on plasma density 0n  for two different microwave 

pulse durations 1.5ns  (solid line graphs, left axis) and 3.0ns  (dashed line graphs, right axis), 

when the other parameters are the same as in Fig.14. 

Dependence of the wakefield amplitude on the plasma density for two different pulse durations 

is shown in Fig.17, from where it is found that the amplitude is increased for the higher plasma 

density in the waveguide for the case of RG pulse. However, the opposite trend is realized for 

the other types of the pulses (GL and RT pulses); the wakefield amplitude remains the largest in 

case of the RT pulse. A comparison of slopes of the graphs yields that the RT pulse shows 

stronger dependence on the plasma density in comparison with the other types of the pulses. 

With regard to the effect of pulse duration, we notice that the larger wakefield is obtained for 

the case of longer pulse durations; this is true for all types of the pulses.  

In Fig.18, the effects of microwave frequency and its intensity are studied on the wakefield 

amplitude, where it is seen that an increase in the frequency leads to an enhancement in the 

wakefield amplitude for the cases of RG pulse and GL pulse; opposite is true for the RT 

pulse, which also shows a strong dependence (slope 0.097 at 9 22 10 /I W m  ) on the 

frequency as compared with the other pulses. With regard to the effect of microwave 

intensity, we observe that the larger wakefield is obtained for the higher microwave 

intensity. This is further evident that the amplitude is modified at a faster rate in the case of 

RT pulse in comparison with the other pulses. Generally, we can conclude that the RT pulse 

is most sensitive to microwave frequency and intensity.  

It is worth noticing from Figs. 14 – 18 that tens of MV/m wakefield is attained with the use 

of moderate intensity microwave pulses. Therefore, in view of the effect of microwave 

intensity (Fig.18), it is expected that the wakefield of the order of GV/m can be generated if 

the microwave pulses of intensity  TW/m2 are available. Since the wakefield of this order is 

generally obtained by ultra high intensity lasers in usual wakefield generation schemes, the 

present mechanism of exciting wakefield in the waveguide by microwave pulses seems to 

be more effective and feasible as it can reduce the cost of accelerator and also it will provide 

an additional controlling parameter (the waveguide width).  



 
Wave Propagation Theories and Applications 104 

 

Figure 18. Variation of wakefield amplitude with microwave frequency f  for two different 

microwave intensities 9 22 10 /I W m   (solid line graphs, left axis) and 9 21 10 /I W m   (dashed 

line graphs, right axis), when the other parameters are the same as in Fig. 14. 

Variation of the wakefield amplitude with the waveguide width is shown in Fig.19, where 

it is observed that the amplitude is decreased with the increase of waveguide width; same 

result was obtained in an analytical calculation [38]. It means the larger wakefield can be 

obtained for the case of plasma filled narrower waveguide. A comparison of the slopes of 

the graphs reveals that the wakefield amplitude changes at a faster rate in the case of RT 

pulse. Therefore, the RT pulse is found to be more sensitive to the waveguide width. 

Thus, we can conclude that a plasma filled narrower waveguide is best suited for an 

effective wakefield excitation and the significant particle acceleration if the RT pulse is 

used.  

 

Figure 19. Variation of wakefield amplitude with waveguide width. The values of intensity, frequency, 

pulse duration and plasma density are given in the caption of Fig. 14. 
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Figure 20. Profile of wakefield WE in a plasma filled waveguide near cutoff conditions when 

6.76f GHz , 0.9ns  , 5.11cf GHz , 291 10 /I W m   and 0.03b m . 

4.2.1.1. Wakefield near cutoff conditions 

This has already been explored that the wakefield of larger amplitude is obtained for the 

smaller waveguide width and the longer pulse duration. For fixed microwave frequency, 

the cutoff frequency cf  gets higher under the effect of decreased width b  and plasma 

density 0n . These effects can be viewed as if the microwave frequency is brought near the 

cutoff frequency cf . Therefore, it is of much importance to investigate the wakefield 

structure near cutoff conditions, i.e. when f  is near cf . These results are presented in 

Figs.20 and 21 for 6.76f GHz  whereas 5.11cf GHz . Fig.20 shows that the amplitude of 

wake wave gets increased under this situation as we move away from the microwave pulse, 

i.e. for decreasing values of  . This is further noticed that various peaks develop along the 

waveguide width during the growth of wakefield amplitude and it becomes unstable. Thus, 

it is plausible that some instability develops near the cutoff conditions. In order to further 

investigate this effect, we show in Fig.21 the maximum distance by which this growth 

occurs. Here we observe that the amplitude gets terminated around 3.7 L  in the plasma 

and the field breaks down. 
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Figure 21. Profile of wakefield corresponding to Fig.20, showing its cutoff around maximum distance 

of 3.7 L  from the microwave pulse. 

These results suggest that the microwave of higher frequency should be employed for 

avoiding any instability in the system and the wakefield can be effectively used for the 

purpose of particle acceleration. The present mechanism of wakefield generation can be 

realized experimentally if we use wider waveguide filled with higher plasma density. The 

high density plasma can be produced in the waveguide under the action of Electron 

Cyclotron Resonance (ECR). However, under such situation short microwave pulses would 

be more effective in order to resonantly excite the plasma wake wave. 

5. Concluding remarks 

The electromagnetic waves were classified based on their frequency and a small region 

(1011Hz to 1013 Hz) that remained the last unexplored region was introduced as the THz 

rays. While explaining the propagation of EM waves, it was shown that their propagation 

velocity depends on the properties of the medium, and unlike the cases of vacuum and 

dielectrics, their electric field and magnetic field vectors do not remain in phase in the case 

of conductors. Very fascinating phenomenon of skin depth was discussed in the conductors 

where the wave vector was found to become a complex quantity and its imaginary part led 

to the attenuation of the wave. It was mentioned that the EM waves can propagate through 

the plasma medium if their frequency is larger than the plasma frequency. In the case of 

plasmas, another interesting phenomenon of wakefield excitation by the laser or microwave 

pulses was talked about in detail. Two case studies were conducted using the laser pulses 

and microwave pulses with different envelopes. It was shown that moderate intensity 

microwave pulses can also generate the wakefield effectively and accelerate the particles to 

sufficiently large energies. Moreover, the high cost laser systems can be replaced with 

microwave systems if the microwave pulses can be tailored properly. 
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6. Applications and future prospects 

The electromagnetic wave and plasma interaction has diverse applications in different fields 

such as nuclear fusion, particle acceleration, heating of ionospheric and laboratory plasmas 

by radio waves etc. along with controlled fusion applications to ITER (International 

Thermonuclear Experimental Reactor), frequency upshifting, resonance absorption, laser 

focusing and defocusing, material processing, generation of X-ray, THz and microwave 

radiations, higher order harmonic generation, laser filamentation  etc. With the inclusion of 

plasma, the performance of some devices such as backward wave oscillator (BWO), 

travelling wave tube (TWT) amplifiers, gyrotrons and other microwave tubes have been 

found to increase.  

The use of laser plasma accelerators has been made in radioisotope production through 

 ,n  reactions with laser accelerated electron bunches in the range tens of MeV [92, 93]. 

The short pulse nature and high charge of the accelerated bunches also has applications in 

the production of coherent THz radiation, which is achieved when femtosecond electron 

bunches cross the plasma vacuum boundary and emit transition radiation [94 – 96]. The 

generation of THz radiation has interesting applications in nonlinear THz spectroscopy, 

material characterization, imaging, topography, remote sensing, chemical and security 

identification [97, 98] etc. Another application of accelecerated electron beams / bunches is in 

the generation of femtosecond X-ray pulses produced by the betatron radiation emitted 

when the electron beam propagates through the plasma. By making an array of nanoholes 

on an alumina target, X-ray emission from laser produced plasma can be greatly enhanced 

even in soft X-ray energy regions (< 0.25 keV). The enhancement increases as the ionization 

level of Al becomes higher and the X-ray wavelength becomes shorter. Over 50 fold 

enhancement was obtained at a soft X-ray wavelength around 6 nm, which corresponds to 

the emission from Al8+,9+  ions. X-ray pulse duration was 17 ps, which is much shorter than 

that obtained by using the prepulse technique [99]. Towards the generation of other types of 

electromagnetic radiation, Tripathi and Liu [82] have proposed a dielectric-lined waveguide 

for the free-electron laser emission in millimeter wavelength band. Farokhi et al. [83]  have 

presented a linear theory for a free electron laser with a three-dimensional helical wiggler 

and axial magnetic field in the collective regime in a configuration consisting of an annular 

electron beam propagating inside a cylindrical waveguide. For the generation of high power 

(140 MW) subnanosecond (75 ps) microwave pulses in the range of 38 – 150 GHz, Yalandin 

et al. [84] have done experiments on coherent stimulated radiation from intense, 

subnanosecond electron bunches moving through a periodic waveguide and interacting 

with a backward propagating TM01 wave. Hayashi et al. [85] have also designed a two-stage 

ferroelectric electron gun and a peak power of 5.9 MW microwave radiation was observed 

when a 100A 450 kV electron beam was used.  

Research directed towards the development of high power electromagnetic radiation 

sources accounts for much of the current interest in the plasma filled waveguides. Plasma 

filled waveguides may also be used for the transportation of electromagnetic energy and 

charged particles, and in the basic study of plasma phenomena. In spite of such extensive 
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work over the years, the understanding of the physics of wave plasma interaction is still an 

active area of research, which also finds additional applications in plasma based focused ion 

beams (FIB), plasma sources for negative ion beams for neutral beam injection, rf-based 

plasma thrusters, etc. With regard to the particle acceleration, we have carried out analytical 

and numerical studies on the wakefield excitation by different types of the pulses in a 

rectangular waveguide filled with homogeneous plasma. Our analyses reveal that moderate 

intensity ( 109 W/m2) microwave pulses can produce up to 100 MV/m wakefield in the 

waveguide if the nanosecond pulses are used. Since the amplitude of resonantly excited 

wakefield changes at a faster rate with the waveguide width, pulse duration and microwave 

intensity and it is larger for the smaller waveguide width, longer pulse duration and the 

higher microwave intensity in the case of rectangular triangular pulse, the significant 

wakefield can be excited in the waveguide and effective particle acceleration can be 

achieved with the use of RT pulses for which the parameters can be optimized using the 

present studies. This theoretical work on the contribution of different microwave and laser 

pulses for the purpose of particle acceleration and the THz generation [100, 101] shall induce 

experimentalists to develop rectangular, rectangular-Gaussian, rectangular-triangular, 

sawtooth and triagular pulses of appropriate lengths for accomplishing various experiments 

on wakefield generation, particle acceleration, and the THz generation. Through such efforts 

our researchers would be able to benfit the society more via the medical, scientific, and 

technological applications of the subject electromagnetic wave and plasma interaction.  
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