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1. Introduction

Chronic Myeloid Leukemia (CML) is a clonal disease, originated at the level of Hematopoietic
Stem Cells (HSC) and characterized by the presence of the Philadelphia (Ph) chromosome and
its oncogenic product p210Bcr-Abl. Such a protein has been shown to be essential for malignant
transformation, since it is capable of altering cell adhesion, proliferation and apoptosis.

Current treatment options in CML include tyrosine kinase inhibitors (Imatinib, Nilotinib and
Dasatinib), compounds that inhibit the activity of the BCR-ABL protein. However some
patients will develop resistance or intolerance to these drugs and resistance has been associated
with different mechanism including the quiescence of leukemic stem cells and Pgp or Src
kinase overexpression.

In this chapter we focus on the basic biology of hematopoietic stem and progenitor cells from
CML and analyze the most relevant and current concepts in this area.

2. Chronic myeloid leukemia

Chronic myeloid leukemia (CML) is a lethal hematological malignancy characterized by the
abnormal amplification of the myeloid (mainly granulocityc) compartment of the hemato‐
poietic system. It originates from the transformation of a primitive hematopoietic cell that
suffers a t(9;22) (q34; q11) balanced reciprocal translocation that results in the generation of
the Philadelphia chromosome (Ph). Ph produces BCR-ABL, a constitutively active tyrosine
kinase that drives a wide variety of physiological alterations [1].
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CML was initially described in 1845 by John Hughes Bennett, who reported the case of a patient
with “milky” blood and suggested that it was an infectious disease that caused hypertrophy
of the liver and spleen, leading to the patient’s death. A few weeks later, Rudolf Virchow
reported a similar case, but, in contrast to Bennett, he suggested that the disease was not
infectious and implied an increase in the number of blood cells. He coined the term leukemia
(from the Greek leukos, white, and “Aemia”, blood). In 1870, Neumann described that leukemia
cells originate in the bone marrow; almost one hundred years later, in 1960, Nowel and
Hungerford reported that in all cases of this malignancy there was a small, abnormal chro‐
mosome 22. However, was until 1973 that Janet Rowley described that the abnormal chromo‐
some was caused by a reciprocal translocation between the long arms of chromosomes 9 and
22, designating the name of Philadelphia (Ph) chromosome[2, 3].

2.1. Epidemiology and clinical characteristics

Chronic myelogenous leukemia has a worldwide incidence of 1-2 cases per 100,000 individuals
[4]. The average age at diagnosis is 60 years; it occurs less frequently in young people and a
tendency to increase exponentially with age has been observed. There is no geographic or
genetic predisposition to acquire this condition, although some authors have associated it with
exposure to high doses of ionizing radiation. The current CML prevalence of 24,000 affected
patients in the United Sates is relatively low; it is expected to increase significantly over the
next 20 years as a result of widespread use of BCR-ABL tyrosine kinase inhibitor therapy [5].
In Mexico, there are no official data on the incidence of such a disease, however, it has been
estimated that there are about 80,000 cases of leukemia and 10% corresponds to CML [6].

The clinical presentation often includes granulocytosis, spenomegaly and marrow hypercel‐
lularity; however about 40% of patients are asymptomatic and their diagnosis is based on
abnormal blood cell counts [1]. The natural course of the disease involves three sequential
phases, namely chronic, accelerated and blast crises. Ninety percent of patients are diagnosed
in chronic phase and they remain in it for 3 to 8 years. In this phase, the blood cells retain their
ability to differentiate until the illness progresses to the accelerated phase, which is character‐
ized by the egress of immature cells into the bloodstream. Finally, the disease progresses to
the blast crisis, defined by the presence of 30 percent or more leukemic cells in peripheral blood
or marrow or extramedullary infiltrates of blast. During this phase the survival of patients is
reduced to months and even weeks [7].

2.2. Molecular events (Bcr-Abl oncogene)

As mentioned before, the Philadelphia chromosome, which defines CML, is a shortened
chromosome 22 originated from the reciprocal translocation between the long arms of
chromosomes 9 and 22 [t (9; 22)] and involves addition of 3' segments of the abl gene (9q34) to
5' segments of the bcr gene (22q11) given rise to a bcr-abl fusion gene that transcribes a chimeric
mRNA of 8.5 kb that, in turn, gives rise to a BCR-ABL fusion protein [7]. t(9;22) is evident in
more than 95% of CML patients; between 5% and 10% of CML patients also present complex
rearrangements that may involve one or more chromosomes in addition to 9 and 22 [8].
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The normal human ABL gene encodes for a non-receptor tyrosine kinase that is ubiquitously
expressed. Such a 145 kDa protein is involved in the regulation of the cell cycle, the response
to genotoxic stress, and intracellular signaling mediated by the integrin family [9]. There are
three isoforms of the BCR-ABL fusion protein all of which encode the same portion of the ABL
tyrosine kinase, but differ in the length of the BCR sequence at the N-terminus. p185/p190 BCR-
ABL is expressed in Acute Lypmphoblastic Leukaemia (ALL), p210 BCR-ABL is characteristic
of Chronic Myeloid Leukemia, and p230 BCR-ABL has been associated with a subgroup of
CML patients with a more indolent disease (Figure 1) [4].

Figure 1. Structure of the Bcr-Abl gene. It is formed by a reciprocal translocation between chromosomes 22 (Bcr gene) and
9 (Abl gene). Ther M-BCR breakpoint resulting in a P210 BCR/ABL fusion transcripts b2a2 or b3a2 and they encode a pro‐
tein of 210 kDa (BCR-ABLp210) present in almost all patients with Chronic Mieloid Leukemia (modified to [9]).

BCR-ABL fusion protein localizes in the cytoplasm and shows an increased and constitutive
tyrosine kinase activity as a result of oligomerization of its coiled region and deletion of the
SH domain of ABL. It activates a number of cytoplasmic and nuclear signal-transduction
pathways involved in cell adherence, migration, inhibition of apoptosis, and induction of cell
proliferation through activation of signaling proteins such as p21RAS, c-Myc, lipid kinasse
PI3k, MAPk (mitogen-activated protein kinase family), tyrosine phosphatases, and signal
transducer and activator of transcription (STATs) factors [9, 10].

2.3. Leukemic Stem Cells in chronic myeloid leukemia

There is an increasing body of evidence indicating that, similar to normal hematopoiesis, a
quiescent stem cell population -within the CD34+ cell compartment- exists in the bone marrow
of CML patients. Such Leukemic Stem Cells (LSC) seem to be the ones driving CML progres‐
sion, following a similar pattern to the one observed in normal hematopoiesis. That is to say,
LSC give rise to CML progenitor cells, which, in turn, give rise to more mature cells.

Just like normal hematopoietic stem cells (HSC), CML stem cells express high levels of CD34,
and lack the cell surface markers CD38, CD45RA, or CD71, as well as lineage-specific markers.
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However, LSC are Ph+/BCR-ABL+, which is not present in their normal counterparts. Interest‐
ingly, it has recently been shown that a novel population of lineage-negative, CD34-negative
hematopoietic stem cells from CML patients also correspond to BCR-ABL+ leukemic stem cells
capable to engraft immunodeficient mice [13]. Thus, it seems that most LSC are CD34+ but a
subpopulation may be CD34-. Importantly, despite the predominance of LSC in CML, a
residual population of normal hematopoietic stem cells (BCR-ABL- CD34+) persists in the
marrow’s patient, which seems to be responsible for hematopoietic recovery after a successful
treatment using Tyrosine Kinase Inhibitors (TKIs).

As mentioned before, LSC are in a quiescent state, however, they can spontaneously exit G0 to
enter a proliferating state and are capable of engrafting inmmunodeficient mice [11]. In this
regard, several studies have shown that TKIs, like Imatinib, Nilotinib, Dasatinib, Bosutinib,
and Lonafarnib, have antiproliferative or apoptotic effects in almost all dividing CML cells;
however, the population of stem cells remains viable in a quiescent state [16-21].

In vitro studies indicate that LSCs are capable of surviving for several weeks in the absence of
added growth factors due to autocrine mechanisms involving production of granulocyte
colony-stimulating factor (G-CSF) and Interleukin 3 (IL-3) [12]. This, in fact, is an important
difference between normal and CML HSC, since the former depends on the presence of
exogenous cytokines for their growth, whereas the latter, as just mentioned, can utilize
autocrine mechanisms. Although there is strong evidence that Bcr-Abl is sufficient to induce
CML-like disease in transduction and transgenic murine models [14], it is still unclear whether
Bcr-Abl is always the first hit in CML, since in some patients with a complete cytogenetic
response after treatment, BCR-ABL transcripts are still detectable by RT-PCR, which indicates
that leukemic cells persist even when the disease is reduced below detectable limits [15].

3. Functional characteristic of leukemic stem cells in CML

3.1. Proliferation

Proliferation of leukemic stem and progenitor cells is regulated by Bcr-Abl. Such a tyrosine
kinase activates the Ras/Raf/MEK/ERK and JAK/STAT signal transduction pathways, and this
results in an amplified proliferative state [22]. Bcr-Abl causes hyperactivity of Ras, Raf and
JAK/STAT, which can occur by multiple mechanisms; i.e., by Bcr-Abl activating these path‐
ways directly, or by the induction of autocrine cytokines, which in turn activate these pathways
[23]. Bcr-Abl autophosphorylation of tyrosine 177 provides a docking site for the adapter
molecule Grb-2. Grb-2, after binding to the Sos protein, stabilizes Ras in its active GTP-bound
form. Two other adapter molecules, Shc and Crkl, can also activate Ras [9, 24]. Ras activates
Raf, and finally, Raf initiates a signaling cascade through the serine–threonine kinases Mek1/
Mek2 and Erk, which ultimately leads to the transcription of genes involved in cell proliferation
and survival (Figure 1), such as c-Myc, Cyclin D, Cyclin A, Bcl-2, cytokines, etc [22].

The JAK/STAT pathway has been demonstrated to be constitutively activated In CML. Among
all the molecules participating in these pathways, STAT1 and STAT5 have been found to be
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the two major STATs phosphorilated by Bcr-Abl. STAT5 has pleiotropic physiologic functions,
and its main effect in Bcr-Abl-transformed cells appears to be primarily anti-apoptotic,
involving transcriptional activation of Bcl-xL [25]. Also, in some experimental systems there
is evidence that Bcr-Abl induces an IL-3 and G-CSF autocrine loop in early progenitor cells [12].

3.2. Inhibition of apoptosis

Leukemic Stem Cells acquire the ability for long-term survival primarily by deregulation
of apoptosis.  In CML, blocking of apoptosis is  mediated by Bcr-Abl.  Bcr-Abl may block
the release of cytochrome C from mitochondria and thus activation of caspases.  This ef‐
fect  upstream  of  caspase  activation  might  be  mediated  by  the  Bcl-2  family  of  proteins
[26]. Bcr-Abl has been shown to up-regulate anti-apoptotic protein Bcl-xL in a STAT5-de‐
pend manner, as mention above [27]. Another link between Bcr-Abl and the inhibition of
apoptosis  might  be  the  phosphorylation  of  the  pro-apoptotic  protein  Bad  through PI3k
pathway.  Bcr-Abl  forms  multimeric  complexes  with  PI3  kinase,  Cbl,  and  the  adapter
molecules Crk and Crkl, in which PI3 kinase is activated. The next substrate in this cas‐
cade appears to be the serine-threonine kinase Akt. This kinase had previously been im‐
plicated in antiapoptotic signaling and protein Bad as a key substrate of Akt (Figure 1).
Phosphorylated  Bad is  inactive  because  it  is  no  longer  able  to  bind  anti-apoptotic  pro‐
teins such as Bcl-xL and it is trapped by cytoplasmic 14-3-3 proteins [28].

3.3. Altered adhesion properties

In CML, progenitor cells exhibit decreased adhesion to bone marrow stroma cells and
extracellular matrix. From this point of view, adhesion to stroma negatively regulates cell
proliferation, and CML cells escape this regulation by virtue of their perturbed adhesion
properties. Bcr-Abl directly phosphorylates Crkl, a protein involved in the regulation of cell
motility and in integrin-mediated cell adhesion by association with other focal adhesion
proteins such as paxillin, the focal adhesion kinase Fak, p130 Cas and Hef1 [29, 30] (Figure
1). In addition to this, it has been demonstrated that the activity of Bcr-Abl promotes expression
of integrin β1, a variant not found in the normal counterpart that inhibits adhesion to stroma
and cell matrix, together with the effect of expansion and premature exit of myeloid progen‐
itors and precursors to bloodstream [31].

3.4. Self-renewal

Deregulation of self-renewal has been recognized as an important event in disease progression.
In normal hematopoietic stem cells, self-renewal capacity involves several signaling pathways:
Notch, Wnt, Sonic Hedgehog (Shh), FoxO and Alox5 [32-34].

Notch pathway

Notch receptors are an evolutionarily conserved family of trans-membrane receptors that are
known to be expressed and activated in normal HSC. Binding to their physiological ligands,
which are part of the Delta and Serrata families, leads to separation of an intracellular portion
of Notch. This fragment is capable of entering the nucleus where it binds transcriptional
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repressor CBF-1. Interconnection of Notch, CBF-1 and the co-factor MAML-1 (mastermind-
like-1) leads to transcriptional activation of target genes [35]. Constitutively active Notch is
able to mediate multilineage potential in vivo. Differentiation of cells leads conversely to
downregulation of Notch [36].

Notch signaling may also be important  in advanced stages of  CML. Hes1,  a  key Notch
target gene, was found to be highly expressed in 8 out of 20 patients with CML in blast
crisis, but was not seen in the chronic phase. In mice, the combination of Hes1 and BCR-
ABL expression in myeloid lineage progenitor cells resulted in an acute leukemia resem‐
bling  blast  crisis  CML  [37].  This  suggests  that  Notch  inhibitors  may  be  useful  in
strategies aimed at eradicating CML LSC.

Wnt pathway

In normal hematopoiesis, Wnt pathway activity is required in the bone marrow niche to
regulate  HSC proliferation  and to  preserve  self-renewal  capacity  [38].  Activation  of  the
canonical Wnt/β-catenin pathway consists of binding of Wnt proteins to members of the
Frizzled and low-density  lipoprotein  receptor  related (LPR)  families  on the  cell  surface.
In the absence of Wnt signals,  β-catenin is associated with a large multiprotein complex
that  includes  Axin,  APC,  and  glycogen  synthase  kinase  3β  (GSK3β),  among  others.
Through a mechanism not  entirely understood,  when Wnt proteins bind to their  target,
Axin facilitates phosphorylation of β-catenin by GSK3β. Phosphorylation, in turn, results
in ubiquitination, targeting β-catenin for degradation. Thus, axin serves as an inhibitor of
β-catenin activity.  Binding of  Wnt proteins  to  their  receptors  leads to  activation of  Dis‐
shevled (Dsh), which inhibits phosphorylation of β-catenin by GSKβ, so it accumulates in
the  cytoplasm  and  translocates  to  the  nucleus,  where  it  activates  transcription  factors,
such as LEF/TEF and allows expression of target genes [39].

This pathway has been implicated in CML. Indeed, in blast crisis CML, the LSC, which
resemble granulocyte-macrophage progenitor cells (GMP), have aberrant activation of β-
catenin via the canonical Wnt signaling pathway. In a proportion of these cases, the pathway
is activated through abnormal missplicing of GSK3β [40].

Sonic Hedgehog (Shh) pathway

The Hedgehog (Hh) pathway is a highly conserved developmental pathway, which regulates
the proliferation, migration and differentiation of cells during development [41]. It is typically
active during development, but silenced in adult tissues, except during tissue regeneration
and injury repair [42]. Three distinct ligands, i.e., Sonic (Shh), Indian (Ihh) and Desert (Dhh)
Hedgehog exist in humans. Upon ligand binding to the receptor patched (Ptch), inhibition of
smoothened (Smo) receptor is relieved. Smo then activates members of the Gli family of zinc-
finger transcription factors, which translocate to the nucleus to regulate the transcription of
Hh target genes, including Gli1, Gli2, Ptch and regulators of cell proliferation and survival [43].

Based on murine embryonic stem cell studies, it has been found that Hh signaling plays
major roles during primitive hematopoiesis.  Ihh is  a primitive endoderm-secreted signal
and  is  sufficient  to  activate  embryonic  hematopoiesis  and  vasculogenesis  [44].  Further‐
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more, a study of zebrafish showed that the mutations of the Hh pathway members or in‐
hibition  of  the  Hh  pathway  with  the  Hh  inhibitor  cyclopamine  can  cause  a
developmental defect in adult HSC [45]. In addition, activation of Hh pathway has been
observed in different human cancers. In CML patients,  more than four-fold induction of
the transcript levels of Gli1 and Ptch was observed in CD34+  cells in both chronic phase
and  blast  crisis.  In  two  studies  using  a  CML  mouse  model,  recipients  of  the  Bcr-Abl
transduced bone marrow cells from Smo-/- donor mice developed CML significantly slow‐
er than recipients of  Bcr-Abl transduced bone marrow cells  from wild-type donor mice.
When  the  frequency  and  function  of  the  LSCs  were  examined,  Smo  deletion  caused  a
significant reduction of the percentage or LSCs [46]. By contrast, over expression of Smo
led to an increased percentage of LSC and accelerated the progression of CML [47].

FoxO pathway

The FoxO (Forkhead-O) subfamily of transcription factors regulate cell cycle, stress resistance,
differentiation, and long-term regenerative potential of HSC [48], and protect integrity of the
stem cell pool. There are four members (FoxO1, FoxO3, FoxO4 and FoxO6) and are known to
be effectors of the PI3k/AKT pathway, which is frequently mutated or hyperactivated in
hematologic malignancies, and are abundantly expressed in the hematopoietic system. Akt
directly phosporylates the FoxO members from the nucleus and promotes its degradation in
the cytoplasm. FoxO members localize to the nucleus and regulate apoptosis, cell cycle
progression and oxidative stress responses [49]. In a model of deficient FoxO mice it was shown
a defect in the long-term expansion capacity of the HSC pool. Such a defect has been correlated
with increased cell division and apoptosis of HSCs.

FoxO transcription factors have also been shown to have essential roles in the maintenance of
CML LSCs [50]. FoxO3 localizes to the cell nucleus and it causes a decrease in Akt phosphor‐
ylation in the LSC population. In addition, serial CML transplantation showed that FoxO3
deficiency severely impairs the ability of LSCs to induce CML. Furthermore, transforming
growth factor-β (TGF-β) is a crucial regulator of Akt activation and controls FoxO3 localization
in LSCs of CML. A combination strategy of TGF-β inhibition, FoxO3 deficiency and Bcr-Abl
kinase inhibition results in efficient LSCs depletion and suppression of CML development [51].

Alox5 pathway

The Alox5 pathway is the only one signaling pathway not shared by LSC with normal HSC.
The Alox5 gene encoding arachidonate 5-lipoxygenase (5-LO) is involved in numerous
physiological and pathological processes, including oxidative stress response, inflammation
and cancer [52]. 5-LO is responsible for producing leukotrienes, a group of inflammatory
substances that cause human asthma [53]. Altered arachidonate metabolism by leukocytes and
platelets was reported in association with myeloproliferative disorders [54]. Several selective
5-LO inhibitors were found to reduce proliferation and induce apoptosis of CML cells in vitro
[55]. Recently, human CML microarray studies have shown that Alox5 is differentially
expressed in CD34+ CML cells suggesting a role for Alox5 in human CML stem cells. However,
the function of Alox5 in LSCs needs to be tested. Other microarray analysis of gene expression
in LSCs in CML mice showed that the ALox5 gene was up-regulated by Bcr-Abl and that this
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up-regulation was not inhibited by Imatinib treatment, providing a possible explanation of

why LSCs are not sensitive to inhibition by Bcr-Abl kinase inhibitors [56].

 

(b) 

) 

(a) 

Figure 2. Signaling pathways involved in the signaling of BCR-ABL. A) Schematic representation of principal molecules
that participate in proliferation, adhesion and apoptosis. B) Pathways involved in self-renewal.
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4. Current therapies

The first effective treatment for CML was the solution of Fowler's, which contained arsenic as
active component and was used in the early 20th century. Later between 1920 y1930 irradiation
to the spleen was the main therapeutic option, since it offered patients the decrease of
symptoms, although it did not prolong their lives. In 1953, busulfan was included in CML
treatment. This compound provided benefit in terms of survival, although it was shown to be
extremely toxic for hematopoietic progenitor cells. The next drugs effective in the treatment
of CML were hydroxyurea and cytosine arabinoside, both less toxic than busulfan and able to
block proliferation of cells, but unable to induce specific damage to leukemic cells; thus,
patients usually progressed to the accelerated and blast crisis phases [57].

4.1. Interferon-α

Interferon-α (IFNα) was the first drug capable of extending the chronic phase of the disease
and retarding the evolution to the accelerated phase. IFNα is a nonspecific stimulant of the
immune system that regulates T-cell activity and produces a complete hematologic response
(CHR) in 40-80% of patients, and a complete cytogenetic response (CCR) in 6-10% of patients
with a median survival of 89 months [58].

In vitro studies have indicated that IFNα might function via selective toxicity against the
leukemic clone, since it is able to inhibit long-term cultures from patients with CML in chronic
phase and reduces the percentage of Ph+ cells [59]. It also inhibits CML myeloid progenitors
while sparing normal myeloid progenitors [60]. In vivo, IFNα enhances immune regulation
through the activation of dendritic, natural killer, and cytotoxic T cells, all of them capable of
generating anti-tumor responses. In Bcr-Abl+ cells, IFNα induces a state of tumor dormancy
and delays progression to advanced phase [61], and is able to modulate hematopoiesis through
enhanced adhesion of CML progenitor cells to stromal cells, whereas adhesion of normal
progenitors was unaffected. This enhanced adhesion by CML progenitor cells has been
associated with a reduction in neuraminic acid levels and by enhanced hematopoietic cell-
microenvironmental cell interactions, which is achieved by the induction of molecules such as
β2-Integrin, L-selectin, ICAM-1 and ICAM352 [58, 62].

Because IFNα is a nonspecific immunostimulant, it produces secondary symptoms and
toxicities and many patients discontinue therapy. However there are evidence that a significant
proportion of IFNα-treated patients in prolonged CCR were able to discontinue treatment
without disease relapse [63], and it was recently reported that in a specific group of patients
treated with monotherapy there are increased numbers of NK cells and clonal γδ T cells [64].

4.2. Tyrosine kinase inhibitors

Having identified that tyrosine kinase activity of Bcr-Abl is a major factor in the pathophysi‐
ology of CML, it was clear that such a molecule was an attractive target for designing a selective
kinase inhibitor. In 1996, Buchdunger et al, synthesized several compounds that inhibit the
activity of platelet-derived growth factor receptor (PDGF-R) and ABL kinase. One of these was
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the 2- phenylaminopyrimidine, which served as a starting point for the development of other
related compounds [65]. The activity of the 2-phenylaminopyrimidine series was optimized
and gave rise to STI571 (also named imatinib mesylate, CGP57148B or Gleevec®, Novartis
Pharmaceuticals).

Imatinib

Imatinib is a highly selective inhibitor of the protein tyrosine kinase family, which includes
BCR-ABL protein, PDGF-R and the c-kit receptor. It competitively binds to the ATP-binding
site of BCR.ABL and inhibits protein tyrosine phosphorylation in vitro and in vivo [66]. In vitro
studies had shown that Imatinib is capable to inhibit cell proliferation of cell lines expressing
Bcr-Abl [67-69], effect accomplished through JAK5-STAT and PI3 kinase signaling inhibition
[70, 71]. It has also been shown that STI571 can inhibit CML MNC, obtained both in chronic
phase and blast crisis [71] and reduces the colony forming cells from Mobilized Peripheral
Blood (MPB) and Bone Marrow from patients with CML in chronic phase [60]. Furthermore,
Imatinib inhibits proliferation and cell cycle of stem (CD34+CD38-) and progenitor
(CD34+CD38+) cells without altering the behavior of normal cells [72].

Studies in CML marrow by Holyoake and her colleagues have demonstrated the presence of
a rare, highly quiescent, CD34+ cell subpopulation in which most of the cells are Ph+ with the
ability to proliferate upon specific induction [11]. These cells are insensitive to the effects of
STI571 and remain quiescent and viable even in the presence of growth factors [16]. This tumor
resistance feature was also reported by Bathia, who mention that STI571 suppressed but does
not eliminate primitive cells even after patients remain in CCR [73]. These primitive Ph+ cells
could not be detected by nested PCR, when they are obtained from Imatinib-treated patients;
however, when the cells are cultured in liquid cultures for a couple of weeks, the Ph+ popu‐
lation becomes detectable, indicating that they were able to remain even after Imatinib
treatment [74].

In clinical trials, Imatinib has been shown remarkably effective as a single agent in IFNα-
resistant CML chronic phase patients. It induces complete cytogenetic responses in more than
80% of newly diagnosed patients; however, the persistence of detectable leukemic cells in a
quiescent state and the presence of patients with resistance or intolerance to Imatinib, lead to
the development of a second generation of Tyrosine Kinase Inhibithors.

Nilotinib

Nilotinib (Tasigna, Novartis Pharmaceutical), is an oral aminopyrimidine that is a structural
derivative of Imatinib. It was designed to be more selective against the Bcr-Abl tyrosine kinase
than imatinib. Like imatinib, it acts through competitive inhibition of the ATP site in the kinase
domain [75]. Clinically Nilotinib showed activity in imatinib-resistant patients in all phases of
the disease. In chronic phase, it induced 92% of CHR and in accelerated phase and blast crisis
the hematological responses were achieved in 72% of cases [76].

In vitro, Nilotinib is 20 times more potent than imatinib against cells expressing wild type Bcr-
Abl, and similar results have been observed in studies of mutants cell lines, with the exception
of the T315I mutation, which is resistant to both TKIs [77]. In primary CML CD34+ cells,
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Imatinib-induced apoptosis is preceded by Bim accumulation; this effect was decreased when
cells were cultured in a cytokine-containing medium [78]. In contrast to Imatinib, whose main
effect on CML cells seems to be induction of apoptosis, the predominant effect of nilotinib
seems to be antiproliferative -rather than apoptotic [17]. Indeed, it has been suggested that
Nilotinib can induce a G0/G1 cell cycle blockade in cells expressing wild type Bcr-Abl, which
could result in disease persistence [79].

Dasatinib

Dasatinib (Sprycel, Bristol-Myers Squibb) is a potent, orally bioavailable thiazolecarboxamide.
It is structurally unrelated to imatinib; it has the ability to bind to multiple conformations of
the Abl kinase domain and it also inhibits SRC family kinases. In vitro, Dasatinib demonstrated
325-fold greater activity against native Bcr-Abl, as compared with imatinib, and it has shown
efficacy against all imatinib-resistant Bcr-Abl mutants with the exception of T351I. Dasatinib
is also active against PDGFR, C-Kit and ephrin A receptor [75, 76].

Dasatinib is very effective at inducing apoptosis in CML cells –either, in the presence or absence
of added growth factors- and in contrast to Imatinib, that kills those cells destined to move
from G0/G1 cell cycle phases, but is unable to act on those cells destined to remain quiescent in
culture, Dasatinib can act on quiescent CD34+ cells. As expected, based on its structure and
mode of action, it has selective cytotoxic activity for leukemic cells over normal cells [80].

Other tyrosine kinase inhibitors

Several TKIs have been developed that exhibit a target spectrum similar to the approved drugs,
although they are distinct in terms of off-target effects [81].

SKI-606 (Bosutinib)

Bosutinib (Wyeth) is a 4 anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases
without effect in c-Kit or PDGFR. It has 200-fold grater potency for Bcr-Abl than imatinib and
has activity against a number of mutations, but not T315I [76]. In clinical trials, Bosutinib
induced 73% of complete hematological response in patients pretreated with Imatinib followed
by Dasatinib [82]. In vitro, Bosutinib effectively inhibits Bcr-Abl kinase activity and Src
phosphorylation, and reduces the proliferation and CFC growth in CML CD34+ cells; however,
it does not seem to induce apoptosis [19].

AP24534 (Ponatinib)

Ponatinib, is a mulitargeted kinase inhibitor that is active against all BCR-ABL mutants,
including T315I. This drug also inhibits FLT3, FGFR, VEGFR, c-Kit, and PDGFR and is able to
reduce the proliferation of different cell lines and prolong survival of mice that have been
injected intravenously with BCR-ABL. Ponatinib showed significant activity in a phase I study
of patients with Ph+ cells who had failed to other TKIs [81, 83].

4.3. Hematopoietic cell transplant

Although molecular therapy for CML is highly effective and generally non-toxic, it is unclear
whether long-term outcomes with the different therapies (IFNα or TKIs) will be equivalent to
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cases treated with allogeneic stem cell transplantation, which has shown the highest percent‐
age of long-term disease-free survival of any therapy [75].

In patients younger than 50 years of age and who receive a transplant before 1 year after
diagnosis, 5 years survival rates superior to 70% have been attained. However, the application
of this procedure is limited by the availability of matched donors and by the toxicity of the
procedure in older patients. Moreover, outcomes deteriorate with disease duration [76]. This
information associated with the knowledge that quiescent leukemic stem cells remain in
patients after treatment, several other agents has been reported.

4.4. Other agents

Danusertib (PHA 739358) is a small molecule with activity against BCR-ABL and aurora
kinases and it is able to block the proliferation of leukemia cell lines as well as CD34+ cells
from newly diagnosed CML patients including the mutation T315I. However, similarly to
other tyrosine kinase inhibitors, no induction of apoptosis in quiescent hematopoietic stem
cells could be achieved and resistant BCR-ABL positive clones emerged in the course of
Danusertib treatment. This latter observation is related to Abcg2 proteins over-expression [84].

Lonafarnib (SCH66336) is an orally bioavailable non peptidomimetic farnesyl trransferase
inhibitor with significant activity against Bcr-Abl+ cell lines and primary CML cells. It can
enhance the toxicity of Imatinib in K562 cell line and can inhibit the proliferation of imatinib-
resistant cells and increases imatinib-induced apoptosis. However it is unable to kill quiescent
CD34+ leukemic cells [20]. In a clinical phase 1 study, it was shown that the combination of
Lonafarnib and Imatinib is well tolerated in patients with CML who failed Imatinib, with some
patients achieving a complete hematologic response and a complete cytogenetic response [85].

INNO 406 is a 2 phenylaminopyrimidine Bcr-Abl inhibitor with activity against PDGF, c-kit
and Lyn that have shown to be 25-55 times more potent than Imatinib in Bcr-Abl+ cell lines.
In contrast to other molecules INNO406 does not inhibit all SRC kinases, but it induces
programmed cell death in chronic myelogenous leukemia (CML) cell lines through both
caspase-mediated and caspase-independent pathways [86].

MK0457 is an aurora kinase inhibitor with activity against Bcr-Abl. This agent was observed
to inhibit autophosphorylation of T315I mutant and demonstrate antiproliferative effects in
CML cells derived from patients with this mutation, an event that may lead to its use as a
combination partner with the approved and established TKI [76].

5. TKI resistance mechanisms

The knowledge of the central role of BCR-ABL in the pathogenesis of CML has allowed the
development of several drugs that inhibit the constitutive activity of such an ABL tyrosine
kinase. However, although the treatment with tyrosine kinase inhibitors has proven effective
in about 80% of CML patients at any stage, the remaining 20% can’t respond to it [87].
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In CML, the criteria for successful response to treatment, as established by the European
consortium LeukemiaNet and subsequently adopted by the National Comprehensive Cancer
Network (NCCN) [88], include: complete hematologic remission (CHR), that is to say, a normal
blood cell count and complete disappearance of signs and symptoms of the disease; complete
cytogenetic response (CCR), which means the total absence of Ph+ metaphases; and complete
molecular response, in which transcripts for BCR-ABL are no longer detectable. Using these
response criteria, drug resistance is defined as the inability to achieve any of the following: a
complete hematologic response (CHR) at 3 months, any cytogenetic response (CyR) at 6
months, partial cytogenetic response (PCyR) at 12 months, or a complete cytogenetic response
(CCR) at 18 months of treatment with Imatinib [89].

Two types of resistance mechanisms to TKIs have been described: 1) Primary resistance, which
occurs in less than 10% of cases and is defined as the failure of therapeutic effect during the
chronic phase of CML without changing clones; and 2) secondary resistance, defined as the
loss of the response initially obtained, and commonly occurs in accelerated phase (40-50%) and
blast (80%) [90]

It is estimated that the probability of an individual to stay in CCR for 5 years after diagnosis,
after treatment with Imatinib is approximately 63%; however, this percentage may represent
a sub-estimation since in a significant proportion of cases there is discontinuation of treatment
and this, of course, may underestimate the efficacy of the drug [91].

The molecular mechanisms of acquired drug resistance can be divided into two categories:
BCR-ABL-dependent and BCR-ABL-independent.

5.1. Bcr-Abl-dependent resistance mechanisms

The inhibition of the activity of tyrosine kinase turned out to be an ideal target for molecular
therapy in CML [67]. However, shortly after the introduction of Imatinib, in vitro studies
demonstrated that some cell lines became refractory to the drug, suggesting a possible inherent
or acquired resistance to therapy [92]. This was quickly followed by the clinical description of
patients resistant to Imatinib.

BCR-ABL mutations

The most common mechanism against TKIs therapy are point mutations within the kinase
domain, which make conformational changes that decrease the affinity of the TKIs to BCR-
ABL kinase domain. These point mutations in the BCR-ABL kinase domain are a major cause
of Imatinib resistance, and may be identified in approximately 50% or more of the cases. Many
more than 100 different mutations affecting more than 70 amino acids have so far been
identified, with varying degrees of clinical relevance [93].

The  first  point  mutation  reported  in  TKI  resistance  was  in  the  region  coding  for  the
ATP-binding site of the ABL kinase domain resulting in a threonine to isoleucine substi‐
tution at  amino acid 315 (Th315→Ile315;  T315I)  preventing the formation of  a hydrogen
bond between the oxygen atom provided by the side chain of threonine 315 and the sec‐
ondary  amino  group  of  Imatinib.  Moreover,  isoleucine  contains  an  extra  hydrocarbon
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group on its  side chain,  and this  inhibits  the binding of  Imatinib [94].  T315I confers re‐
sistance  to  all  currently  approved  BCR–ABL  kinase  inhibitors.  Recent  reports  have
shown that  T315I  mutation can be found in approximately 15% of  patients  after  failure
of imatinib therapy [85].

Other important TKI’s resistant mutations are frequently mapped to the P-loop region
(residues 244 to 256) of the kinase domain, which serves as a docking site for phosphate
moieties of ATP and interacts with imatinib through hydrogen and van der Waals bonds. These
mutations modify the flexibility of the P-loop and destabilize the conformation required for
Imatibib binding [95]. Clinical relevance of P-loop mutations is that imatinib treated patients
who harbor them have been suggested to have a worse prognosis than those with non-P-loop
mutations [96]. Another study identified BCR/ABL mutations in CD34+ cells from CML
patients in CCR following Imatinib treatment and suggested that these mutations could lead
to imatinib resistance in a small population of progenitors, which consequently could expand
and cause the relapse [97].

Several  additional  mutations  that  disrupt  the  interaction  between  TKIs  and  BCR-ABL
have  been  characterized,  including  the  P-loop,  C-helix,  SH2  domain,  substrate  binding
site, A-loop, and C-terminal lobe, some even prior to the initiation of therapy [98]. Most
of  the  reported mutants  are  rare,  however  seven mutated sites  constitute  two thirds  of
all  detected  mutations:  G250,  Y253,  E255  (P  loop),  T315I  (gatekeeper),  M351,  F359,  and
H396 (activation loop or activation loop backbone) and are frequently evident in the lat‐
er  disease  stages  [99].  Recently  a  pan-BCR-ABL  inhibitor  active  against  the  native  en‐
zyme and all  tested resistant  mutants,  including the uniformly resistant  T315I  mutation
has been developed [100].

BCR-ABL kinase domain mutations are not induced by the drug, but rather, just like antibiotic-
resistance in bacteria, arise through a process whereby rare pre-existing mutant clones are self-
selected due to their capacity to survive and expand in the presence of the drug thus gradually
outgrowing drug-sensitive cells [101].

BCR-ABL gene amplification

Overexpression of Bcr-Abl leads to resistance by increasing the amount of target protein
needed to be inhibited by the therapeutic dose of the drug. Amplification of the BCR–ABL
gene was first described in resistant CML cell lines generated by serial passage of the cells in
Imatinib containing media and demonstrated elevated Abl kinase activity due to a genetic
amplification of the Bcr–Abl sequence [102, 103].

Cells  expressing  high  amounts  of  Bcr-Abl  in  CD34+  CML  cells,  as  in  blast  crisis,  are
much less sensitive to Imatinib and, more significantly,  take a substantially shorter time
for  yielding a  mutant  subclone resistant  to  the  inhibitor  than cells  with  low expression
levels,  as in chronic phase [104].  However overexpression and amplification of the BCR-
ABL  gene itself  accounts for Imatinib failure in a smaller percentage of patients with an
overall percentage of 18% [94].
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5.2. BCR-ABL-independent resistance mechanisms

Drug efflux

HSC are characterized by their ability to pump-out fluorescent dyes, and this led to isolation
of stem cells based on this property. In fact, such an efflux capacity has become one of the most
efficient methods to purify stem cells from different sources [105]. In this regard, ATP-binding
cassette (ABC) transmembrane transporters have shown to be responsible for most of the efflux
of the fluorescent dyes in HSCs [106].

In cancer cell lines, multidrug resistance is often associated with an ATP-dependent decrease
in cellular drug accumulation, which is attributed to the overexpression of ABC transporter
proteins [107]. The first studies on imatinib-resistance showed increased levels of the multi‐
drug resistance protein MDR1 (ABCB1) in Imatinib resistant BCR-ABL+ cell lines [108]. Later
on, it was confirmed that Imatinib is a substrate of membrane ABC transporters, such as ABCB1
(MDR1, P-gp), and that variations in the activity or expression of P-gp affects the pharmaco‐
kinetics of Imatinib, reducing or increasing its bioavailability [109]. P-gp-positive leukemic
cells have low intracellular levels of Imatinib; decreased Imatinib levels, in turn, were associ‐
ated with a retained phosphorylation pattern of the Bcr-Abl target Crkl and loss of effect of
Imatinib on cellular proliferation and apoptosis. The modulation of P-gp by Ciclosporin A
readily restored imatinib cytotoxicity in these cells [110].

Another  drug  efflux  pump,  the  breast  cancer  resistance  protein  BRCP  encoded  by
ABCG2,  has  also  been  implicated  in  Imatinib  resistance.  Imatinib  has  been  variably  re‐
ported  to  be  a  substrate  and/or  an  inhibitor  for  the  BCRP/ABCG2  drug  efflux  pump,
which  is  overexpressed  in  many  human  tumors  and  also  found  to  be  functionally  ex‐
pressed in CML stem cells [111, 112].

CML stem cells have been shown to express the ATP dependent transporter cassette protein
ABCG2, which could decrease the intracellular accumulation of Imatinib in CML LSC [103].
Thus, overexpression of ABC transporters gives protection to tumor cells from TKIs [114].

Drug intake

Inversely to the drug efflux pump proteins, the human organic cation transporter 1 (OCT1)
mediates the active transport of Imatinib into cells, and inhibition of OCT1 decreases the
intracellular concentration of Imatinib [115]. OCT1 was also found to be expressed in signifi‐
cantly higher levels in patients who achieved a CCR to Imatinib than in those who were more
than 65% Ph chromosome positive after 10 months of treatment [116]. Tyrosine Kinase
Inhibitor Optimization and Selectivity (TOPS) trial suggested that patients with lower hOCT1
levels had reduced MMR rates at 12 months when receiving the standard dose of Imatinib,
compared with high-dose Imatinib [117].

Recently Engler and cols. found that the intracellular uptake and retention (IUR) of imatinib,
OCT-1 activity and OCT-1 mRNA expression are all significantly lower in CML CD34+ cells.
However, no differences in IUR or OCT-1 activity were observed between these subsets in
healthy donors. Low Imatinib accumulation in primitive CML cells, mediated through reduced
OCT-1 activity may be a critical determinant of long-term disease persistence [118].
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Differential interactions between drug efflux/influx pumps and kinase inhibitors might be a
possible means to tailor drug selection for individual patients, because OCT-1 expression is a
key determinant of intracellular availability of Imatinib but not of Nilotinib [119]. Other TKIs,
such as Dasatinib and, as just mentioned, Nilotinib, do not appear to be substrates for hOCT1,
but whether this difference alone will lead to reduced resistance rates with these second-
generation TKIs remains unknown [120]. An adequate balance between influx (hOCT1) and
efflux (MDR1, ABCG2) transporters may be a critical determinant of intracellular drug levels
and, hence, resistance to Imatinib.

Quiescence

One feature of CML is the presence of a population of highly quiescent primitive cells [11],
which, as their normal counterparts, is capable of regenerating hematopoiesis and reconsti‐
tutes the disease in immunocompromised mice [121]. These stem cells are Ph+, express high
levels of CD34 and do not express CD38, CD45RA and CD71, and may spontaneously exit the
G0 phase and enter a state of constant proliferation [122]. Several reports have documented
that quiescent cells from CML patients are insensitive to in vitro treatment with Imatinib and
Dasatinib [16, 123].

A possible cause of insensitivity to TKIs is that BCR-ABL mRNA transcript levels are 300-fold
higher in the most primitive CD34+CD38-Lin- population than in terminally differentiating
CD34-Lin+ CML cells [124]. It has been reported that elevated levels of Bcr-Abl confer reduced
sensitivity to Imatinib [125]. Moreover, the quiescent state of CML stem cells allows them to
evade chemotherapy treatments, which are designed to eliminate metabolically active cell
population as well as targeted therapies, thus contributing to relapse when treatment with
tyrosine kinase inhibitors is discontinued.

Activation of BCR-ABL alternative signaling

BCR-ABL activates different signaling pathways that promote the growth and survival of
hematopoietic cells, thus inducing cell transformation. These pathways include Ras, mitogen
activated protein kinase (MAPK), c-jun N-terminal kinase (JNK), stress-activated protein
kinase (SAPK), nuclear factor kappa B(NF-kB), signal transducers and activators of transcrip‐
tion (STAT), phosphoinositide 3- (PI-3) kinase, and c-Myc [126]. A well characterized pathway
involves the Src Family Kinases (SFKs), which are activated by BCR-ABL and the subsequent
inhibition of BCR-ABL by Imatinib may not result in the complete inhibition of Src family
kinases elucidating a Bcr-Abl independent mechanism of imatinib resistance [127]. Phosphor‐
ylation of the Bcr-Abl SH2 and SH3 domains by the SFK may increase the activity of the Abl
kinase and may alter its susceptibility to Imatinib [128].

Activation of the Janus kinase (Jak) and subsequent phosphorylation of several Signal
Transducer and Activator of Transcription (STAT) family members has been identified in both
Bcr–Abl–positive cell lines and in primary CML cells and may contribute to the transforming
ability of Bcr–Abl [129].

The tyrosine residue at position 177 within the BCR portion is essential for the binding of
adaptor proteins, including Growth Factor Receptor-Bound Protein 2 (GRB2) GRB10, 14-3-3,
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and the SH2 domain of ABL1 [130]. Bcr-Abl protein is able to activate the Ras/Raf/Mek kinase
pathway and the phosphatidylinositol 3′ kinase (PI3K)/Erk pathways through GRB2 [131, 132].

Autocrine loops could contribute to resistance. It has been demonstrated that IL-3 and
granulocyte-colony G-CSF are produced within primitive CD34+ cells from patients with
CML-CP, both of these cytokines stimulate cellular proliferation in an autocrine manner and
protect cells from Imatinib-induced apoptosis [122].

Figure 3. Resistance mechanism in Chronic Myeloid Leukemia. Principal mechanisms involved in dependent and inde‐
pendent BCR-ABL mechanisms are shown (modified to [99]).

6. Concluding remarks

The presence of a rare population of cells capable of initiating and sustaining leukemia in CML
(LSC) has major implications for the biology of the disease and the development of new and
more effective treatments. As recognized by several investigators, LSC are key players in the
origin and progression of CML, as well as in the reappearance of the disease after treatment.
Thus, it is evident that novel therapies must be directed towards the elimination of such cells.
However, since their numbers within the marrow microenvironment are extremely low, as
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compared to the bulk of the malignant cells, and their biology is quite different from that of
the rest of the CML cells, the task of finding solutions to this problem is a rather difficult one.
It is a great challenge, but significant advances will surely be achieved in the years to come.
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