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Applying a Hybrid Data Mining Approach in Machining 

Operation for Surface Quality Assurance 

 

 

Tzu-Liang (Bill) Tseng, Yongjin Kwon and Ryan B. Wicker 

 

1. Introduction  

Conventionally, the quality of a machined product has been measured based 

on the specifications, once the machining process is complete. However, this 

post-process inspection has several shortcomings: (1) it is difficult to isolate the 

causes of the defect; (2) the manufacturing cost has already been incurred 

when a non-conformance is detected; (3) rework of any scope increases the 

manufacturing cost and can be very difficult to accomplish; and (4) there could 

be a significant time lag between the detection of the defects and subsequent 

corrective actions. Today, efforts of manufacturers are shifting from the post-

process inspection to improved monitoring of the manufacturing processes, 

utilizing sensors and other measurement devices, to effectively control the 

process. Improvements in machining precision can only be accomplished by 

the development of manufacturing systems that are capable of monitoring 

processes. Process monitoring reduces scrap, rework, lead-time, and conven-

tional non value-added inspection activities, thereby, increases the system’s 

productivity. The monitoring has to be based on sound, reliable process con-

trol algorithms. Computer numerical control (CNC) of machine tools do help 

to produce consistent part quality. However, in most cases, CNC machines 

don’t utilize sensor data to compensate for anomalies generated by the cutting 

processes (e.g., tool wear, chatter, incorrect machine setup, etc.). If sensors 

such as cutting force, vibration and spindle motor current were integrated into 

CNC machine tools, the control functions should be able to interpret and re-

spond to sensory data as the process continues. However, when many process 

variables need to be considered, it becomes rather difficult to predict quality 

attributes in machining (i.e., surface roughness). 

To solve the aforementioned prediction problems, especially with the consid-

eration of negative information and data to improve prediction accuracy, two 

data mining approaches have been developed. Here, negative information or 
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data represent the set of data points that do not conform to the conventional 

modeling techniques but it can be used to facilitate quality prediction. The ap-

proaches involve both individual and population based paradigms, such as a 

rough set theory (RST) and SVMs with the negative information & data train-

ing. To validate the proposed approach, one case of the perdition problem re-

lated to the surface roughness is applied. Literature review suggests that the 

hybrid approach of combined individual and population based paradigms has 

not been widely applied, thus making this research novel. By using the hybrid 

approach, the following objectives can be attained: (1) search the minimal 

number of features, or rules, for decision making in prediction; (2) aggregate 

the weight of the feature and frequency of the object to search the optimal 

rules; (3) simultaneously identify the outcomes and significant features in pre-

diction; and (4) achieve a high prediction accuracy through the application of 

negative information & data. In this context, this study uses a hybrid data min-

ing approach to identify variables affecting the quality characteristic of CNC 

machining operations. Instead of predicting exact surface roughness values, 

the focus is on the prediction of quality acceptance in machined parts. The hy-

brid approach is an effective tool for multi-attribute classification problems. 

This can be instrumental in constructing intelligent control systems, especially 

when a clear delineation within variables as to how they affect the surface 

roughness is difficult to achieve.   
 

2. Theoretical Background of Data Mining and Hybrid Approach 

Data mining is a process of extracting and refining knowledge from large da-

tabases (Berry & Linoff, 1997; Dhar & Stein, 1997; Cheung et al., 1996). It is a 

process that uses a variety of data analysis tools to discover the patterns and 

relationships in the data. The extracted information can be used to predict, 

classify, model, and summarize the data being mined. Data mining, a major 

step in knowledge discovery from databases, involves the application of spe-

cific algorithms for identifying interesting structures in data, where the struc-

ture designates patterns, statistical, or predictive models from the data as well 

as the relationships among parts of the data (Fayyad & Uthurusamy, 2002). 

Data mining is also an emerging area of computational intelligence that offers 

new theories, techniques, and tools for processing large volumes of data. The 

growing volume of data available in digital format has accelerated this inter-

est. 



Applying a Hybrid Data Mining Approach in Machining Operation for Surface…  585 

Basically, data mining approaches can be categorized into two different cases. 

One is called “individual based” while the other is called “population based” 

paradigm (Kusiak, 2001(a); Kusiak & Kurasek, 2001). There are fundamental 

differences between the two approaches. The individual based approach gen-

erates a number of models (usually in the form of decision rules) capturing re-

lationships between the input features and the decision. In other words, the 

individual based approach identifies unique features of an object and finds 

whether they are shared with other objects. The population based approach 

creates a model based on a training data set. The model normally uses a prede-

termined set of features (Kusiak, 2001(a); Kusiak & Kurasek, 2001). For exam-

ple, the rule induction approach follows a data object paradigm, while neural 

networks and SVMs can be viewed as a single model that is formed for the en-

tire population (training data set). The models (rules) created by the rule in-

duction are explicit. The “population based” tools determine features that are 

common to a population (training data set) (Kusiak, 2001(b); Kusiak & Ku-

rasek, 2001). The deficiency of the individual based approach for prediction is 

that low accuracy decision rules cannot be used, and the quality rules with a 

high accuracy do not guarantee to be used since the condition part of the rule 

should match with the input domain of the testing data sets. Consequently, the 

limitations of the rule based prediction can be easily observed, and the popula-

tion based data mining approaches are able to counteract this deficiency.  

In general, the material for learning is given in a positive form. This type of in-

formation will help organize the core of the target knowledge. Instead of this 

type of information, negative information will help sharpen the edge or extent 

of the target knowledge. Hence, it is expected that the negative information 

will have an effect of minimizing the chance of making errors and thus making 

the learning faster (Kurosu & Ookawa, 2002). In the data mining domain, 

negative information/data, which is defined as information/data, misclassified 

the outcomes from the testing data set and is normally discarded (Chen et. al. 

2004 (b)). However, the information/data is possible to be re-used for the train-

ing purpose and contains a positive impact on the prediction accuracy (Chen et 

al., 2004 (b)). To date, there is little literature related to using data mining ap-

proaches to predict surface roughness with the consideration of utilizing nega-

tive information/data. To conduce the individual and population based data 

mining approaches that are to be applied in the preferred supplier prediction, 

the two classification approaches: RST and SVMs are reviewed. 
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2.1 Rough Set Theory 

RST has been applied to address a variety of problems (Ziarko, 1993), includ-

ing (1) representation of uncertain or imprecise knowledge; (2) empirical learn-

ing and knowledge acquisition from experience; (3) knowledge analysis; (4) 

analysis of conflicting data; (5) quality evaluation of the available information 

with respect to its consistency and presence or absence of repetitive data pat-

terns; (6) identification and evaluation of data dependencies; and (7) approxi-

mation of pattern classification. In RST, data is expressed in a decision table, in 

which each row represents an object and each column represents an attribute. 

Formally, the decision table is represented by an information function (Paw-

lak, 1991) in the form of: 

 

>=< fVQUS ,,,  (1)

where U = a finite set of objects, Q = finite set of attributes, 
q

Qq
VV

∈

∪=
 and qV

 = 

domain of the attribute q, and VQUf →×:  = the total decision function such 

that qVqxf ∈),(
 for every UxQq ∈∈ , .  

 

The main theme of RST is concerned with measuring what may be described 

as the “ambiguity” inherent in the data. The essential distinction is made be-

tween objects that may definitely be classified into a certain category, and 

those that may possibly be classified. Considering all decision classifications 

yields to what is referred to as the “quality of approximation” that measures 

the proportion of all objects for which definite classification may be achieved. 

A rough set can be described as a collection of objects that in general cannot be 

precisely characterized in terms of their values of their sets of attributes, but 

can be characterized in terms of lower or upper approximations. The upper 

approximation includes all objects that possibly belong to the concept, while 

the lower approximation contains all objects that definitely belong to the con-

cept. As each object is characterized with attributes, discovering dependencies 

between attributes and detecting main attributes is of primary importance in 

RST. Attribute reduction is one unique aspect of the rough set approach. A re-

duct is a minimal sufficient subset of attributes, which provides the same qual-

ity of discriminating concepts as the original set of attributes. For example, 

let’s consider the five objects in Table 1, each with four input features (F1-F4) 

and an output feature. 
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Object No. Features Output 

 F1 F2 F3 F4 O 

1 1 0 1 2 2 

2 1 1 0 3 1 

3 1 0 0 0 0 

4 0 2 2 1 0 

5 1 1 1 0 2 

0: Not Applicable, 1: Low, 2: Medium, 3: High 

Table 1. Example Data Set 
 

To derive reducts, consider the first feature F1. The set of objects corresponding 

to the feature value F1 = 1 is {1, 2, 3, 5}. This set {1, 2, 3, 5} cannot be further 

classified solely using the relation F1 = 1. It is discernible over the constraint F1 

= 1, which is expressed as [x][ F1 = 1] = {1, 2, 3, 5}. For the objects in the set {1, 5}, 

the output feature is O = 2, for the object 3, the output feature is O = 0 and for 

the object 2, the output feature is O = 1. Therefore, additional features are 

needed to differentiate between O = 0, 1, or 2. Applying this concept, the classi-

fication power of each feature can be evaluated. For instance, the feature value 

F1 = 0 is specific to O = 0. This discernible relation can be extended to multiple 

features, e.g., [x][F1 = 1] ∧ [F2 = 0]= {1, 3} and [x] [F1 = 1]∨ [F2 = 0] ={1, 2, 3, 5}, 

where ∧ and ∨ refers to “or” and “and”, respectively. 
 

Reduct Generation 

Most rough set based approaches generate more than one reduct for an object. 

This paper adapts the reduct generation procedure proposed by Pawlak (1991) 

and presents it in the form of “reduct generation procedure,” as illustrated in 

Figure 1. The reduct generation procedure enumerates all possible reducts 

with one, two and three features that are presented in Table 2. 

 

 

Step 1: Set object number i = 1. 

Step 2: Select object i and find a set of reducts with 1 to (m – 1) features. 

Step 3: Set i = i +1. If all objects have been considered, go to Step 3; otherwise go to 

Step 1. 

Step 4: Terminate the algorithm and output the result. 

Figure 1. Reduct Generation Procedure 
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Object
No.

F1 F2 F3 F4 O Reduc

tNo.
Ui F1 F2 F3 F4 O

1 1 0 1 2 2 1
2

1 x
x

x
x

1
x

x
2

2
2

3
4
5
6
7

2 1
1
x
x
x

x
x
0
0
x

1
x
1
x
1

x
2
x
2
2

2
2
2
2
2

8
9
10

3 1
1
x

0
0
0

1
x
1

x
2
2

2
2
2

 
Table 2. Partial Reducts for Data in Table 1 

 

2.2 Support Vector Machines 

SVMs based on the statistical theory have been developed as the tools for clas-

sification, regression, and density estimation in noisy data (Vapnik, 1998). 

There are three significant features in SVMs. The first is the generalization the-

ory, which leads to a structure risk minimization (SRM) model. The generali-

zation error is from either the model or hypothesis space. The SRM model im-

proves the generalization ability through extending the margins in the feature 

space. The second is the kernel functions, which maps non-linear system into a 

linear feature space without explicitly requiring an exact map function. SVMs 

computational problem is connected with the size of the feature space. This 

makes SVMs perform efficiently over neural networks. The last feature is that 

the parameters are found by solving a quadratic programming problem with 

linear equality and inequality constraints, which return the global optimal so-

lution. By doing so, the estimation errors can be minimized. 

SVMs are designed for a binary classification. Generally, there are two types of 

approaches for a multi-class classification. One is that multi-class problems 

have been tackled by indirectly by combining a series of binary problems. An-

other is considering all data in one optimization formulation. Several methods 

based on the combining approach are one-versus-rest, one-versus-one, and 

DAG (Directed Acyclic Graph) SVMs methods (Platt et al., 2000). Using the 

SVMs in the one-versus-rest fashion is very common, but it has potential 

drawbacks when classes overlap considerably. It constructs k SVMs, where k is 
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the number of classes. The ith SVM is trained by the ith class associated with a 

positive label and all other examples with negative labels. The predication of 

an example x is determined by the maximum margin of k SVMs. 

One-versus-one method is combining the binary SVMs for all pairs of classes. 

The DAG SVMs algorithm is a pair wise approach that exhibits large variabil-

ity since each binary classifier is estimated from a small subset of the training 

data. It allows only a simple cost structure when different misclassification 

costs are concerned. As a generic approach to multi-class problems, treating all 

the classes simultaneously is considered. Although several extensions to the 

multi-class cases have been proposed (Vapnik, 1998; Bredensteiner & Bennett, 

1999), its optimal extension was not obvious in relation to the theoretically best 

classification rule. The DAG SVMs and one-versus-one have good practical 

performance than the other methods (Hsu & Lin, 2002). In the DAG SVMs and 

one-versus-one, the training phase of k-classes classification problem is com-

pleted by k(k-1)/2 binary SVMs. In the testing phase, DAG SVMs uses a root 

binary acyclic graph with k leaves, where each node is a binary SVM. To test 

an example x, testing begins with a root node along with the DAG to reach a 

leaf node. The testing of one-versus-one is using a voting approach. The result 

of predicating is the largest vote number. The advantage of DAG SVM is to cut 

down the testing time as compared to the one-versus-one method. 

From the review, RST application and SVMs appear to be both robust and effi-

cient in automatic classification. Furthermore, the methods that automatically 

generate diagnostic rules have shown to have a significant aim in decision 

making of prediction. In this paper, the concept of feature extraction, cluster 

analysis, and SVMs model are used to develop a methodology for aiding the 

preferred supplier selection. Motivation for conducting combination of RST 

and SVMs is the hybrid approach capable of performing significant feature 

identification (dimension reduction), noise elimination (object reduction), and 

learning from negative information/data to improve prediction accuracy. 

Moreover, the hybrid approach is the combination of the individual and popu-

lation based data mining approaches that are able to overcome low accuracy of 

prediction and other limitation. The methodology development is introduced 

next.  
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3. Methodology Development 

This section illustrates the development procedure of methodology. The over-

all concept has been represented in Figure 2.  

 

3.1 Rule Identification Algorithm 

The rule identification algorithm is incorporated with the weights. Measure-

ment of the weight is based on domain experts’ judgment and external as-

sessment. Basically, each feature has been considered and the “ratio estimates” 

method assigns the weight of each feature without any bias. Moreover, ad-

justment of the weights assigned through pair wise comparisons is also re-

quired. Frequency of each object is derived from the original database during a 

certain period. All of the weights, which include feature and frequency do-

mains, are subjected to normalization. 

In Table 3, the weight value of the feature is taken into consideration and sub-

ject to a positive normalized value, which is between 0 and 1. It can be ob-

tained from domain experts’ judgment. With each column of incidence matrix 

A = [aij]mxn, frequency fi for reduct i, i = 1, …, m and weight wj for input feature j, 

j = 1, …, n are associated. It is possible to assign frequency fi, i = 1, …, m as a 

different kind of weight since the frequency of each object can be derived from 

the original database. Furthermore, it is also possible to assign weights wj, j = 1, 

…, n since the weight of each feature can be determined from domain experts. 

Table 3 is with a column indicating the number of objects and a row containing 

weights associated with the features. Using the weight coefficients wj and fi, an 

auxiliary matrix [eij] will be generated from the original reduct – input feature 

matrix. 

The weight coefficient assigned to each feature is denoted as wj and each object 

(reduct) as fi. Using the weight coefficients wj and fi, an auxiliary matrix [eij] 

will be generated from the original reduct – input feature matrix. The entries of 

the transformed matrix are defined as follows:  

 

eij = fi x (wj x vj) (2)

 
where eij = entry of the transformed reduct-input feature matrix, fi  = weight of 

reduct I, wj = weight of feature j, and vj = 1 if feature j ≠ “x”;  0 otherwise. 
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Figure 2. Conceptual framework of the hybrid data mining approach to prediction 

problem 

 
 

Object 

No. 

F1 F2 F3 F4 F5 F6 F7 O Weight fi 

1 3 1 0 1 2 0 2 2 100% 

2 3 0 1 2 1 0 3 0 100% 

3 0 1 2 2 1 0 1 2 62% 

4 0 1 1 1 2 0 1 1 38% 

5 1 2 2 0 2 1 0 1 92% 

6 2 2 0 0 2 1 1 1 54% 

7 1 0 0 1 3 0 1 2 54% 

8 3 2 1 1 2 1 1 1 69% 

Weight 

wj 

80% 100% 90% 60% 70% 60% 90%   

Table 3. Data set with un-equal weight for object and feature 
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The RI Algorithm 

Step 0. 

(i) List the auxiliary matrix. 

(ii) Compare the reducts (rows of matrix [aij]). Select the features used 

in only single feature reducts of the object(s). 

(iii) List the number of known value for each column in [aij]. Select the 

potential features used, base on the higher number of known value 

(refer the results from (ii)). 

(iv)  Set iteration number k = 1. 

Step 1. Compare those reducts (rows of matrix [aij](k)) for one specific case 

at a time. Select the reducts from the potential features used and 

based on the auxiliary matrix. If more than one solution for the re-

duct selection, then select the reduct which can be merged by most 

of objects; otherwise, select the reducts which are most frequently 

selected from previous iterations. Draw a horizontal line hi through 

each row of matrix [aij](k) corresponding to these reducts. 

Step 2. For each column in [aij](k) corresponding to an entry of feature, 

which is not "x", single crossed by any of the horizontal lines hi , 
draw a vertical line vj. 

Step 3. Repeat steps 1 and 2 until one reduct has been selected for each ob-

ject in the current outcome. All double-crossed entries of features of 

the matrix form the rules. 

Step 4. If all objects have been concerned in the current outcome, transform 

the incidence matrix [aij](k) into [aij](k+1) by removing all the rows 

and corresponding to an entry of feature, which is not "x", included 

in the current outcome. 

Step 5. If matrix [aij](k+1) = " " (where " " denotes a matrix with all elements 

equal to blank, stop and output the results; otherwise set k = k + 1 

and go to step 1. 
 

Note that the difference between the equal and un-equal cases for the use of 

the RI algorithm is “Step 0 (i) is not required by equal weight case.” Consider 

the data set in Table 3. Determine the desired reducts (rules) in Table 4 using 

the RI algorithm. Repeating Steps 1-5, the final results are shown in Table 4, 

indicating four features 2, 3, 5, and 7 have been selected.The proposed RS 

based approach aims to incorporate a weight factor into each feature, process 

qualitative data, generate decision rules, and identify significant features. This 

entails that the feature (dimension) domain can be reduced tremendously. 
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Note that the key contribution of weight in the reduct induction is that the as-

signed weights help determine the preferred reducts whenever the alternative 

reducts are produced. 

 

 

Object No. F1 F2 F3 F4 F5 F6 F7 O 

1 x x x x x x 2 2 

4 x 1 1 x x x x 1 

5, 6 and 8 x 2 x x x x x 1 

2  x x x x x x 3 0 

7 x x x x 3 x x 2 

3 x 1 2 x x x x 2 

Table 4. The desired reducts for Table 3 

 

At this point, it is discerned that the weight assignment approach supports to 

generate the preference-based rule. Furthermore, the preferred decision rules 

(normally with a high accuracy) derived from the RST based approach (an in-

dividual based data mining approach) are not capable of predicting upcoming 

testing data sets, except when the condition part from test sets matches the 

preferred decision rules. Therefore, a population based data mining approach 

(e.g., SVMs based approach) with the consideration of negative data sub-set is 

introduced next. 

3.2. Learning Problem Description through SVMs 

The training data set is partitioned into three disjointed subsets: misclassified, 

not well-separated, and well-separated examples. The misclassified and not 

well-separated examples together are in the negative data subset whereas the 

well-separated examples are called in the positive data subset. For example, in 

the surface roughness prediction, misclassified, non-conformation part is an 

example of the negative data sub-set. To illustrate the structure of the data set, 

there is an instance vector x from an input space X, a response or label y from 

an output space Y and a hypothesis h that forms a hypotheses space H for a 

learner L. For example, X represents all input features (F1 - F7) in Table 2, 

while Y represents one output feature (O). Assume we have  

 

x = (x(1), …,x(n))′, X �Rn ,x�X, x(i)�R (3)
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where R = a set of real numbers, integer n>0 = the size of vector x, for multi-

category classification, Y = {1,2,…, m}. A training set or training data S is a collec-

tion of training examples or observations given by zi=(xi,yi). It is denoted by 

 

.)),),..(,(),,(()..,( 22111

l

lll ZyxyxyxzzS ⊆== liZz i ..1,Y)(X, ==∈ (4) 

 

where ℓ = |S| is the size of the training set. There exists a true functional rela-

tionship or underlying function f: X � Rn � Y, which is often based on the 

knowledge of the essential mechanism. These types of model are called mecha-

nistic models. A hypothesis h is an approximation to the underlying functional 

relationship f between variables of interest. The problem for the learner L is to 

learn an unknown target function h: X�Y drawn from H and output a maxi-

mum likelihood hypothesis. 

 

3.3 Negative Data Oriented Compensation Algorithm 

It is not likely to select a perfect model for a practical problem without ap-

proximation errors in a learning algorithm. To select a perfect model, imagin-

ing that underlying function f(x) is a fluctuant terrain, it is hard to fit the ter-

rain by using a huge size of carpet h(x). The reason is that only the training set 

and limited prior knowledge is available. The main idea of reducing the ap-

proximation error is to compensate the parts of an oversized carpet by a se-

quence of small sized carpets h(i)(x) which is driven by the negative data sub-

set of training data. The procedure of the Negative Data Oriented 

Compensation Algorithm (NDOCA) has three parameters, S0 is the training 

data set; T0 is the testing data set; and み is a degree of vector similarity. For ex-

ample, み is difference between two suppliers (objects) in the preferred supplier 

selection. The return value of the algorithm is the predictive labels of the test-

ing data set. Six subroutines are invoked, 

 
 

1. h(i)(x)=LEARN(Si) 

2. Pi=PREDICT(Ti, h(i)(x)) 

3. S#i+1∪Si+1= DIVIDER(Si, h(i)(x)) 

4. Ti = VS(Si, Ti-1,δ) 
5. P#i = OV(P#i-1,Pi) 

6. TC(k,S) 
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LEARN is for training to get the model or hypothesis; PREDICT is to predict 

the labels of given data set and model. These two procedures are from classical 

leaning algorithms such as SVMs and artificial neural networks. DIVIDER is to 

divide training data set into positive and negative data subsets by given the 

hypothesis and the function partitioner d(h,x,y). DIVIDER will call PREDICT 

routine. In each pass, the function VS and DIVDER could be different. The fol-

lowing is an algorithm described as pseudo-code (Figure 3).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pseudo-code of the NDOCA 

 

To prepare for the NDOCA learning algorithm, partitioner function d(h,x,y), 

terminate criteria function TC(k,S), and vector similarity vs(x1,x2) need to be 

provided. The performance of NDOCA very depends on the selecting of parti-

tioner and vector-similarity function, which needs priori knowledge of learn-

ing problems. Note that the NDOCA algorithm is taken as weighted data 

based on weight coefficients, given by the domain experts. 

NDOCA (S0, T0, δ) 
> Learning phase 
1. S[0] ← S0 

2. h[0] ← LEARN(S[0]) 

3. i ← 0 

4. repeat 

5. i ←i+1 

6. (S#[i], S[i]) ← DIVIDER(S[i-1], h[i-1]) 

7. h[i] ← LEARN(S[i]) 

8. until TC(i,S) 

9. k ← i > the number of iteration in repeat loop

> Testing phase   

10. T[0] ← T0 

11. P[0] ← PREDICT (T, h[0]) 

12. P#[0] ← P[0] 

13. for i←1 to k do 

14. T[i] ← VS(S[i],T[i-1], δ) 
15. if T[i] ≠ Φ  *T[i] is not empty set 

16. then P[i] ← PREDICT(T[i], h[i]) 

17. P#[i] ← OV(P#[i-1], P[i]) 
18. return P#[k] 

 

DIVIDER(S[i-1], h[i-1]) 

1. X ← ΔY←Φ *initialize to empty set 

2. foreach (x,y) in S[i-1] do *let (X,ΔY)

be S[i-1] 

3. X ← X ∪ {x} 

4. ΔY← ΔY ∪ {y} 

5. S[i] ← Φ 

6. foreach (x, Δy[i-1]) in (X,ΔY) do 

7. Δy[i] ← PREDICT(x, h[i-1]) 

8. if d(h[i-1], x, Δy[i-1]) 

9. then S[i] ← S[i]∪{(x, Δy[i])} 

10. Δy[i-1] ← Δy[i] *update ΔY 

11. S#← S[i-1] - S[i] 

12. return (S#[i], S[i]) 

 

 
VS(S[i],T[i-1], δ) 
1. T[i] ← Φ 

2. foreach x1 in T[i-1] do 

3. foreach x2 in S[i] do 

4. if vs(x1,x2) ≥ δ 
5. then T[i] ← T[i] ∪ {x1} 

6. break 

7. return T[i] 
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4. An Empirical Study 

4.1 Problem Structure and Data Set Description 

Over the years, A-Metal Inc. (a pseudonym for the company) has collected 

over 1,000 records (objects) of machining data and wishes to investigate the 

machining features which have a significant impact on the quality of surface 

finish. Figure 4 illustrates the intelligent CNC control scheme that A-Metal is 

planning to implement, as opposed to the conventional CNC control that has 

no response capability as machining process changes. 
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Figure 4. Structure of the closed loop machining operation process 

 

In order to derive the rules and algorithm, conditions of the variables, which 

could meet the required surface roughness, were identified. Those specific 

variables will be used to develop the intelligent control system, and in addi-

tion can be used by industry to optimize the surface roughness of machined 

metal (e.g., aluminum, steel) components. Each information object was de-

scribed with the eight features, F1 through F8, and one outcome, O (Table 5). 

The work-piece materials include three different types, including 6061-T6 

aluminum, 7075-T6 aluminum, and 4140 medium carbon steel (Figure 5).  

The surface roughness of the machined bores was measured along a machine 

Z-axis (parallel to the height of the bore). The machining has been performed 

on the Cincinnati Hawk CNC Turning Center. The effects of cutting speed, 

depth of cut, machine set up-modal stiffness, feed rate, cutting tool, tool nose 
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radius and resultant cutting force on the performance of surface roughness es-

timation were studied. After roughing and semi-finishing operations, the sur-

face roughness was measured by means of a Taylor Hobson surface pro-

filometer. 

 

 

 
(a)             (b) 

Figure 5. A snapshot of CNC machining (a) and a mixed array of parts consisted of 

6061 Al (top), 7075 Al (middle), and 4140 medium carbon steel (the bottom two rows) 

(b). 

 

 

 Factor Weight 

F1 Types of work piece material .9 

F2 Cutting speed .8 

F3 Depth of cut .8 

F4 Machine set up-modal stiffness .8 

F5 Feed rate  .7 

F6 Cutting tool .9 

F7 Tool nose radius .85 

F8 Resultant cutting force .75 

Outcome  Surface roughness (Ra)  

Table 5. Feature set of the machining operation process 

 
The contents of the outcome are recorded in a binary format. “ONE” means 

surface roughness is acceptable, while “ZERO” means unacceptable. The 

significant variables, which have impact on the quality of surface roughness, 

were determined through the rule identification algorithms. The decision pro-
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duced by the algorithm became decision rules stored in the process control 

system.  

4.2 Computational Results 

To show the superiority of the proposed approach, the computational results 

from the RST part and the hybrid approach part are illustrated. Section 4.2.1 

describes the final decision rules with significant features derived from RST. 

The summary of accuracy results from the test set is presented to show per-

formance of the proposed RI algorithm. Section 4.2.2 represents solutions 

through the hybrid approach. Comparison among RST, SVMs, and the hybrid 

approach is also depicted to demonstrate accuracy of each approach in this 

section.  
 

4.2.1 Rough Set Theory Part 

The “Rough Set Based Decision Support System” software (Figure 6) was de-

veloped by the authors and implemented in the Advanced Manufacturing 

Laboratory at the University of Texas at El Paso. It was installed using an 

Apache 1.3 web server to enable the remote use. The system was developed 

with C++ language and the Common Gateway Interface (CGI) is used as a 

communication protocol between the server and client ends. The historical 

data were split into two data sets. One is the training data set to derive the de-

cision rules; the other is the testing data set to verify the decision rules. Kusiak 

(2001) suggested the split of the data set using the bootstrapping method ac-

cording to the following ratio: 0.632 for the training set and 0.368 for the test 

set. In this study, training data set was collected for 667 parts and testing data 

set was collected for 333 parts. 41 out of 667 parts in the training set were un-

acceptable for surface roughness, while 19 out of 333 parts in the testing set 

were rejected.  

All decision rules derived by the RI algorithm were expressed in the form of 

IF-THEN rules, as illustrated in Table 6. Number of support (see the 3rd col-

umn) was recorded from the training set. The selection criteria were based on 

the threshold value, indicating the ratio of the number of objects supported by 

that individual rule to the number of total objects. In this case study, a 15% 

threshold value is selected based on the quality engineer’s expertise. All se-

lected decision rules should be equal or greater than this selected threshold 

value. For example, the first rule in Category I shows 102 acceptable parts 
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based on a surface roughness leading to 16% non-defective population. Cate-

gory I describes the relationship between the features and the acceptable parts. 

The third rule in Category I is strongly supported because it represents 20% of 

the acceptable population. In Category II, 17% and 20% of the unacceptable 

parts are identified by the two rules. Overall, more simple rules (less features 

as conditional features) are shown in Table 6. The simple rule is treated as the 

desirable rule because if only two conditions are matched then the rule is fired. 

Based on the 15% threshold value, significant features F1, F2, F3, F5, and F8 are 

identified. One can observe that all rules include Feature 1 (types of work 

piece materials). Therefore, Feature 1 is significant in this set of rule induction. 

F2, F3, F5, and F8 are significant as well since they are included in the final de-

cision rules. It can be seen that the type of work piece materials, cutting speed, 

depth of cut, feed rate, and resultant cutting force are important factors for the 

quality characteristic.  

 
 

 

Figure 6. Screen shot of rough set application software 
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Rule No.  Rule expression No. of support %  of the part population by 

the rule (from training set) 

1 IF (F1 = Al 6061) AND  

(F3 = .2) THEN (D = 1). 

102 16 

2 IF  (F1 = Al 6061) AND  

(F5 = .017) THEN (D = 1). 

91 15 

3 IF  (F1 = Al 7075) AND  

(F8 = 600) THEN (D = 1). 

125 20 

4 IF (F1 = Al 7075) AND  

(F5 = .005) THEN (D = 1). 

75 12 

5 IF (F1 = Steel 4140)  

AND (F2 = 1200)  

AND (F8 = 300)  

THEN (D = 0). 

7 17 

6 IF (F1 = Al 6061) AND  

(F8 = 600) THEN  (D = 0). 

8 20 

Table 6. Examples of decision rules. Note: (1) F3: depth of cut, F5: feed rate, F8: resul-

tant cutting force, F2: cutting speed, (2) Category I includes Rule 1– 4 and Category II 

includes Rule 5–6. 

 

Testing on the validity of the rules, which extracted from a data set, was car-

ried out by the rule-validation procedure, which includes a comparison be-

tween each decision rule and each new object from the test set. One set of 314 

parts with 19 defectives is used as the test set. The accuracy of results for 314 

test set parts is shown in Table 7. As Pawlak (1991) explains, the “classification 

quality” of a feature set is the percentage of all objects in the training data set 

that can be unambiguously associated with the decision values based on the 

features in this set. At the same time, the “Diagnostic Accuracy” or so called 

“Classification Accuracy” for a rule set is the number of correctly classified ob-

jects from the test set to all objects in the test set. These results are animate 

since all of selected rules with a 15% threshold value denote close to 90% accu-

racy except the third rule in the first category. Four out of six rules (the 1st and 

2nd rules in category I, the 1st and 2nd rules in category II) are shown over 90% 

accuracy. However, the good quality of rule depends on its diagnostic accu-

racy (Kusiak, 2001). In Table 7, the significant features are identified as F1, F2, 

F3, F5 and F8. Since the significant features in this case study are fathom, the 

dimension of interest can be reduced from 8 features to 5 features. 
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Test Set Category I II 

Rule ID 1 2 3 4 1 2 

Feature Set F1, F3 F1, 

F5 

F1, 

F8 

F1, 

F5 

F1, F2, 

F8 

F1, F8 

% of the part popu-

lation by the rule 

(from training set) 

16% 15% 20% 12% 17% 20% 

Classification qual-

ity 

94.9% 100% 70.1

% 

88.9

% 

94.6% 100% 

333 Parts 

(314 acceptable 

vs. 19 unaccept-

able) 

Diagnostic accuracy 95.4% 100% 71% 89.3

% 

95.3% 100% 

Table 7. Summary of accuracy results from the test set. Note: Bold text represents the 

threshold values of 15% case with acceptable Classification quality and Diagnostic ac-

curacy 

4.2.2 Hybrid Approach Part 

The NDOCA algorithm is implemented by Perl and uses a modified SVMlight 

(Joachims, 2002; Joachims, 1999) as a base learning algorithm, including learn-

ing and classifying modules. Before the case is studied, the three functions-

partitioner function d(h,x,y), terminate criteria function TC(k,S), and vector 

similarity vs(x1,x2)-need to be defined. To simplify the complexity of computa-

tion, the partitioner is defined on the feature space by d(h, x, y) = iff(h(x) < 

む,true, false), む � ¸[0,0.5]. And TC(k,S) is defined by TC(i, S[i])= iff( |S[i]|≤|x|, 

true, false). Basically, the Vector Similarity Euclidean method is used for train-

ing and testing data sets. The vector-similarity is a metric to describe the simi-

lar degree of two vertices. The vector-similarity plays an extremely important 

role in the NDOCA learning algorithm. By applying for repairing hyper-

surface, the first thing is to find which vertices in the testing data set need to be 

compensated. The vector-similarity is used to find the relationship of vertices 

in the negative data subset Si and testing data subset Ti-1. Only those vertices in 

Ti-1 with high similarity to the ones in Si need to be compensated. 

Since A-Metal Inc. would like to observe the impact of weights and negative 

data training, the performance measurement includes the following four dif-

ferent cases: 1) equal weight without non-negative data training, 2) un-equal 

weight without non-negative data training, 3) equal weight with non-negative 

data training, and 4) un-equal weight with non-negative data training. The n-

cross validation is performed in each case. The average result of n-fold is the 

final accuracy while the minimum and maximum values of accuracy are given 
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as shown in Table 8. Here, the training data set (with 667 objects) used for rule 

induction from the previous stage is used for five-fold cross validation. Note 

that the data set only contains significant features (e.g., F1, F2, F3, F5 and F8). 

In Table 8, one can observe that the case of equal weight without negative data 

training contains the lowest diagnostic accuracy with 94.8%. The case of un-

equal weight with negative data training comprises the highest diagnostic ac-

curacy with 97.3%. The case of un-equal weight without training is not exactly 

prevailing over the case of equal weight since the accuracy of some individual 

groups (e.g., group 3) in the equal weight with training case are pretty high 

(e.g., 97%). Therefore, it is difficult to conclude that the weight effect is pre-

dominating over the negative data training effect. In this case study, compari-

son of accuracy of RST, SVMs, and the hybrid approach is also investigated in 

order to demonstrate the advantages of applying RS rules and SVMs to predic-

tion. The original 667 objects are applied in this case. The results are shown in 

Table 9. Note that the accuracy of RST is based on objects that meet the condi-

tion of the decision rules. In conclusion, most of the hybrid approaches per-

formed better than the others. 

 
No. T+ T- F+ F- C M DA% T+ T- F+ F- C M DA% 

1 120 6 5 2 126 7 94.7% 122 6 3 3 128 6 95.5% 

2 121 7 5 1 128 6 95.5% 122 6 2 3 128 5 96.2% 

3 120 6 5 2 126 7 94.7% 120 7 6 0 127 6 95.5% 

4 119 6 6 3 125 9 93.3% 119 7 8 0 126 8 94.0% 

5 121 6 4 2 127 6 95.5% 121 6 3 3 127 6 95.5% 

Avg. 120.2 6.2 5 2 126.4 7 94.8% 120.8 6.4 4.4 1.8 127.2 6.2 95.4% 

1 118 7 9 0 125 9 93.3% 122 8 3 0 130 3 97.7% 

2 121 6 4 3 127 7 94.8% 121 8 4 0 129 4 97.0% 

3 122 7 2 2 129 4 97.0% 122 9 2 0 131 2 98.5% 

4 120 7 5 1 127 6 95.5% 122 8 4 0 130 4 97.0% 

5 120 7 5 1 127 6 95.5% 121 8 5 0 129 5 96.3% 

Avg. 120.2 6.8 5 1.4 127 6.4 95.2% 121.6 8.2 3.6 0 129.8 3.6 97.3% 

Table 8. Comparison of four different cases (5-fold cross validation).Note: (1) T+ = true 

positive (good part), T- = true negative (defective), F+ = false positive, F- = false nega-

tive, C = correct classified and M = misclassified = F+ + F- and DA% = diagnostic accu-

racy = C/(C+M) * 100%; (2) Upper left: equal weight w/o negative data training; upper 

right: un-equal weight w/o training; lower left: equal weight with training; and lower 

right: un-equal weight with training.  
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Approach No. of features 

used/No of data 

used 

Weight 

included 

Negative 

data trai-

ning 

Correct 

(%) 

Incorrect 

(%) 

[1] RST 8/677 Yes No 95.04 4.96 

[2] SVMs-1 8/677 Yes Yes 87.90 12.10 

[3] SVMs-2 8/677 No Yes 89.30 10.70 

[4] Hybrid-1 5/677 Yes Yes 94.80 5.20 

[5] Hybrid-2 5/677 No Yes 95.20 4.80 

[6] Hybrid-3 5/677 Yes No 95.40 4.60 

[7] Hybrid-4 5/677 No No 97.30 2.70 

Table 9. Comparison of proposed hybrid approach with RST and SVMs approaches. 

Note: (1) The accuracy of RST is based on objects meet the condition of the decision 

rules; (2) 5-fold cross validation is applied in all cases. 
 

5. Conclusions 

Based on the historical data, this study employed a hybrid method that con-

nects with the causal relationships between the features of the machining 

process and acceptance of surface roughness. This methodology is applied to 

the case of surface roughness prediction. Several features that significantly im-

pact surface roughness were identified and considered in the case study. Sev-

eral experiments with the RST, SVMs, and hybrid approach (included equal 

and unequal weights and with or without negative data training, and different 

data sets) were also conducted and the results are compared. Two main algo-

rithms are proposed in this study. One is called the RI algorithm, while the 

other is named the NDOCA algorithm. The RI is used to derive high accuracy 

decision rules and identify significant features. The NDOCA is used to im-

prove the learning algorithm performance through compensating the base hy-

pothesis by using the negative data set. According to the hybrid approach, 

combination of RI and NDOCA provides a high accuracy prediction tool for 

investigating features that contribute to surface roughness. The hybrid ap-

proach provides important information for acceptance of surface roughness in 

the machining operations. The results showed practical viability of this ap-

proach for quality control. Future research can focus on the derived rules con-

stitute the basis for developing a rule-based intelligent control system for sur-

face roughness in the machining operation process. 
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