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1. Introduction 

Multiple cutaneous and uterine leiomyomatosis (MCUL: OMIM 150800), which is also 

known as Reed syndrome, is an autosomal dominant disorder in which benign skin tumors 

arising from the arrector pili muscle and uterine fibroids typically develop in the third and 

fourth decades [1, 2]. Reed et al first reported on two families in which members of 

successive generations demonstrated cutaneous leiomyomas, uterine leiomyomas, and/or 

leiomyosarcomas in 1973 [3]. A small population of families with MCUL has also been 

reported to demonstrate clusters of renal cancer, either manifesting as type 2 papillary renal 

cell carcinoma or renal collecting duct cancer. This latter disease variant is referred to as 

hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839) [4, 5]. 

Heterozygous germline mutations in the fumarate hydratase (FH, fumarase) gene (MIM 

136850) mapped on chromosome 1q42.3-q43 are detected in both MCUL and HLRCC and 

many different mutations have been reported in the FH gene [6, 7]. The FH gene encodes the 

fumarate hydratase (FH) enzyme, that catalyzes the conversion of fumarate to malate as part 

of the TCA cycle in the mitochondrial matrix. This chapter will initially explain the clinical 

manifestations and etiology of MCUL/HLRCC based on the data from previous reports. The 

structure and fundamental function of the FH protein, FH gene mutation and the relation 

between alteration of FH protein and tumorigenesis in MCUL/HLRCC will be addressed. 

Finally, the diagnosis and treatments of MCUL/HLRCC is also explained.  

2. Clinical manifestations 

2.1. Cutaneous leiomyomas  

The most prominent feature of MCUL/HLRCC is the occurrence of solitary or multiple 

cutaneous leiomyomas, which appear as firm skin-colored or pink-brown papules or nodules 

up to 2cm in diameter and are often associated with pain (Figure 1) [1]. The distribution of skin 

lesions shows approximately equal numbers of patients with clustered leiomyomas only, 
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scattered leiomyomas only, and a combination of clustered and scattered lesions. Clustered 

lesions are most common on the trunk, followed by the lower limb(s), upper limb(s), and head 

and neck. Scattered lesions are most often found on the the upper limb(s), followed by the 

trunk, lower limb(s), and head and neck. A small proportion of patients have symmetrically 

distributed or unilaterally distributed lesions. In addition, band-like or type 2 segmental 

manifestations have also been reported [8]. Skin leiomyomas are reported to develop at a 

mean age of 24.1 years (median, 25 years; range, 9-45 years), although the mean ages of 

symptom onset and diagnosis are 31.4 and 36.6 years, respectively. These tumors seem to 

remain benign. Only two cases of skin leiomyosarcoma in association with an FH germline 

mutation have been reported [9, 10]. A histological examination shows that all cutaneous 

leiomyomas are pilar lesions occurring superficially in the dermis (Figure 2). They were 

thought to originate from the pili arrector muscles of the hair follicle. Smooth muscle fiber 

bundles composed of eosinophilic cytoplasm with elongated blunt-ended nuclei with little or 

no waviness are interspersed with collagen within the dermis [11]. An immunohistochemical 

study revealed the presence of markers of smooth muscle differentiation, such as desmin and 

actin (Figure 3). Estrogen and progesterone receptors are negative in cutaneous leiomyomas, 

although these are positive in uterine leiomyomas [12]. 

 

Figure 1. Clinical presentation of cutaneous leiomyoma. Redish nodules up to 2cm in diametar. 

 

Figure 2. a. Histological examination of cutaneous leiomyoma shows interlacing fasicles of the smooth 

muscle cells within the dermis (hamtoxylin and eosin staining, original modification x40). b. Tumor 

cells are composed of eosinophilic cytoplasm with wlogated blunt-ended nuclei. There were no atypia 

or mitosis present (hematoxylin and eosin staining, original modification x400) 
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Figure 3. Immunohistological findings of cutaneous leiomyioma. Tumor cells were positive for smooth 

muscle actin immunostaining (original magnification x400) 

2.2. Uterine fibroids 

Uterine fibroids (leiomyomas) are benign tumors that develop from the smooth muscle cells 

of the uterus. The common symptoms including irregular menses, menorrhagia, pain and 

defects in the reproductive functions, show no difference between uterine fibroids in 

MCUL/HLRCC and those of sporadic cases; however, the clinical features in MCUL/HLRCC 

are different from those in sporadic cases. Many uterine fibroids are observed in 

MCUL/HLRCC and the size of tumors in MCUL/HLRCC is larger than that of sporadic 

cases [9, 10]. The mean age at the time of diagnosis of uterine fibroids with MCUL/HLRCC 

is around 30 years (range 18-53) and it is approximately 10 years before the diagnosis in 

sporadic cases. Most female patients (79-100%) with an FH gene mutation are affected with 

uterine fibroids [10,13]. The association of the generally rare uterine leiomyosarcoma with 

the syndrome has also been suggested; however, the biological behavior of the uterine 

tumors in HLRCC has remained unclear [14]. 

2.3. Renal cell carcinoma 

Renal cell carcinoma (RCC) is a tumor arising from the epithelium of the renal tubules. RCC 

can be classified into morphological subtypes including clear cell, papillary, chromophobe 

and collecting duct carcinoma [15, 16]. The most frequent type of RCC in HLRCC is a type 2 

papillary RCC [17]. The tumor histologically shows a papillary growth pattern. The tumor 

cells show a large nucleus with a prominent eosinophilic nucleus surrounded by a clear 

halo. Cystic components also seem to be typical findings [18, 19]. These features are 

suggested to be characteristic of a RCC in HLRCC. In addition, collecting duct tumors, 

oncocytic tumors and clear cell tumors have also been reported [9, 10, 18, 20]. An 

immunohistochemical study of RCC in HLRCC showed the absence of the cytokeratin (CK) 

7 and the expression of UEA-a protein. In addition, the absence of mucin, CK20 and CD10 is 

considered to be typical of the tumors [19, 21]. RCC in HLRCC is commonly solitary and 

unilateral. RCC is found in about 20-25% of the FH gene mutation positive families [22, 23]. 
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Up to 32 and 50% of the North America and Finnish families, respectively, show the RCC 

phenotype [9, 10, 18] The mean age at the time of RCC diagnosis is 42 and 44 years in 

Finnish and North American HLRCC families, respectively. Approximately half cases of the 

RCC in HLRCC are detected in individuals younger than 40 years, many even less than 30 

years [9, 20, 24]. The youngest of the RCC patients was 11 years old when diagnosed [24]. 

Importantly, HLRCC-associated renal cancers are very aggressive and can metastasize even 

though the primary tumor is small. Most reported patients die within 5 years after diagnosis 

creating a challenge for surveillance and treatment practices [9, 19, 25]. Therefore, annual 

pelvic/abdominal MRI starting from the age of 18 is considered to be effective practice, 

especially for individuals with a familial history of RCC. In addition, benign kidney cysts 

frequently develop in the carriers of FH gene mutation in comparison to individuals less 

than 40 years of age in the general population. Such cyst formation is suggested to result 

from an increased cell proliferation due to the activation of the hypoxia pathway and it has 

also been postulated to represent premalignant lesions [26, 27].  

2.4. Fumarate hydratase 

FH gene is located in the chromosomal region 1q42.1. It contains 10 exons and generates a 

transcript of 1.5 kb [28,29]. There is a mitochondria localization signal in the first exon. FH 

gene encodes two isoforms of the fumarate hydratase (FH) enzyme. The mitochondrial 

isoform of FH is one of the enzymes of the tricarboxylic acid cycle (TCA cycle, Kreb’s cycle), 

which is a part of cellular respiration, the aerobic step of energy production (Figure 4). The 

active form of FH protein is a homotetramer with two substrate-binding sites [13] and it 

catalyzes the conversion of fumarate to malate in the mitochondrial matrix. In contrast, the 

function of the cytosolic FH isoform is thought to be involved in the fumarate and amino 

acid metabolism [30]. Previous studies suggest that some of the FH protein is translocated 

back to the cytosol from the mitochondria by removal of the mitochondrial localization 

signal [31]. 

Heterozygous germline mutations in FH gene were linked with both MCUL and HLRCC [6, 

32]. Biallelic inactivation of FH is observed in associated tumors; therefore, FH is considered 

to be a tumor suppressor based on the Knudsen’s two-hit hypothesis. 

2.5. Mutations in FH gene 

Approximately 100 different mutations have been reported in the FH gene according to the 

online FH variant database [22]. Missense, nonsense, frameshift, insertion, and splice-site 

mutations have been found in the FH gene. The majority (~58%) of these germline mutations 

are missense with the remaining being nonsense (~11%), and frameshift (~11%) mutations, 

located along the entire length of the FH gene coding region. Nonsense mutations result in 

the absence of FH or formation of a truncated FH protein product that is functionally 

inactive. Most of the heterozygous missense mutations are found in the looped regions of 

FH with important roles in forming the homotetramer according to the crystal structure of 

the E.coli fumarase C, which is useful in models for predicting the effect of missense  
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Figure 4. TCA cycle. Ac-CoA, acetyl coenzyme A; α-KG, α-ketoglurarase; Succ-CoA, succinyl 

coenzyme A; OOA, oxaloacetate. 

mutations on human FH [33]. These missense mutations paradoxically cause marked 

reduction in the FH enzyme activity in comparison to truncated mutations [8, 13]. In 

addition, a hypothesis of the dominant negative effect of missense mutations has also been 

reported [34]. There appears to be no specific genotype-phenotype correlation with regard 

to which combination of these tumors develops in MCUL/HLRCC [32]. However, cases with 

RCC in HLRCC are mainly found in Finnish and North American families. This suggests 

that either environmental or additional genetic factors might be related to the induction of 

the malignant phenotype [2, 4-6, 10, 18]. Several other tumors have also been reported In the 

FH gene mutation carriers. However, biallelic inactivation of the FH gene was detected in 

only three cases of breast cancer, one case of bladder cancer, two cases of adult Leydig cell 

tumors and one case of adrenocortical hyperplastic lesion in Cushing syndrome [18, 35, 36]. 

The significance of FH gene mutation in the development of these tumors is still unclear 

although the FH gene defect might be involved in the tumorigenesis. In addition, biallelic 

FH germline mutations cause a rare recessive syndrome named FH deficiency (FHD or 

fumaric aciduria, MIM 606813), characterized by severe neurological symptoms such as 

psychomotor retardation, muscular hypotonia and microcephaly [37, 38].Dramatic 

reduction of the FH enzyme activity in a patient’s tissues results in a metabolic crisis causing 

death commonly as an infant. 

2.6. Molecular mechanism of MCUL/HLRCC tumorigenesis 

Individuals with MCUL/HLRCC inherit one loss-of function allele and somatically lose the 

other allele in the tumor. The inherited FH gene mutations severely reduce enzyme activity, 

causing the tumors to accumulate high levels of fumarate [10]. Both loss of heterozygosity 

(LOH) and point mutations as second hits have been observed as this mechanism [5, 39]. 
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Therefore, the FH gene is thought to act as a tumor suppressor gene [4]. However, the FH 

gene is not a typical tumor suppressor gene with a distinct anti-proliferative role, but rather 

its loss leads to more complex consequences. One of the broadly studied mechanisms is the 

so-called “pseudohypoxia” pathway referring to the induction of the hypoxia inducible 

factor 1 (HIF1) and its downstream targets under normoxic condition. HIF1 is a 

heterodimeric transcription factor formed by the HIF1α and HIF1β subunit. The 

proteosomal degradation of the HIF1α subunit is important for HIF1 regulation when 

molecular oxygen is available. HIF1 promotes adaptation of cells to non-physiological 

conditions when oxygen tension is low, by inducing anaerobic glycolysis as an alternative 

phosphorylation, and by inducing vascularization to facilitate the oxygen and nutrient 

supply into hypoxic tissues [40]. Fumarate, the substrate of FH, is shown to accumulate into 

the cytoplasm of cells and cause stabilization of HIF1 by inhibiting α-ketoglutarate (α-KG) 

dependent dioxygenase in MUCL/HLRCC tumors because of an FH defect [41-44]. The 

stabilized HIF1 plays a role as an activator in vascularization, glycolysis and glucose 

transport, which are significant pathways for promoting tumor growth [45]. Furthermore, 

FH deficiency precludes tumor cells from generating several of the TCA cycle intermediates, 

including malate, oxaloacetate and citrate, through conventional oxidative metabolism. [46, 

47]. Human FH-deficient renal carcinoma cells redirect part of the TCA cycle, to compensate 

for this. This pathway appears to be a robust mechanism allowing cells to maintain growth 

during impaired oxidative metabolism, because it is also observed in human cancer cell 

lines with a mutation in the electron transport chain or in the Von Hippel-Lindau tumor 

suppressor, and in cells subjected to hypoxia, all of which negatively impact oxygen-

dependent mitochondrial enzymes [48-51]. In addition, high levels of fumarate can induce 

aberrant patterns of gene expression. The electrophilic properties of fumarate allow it to 

modify cysteine residues on cellular proteins, producing an S-(2-succinyl)cysteine adduct in 

a Michael addition reaction termed succination [52]. Succination impairs protein function. 

Fumarate-mediated succination of Kelch-like ECH-associated protein 1 (Keap1) elicits an 

nuclear factor E2-related factor 2 (Nrf2) response In cells with FH deficiency, maintaining 

constitutively high expression of Nrf2 targets [53-55]. One of these targets is HMOX1, 

which encodes the enzyme required for heme degradation in FH-deficient cells, thus 

suggesting that fumarate-dependent suppression of Keap1 may promote cell survival, 

although the role the Keap1/Nrf2 system plays in tumorigenesis is unclear. Therefore, 

fumarate-mediated suppression of Keap1 may contribute to tumor development in the 

setting of FH deficiency. 

2.7. Diagnosis 

No diagnostic criteria for MUUL/HLRCC have been established; however, practical criteria 

for the clinical diagnosis of MUUL/HLRCC have been proposed [56]. Multiple cutaneous 

leiomyoma which is histologically confirmed is proposed as a major criterion. The minor 

criteria included uterine fibroids, papillary type 2 RCC or positive familial history. A 

molecular genetic analysis should be conducted to confirm the diagnosis when the clinical 

features are suggestive of MCUL/HLRCC. Direct sequencing of the FH gene cording region 
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is commonly performed as a genetic analysis. This analysis detects underlying genetic 

alterations in about 90% of the suggestive MCUL/HLRCC cases [9, 10, 20, 57]. The 

possibility of exon or whole gene deletion is suspected If no mutation is detected in the FH 

gene, in spite of the fact that either patient’s symptoms or familial history is strongly 

suggestive of UCML/HLRCC. The detection of possible copy-number changes in the FH 

gene might be useful in such case, by using additional methods such as multiplex ligation-

dependent probe amplification [56, 58].  

3. Treatment and management 

3.1. Cutaneous leiomyomas and uterine fibroids 

Cutaneous leiomyomas are commonly benign, and thus, the treatment for these tumors may 

be only improvement of cosmetic and pain related complications. Surgical excision is 

usually performed for the solitary tumors. The multiple painful lesions are generally treated 

with medications, such as nitoglycerol, calcium channel blockers, alpha-adrenoreceptor 

blockers, which have been reported to be occasionally successful to relieve pain [8]. Surgical 

approaches including hysterectomy are typically needed for uterine fibroids, based on the 

number and size of the tumors and the severity of the symptoms caused by the tumors [13, 

57]. Furthermore, myomectomy, uterine artery embolization or pharmaceutical treatment 

with gonadotropin-releasing hormone agonist is also performed as an optional treatment for 

uterine fibroids.   

3.2. Renal cell carcinoma 

RCCs commonly acquires metastatic potential after exceeding the size of 3-7 cm [59]. Renal 

lesions can be observed until they reach the size of 3 cm, at which point they should be 

removed, and nephron sparing surgery usually appropriate [60]. However, RCC in HLRCC 

is thought to differ from sporadic RCCs because they are often metastatic at presentation 

even if the size of tumor is less than 1 cm. Therefore, tumors in HLRCC are recommended to 

be excised with radical surgery immediately [15, 59, 60]. Sorafenib and sunitinib, which are 

inhibitors of receptor tyrosine kinases activated by HIF1 targets such as VEGF, PDGF and 

TNF-α, have been used in the treatment of sporadic papillary RCC with varying success. 

These treatments are specific targeted pharmaceutical approaches. However, Information 

regarding the specific response of HLRCC associated tumors to these molecules is not 

available. 

4. Conclusion 

MCUL/HLRCC is a syndrome predisposing the FH gene mutation carriers mainly to benign 

tumors including cutaneous leiomyomas and uterine fibroids. Furthermore, renal cell 

carcinomas are also found in a subset of the HLRCC families and these are very aggressive 

in nature as small lesions. Therefore, appropriate surveillance with diagnostic examination 
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for uterine and diseases is warranted in rare cases of multiple, biopsy-proven cutaneous 

lesions. Genetic analysis of the FH gene should be performed in all cases of suspected or 

confirmed disease. Genetic counseling is also recommended for other family members of the 

patient’s family. Identification of the syndrome and its tumorigenic mechanisms has 

provided new insight in MCUL/HLRCC. 
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