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1. Introduction

1.1. Flame retardants

Flame retardants (FRs) are chemicals used in polymers to protect the public from accidental
fires by preventing or retarding the initial phase of a developing fire (EFRA, 2007). These
chemicals are now found in numerous consumer products, including construction materials,
upholstery, carpets, electronic goods, furniture and also children’s products such as car
seats, strollers and baby clothing. FRs have become indispensable to modern life, and have
saved numerous lives by preventing unexpected fires across the globe.

FRs are divided into two general classes based on their relation to host polymers:  addi‐
tive and reactive FRs (WHO, 1997).  Additive FRs are simply mixed with host polymers.
The  lack  of  chemical  bonding  between  the  FRs  and  host  polymers  enables  the  FRs  to
leach  out  of  or  volatilize  from host  polymers  over  time  into  the  ambient  environment.
Reactive FRs are incorporated into host polymers by covalent bonding into the polymer
backbone, and are thus less likely to leach into the environment. Additive FRs are main‐
ly used in thermoplastics, textiles and rubbers, whereas reactive FRs are usually used in
thermoset plastics and resins (SFT, 2009a).

FRs are sub-divided into six groups characterized by their chemical composition: 1) alumi‐
num hydroxide, 2) brominated, 3) organophosphorus, 4) antimony oxides, 5) chlorinated
and 6) other FRs. These groups account for 40%, 23%, 11%, 8%, 7% and 11% of the annual
FR global consumption in 2007, respectively (Beard & Reilly, 2009). The total market for FRs
in the United States, Europe and Asia in 2007 amounted to about 1.8 million tons.
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unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



1.2. Organophosphorus flame retardants

Organophosphorus  flame  retardants  (PFRs)  are  based  primarily  on  phosphate  esters,
phosphonate  esters  and phosphite  esters.  The  total  consumption  of  FRs  in  Europe  was
an  estimated  465,000  tons  in  2006,  of  which  20%  comprised  PFRs  (KLIF,  2010).  Of  the
PFRs consumed, 55% were chlorinated. Halogenated PFRs are the preferred form of FRs
because  halogen  inhibits  flame  formation  in  organic  materials,  and  non-halogenated
PFRs are typically used as flame-retardant plasticizers (KLIF, 2010).

1.3. Tris(1,3-dichloro-2-propyl) phosphate and tris(2-chloroethyl) phosphate

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP)
are typical examples of additive chlorinated PFR (Fig. 1 and Table 1).

Cl

Cl

O

P

O

Cl

Cl

O

Cl

Cl

O

Tris(1,3-dichloro-2-propyl) phosphate
(TDCPP)

Cl

O

P

O

Cl

O

Cl

O

Tris(2-chloroethyl) phosphate
(TCEP)

Figure 1. Chemical structure of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate
(TCEP)

TDCPP is a viscous colorless to light yellow liquid and is produced by the epoxide opening
of epichlorohydrin in the presence of phosphorus oxychlorine (ATSDR, 2009). TDCPP is
used primarily in flexible polyurethane foams but also in rigid polyurethane foams, resins,
plastics, textile coatings and rubbers (California EPA, 2011). TDCPP was a common ingredi‐
ent of sleepwear for children in the 1970s, but was voluntarily withdrawn by manufactures
in 1977 because of its proven mutagenicity (California EPA, 2011). However, the PFR can
still be found in many baby products (Stapleton et al., 2011). Currently, TDCPP is used
mostly in flexible polyurethane foams for upholstered furniture and automotive products.
TDCPP consumption has increased following the ban on common FR polybrominated di‐
phenyl ethers (PBDEs). Consequently, total TDCCP production has increased, being an esti‐
mated 4,500-22,700 tons in the United States in 2006 and <10,000 tons in Europe in 2000 (van
der Veen & de Boer, 2012).

TCEP is colorless to pale yellow liquid and is highly soluble in water (Fig.  1 and Table
1).  The  compound is  chemically  synthesized  via  condensation  of  phosphorus  oxychlor‐
ide and chloroalkyl alcohol at low temperatures and pressures to avoid formation of al‐
kyl  chlorides  (ATSDR,  2009).  Previously,  the  main  purpose  of  TCEP was  to  reduce  the
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brittleness of flame-resistant rigid or semirigid polyurethane foams. More recently, it has
been used as a flame-retarding plasticizer and viscosity regulator in unsaturated polyest‐
er  resin  (accounting  for  around  80%  of  current  use)  (EURAR,  2009).  TCEP-containing
polymers are commonly used in the furniture, textile and building industries (for exam‐
ple,  more  than  80% of  the  TCEP consumption  in  the  EU is  invested  in  roofing  insula‐
tion). TCEP is also used in car, railway and aircraft materials, and in professional paints.
Since  the  1980s,  TCEP  has  been  progressively  replaced  by  other  flame  retardants,  pri‐
marily  tris(1-chloro-2-propyl)  phosphate  (TCPP).  Consequently,  global  consumption  of
TCEP  in  the  EU,  which  exceeded  9,000  tons  in  1989,  declined  to  below  4,000  tons  by
1997. TCEP is no longer produced in the EU (EURAR, 2009).

tris(1,3-dichloro-2-propyl) phosphate

(US EPA, 2005)

tris(2-chloropropyl) phosphate

(EURAR, 2009)

Cas number: 13674-87-8 115-96-8

Synonym:

Tris(1,3-dichloro-2-propyl) phosphate

Tris-(2-chloro-,1-chloromethyl-ethyl)-

phosphate

1,3-dichloro-2-propanol phosphate

Phosphoricacid, tris(1,3-dichloro-2-

propylester)

Tris(1,3-dichloroisopropyl) phosphate

Tris(1-chloromethyl-2-chloroethyl)

phosphate

Tri(β, β’-dichloroisopropyl) phosphate

Tris(2-chloroethyl) phosphate

Tris(β-chloroethyl) phosphate

2-chloroethanol phosphate

Phosphoricacid,tris(2-chloroethyl) ester

Tris(2-chloroethyl) orthophosphate

Tris(chloroethyl) phosphate

Abbreviation:
TDCPP

TDCP

TCEP

TClEP

Molecular weight: 430.91 285.49

Physical state: Viscous, clear liquid Clear, transparent, Low viscosity liquid

Melting point: -58°C <-70°C

Boiling point: 236-237°C at 5 mm Hg Decomposition at 320°C at 1013 hPa

Density: 1.52 1.4193 (25°C)

Vapor pressure: 0.01 mmHg (30°C)
43 Pa (136.9°C)

0.00114 Pa (20°C, extrapolated)

Water solubility: 42 mg/L 7.82 g/L (20°C)

n-Octanol/water

partition coefficient:
2.4 1.78

Table 1. General aspect of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP)
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1.4. Occurrence and behavior of TDCPP and TCEP in the environment

TCEP and TDCPP have been detected in various environments worldwide, including in‐
door and outdoor air, surface and ground waters, and even drinking water (Tables 2 and 3).
It is unlikely that these compounds are produced naturally. Their environmental presence is
thus considered to be the result of human activity. Because these PFRs are physicochemical‐
ly and microbiologically stable in the environment and are also reportedly toxic, they are a
serious threat to human and ecosystem health.

1.4.1. TDCPP

Detected air concentrations of TDCPP have attained up to150 ng m3-1 in Sweden houses, and
in Belgium office and stores, they have reached 73 ng m3-1 (Table 2). In outdoor air, TDCPP
levels near a main road in Sweden ranged from <0.04-0.072 m3-1, and significant amounts
have been detected globally in air borne particles over the Pacific, Indian, Arctic and South‐
ern Oceans. TDCPP has been also found in indoor dust at relatively higher concentrations.
Levels of TDCPP have tended to be higher in public buildings than in domestic buildings.

With respect to water environments, TDCPP concentrations have been detected at up to ~50
ng L-1 in German rivers and at 1,335 ng L-1 in Italian lakes. In these countries, it also occurs in
rain and/or snow, as a result of volatilization from host materials. A much higher TDCPP
concentration was detected in raw water at a disposal site in Japan, suggesting that the com‐
pound leaches and migrates to water sources. In the United States and Germany, TDCPP
has even been detected in drinking water processed in treatment plants (DWTs). Relatively
higher concentrations of TDCPP occur in landfill site sediments. Much higher concentra‐
tions still have been found in sediments near a car demolition site in Norway.

TDCPP has been also detected in the effluents of sewage treatment plants (STPs) and waste
water treatment plants (WWTPs) in European countries and Japan, revealing that effluents
are a source of aquatic TDCPP contamination. Comparable levels have been observed in the
influents, indicating that the compound persists in the treatment plants. Degradation of
TDCPP in the environment has been reported as low. Together, these observations suggest
that TDCPP is likely to accumulate in the environment.

Environment Concentration Location Country Reference

Indoor air: <0.04-18 ng m3-1 office and store Norway SFT, 2008

<0.2-150 ng m3-1 home, cinema, university,

hospital, hotel, prison,

library, office shops

Sweden Marklund et al., 2005a

<0.3-7 ng m3-1 lecture and computer hall,

electronic dismantling

facility recycling plant

Sweden Staaf & Ostman, 2005

<73 ng m3-1 work place Belgium Bergh et al., 2011

<61.4 ng m3-1 house Japan Kanazawa et al., 2010
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Environment Concentration Location Country Reference

1.3 ng m3-1 newly constructed house Japan Saito et al., 2007

<0.6 ng m3-1,

<8.7 ng m3-1

house and office Japan Saito et al., 2007

Indoor dust: 0.2-67 μg g-1 home, cinema, university,

hospital, hotel, prison,

library, office shops

Sweden Marklund et al., 2003

<0.08-6.64 μg g-1 house Belgium van den Eede et al., 2011

<0.08-56.2 μg g-1 store Belgium van den Eede et al., 2011

2.2-27 μg g-1 home Belgium Bergh et al., 2011

3.9-150 μg g-1 day care Belgium Bergh et al., 2011

3.3-91 μg g-1 work place Belgium Bergh et al., 2011

<1.1 μg g-1 house Spain Garcia et al., 2007

<0.09-56.1 μg g-1 house United States Stapleton et al., 2009

0.069-18 μg g-1 hotel Japan Takigami et al., 2009

<127 μg kg-1 house Japan Kanazawa et al., 2010

Outdoor air: <0.04-0.072 ng m3-1 nearby main road Sweden Marklund et al., 2003

<0.04-0.14 ng m3-1 remote area from main road Sweden Marklund et al., 2003

n.d.-5 pg m3-1 sea Arctic ocean Moller et al., 2012

16-52 pg m3-1 sea Japan Moller et al., 2012

5-8 pg m3-1 sea Northern pacific

ocean

Moller et al., 2012

49-780 pg m3-13 sea East Indian

archipelago,

Philippine sea

Moller et al., 2012

n.d.-220 pg m3-13 sea Indian ocean Moller et al., 2012

80 pg m3-1 sea Southern ocean Moller et al., 2012

Surface water: 10-18 ng L-1 river Germany Andresen & Bester, 2006

~50 ng L-1 river Germany Andresen et al., 2004

2-24 ng L-1 rain Germany Regnery & Püttmann, 2009

5-40 ng L-1 snow Germany Regnery & Püttmann, 2009

<19 ng L-1 river Austria Martinez-Carballo et al., 2007

<3.0-19 ng L-1 river Austria Martinez-Carballo et al., 2007

<1,335 ng L-1 lake Italy Bacaloni et al., 2008

108-448 ng L-1 rain Italy Bacaloni et al., 2008

680-6,180 ng L-1 raw water of waste disposal

site

Japan Kawagoshi et al., 1999

Drinking water: 1.2-2.4 ng L-1 water after drinking water

treatment

Germany Andresen & Bester, 2006

<250 ng L-1 water after drinking water

treatment

United States Stackelberg et al., 2004
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Environment Concentration Location Country Reference

Sediment: <0.15-54 μg kg-1 lake and fjord at vicinity of

WWFP

Norway KLIF, 2010

1,500-4,100 μg kg-1 landfill site Norway SFT, 2008

<250-8,800 μg kg-1 car demolition site Norway SFT, 2008

<709 μg kg-1 waste disposal site Japan Kawagoshi et al., 1999

Sludge: 110-330 μg kg-1 Norway SFT, 2008

3.0-260 μg kg-1 Sweden Stackelberg et al., 2004

Influent: 630-820 ng L-1 WWTP Norway SFT, 2008

240-450 ng L-1 STP Sweden Marklund et al., 2005b

330-1,600 ng L-1 STP Japan Ishikawa et al., 1985

Effluent: 86-740 ng L-1 WWTP Norway SFT, 2008

130-340 ng L-1 STP Sweden Marklund et al., 2005b

20-120 ng L-1 STP Germany Andresen et al., 2004

19-1,400 ng L-1 WWTP Austria Martinez-Carballo et al., 2007

280-1,400 ng L-1 STP Japan Ishikawa et al., 1985

Biota: <6.0 ng g-1 fish liver Norway SFT, 2009b

<0.3-6.7 ng g-1 fish muscle Norway SFT, 2009b

<0.72-1.9 ng g-1 bird egg Norway KLIF, 2010

<0.11-0.16 ng g-1 bird blood and plasma Norway KLIF, 2010

<0.6-8.1 ng g-1 whole fish Norway SFT, 2009b

<1.5 ng g-1 seabird liver Norway SFT, 2009b

<0.3-1.2 ng g-1 whole fish liver Norway SFT, 2009b

<5.0 ng g-1,

<10-<30 ng g-1

cod liver and mussel Norway SFT, 2008

49-140 ng g-1 freshwater fishes close to

sources

Norway Sundkvist et al., 2010

16.-5.3 ng g-1 human milk Sweden Sundkvist et al., 2010

Table 2. Occurrence and behavior of TDCPP

TDCPP has also been detected in biological samples, including fishes, mussels and birds.
In  Norway,  fishes  and  mussels  were  observed  to  contain  up  to  8.1  and  30  ng  g-1  of
TDCPP,  respectively.  In  bird  blood/plasma  and  eggs  respectively,  TDCPP  levels  range
from <0.11-0.16 and from <0.72-1.9 ng g-1.  In Sweden, freshwater fishes close to emission
sources  contained  49-140  ng  g-1  TDCPP.  Worryingly,  TDCPP has  also  been  detected  in
the breast milk of Swedish women.

1.4.2. TCEP

In Sweden, the highest detected air concentration of TCEP was 730 ng m3-1 inside an office
furnished with linoleum floor and a new photocopier (Table 3). In outdoor air, it can reach
6.2 ng m3-1 beside a main road, but remote areas harbor less than 0.2 ng m3-1, implicating
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road traffic as an important source of TCEP emission. TCEP has also been detected globally
in air borne particles over the Pacific, Indian, Arctic and Southern Ocean. In Belgium, indoor
dust can contain up to 260 μg g-1 TCEP. TCEP concentrations in dusts of public spaces tend
to exceed those in domestic dusts.

TCEP ranges from <3.0-1,236 ng L-1 in German rivers, lakes and reservoirs. In this country
and in Italy, it has also been detected in rain and/or snow, indicating that, like TDCPP,
TCEP volatilizes from its host materials. Groundwater TCEP levels up to 754 ng L-1 have
been reported in Germany, suggesting that TCEP primarily mobilizes into water rather than
attaching to soil. TCEP also occurs in drinking water or finished water from DWTs; record‐
ed concentrations are as high as 99, 25 and 1.7 ng L-1 in the United States, Korea and Germa‐
ny, respectively. Much higher concentrations have been observed in raw water of waste
disposal sites in Japan. Relatively higher concentrations of TCEP have been detected in land‐
fill site sediments in Japan and Norway (up to 7,400 and 380 μg kg-1, respectively). Especial‐
ly high concentrations were found in the sediment nearby a car demolition site.

TCEP has been also detected in STP or WWTP effluents in many countries. Comparable lev‐
els of TCEP are observed in the influents. These observations demonstrate that, like TDCPP,
TCEP persists in the treatment plants.

Also similarly to TDCPP, TCEP has been detected in biological samples, including fishes,
crabs, mussels and birds. In Norway, fishes and mussels respectively contain up to 26 and
23 ng g-1 TCEP. In birds and their eggs, TCEP levels can reach up to 6.1 ng g-1. In fishes resid‐
ing near emission sources in Sweden, they reach up to 69 and 160 ng g-1 respectively. Fur‐
thermore, like TDCPP, TCEP has been detected in the breast milk of Swedish women.

Environment Concentration Location Country Reference

Indoor air: <0.2-23 ng m3-1 office and store Norway SFT, 2008

3, 9 ng m3-1 lecture room and kindergarten Sweden Tollback et al., 2006

0.4-730 ng m3-1 home, cinema, university,

hospital, hotel, prison, library,

office shops

Sweden Marklund et al., 2005a

<0.3-10 ng m3-1 Lecture and computer hall,

electronic dismantling facility

recycling plant

Sweden Staaf & Ostman, 2005

<22 ng m3-1 car, theater, furniture store,

office and electronics store

Sweden Hartmann et al., 2004

3-15 ng m3-1 lecture room and office room Sweden Bjorklund et al., 2004

<297 ng m3-1 house Japan Kanazawa et al., 2010

<136 ng m3-1,

<42.1 ng m3-1

house and office Japan Saito et al., 2007

1.2 ng m3-1 newly constructed house Japan Saito et al., 2007

<28 ng m3-1 home Belgium Bergh et al., 2011

7.8-230 ng m3-1 day care center Belgium Bergh et al., 2011
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Environment Concentration Location Country Reference

<140 ng m3-1 work place Belgium Bergh et al., 2011

Indoor dust: 0.19-94 μg g-1 home, cinema, university,

hospital, hotel, prison, library,

office shops

Sweden Marklund et al., 2003

<0.08-2.65 μg g-1 house Belgium van den Eede et al., 2011

<33 μg g-1 house Belgium Bergh et al., 2011

<0.08-5.46 μg g-1 store Belgium van den Eede et al., 2011

2.5-150 μg g-1 day care center Belgium Bergh et al., 2011

1.3-260 μg g-1 work place Belgium Bergh et al., 2011

0.25-1.56 μg g-1 house Spain Garcia et al., 2007

<308 μg g-1 house Japan Kanazawa et al., 2010

0.082-2.3 μg g-1 hotel Japan Takigami et al., 2009

Outdoor air: 0.51-6.2 ng m3-1 nearby main road Sweden Marklund et al., 2003

<0.2 ng m3-1 remote area from main road Sweden Marklund et al., 2003

126-585 pg m3-1 ocean Arctic ocean Moller et al., 2012

273-1,961 pg m3-1 sea Japan Moller et al., 2012

159-282 pg m3-1 sea Northern pacific

ocean

Moller et al., 2012

19-156 pg m3-1 sea East Indian

archipelago,

Philippine sea

Moller et al., 2012

46-570 pg m3-1 sea Indian ocean Moller et al., 2012

74 pg m3-1 sea Southern ocean Moller et al., 2012

Surface water: <3-184 ng L-1 lake and reservoir Germany Regnery & Püttmann , 2010

12-130 ng L-1 river Germany Andresen & Bester, 2006

13-130 ng L-1 river Germany Andresen et al., 2004

<1,236 ng L-1 river Germany Fries & Püttmann , 2003

11-196 ng L-1 rain Germany Regnery & Püttmann, 2009

121 ng L-1 rain Germany Fries & Püttmann , 2003

19-60 ng L-1 snow Germany Regnery & Püttmann, 2009

13-130 ng L-1 river Austria Martinez-Carballo et al., 2007

<33 ng L-1 lakes Italy Bacaloni et al., 2008

7 ng L-1 river Italy Bacaloni et al., 2007

19-161 ng L-1 rain Italy Bacaloni et al., 2008

4,230-87,400 ng L-1 raw water of waste disposal

site

Japan Kawagoshi et al., 1999

14-347 ng L-1 river and sea water Japan Ishikawa et al., 1985

14-81 ng L-1 lake and river Korea Kim et al., 2007

Ground water: 3-9 ng L-1 Germany European Commission DG

ENV, 2011

<312 ng L-1 Germany Fries & Püttmann , 2003
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Environment Concentration Location Country Reference

<754 ng L-1 Germany Fries & Püttmann , 2001

Drinking water: 0.74-1.7 ng L-1 water after drinking water

treatment

Germany Andresen & Bester, 2006

4-99 ng L-1 water after drinking water

treatment

United States Stackelberg et al., 2007

<99 ng L-1 water after drinking water

treatment

United States Stackelberg et al., 2004

14, 25 ng L-1 water after drinking water

treatment

Korea Kim et al., 2007

Sediment: <0.16-8.5 μg kg-1 lake and fjord at vicinity of

WWFP

Norway KLIF, 2010

27-380 μg kg-1 landfill site Norway SFT, 2008

2,300-5,500 μg kg-1 car demolition site Norway SFT, 2008

<160 μg kg-1 river Austria Martinez-Carballo et al., 2007

<7,400 μg kg-1 waste disposal site Japan Kawagoshi et al., 1999

Sludge: <9-<19 μg kg-1 Norway SFT, 2008

6.6-110 μg kg-1 Sweden Marklund et al., 2005b

Influent: 2,000-2,500 ng L-1 STP Norway SFT, 2008

90-1,000 ng L-1 STP Sweden Marklund et al., 2005b

290, 180 ng L-1 STP Germany Meyer & Bester, 2004

983-1,123 ng L-1 municipal STWs Germany Fries & Püttmann , 2003

<0.025-0.3 ng L-1 STP Spain Rodriguez et al., 2006

540-1,200 ng L-1 STP Japan Ishikawa et al., 1985

Effluent: 1600-2,200 ng L-1 STP Norway SFT, 2008

350-890 ng L-1 STP Sweden Marklund et al., 2005b

350, 370 ng L-1 STP Germany Meyer & Bester, 2004

214-557 ng L-1 municipal STWs Germany Fries & Püttmann , 2003

<0.025-0.7 ng L-1 STP Spain Rodriguez et al., 2006

500-1,200 ng L-1 STP Japan Ishikawa et al., 1985

Biota: 0.5-5.0 ng g-1

13-26 ng g-1

fish muscle and liver Norway SFT, 2009b

1.8-3.2 ng kg-1 whole fish Norway SFT, 2009b

<5 ng g-1,

<10-23 ng g-1

cod liver and mussel Norway SFT, 2008

<0.6-4.7 ng g-1 sea bird liver Norway SFT, 2009b

<0.17-19 ng g-1 beach crab Norway KLIF, 2010

<0.06-0.11 ng g-1 blue mussel Norway KLIF, 2010

<1.7-8.6 ng g-1 burbot liver Norway KLIF, 2010

<0.08-0.21 ng g-1 trout Norway KLIF, 2010

<0.33-6.1 ng g-1 bird egg Norway KLIF, 2010

<0.17-6.0 ng g-1 bird blood and plasma Norway KLIF, 2010
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Environment Concentration Location Country Reference

1.5-69 ng g-1 marine fishes Sweden Sundkvist et al., 2010

<160 ng g-1 freshwater fishes close to

sources

Sweden Sundkvist et al., 2010

201-8.2 ng g-1 human milk Sweden Sundkvist et al., 2010

Table 3. Occurrence and behavior of TCEP

1.5. Toxicological information of TDCPP and TCEP

Since  the  toxic  effects  of  TCEP and TDCPP have  been regarded as  marginal  compared
to those of PBDEs, they have been extensively used. However, their non-negligible toxic‐
ities  have  been  revealed  in  a  number  of  studies  (Tables  4  and  5).  Together  with  their
persistence  in  the  environment,  the  environmental  contamination  of  both  compounds
has become of serious concern.

1.5.1. TDCPP

Rats given oral doses of TDCPP absorb more than 90% of the compound within 24 h, with
the highest concentrations being observed in kidney, liver and lung (EURAR, 2008). The
acute toxicity of oral TDCPP has been reported as low, with LD50 values ranging from 2,250
mg kg-1 for female mice to 6,800 mg kg-1 for male rabbits (Table 4). In a 2-year chronic toxici‐
ty study in rats, the lowest observable adverse effect level (LOAEL) was 5 mg kg-1 day-1. In
that study, statistically significant relationships between TDCPP dose and tumor incidences
were observed in both male and female rats. Consequently, TDCPP is today classified as
Carc. Cat. 3; R40 and Cat. 2; H351, denoting “limited evidence of a carcinogenic effect” and
“suspected of causing cancer”, respectively.

A number of TDCPP genotoxicity studies have been conducted in whole mammals that
have resulted in negative conclusions regarding genotoxicity (Albemarle Corp. & ICL North
America Inc., 2011). However, in vitro studies using bacteria and mammalian cells have sug‐
gested that TDCPP exerts genotoxic effects, and an in vivo study showed its covalent bind‐
ing to DNA (US EPA, 2005; Morales & Matthews, 1980).

Similarly, neurotoxicity studies of TDCPP involving hens and rats reveal no clear evidence
that TDCPP is neurotoxic. However, a study based on undifferentiated and differentiating
PC12 cells showed its potential neurotoxicity (Dishaw et al., 2011).

Whether, and to what extent, TDCPP is toxic to humans remains unknown. However,
TDCPP has been shown to alter sex hormone balance in human cell lines, via alteration of
steroidogenesis or estrogen metabolism (Liu et al., 2012). In addition, TDCPP concentrations
in house dusts have been linked to altered hormone levels and decreased semen quality in
men (Meeker & Stapleton, 2010).

TDCPP is regarded as toxic to aquatic organisms (EURAR, 2008). An acute toxicity study on
fish trout yielded an LC50 value of 1.1 mg L-1. Acute and chronic toxicity studies conducted
on the invertebrate Daphnia produced an EC50 value of 3.8 mg L-1. In a chronic study on the
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alga Pseudokirchneriella, ErC10 (10% growth-rate inhibition) was recorded as 2.3 mg L-1. Thus,
TDCPP is classified as N; R51/53, denoting “Toxic to aquatic organisms, may cause long-
term adverse effects in the aquatic environment”. In addition, an LC50 of 23 mg kg-1 has been
reported for a terrestrial organism, the earthworm Eisenia.

Toxicity Organism Reference

Acute toxicity LD50=6,800 mg kg-1 male rabbit US EPA, 2005

LD50=3,160 mg kg-1 male rat EURAR, 2008

LD50=2,670 mg kg-1 male mice

LD50=2,250 mg kg-1 female mice

LD50=2,236 mg kg-1 male rat

LD50=2,489 mg kg-1 female rat

Chronic toxicity LOAEL=5 mg kg-1 day-1 rat for hyperplasia and

convoluted tubule epithelium

EURAR, 2008

Cytotoxicity hepatocytes and neuronal cells Crump et al., 2012

Neurotoxicity in vitro PC12 cells Dishaw et al., 2011

Carcinogenicity rat California EPA, 2011

Genotoxicity in vivo Salmonella typhimurium California EPA, 2011

in vitro mouse, Chinese hamster and rat cells

Toxic to aquatic organisms fishes, invertebrates and algae EURAR, 2008

LC50=1.1 mg L-1 rainbow trout (96 h)

EC50=3.8 mg L-1 Daphnia magana (48 h)

LOEC=1.0 mg L-1 Daphnia for reproduction (21 days)

NOEC=0.5 mg L-1 Daphnia for reproduction (21 days)

ErC10=2.3 mg L-1 algae

LC50=23 mg kg-1 earthworm Eisenia

NOEC=2.9 mg kg-1 earthworm Eisenia for reproduction

NOEC=17 mg kg-1 plant Mustard

Alter hormone levels human and zebra fish cells Liu et al., 2012

Decreased sperm quality human Meeker & Stapleton, 2010

Table 4. Toxicological information of TDCPP

1.5.2. TCEP

Rats given oral doses of TCEP absorb over 90% of the compound within 24 h, with marked
accumulations in liver, kidney, fat and the gastrointestinal tract (EURAR, 2009). In animals,
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TCEP appears to be mainly toxic to brain, kidney and liver. Toxicity studies have implicated
TCEP as moderately toxic; in rats, oral administration yields an LD50 of 430-1,230 mg kg-1

and skin contact reveals a low acute dermal toxicity (LD50 >2,150 mg kg-1) (Table 5). A 2-year
chronic toxicity study of TCEP yielded LOAELs of 44 mg kg-1 day-1 in rats and 175 mg kg-1

day-1 in mice. The same study indicated that TCEP is potentially neurotoxic, with no ob‐
served adverse effect levels (NOAELs) in rats and mice being 88 mg kg-1 day-1 and 175 mg
kg-1 day-1, respectively.

Toxicity Organism Reference

Acute toxicity LD50=430-1,230 mg kg-1 rat EURAR, 2009

LD50>2,150 mg kg-1 rat for dermal EURAR, 2009

Chronic toxicity LOAEL=44 mg kg-1 day-1 rat for kidney lesions (2 years) EURAR, 2009

LOAEL=175 mg kg-1 mouse for kidney morphology (2

years)

EURAR, 2009

Neurotoxicity rat and mouse EURAR, 2009

NOAEL=88 mg kg-1 day-1 rats (16 weeks by gavage)

NOAEL=175 mg kg-1 day-1 mouse (16 weeks by

gavage)

Reproductive toxicity rat and mouse EURAR, 2009

NOAEL=175 mg kg-1 day-1 mouse for fertility

Carcinogenicity rat and mouse SCHER, 2012

Toxic to aquatic organisms killifish, trout and goldfish EURAR, 2009

Alter sex hormone balance human cells and Zebra fish Liu et al., 2012

Alter cell cycle regulatory protein

expression

rabbit renal proximal tubule cells Ren et al., 2008

Table 5. Toxicological information of TCEP

In the 2-year study, increased incidences of adenomas and carcinomas were linked to TCEP
exposure, revealing TCEP as a potential carcinogen (EURAR, 2009). TCEP is thus classified
as Carc. Cat. 3; R40. Because TCEP additionally exhibits reproductive toxicity in rats and
mice, it is also classified as Repr. Cat. 2; R60, denoting “may impair fertility”. TCEP at envi‐
ronmental concentrations has been reported to affect the expression of cell cycle regulatory
genes in primary cultured rabbit renal proximal tubule cells (Ren et al., 2008).
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TCEP is toxic to aquatic organisms, being classified as N; R51/53 (EURAR, 2009). Short term
exposure to TCEP is mildly-moderately adverse to the aquatic invertebrate organisms Daph‐
nia and Planaria, and TCEP presents low acute toxicity to killifish, trout and goldfishes.

The toxic effects of TCEP in humans are largely unknown. However, neurotoxic signs have
been reported in a 5-year old child who slept in a room with wood paneling containing 3%
TCEP (Ingerowski & Ingerowski, 1997). In addition, an epidemiological study of children in
school environments found a potential association between the TCEP content in air-bone
dusts and impaired cognitive ability (UBA, 2008). TCEP has been further reported to alter
the sex hormone balance in human cells, as well as in fish cells.

1.6. Removal technique for TDCPP and TCEP

The persistence of chlorinated FRs TCEP and TDCPP in current waste water and drinking
water treatment processes has accelerated the investigation of alternative water treatment
techniques that will dispel these compounds.

Echigo et al. showed that TDCPP in distilled water and an effluent from a solid waste land‐
fill site is effectively degraded by O3/vacuum UV or O3/H2O2 process, although degradation
products were not determined in this study (Echigo et al., 1996). Westerhoff et al. reported
that >20% of approximately 30 ng L-1 of TCEP in surface water samples can be removed with
powdered activated carbon, but that other adsorptive processes, metal salt coagulation and
lime softening, and oxidative processes (chlorination and ozonation) are ineffective (West‐
erhoff et al., 2005). Lee et al. showed that > 90% removal efficiency of 100 μg L-1 of TCEP in
river and sea waters is possible using tight nanofiltration membranes with a low molecular
weight cutoff of approximately 200 (Lee et al., 2008). Watts et al. demonstrated that the high‐
er removing efficacy (> 95%) of 5 mg L-1 of TCEP in a water is achieved by a UV/H2O2 ad‐
vanced oxidation process with the highest UV fluence at 6,000 mJ cm-2 (Watts & Linden,
2008). In this study, the generation of stoichiometric amount of chloride ion was observed.
In addition, Benotti et al. reported that UV/TiO2 supplemented with H2O2 can decrease the
concentration of TCEP in a river water, although the degradation was not so effective and
not completed (Benotti et al., 2009).

2. Microbial degradation and detoxification of TDCPP and TCEP

FRs have been widely distributed commercially and are necessary to prevent or reduce mor‐
tality from accidental fires. However, the leaching of additive FRs has led to global contami‐
nation of the environment. The chlorinated PFRs TCEP and TDCPP persist in the
environment and exhibit varying toxic effects, raising concerns about their effects on human
and ecological health. Although several physicochemical methods for removing TCEP and
TDCPP have been reported (as described above), biotechnological techniques offer an attrac‐
tive alternative, being potentially cost-effective, eco-friendly and enabling in situ remedia‐
tion of contaminants. However, prior to recent isolation of TCEP- and TDCPP-degrading
bacteria by our group, no biological degrading agent for such compounds was known.
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2.1. Isolation and characterization of TDCPP- and TCEP-degrading bacteria

2.1.1. Enrichment of TCEP and TDCPP-degrading bacteria

2.1.1.1. Enrichment cultivation of TCEP and TDCPP-degrading bacteria

To obtain microorganisms that can degrade TDCPP and TCEP, we used an enrichment cul‐
ture technique in which one of TDCPP or TCEP served as the sole phosphorus source (Taka‐
hashi et al., 2008). Forty six environmental samples (soils and sediments) in Japan were
cultivated at 30°C in minimal medium containing approximately 20 μM of each compound.
Significant degradation of TCEP and TDCPP was seen in ten and three of the samples, re‐
spectively. In the first cultivation round, each compound had disappeared within 2 to 5
days; successive sub-cultivations reduced the degradation time to within one day. The en‐
richment cultures displaying the highest degradation efficacy against TCEP and TDCPP
were designated 67E and 45D, respectively. Culture 67E completely degraded 20 μM of
TDCPP in 3 h and TCEP in 6 h (Fig. 2A and B), while culture 45D completely degraded the
same concentration of TDCPP in 3 h and TCEP in 24 h. During the degradations, 2-CE was
liberated from TCEP and 1,3-DCP from TDCPP, indicating that the degradation pathway in‐
volved hydrolysis of phosphoester bonds.
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Figure 2. Degradation of TCEP (A) and TDCPP (B) by enrichment cultures. The enrichment cultures, 67E (circles) and
45D (triangles), were cultivated on 20 µM of TCEP or TDCPP as the sole phosphorus source.

2.1.1.2. 2-CE and 1,3-DCP degradation ability of enrichment cultures

The metabolites 2-CE and 1,3-DCP are also persistent and toxic: 1,3-DCP is a known gen‐
otoxin and carcinogen (NTP & NIEHS, 2005), while 2-CE exhibits genotoxicity, fetotoxici‐
ty and cardiotoxicity (National Toxicology, 1985).  We analyzed whether the cultures can
degrade the metabolites by measuring chloride ion formation. Cultures 67E and 45D liber‐
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ated chloride ions from 2-CE and 1,3-DCP, respectively. After 120 h reaction, the propor‐
tion of chloride ion was approximately 100% and 68.5% of the total chlorine contained in
the  supplied  2-CE  and  1,3-DCP,  respectively.  This  shows  that  both  cultures  can  deha‐
logenate their respective chloroalcohols and can therefore potentially detoxify chlorinated
PFRs in the environment.
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Figure 3. Effect of exogenous phosphate on the degradation of TCEP (A) and TDCPP (B) and the chloride ion forma‐
tion from TCEP (C) and TDCPP (D). The enrichment cultures, 67E (A and C) and 45D (B and D), were cultivated on 20
µM of TCEP or TDCPP as the sole phosphorus source, respectively, with various concentrations of inorganic phosphate
(NaH2PO4): 0 mM (closed circles), 0.02 mM (closed triangle), 0.2 mM (closed squares) and 2 mM (closed diamonds).
Control culture without cell inoculation is indicated by open circles. Each data point represents the mean of at least
two independent determinations.

2.1.1.3. Effect of exogenous phosphate on the degradation ability of enrichment cultures

Phosphate-sufficient conditions are well known to repress the expression of genes involved
in phosphorus utilization. We thus examined the effect of exogenous inorganic phosphate
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on TDCPP and TCEP degradations and chloride ion formation (Fig. 3). At concentrations of
0.02, 0.2 and 2 mM, exogenous inorganic phosphate did not significantly inhibit TCEP and
TDCPP degradation by the respective cultures (Fig. 3A and B), but chloride ion formation
was enhanced at concentrations up to 0.2 mM (Fig. 3C and D). From these results, we con‐
cluded that efficient PFR detoxification could be achieved by optimizing the inorganic phos‐
phate concentration.

2.1.1.4. Bacterial communities of enrichment cultures

To profile the bacterial communities in the cultures, we performed denaturing gradient gel
electrophoresis (DGGE) analysis (Fig. 4). In the absence of inorganic phosphate, two bands
(C1 and C2) were observed in the fingerprint of TCEP-supplemented 67E, which persisted
throughout cultivation (Fig. 4A). With inorganic phosphate added, the intensity of C2 mark‐
edly decreased at later incubation stages (Fig.4A). In 45D supplemented with TDCPP, a sin‐
gle band (D3) was observed at the beginning of cultivation, but at later times two additional
bands (D1 and D2) appeared, regardless of the presence or absence of inorganic phosphate
(Fig. 4B). However, with inorganic phosphate added, the intensity of D2 and D3 decreased
while that of D1 increased at the late stage of cultivation (Fig. 4B). The nucleotide sequence
of C1 and D1 was affiliated with the genus Acidovorax, that of D2 with the genus Aquabacteri‐
um, and C2 and D3 were assigned to the genus Sphingomonas (Table 6). Together with the
effect of exogenous inorganic phosphate on chlorinated PFRs degradation with liberation of
chloride ions, these results imply that the Sphingomonas-related bacteria hydrolyze the PFRs,
and that the Acidovorax-related bacteria dehalogenate the chloroalcohols. Among these bac‐
terial genera, a strain of Sphingomonas sp. has been reported to hydrolyze some organophos‐
phate pesticides, such as chlorpyrifos (Li et al., 2007). However, bacteria that are known to
dehalogenate the chloroalcohols were not identified in the enrichment cultures, suggesting
that a new member, possibly Acidovorax sp., is responsible for dehalogenating the chloroal‐
cohols in the cultures.

Culture Band
Phylogenetic affiliation

Species

67E C1 Acidovorax sp.

C2 Sphingomonas sp.

45D D1 Acidovorax sp.

D2 Aquabacterium sp.

D3 Sphingomonas sp.

Table 6. Phylogenetic affiliation of microorganisms represented by bands in DGGE profiles of the enrichment cultures
67E and 45D.
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Figure 4. DGGE profile of the enrichment cultures 67E (A) and 45D (B) during cultivation in the presence of absence of
inorganic phosphate. The arrowheads indicated the DNA fragments sequenced.

2.1.2. Isolation and characterization of TDCPP- and TCEP-degrading bacteria

2.1.2.1. Isolation of TDCPP- and TCEP-degrading bacteria

We attempted to isolate the bacteria responsible for degrading TDCPP and TCEP in the cul‐
tures 67E and 45D. (Takahashi et al., 2010). In the case of 45D, isolation was achieved by lim‐
iting dilution method. The culture was repeatedly serially diluted in a minimal medium
containing 20 μM of TDCPP and cultivated at 30°C. Finally, the culture was spread onto a
minimal agar plate containing 232 μM of TDCPP as the sole phosphorus source. A single
colony grown on the plate was named strain TDK1 (Fig. 5A). In the case of 67E, the culture
was spread onto a minimal agar plate containing 232 μM of TCEP as the sole phosphorus
source and incubated at 30°C. Single colonies were then cultivated in a minimal medium
containing 20 μM of TCEP as the sole phosphorus source. This isolation procedure was re‐
peated three times, and a single colony was named strain TCM1 (Fig. 5B).
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2.1.2.2. Identification of TDCPP- and TCEP-degrading bacteria

Both strains were short-rod-shaped bacteria (0.8-1.0 × 1.0-2.5 μm) and produced yellow, cir‐
cular, convex colonies with smooth, glistening surfaces on a nutrient agar plate. As carbon
sources, both strains assimilated glucose, maltose and L-arabinose; in addition, strain TCM1
assimilated potassium gluconate, while strain TDK1 assimilated D-mannose, N-acetyl-D-
glucosamine, and D, L-malate. Both strains tested negative for indole, urease, arginine dihy‐
drolase, nitrate reduction, gelatine hydrolysis, and glucose fermentation, and were positive
for esculin hydrolysis. TCM1 and TDK1 tested negative and positive for cytochrome oxi‐
dase, respectively. The morphological and physiological characteristics of the strains were
similar to those of Sphingomonas spp. Furthermore, the 16S rRNA gene sequence of the
strains is closely related to those of sphingomonads, comprising the genera Sphingomonas,
Sphingobium, Novosphingobium and Sphingopyxis (Takeuchi et al., 2001). The phylogenetic tree
constructed from the sequences of these genera showed that strains TCM1 and TDK1 belong
to Sphingobium and Sphingomonas, respectively

 

B A 

Figure 5. SEM micrographs of TCEP- and TDCPP-degrading bacteria Sphingobium sp. strain TCM1 (A) and Sphingomo‐
nas sp. stain TDK1 (B).

2.1.2.3. Degradation ability of TCEP and TDCPP-degrading bacteria

Both strains completely degraded 20 μM of TDCPP within 6 h (Fig. 6A and B). Strain TDK1,
however, was 48 times less effective in degrading TCEP than TCM1 (TCEP degradation time
was 144 h for TDK1, versus 3 h for TCM1) (Fig. 6A and B). During the degradations, 1,3-
DCP and 2-CE were detected in the cultures of both strains and were not further degraded
(Fig. 6C and D). These results showed that the strains degrade the compounds by hydrolyz‐
ing their phosphotriester bonds. To date, TCM1 and TDK1 are the only isolated microorgan‐
isms reported to degrade the persistent PFRs.

We then analyzed whether the strains can degrade other PFRs by utilizing them as sole
phosphorus source. Both strains grew on tris(2,3-dibromopropyl) phosphate, tricresyl and
triphenyl phosphates. Stain TDK1 did not grow on all trialkyl phosphates tested, whereas
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strain TCM1 grew moderately on tributyl phosphate and slightly on tris(2-butoxyethyl)
phosphate, triethyl phosphate and trimethyl phosphate. These results demonstrate that the
strains can degrade not only TDCPP and TCEP but also other PFRs, and that the strains
have different substrate specificity for trialkyl phosphates.
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Figure 6. Degradation of TDCPP and TCEP by strains TCM1 (A) and TDK1 (B) and generation of 2-CE and 1,3-DCP (C
and D). The cultivations were performed aerobically at 30°C in a minimal medium containing 20 μM of TCEP or TDCPP
as the sole phosphorus source. (A and B) Open circles and triangles represent the concentrations of TCEP and TDCPP,
respectively, and their filled forms represent concentrations for autoclaved control cells. (C and D) Open circles and
triangles represent the concentrations of 2-CE and 1,3-DCP, respectively. Each data point represents the mean of at
least two independent determinations.
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2.2. Microbial detoxification of TDCPP and TCEP by two bacterial strains

We have successfully isolated TCEP- and TDCPP-degrading bacteria. However, neither
strain can degrade the resulting toxic and persistent metabolites 2-CE and 1,3-DCP. Elimina‐
tion of the metabolites is required before the strains can be used to degrade TDCPP and
TCEP in practice. Fortunately, bacteria with chloroalcohol-degrading ability have been well-
documented. We thus attempted to completely detoxify the PFRs by combining strain
TCM1 with bacteria capable of degrading the chloroalcohols (Takahashi et al., 2012a; Taka‐
hashi, et al., 2012b).

2.2.1. Microbial detoxification of TDCPP using Sphingobium sp. strain TCM1 and Arthrobacter sp.
strain PY1

Several 1,3-DCP-degrading bacteria have been reported, including Arthrobacter sp. strains
PY1 (Yonetani et al., 2004) and AD2 (van den Wijngaard et al., 1991), A. erithii H10a (Assis et
al., 1998), Agrobacterium radiobacter strain AD1 (van den Wijngaard et al., 1989), and Coryne‐
bacterium sp. strain N-1074 (Nakamura et al., 1991). Of these, Arthrobacter sp. strain PY1 ex‐
hibits high 1,3-DCP degradation ability. Therefore, we attempted to detoxify TDCPP by co-
habitation of strain TCM1 and Arthrobacter sp. PY1 in a resting cell reaction (Fig. 7)
(Takahashi et al., 2012a).
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Figure 7. Complete detoxification of TDCPP by Sphingobium sp. strain TCM1 and 1,3-DCP-degrading bacterium Ar‐
throbacter sp. strain PY1.

2.2.1.1. Freezing and lyophilization of strains TCM1 and PY1 cells

For resting cell preparation, we first examined the effect of freezing and lyophilization on
the activity of strains TCM1 and PY1. The TDCPP-hydrolyzing activity of strain TCM1 in‐
tact cells was 1.07 μmol h-1 OD660

-1, whereas respective activities of frozen and lyophilized
cells were 0.90 and 0.84 μmol h-1 OD660

-1. On the other hand, the 1,3-DCP-dehalogenating ac‐
tivity of strain PY1 intact cells was 0.22 μmol h-1 OD660

-1, with respective frozen and lyophi‐
lized cell activities of 0.23 and 0.26 μmol h-1 OD660

-1. These results reveal that freezing and
lyophilization treatments cause no significant decline in degradation activities of the strains.
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2.2.1.2. Optimum TDCPP and 1,3-DCP degradation conditions of strains TCM1 and PY1

We then determined the optimum temperature and pH for lyophilized cell activity (Fig. 8).
At pH 9.0 for strain TCM1 and pH 8.5 for strain PY1, the highest activity of TCM1 and PY1
cells occurred at 30°C (2.53 μmol h-1 OD660

-1) and 35°C (1.31 μmol h-1 OD660
-1), respectively

(Fig. 8A). At 30°C, the highest activity of TCM1 and PY1 cells occurred at pH 8.5 (2.48 μmol
h-1 OD660

-1) and pH 9.5 with 50 mM Tris-H2SO4 (0.95 μmol h-1 OD660
-1), respectively (Fig. 8B).

We thus established the optimum temperature as 30°C and 35°C and the optimum pH as 8.5
and 9.5 for strains TCM1 and PY1, respectively.
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Figure 8. Effect of temperature and pH on the degradation activity of strains TCM1 and PY1. (A) effect of tempera‐
ture: TDCPP hydrolyzation activity of strain TCM1 cells (closed circle) and 1,3-DCP dehalogenation activity of strain PY1
cells (open circle) were, respectively, assayed in 50 mM Tris-H2SO4 buffer (pH 9.0) and 50 mM Tris-H2SO4 buffer (pH
8.5). (B) effect of pH: TDCPP hydrolyzation activity of strain TCM1 cells (closed symbols) and 1,3-DCP dehalogenation
activity of strain PY1 cells (open symbols) was assayed at 30°C in 50 mM MOPS-NaOH buffer (circle, pH 6.0-7.5), Tris-
H2SO4 buffer (triangle, pH 7.5-9.5), and glycine-NaOH buffer (square, pH 9.0-12.0). Each datum represents means of
two independent determinations.

2.2.1.3. Complete detoxification of TDCPP by mixed bacteria cells

Based on the optimum conditions, we set the reaction temperature to 30°C and pH to 9.0 (50
mM Tris-H2SO4) for TDCPP detoxification by mixed bacteria (Fig. 9). Under these condi‐
tions, the respective activities of strains TCM1 and PY1 were 2.21 and 0.92 μmol h-1 OD660

-1.
In the detoxification reaction using a mixture of TCM1 and PY1 cells (OD660 0.05 and 0.2, re‐
spectively), approximately 50 μM of TDCPP disappeared within 1 h, and 1,3-DCP and chlor‐
ide ions were formed to levels of approximately 100 and 120 μM, respectively, after 2 h (Fig.
9A). This result suggests incomplete detoxification of TDCPP due to low 1,3-DCP dehaloge‐
nation activity. Increasing the strain PY1 population to an OD660 of 4.0 decreased the TDCPP
hydrolyzation rate of TCM1 cells, but completely eliminated the resulting 1,3-DCP after 10 h
(Fig. 9B). At the same time, chloride ion concentration had reached its theoretical value ex‐
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pected from the initial TDCPP concentration, demonstrating that complete detoxification of
TDCPP is achievable using strains TCM1 and PY1.
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Figure 9. Complete detoxification of TDCPP by the mixed resting cells of strains TCM1 and PY1. The reactions were
performed at 30°C with 50 μM TDCPP in 50 mM Tris - H2SO4 buffer (pH 9.0), and TDCPP (circles), 1,3-DCP (triangles)
and chloride ion (squares) were determined. Cell concentrations of strains TCM1 and PY1 for each reaction were, re‐
spectively, OD660 of 0.05 and 0.2 (A) and 0.04 and 4.0 (B). Each datum represents means of two independent determi‐
nations.

2.2.2. Microbial detoxification of TCEP using Sphingobium sp. strain TCM1 and Xanthobacter
autotrophicus strain GJ10

Several  2-CE-degrading bacteria have been reported,  including Xanthobacter  autotrophicus
strain  GJ10  (Janssen et  al.,  1985),  Pseudomonas  putida  strain  US2 (Strotmann et  al.,  1990)
and P.  atutzeri  strain JJ  (Dijk  et  al.,  2003).  Among these,  the degradation of  2-CE by X.
autotrophicus  strain GJ10 has been well characterized. Therefore, we attempted to detoxi‐
fy TCEP by co-habitation of strain TCM1 and X. autotrophicus strain GJ10 (Fig. 10) (Taka‐
hashi et al., 2012b).
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Figure 10. Complete detoxification of TCEP by Sphingobium sp. strain TCM1 and 2-CE-degrading bacterium Xantho‐
bacter autotrophicus strain GJ10.
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2.2.2.1. Optimum TCEP degradation condition of strain TCM1

We first determined the optimum temperature and pH for TCEP degradation by strain
TCM1 in a resting reaction using lyophilized cells. At pH 7.4, the highest activity was ob‐
tained at 30°C (14.1 nmol min-1 OD660

-1). Maintaining this temperature and varying the pH,
the highest activity was recorded at pH 8.5 (14.6 nmol min-1 OD660

-1). These optimum condi‐
tions were identical to those for TDCPP, suggesting that the same enzyme(s) might be in‐
volved in the degradation of both compounds.

Under the optimum conditions, TCM1 cells completely eliminated 10, 20 and 50 μM of
TCEP within 3 h, but the generated 2-CE was approximately 50% of its theoretical value
based on the initial TCEP concentrations (Fig. 11). Phosphotriesterase that can hydrolyze or‐
ganophosphorus pesticides structurally similar to TCEP, such as chlorpyrifos, require two
zinc ions for catalysis, and enzyme activity can be maximized by replacing Zn2+ with Co2+

(Omburo et al., 1992). A bacterial phosphodiesterase that can hydrolyze alkyl phosphodiest‐
ers similarly requires divalent metals (Gerlt & Wan, 1979). We therefore examined the effect
of Co2+ as well as cell amount on TCEP hydrolysis (Fig. 11). In the reaction using approxi‐
mately 10 μM of TCEP without Co2+, 2-CE reached 21.2 μM (OD660 of 0.8) after 3 h. Addition
of 50 μM Co2+ resulted in an increase of 2-CE to 32.3 μM, equivalent to the theoretical value
of 30 μM (Fig. 11B). These results showed that complete hydrolysis can be achieved at an
OD660 of 0.8 with 50 μM of Co2+.
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Figure 11. Effect of Co2+ and cell amount on TCEP hydrolysis by strain TCM1-resting cells. The reactions were per‐
formed at 30°C using the resting cells at OD660 of 0.4 (circles) or 0.8 (triangles) with (open symbols) or without (closed
symbols) 50 μM Co2+ in 50 mM Tris-H2SO4 buffer (pH 8.5) containing 10 μM TCEP, and TCEP (A) and 2-CE (B) were
determined. Each datum represents the mean of two independent determinations. The inconsistency of the initial
concentrations of TCEP at zero time with the set-up ones was mainly attributed to reaction progress in several minutes
to stop the reaction.
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2.2.2.2. Optimum 2-CE degradation condition of strain GJ10

We prepared resting cells of intact, frozen and lyophilized cells of X. autotrophicus  strain
GJ10 and examined their 2-CE degradation activity. Activity was detected only in frozen
cells at 4.93 pmol min-1  OD450

-1,  four orders lower than the TCEP degradation activity of
strain  TCM1.  This  low  2-CE  degradation  activity  might  be  attributable  to  the  lack  of
coenzyme regeneration of enzymes involved in the degradation process.  We next exam‐
ined 2-CE degradation in a growing cell  reaction. The growing cells completely degrad‐
ed approximately 180 μM of 2-CE within 24 h. The degradation ability was estimated to
be  a  minimum  of  7.5  μM  h-1,  comparable  to  the  TCEP  degradation  ability  of  strain
TCM1-resting  cells  (approximately  10  μM  h-1).  This  result  shows  that  growing  cells  of
strain GJ10 can degrade 2-CE effectively.

2.2.2.3. Complete detoxification of TCEP by two bacterial strains

Based on the results described above, we examined whether combining TCEP hydrolysis
by  TCM1  resting  cells  and  2-CE  degradation  by  GJ10  growing  cells  would  completely
detoxify TCEP (Fig. 12). TCM1 resting cells abolished 9.6 μM of TCEP within 4 h, releas‐
ing  2-CE at  29.0  μM,  equivalent  to  that  estimated  from the  initial  TCEP concentration,
and  consistent  with  complete  TCEP  hydrolysis  (Fig.  12A  and  B).  The  generated  2-CE
was  abolished  by  GJ10  growing  cells  within  48  h,  and  chloride  ion  concentration
reached 30.2 μM after 144 h, equivalent to that estimated from the generated 2-CE (Fig.
12C  and  D).  Taken  together,  these  results  demonstrate  that  complete  detoxification  of
TDCPP can be achieved using strains TCM1 and GJ10.

3. Concluding remarks

We have successfully isolated two novel bacterial strains capable of degrading the persistent
and potential toxic PFRs, TCEP and TDCPP, which have become worldwide environmental
contaminants. The two strains TCM1 and TDK1 belong to Sphingobium sp. and Sphingomonas
sp. respectively. The strains are the first microorganisms reported to degrade the persistent
PFRs. They degrade the compounds by hydrolyzing their phosphotriester bonds to produce
metabolites 1,3-DCP from TDCPP and 2-CE from TCEP, which are themselves toxic and
non-self-biodegradable. In a successful attempt to completely detoxify the FPRs, we com‐
bined TCM1 with the 1.3-DCP-degrading bacterium Arthrobacter sp. strain PY1 (for TDCPP
degradation), and with the 2-CE-degrading bacterium X. autotrophicus strain GJ10 (for TCEP
degradation). This is the first description of microbial FPR detoxification. The bacteria and
the microbial detoxification techniques may prove useful for the bioremediation of sites con‐
taminated with intractable compounds. Further studies on the PFRs-degrading bacteria as
well as the chloroalcohols-degrading bacteria, and on the detoxification techniques, could
help to establish more efficient detoxifications, and could also provide novel insights into
microbial degradation of organophosphorus compounds. We are now working towards elu‐
cidating the enzymes and the genes involved in the degradation processes.
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