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1. Introduction 

Cardiovascular diseases (CVD) are a major health problem in the industrialized countries, 

representing the main cause of death in the world. It is estimated that 17 million people 

globally die of CVD every year and these diseases are responsible for more than half of all 

deaths in Europe [1]. Therefore, primary prevention is becoming an increasing part of public 

health strategies aimed at reducing societal burden due to CVD-related morbidity and 

mortality worldwide. There are several behavioural factors such as tobacco use, ethanol 

consumption, unhealthy diet and physical inactivity that can lead to hypertension, 

hyperlipidemia, diabetes, overweight and obesity, and thereby contribute to CVD 

development. The World Health Organisation emphasises the importance of improved 

nutrition as means of controlling the expected rise in global CVD incidence over the next 

decades. 

Angiotensin I-converting enzyme (ACE: EC 3.4.15.1) is a peptidyldipeptide hydrolase that 

plays an important physiological role in both the regulation of blood pressure and 

cardiovascular function [2] through two different reactions. First, ACE catalyzes the 

hydrolysis of angiotensin I, an inactive decapeptide, to angiotensin II, a powerful 

vasoconstrictor and salt-retaining octapeptide. Thus, ACE-inhibition has a hypotensive 

effect. Secondly, ACE catalyzes the inactivation of the vasodilator bradykinin that regulates 

different biological processes including vascular endothelial nitric oxide (NO) release [3]. 

Oxidative stress has a well documented role in CVD development. Oxidative stress is 

defined as the situation characterized by increased generation of free radicals (reactive 

oxygen species, ROS), resulting in increased oxidative damage of biological structures. 

Within the cell, physiologic levels of some ROS are involved as key intermediates in 

signalling pathways to maintain basal cellular functions. In contrast, when ROS are 
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generated in the absence of a physiological stimulus, small-molecule antioxidants are 

depleted, or antioxidant enzymatic systems are overwhelmed. This leads to a net increase in 

biologically active ROS and oxidant stress ensues. In blood vessels, oxidant stress has 

deleterious consequences for basal vascular function. Then, the cellular mechanisms that 

result in vascular redox imbalance leading to an increase in oxidant stress are implicated in 

the pathogenesis of vascular disease [4]. 

The search for dietary compounds that prevent the development of CVD is deemed crucial 

to tackle this major health problem worldwide, and recent observational studies and clinical 

trials have suggested that increased protein consumption, particularly from plant sources, 

might reduce blood pressure and prevent CVD. Recently, interest has been emerging to 

identify and characterize bioactive peptides from plant and animal sources. Bioactive 

peptides are considered specific protein fragments that are inactive within the sequence of 

the parent protein. After they are released they may exert various physiological functions. 

The type of bioactive peptides generated from a particular protein is dependent on two 

factors: (a) the primary sequence of the source protein and (b) the specificity of the 

enzyme(s) used to generate such peptides. The hydrolysis of plant proteins has led to the 

production of a variety of biologically active peptides, such as opioid, antihypertensive, 

antioxidative, immunomodulatory or antimicrobial peptides [5, 6]. Bioactivity of peptides 

depend on the structure, however, the structure activity relationship is not yet fully 

understood for all biological activities described. This present paper focuses on the peptides 

beneficial to CVD derived from plant proteins.  

2. Biological activities of plant proteins  

Potato tuber proteins are classified into three major groups: patatins, protease inhibitors, 

and other proteins. Patatin is the major storage protein and an allergen for some people. The 

second major potato tuber storage protein is a diverse group of low molecular weight 

protease inhibitors [7]. The majority of the patatin and proteinase inhibitor isoforms possess 

enzymatic and inhibitory activities, respectively, which might be of physiological relevance. 

Activities are associated with the defense mechanisms of potato against pathogens and they 

inhibit a variety of proteases and some other enzymes, for example invertase [8]. Low 

molecular weight antimicrobial potato peptides from potato tubers have recently been 

reported to exhibit antibiotic/antifungal activity also against human pathogenic fungal and 

microbial strains [9]. The broad phospholipase activity of patatin has been characterized and 

documented rather extensively [10, 11]. The results indicate that the patatin-related enzymes 

are, in addition to fat metabolism, involved in the stress responses and signal transduction 

in the potato tubers. Patatin has also been shown to possess antioxidant or antiradical 

activity. Liu and colleagues [12] found that purified patatin exert antioxidant or antiradical 

activity in various in vitro tests, such as radical, scavenging activity assay and protection 

against hydroxyl radical-induced calf thymus DNA damage. Potato protein hydrolysates 

showed antioxidant activity [13] and enhanced oxidative stability of soybean oil emulsions 

[14]. Two peptides derived from metallocarboxypeptidase inhibitor and lipoxygenase 1 
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were identified. Potatoes may have a role in controlling appetite and therefore weight gain, 

by contributing to satiety. Gastrointestinal hormones such as cholecystokinin (CCK) are key 

factors in the regulation of food intake and maintaining energy homeostasis. Hill and 

colleagues [15] reported reduced energy intake and increased CCK release, when protease 

inhibitors extracted from potatoes were tested in 11 lean subjects.  

The protein content of defatted rapeseed meal is high, approximately 32%, making it a 

potential food ingredient. Rapeseed protein has recently been demonstrated to be of high 

nutritional value in human subjects and substituting Cys-rich rapeseed protein, for milk 

protein prevented the early onset of insulin resistance, similar to those achieved by 

manipulating dietary fat and carbohydrates in a rat model [16, 17]. Flaxseed and its defatted 

meal contain high amounts of proteins, which are comparable in amino acid composition to 

food proteins like soy, with a preponderance of basic and branch-chain amino acids. The 

high Cys and Met content can boost the body’s antioxidant levels, potentially stabilising 

DNA during cell division and reducing risk of certain forms of colon cancer [18]. Yet, there 

are only few studies examining rapeseed and flaxseed meals as source of bioactive peptides 

to enhance the value of these rapeseed and flaxseed industry by-products.  

Legumes could represent valuable tools to prevent CVD, in addition to constitute an 

important source of dietary proteins (18-40 %), dietary fibre, minerals and vitamins. 

Epidemiological studies have provided consistent evidence of the inverse relationship 

between legume consumption and the incidence of CVD. The majority of studies that have 

evaluated the hypocholesterolemic effects of legume consumption examined soybeans [19]. 

In addition, the meta-analysis showed that diet rich in legumes, such as a variety of beans, 

peas, and some seeds other than soy decreases total and low-density lipoprotein (LDL) 

cholesterol [20]. Different legumes have been identified as sources of ACE-inhibitory and 

antioxidative peptides, mainly soybean [21-24], chickpea and pea [25-28]. 

Cereal grains contain relatively little protein compared to legume seeds, with an average of 

about 10–12% of dry weight. Storage proteins account for about 50% of the total protein in 

mature cereal grains and have important impacts on their nutritional quality for humans 

and livestock and on their functional properties in food processing. Proteins can be 

separated into albumin, globulin, prolamin (hordein) and gluten fractions as described by 

[29]. The prolamins are characterized by their high content of Pro and Glu and low content 

of Lys and Trp. Alcohol-soluble endosperm proteins (prolamins) from some cereals (e.g. 

wheat, barley, and rye) give origin upon proteolytic digestion to biologically active 

antinutritional peptides able to adversely affect in vivo the intestinal mucosa of coeliac 

patients, whereas prolamins from other cereals (e.g. maize and rice) do not [30]. A large deal 

of cereal proteins originates from by-products following production of starch, malting or 

brewing industry. For example, -zein protein, derived from corn starch production, is rich 

in Pro and hydrolysis by thermolysin liberates ACE-inhibitors [31]. Wheat proteins are also 

source of opioid peptides [32] and tryptic hydrolysate of rice proteins yields the 

immunomodulatory peptide, oryzatensin [33]. 
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2.1. Production of peptides 

ACE-inhibitory peptides have been produced by enzymatic hydrolysis and microbial 

fermentation of food proteins. In addition, solvent extraction has been used to isolate ACE-

inhibitory activity from plant materials, such as mushrooms, broccoli and buckwheat [6]. 

The ACE-inhibitory potency is expressed as the IC50 value (inhibitor concentration leading 

to 50% inhibition), being used to estimate the effectiveness of different hydrolysates and 

peptides. The most common way to produce bioactive peptides is through enzymatic 

hydrolysis of whole protein molecules. The specificity of enzyme and process conditions 

influence the peptide composition of hydrolysates and thus their activities.  

Generally, enzymatic hydrolysis is widely applied to upgrade functional features (such as 

emulsifying properties of hydrolysed protein) and nutritional properties of proteins [34-36]. 

It has been reported that additional advantage of hydrolysis can be the development of 

hydrophobicity since proteolysis unfolds the protein chains. The cleavage of peptide bonds 

enhances levels of free amino and carboxyl groups resulting in enhanced solubility. 

Therefore, hydrolysis can increase or decrease the hydrophobicity, which mostly depends 

on the nature of the precursor protein and molecular weight of the generated peptides [34]. 

Moreover, hydrolysis leads to production of small bioactive peptides [35] and bitterness of 

peptides of below 1000 Da is much less than fractions with a higher molecular mass [36]. 

However, it has been reported that extensive hydrolysis could adversely affect functional 

properties of peptides [37]. Some factors to consider in producing bioactive peptides include 

hydrolysis time, degree of hydrolysis of the proteins, enzyme–substrate ratio, and pre-

treatment of the protein prior to hydrolysis. For example, thermal treatment of proteins can 

enhance enzymatic hydrolysis [38] possibly by increasing enzyme–protein interactions due 

to thermal-induced unfolding of the proteins.  

According to the literature, enzymatic hydrolysis has been the main process for producing 

ACE-inhibitory and antioxidative peptides from food proteins. Use of exogenous enzymes is 

preferred in most cases over the autolytic process (i.e., use of endogenous enzymes present 

in the food source itself), due to the shorter time required to obtain similar degree of 

hydrolysis as well as better control of the hydrolysis to obtain more consistent molecular 

weight profiles and peptide composition [39-45]. Industrial food-grade proteinases such as 

Alcalase, Flavourzyme, and Protamex derived from microorganisms, as well as enzymes 

from plant (e.g. Papain) and animal sources (e.g., pepsin and trypsin), have been widely 

used in producing ACE-inhibitory and antioxidative peptides. The serine type endo-

protease Alcalase, has produced the highest ACE-inhibitory activities in vitro in case of 

several plant proteins (Table 1).  

Alcalase digests of rapeseed, canola, flaxseed, sunflower seed protein, legumes as well as 

and mung and chick beans showed high potency for ACE inhibition [41, 43-48]. Moreover, 

Alcalase digestion increased the ACE inhibition of the protein-rich by-product fraction from 

potato starch industry, potato tuber liquid fraction [13]. The IC50 -values were ranged 

between 0.020 and 0.64 mg protein/ml, which are similar to those  reported for milk whey 

and casein hydrolysates [5, 41, 45-47,49]. Mäkinen and colleagues [50] reported that  
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Source 

protein 

Enzyme or 

other process 

conditions 

ACE

inhibition  

Identified peptides

 

In vivo response Ref 

  IC50

(mg/ml) 

Sequences IC50 value 

(µM) 

Dose 

administratio

n  model 

Response (Δ 

SBP  

mmHg) 

 

Sweetpotato 

tuber 

protein 

isolate 

Thermoase PC 

10F, Protease S 

&  Proleather 

FG-F  

0.018 ITP 

IIP 

GQY 

STYQT 

9.5  

80.8  

52.3  

300.4 

500 mg/kg 

hydrolysate, 

oral, SHR 

 

-30  after 8 h [121]  

Sweetpotato 

tuber 

defensin 

 Trypsin  

 

 

0.190 GFR 

FK 

IMVAEAR 

GPCSR 

CFCTKPC 

MCESASSK

94.25 

265.43 

84.12  

61.67  

1.31  

75.93 

  

 

 

 

[118] 

Sweet 

potato tuber 

Thioredoxin 

h 

Trypsin  

 

 

0.152 EVPK 

VVGAK 

FTDVDFIK

MMEPMVK

1.73  

1.14  

0.42  

1.03  

  [119] 

Sweetpotato 

tuber 

Trypsin 

inhibitor 

 

Pepsin 

 

0.188 HDHM 

LR 

SNIP 

VRL 

TYCQ 

GTEKC 

RF 

VKAGE 

AH 

KIEL 

276.2 

746.4 

228.3 

208.6 

2.3  

275.8  

392.2 

141.56 

523.5  

849.7  

  [120] 

Yam tuber Powdered yam 

product, 

alcohol-

insoluble-solids 

Water extract 

(15% protein) 

Heat treated 

(90°C) water 

extract 

Dioscorin, 

lyophilized yam 

powder  

Storage protein 

ion-exhange 

chromato-

graphy 

Pepsin 

hydrolysate 

ND 

 

  

 

 

60 mg/kg 

oral, SHR 

 

154  mg/kg 

oral, SHR 

154 mg/kg 

oral, SHR 

 

140 mg daily 

oral,  human 

 

40 mg/kg 

 oral, SHR 

 

40 mg/kg 

oral,  SHR  

-32.4 after 

6 h 

 

-30.3 after 

4 h 

-23.87 after 

4 h 

 

-6.52 after  

2 weeks 

 

-27.7 after 9 

days  

 

-32.8 after  8 

hours 

 

[123] 

 

  

 

 

[86] 

[175] 

 

 

[122] 

 

 

[122] 
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Source 

protein 

Enzyme or 

other process 

conditions 

ACE

inhibition  

Identified peptides

 

In vivo response Ref 

  IC50

(mg/ml) 

Sequences IC50 value 

(µM) 

Dose 

administratio

n  model 

Response (Δ 

SBP  

mmHg) 

 

Potato tuber Autolysed 

protein extract 

Alcalase digest 

of potato tuber 

liguid fraction 

0.36 

 

0.018 

    [50] 

 

[13] 

  

Apios 

Americana 

Medikus 

tuber 

Water extract 

(rich in proline)

127   200 mg/kg 

oral, SHR  

-25 after 0.5 

and 1 h 

 

[124] 

Rapeseed 

protein 

Pepsin  

Subtilisin 

  

 

 

 

0.16 

0.16 

 

 

 

 

 

VWIS 

VW 

IY 

RIY 

 

 

30  

1.6  

3.7 

28  

500 mg/kg 

hydrolysate,  

12.5 mg/kg 

7.5 mg/kg 

7.5 mg/kg 

7.5 mg/kg 

oral, SHR  

-6.8 after  4h  

-15.5 after 4h 

-12.5 after 2 h 

-10.8 after 2 h 

-9.8 after 2 h 

-11.3 after 4h 

[125] 

Rapeseed 

protein 

Alcalase  

Peptide fraction 

from affinity 

purification 

Alcalase 

0.038 

0.25x10-3 

 

 

 

0.020 

 

 

   [45] 

 

 

 

 

[47] 

Canola 

meal,  

defatted 

Heat treatment 

and  Alcalase 

0.027 VSV 

FL 

0.15 

1.33 

  [46]  

Flaxseed 

protein 

Trypsin & 

Pronase cationic 

peptide fraction

0.4 QGR 

RW 

SVR 

GQMRQPI

QQQG 

ASVRT 

DYLRSC 

ARDLPGQ

RDLPG 

RGLERA 

TCRGLERA

 200 mg/kg 

hydrolysate, 

oral, SHR 

-17.9 after 

2 h 

[44] 

Flaxseed 

protein 

Gastrointestinal

digest in vitro, 

<1kDa  

permeate 

fraction 

 

0.040 

 

WNI/LNA 

NI/LDTDI/L 

   [127]  
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Source 

protein 

Enzyme or 

other process 

conditions 

ACE

inhibition  

Identified peptides

 

In vivo response Ref 

  IC50

(mg/ml) 

Sequences IC50 value 

(µM) 

Dose 

administratio

n  model 

Response (Δ 

SBP  

mmHg) 

 

Sunflower 

protein 

Alcalase 

Peptide fraction 

from affinity 

purification 

0.062 

1.18x10-3 

    [61]  

Pea protein  Gastrointestinal 

digest in vitro  

0.070 

 

  50 mg/kg 

intravenous, 

SHR 

-44, transient 

and sharp 

reduction 

[144] 

Pea protein 

isolate  

Thermolysin, 

3kDa MWCO 

permeate 

ND    200 mg/kg 

oral, SHR 

25-30 g/day 

oral, 

Han:SPDR-cy 

rat 

3g/day 

 oral, Human, 

consumption 

-19 after 4h 

 

-30 at weeks 

7 and 8 

 

 

-6 after  3 

weeks 

[143]  

Chick pea 

protein  

Alcalase  Peptide 

fractions 

0.103- 

0.117 

mg/ml 

  [41] 

Chick pea 

legumin  

Alcalase  Peptide 

peaks 

0.011-0.021 

mg/ml 

  [43] 

Common 

beans 

Pinto beans  

Green 

lentils 

Heat treatment 

and  in vitro 

gastro-intestinal 

digestion  

0.78-0.83  

0.15-0.69  

0.008-0.89   

    [131] 

Red  and  

green lentil 

protein  

In vitro gastro-

intestinal 

digestion 

0.053- 0.190     [64] 

Mung bean 

protein  

Alcalase, 6kDa 

MWCO 

permeate 

0.64  KDYRL 

VTPALR 

KLPAGTLF

26.5  

82.4  

13.4  

600 mg/kg 

oral, SHR 

-30.8 after 

6 h 

[48] 

Mung bean 

sprout 

 

Raw sprout 

extract 

Dried sprout 

extract 

Pepsin, trypsin 

and 

chymotrypsin 

 

 

  600 mg/kg 

intragastric, 

SHR 

-41 after 6 h 

-24 after 3 h 

-29 after 3 h 

[142] 

Soy protein Alcalase 0.065  DLP 

DG 

4.8 

12.3 

  [39] 
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Source 

protein 

Enzyme or 

other process 

conditions 

ACE

inhibition  

Identified peptides

 

In vivo response Ref 

  IC50

(mg/ml) 

Sequences IC50 value 

(µM) 

Dose 

administratio

n  model 

Response (Δ 

SBP  

mmHg) 

 

Soybean Fermentation 0.45 AW 

GW 

AY 

SY 

GY 

AF 

VP 

AI 

VG 

µg/ml 

0.03 

0.05 

0.07 

0.10 

0.19 

0.48 

0.69 

1.1 

Diet contained 

10% v/w of 

fermented soy 

product 

oral, SHR 

-20 after 11 

week 

[184] 

Rye Sourdough 

Lactobacillus 

reuteri TMW 

1.106 and added 

protease 

 VPP 

IPP 

LQP 

LLP 

9 

5 

2 

57 

  [149] 

Rice Alcalase 0.14 TQVY 18.2 600 mg/kg 

hydrolysate 

30 mg 

peptide/kg 

SHR, oral 

-25.6 after 

6 h 

-40 after 6 h 

[153] 

Maize, α-

zein 

Thermolysin  LRP 

LSP 

LQP 

0.29 

1.7 

2.0 

Peptide (LRP)

30 mg/kg  

SHR, 

intravenous 

-15  2 min 

after 

injection 

[31] 

Wheat bran Autolysis 0.08 LQP 

IQP 

LRP 

VY 

IY 

TF 

 

peptide-

fraction 

0.14 

mg/ml 

 10 mg/ml 

oral, SHR 

-45 after 2 h [185] 

[186] 

Table 1. ACE-inhibitory activities in vitro and antihypertensive effect in vivo of plant protein–derived 

hydrolysates and peptides   

autolysis of protein isolates from the potato tuber tissue enhances ACE-inhibition which 

may be due to the native proteolytic activity of potato tuber proteins.  

Peña-Ramos and Xiong [51] used different enzymes to produce hydrolysates from native 

and heated soy protein isolates. They reported that using different enzymes resulted in the 

formation of a mixture of peptides with different degrees of hydrolysis and accordingly 

different ranges of antioxidant activity. It has been found that antioxidant activity of 

Alcalase derived hydrolysates is higher than that of other hydrolysates [52-54]. It is also 



 
Antihypertensive Properties of Plant Protein Derived Peptides 153 

reported that peptides produced by Alcalase have diverse biological activities, including 

antioxidant activity [55]. In comparison to other proteases, it provided higher yields of 

antioxidative peptides and develops shorter peptides. Udenigwe and colleagues [55] 

observed that release of radical scavenging peptides depends on the specificity of protease 

used in hydrolysis. In another study, flaxseed protein was treated with thermolysin 

followed by pronase to produce antioxidant peptides [42]. Moreover, pepsin, pancreatin, 

neutrase and esperase have been used to produce antioxidative hydrolysates and peptides 

[13, 42, 51, 56, 57].  

Simulated gastrointestinal enzymatic process has also been used to mimic normal human 

digestion of proteins to evaluate the possibility of releasing potent bioactive peptides after 

normal consumption of food proteins. The combination of pepsin-trypsin-chymotrypsin or 

pepsin-pancreatin has been used to simulate the gastrointestinal degradation of proteins in 

humans [58]. Pepsin treatment alone cannot effectively elicit ACE-inhibitory peptides from 

buckwheat protein, while this enzyme followed by chymotrypsin and trypsin lead to a 

significant increase in ACE-inhibitory activity [59]. In some studies, plant protein 

hydrolysates generated during pepsin digestion have potent ACE-inhibitory peptides. 

Lower ACE-inhibitory activity was found after subsequent digestion with pancreatin, 

suggesting that the active components were hydrolyzed [60, 61]. For the pea proteins, high 

ACE-inhibitory activity is reached at the early stage of pepsin hydrolysis and the level is 

maintained during the small intestine phase using trypsin-chymotrypsin treatment [62]. 

While digestion of red lentils with trypsin showed moderate ACE inhibition (IC50 value of 

0.44 mg/ml), addition of pepsin and chymotrypsin clearly improved it (IC50 of 0.09 mg/ml) 

[63, 64].  

Careful choice of suitable enzymes and digestion conditions such as optimal temperature, 

degree of hydrolysis and enzyme-substrate ratio, as well as the control of hydrolysis time, 

are crucial for obtaining protein hydrolysates with desirable functional and bioactive 

properties. Hydrolysis can be performed by conventional batch hydrolysis or by continuous 

hydrolysis using ultrafiltration membranes. The traditional batch method has several 

disadvantages, such as the relatively high cost of the enzymes and their inefficiency 

compared to a continuous process, as noted in numerous studies [65, 66]. The hydrolysis 

process is feasible to scale-up production of peptides from laboratory scale to pilot and 

industrial plant scales with conserved peptide profiles and bioactivity of the resulting 

products [67]. The crude protein hydrolysate may be further processed, for example by 

passage through ultrafiltration membranes, in order to obtain a more uniform product with 

the desired range of molecular mass [68]. Alcalase hydrolysate from soy isolate was 

ultrafiltrated with 1-30 kDa membranes and ACE-inhibitory activities were analysed. The 

IC50-values for 1 kDa and 10 kDa permeates were almost the same, 0.080 and 0.078 mg/ml, 

respectively, but recovery yield of 10 kDa permeate was much higher than that of 1 kDa 

permeate [69]. Ultrafiltration membrane reactors have been shown to improve the efficiency 

of enzyme-catalysed bioconversion, to increase product yields, and to be easily scaled up. 

Furthermore, ultrafiltration membrane reactors yield a consistently uniform product with 

desired molecular mass characteristics [65, 68]. Low molecular mass cut-off membranes are 

useful for concentrating bioactive peptides from the higher molecular mass components 
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remaining, including undigested polypeptide chains and enzymes. Other techniques such as 

nanofiltration, ion-exchange membranes, or column chromatographic methods can be used 

in further concentration and purification of the peptides [70]. 

A number of studies have shown that antihypertensive peptides are liberated during 

fermentation of milk. Fermented milk products prepared using different strains of lactic acid 

bacteria have been found to exert antihypertensive and antioxidative activities [71, 72]. 

Moreover, several antioxidative and ACE-inhibitory peptide sequences have been identified 

from fermented milk [73]. Only few experimental investigations to produce these 

compounds by fermentation of plant proteins have been reported. Fermentation of rapeseed 

and flaxseed proteins with Lactobacillus helveticus and Bacillus subtilis yields to products 

containing compounds with ACE-inhibitory and inhibition of lipid peroxidation capacities 

[74]. Fermented soybean products such as natto, tempeh, and douche also contain 

antioxidative and ACE-inhibitory peptides due to the action of fungal proteases. The results 

have indicated that the processing techniques have an impact on the ACE-inhibitory 

activities of soy products. Different fermented soybean foods showed IC50 values of 0.51 

mg/ml for tempeh, 1.77 mg/ml for tofuyo, 3.44 and 0.71-17.80 mg/ml for soy sauce, 5.35 and 

1.27 mg/ml for miso paste, and 0.16, 0.19 and 0.27 mg/ml for natto [24,75, 76]. Commercial 

Chinese style soy paste exhibited ACE-inhibitory activities with the lowest and the highest 

IC50 values of 0.012 and 3.241 mg/ml, respectively [77]. Tsai and colleagues [78] fermented 

soy milk with lactic acid bacteria (Lb. casei, Lb., acidophilus, Lb. bulcaricus, Streptococcus 

thermophilus and Bifidobacterium longum) and IC50-value was 2.89 mg/ml after 30 h 

fermentation. When a protease (Prozyme 6) was added after 5 h fermentation, much lower 

IC50-value (0.66 mg/ml) was obtained. Natto has shown to have radical scavenging activity 

and inhibitory effect on the oxidation of rat plasma LDL in vitro [79]. The aqueous extracts of 

Douchi showed radical scavenging activities and chelating ability of ferrous ions. The 

radical scavenging activities were higher than that of Trolox, an analogue of vitamin E used 

as a standard [80]. 

2.2. Structure-activity relationship 

ACE-inhibitory peptides are generally short sequences often carrying polar amino acid 

residues like Pro. This is in agreement with the results of Natesh and co-workers [81] who 

showed that the active site of ACE cannot accommodate large peptide molecules. The C-

terminal tripeptide strongly influences the binding of substrate or a competitive inhibitor to 

ACE. Many ACE-inhibitory peptides identified from different food sources, structure–

activity studies indicated that C-terminal tripeptide residues play a predominant role in 

competitive binding to the active site of ACE. It has been reported that this enzyme prefers 

substrates or inhibitors containing hydrophobic (aromatic or branched side chains) amino 

acid residues at each of the three C-terminal positions. The most effective ACE-inhibitory 

peptides identified contain Tyr, Phe, Trp, and/or Pro at the C-terminal. In addition, 

structure–activity data suggests that the positive charge of Lys (εamino group) and Arg 

(guanidine group) as the C-terminal residue may contribute to the inhibitory potency [82-

84]. Quantitative structure–activity relationship (QSAR) modelling was used to develop 
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statistical computer models potentially capable of identifying ACE-inhibitory peptides 

based on structure–activity data [85]. A relationship was found between hydrophobicity and 

positively charged amino acid in C-terminal position, size of amino acid next to C-terminal 

position and ACE inhibition of peptides up to six amino acids in length. Moreover, no 

relationship between N-terminal structure and inhibition activity was found.  

The exact mechanism underlying the antioxidant activity of peptides has not fully been 

understood, as various studies have displayed that they are inhibitors of lipid peroxidation, 

scavengers of free radicals and chelators of transition metal ions [86, 87]. In addition, it has 

been reported that antioxidative peptides keep cells safe from damage by ROS through the 

induction of genes [88]. Antioxidative properties of the peptides are more related to their 

composition, structure, and hydrophobicity. Tyr, Trp, Met, Lys, Cys, and His are examples 

of amino acids that cause antioxidant activity. Amino acids with aromatic residues can 

donate protons to electron deficient radicals. This property improves the radical scavenging 

properties of the amino acid residues [89, 90]. It is proposed that the antioxidative activity of 

His containing peptides is in relation with the hydrogen donating, lipid peroxyl radical 

trapping and/or the metal ion chelating ability of the imidazole group [87, 91]. On the other 

hand, SH group in Cys has an independently crucial antioxidant action due to its direct 

interaction with radicals [92]. In addition to the amino acid composition, their correct 

position in peptide sequence plays an important role in antioxidative properties of peptides. 

Chen and colleagues [93] designed 28 synthetic peptides following the structure of an 

antioxidative peptide (Leu-Leu-Pro-His-His) from digestion of soybean protein conglycinin. 

According to the results, Pro-His-His sequence displayed the greatest antioxidative activity 

among all tested peptides. The antioxidant activity of a peptide was more dependent on 

His-His segment in the Leu-Leu-Pro-His-His-domain and its activity was decreased by 

removing a His residue from the C-terminus. Moreover, substitution of L-His by D-His in a 

peptide leads reduction of activity [93]. They concluded that the correct position of 

imidazole group is the key factor influencing the antioxidant activity. Saito and co-workers 

[94] also studied antioxidative activity of peptides created in two tripeptide libraries. 

According to their results, for the 114 peptides containing either His or Tyr residues, 

tripeptides containing two Tyr residues showed higher activity in the linoleic acid 

peroxidation system than tripeptides containing two His residues. Further, Tyr-His-Tyr 

showed strong synergistic effects with phenolic antioxidants. It has been shown that certain 

amino acids can exert higher antioxidative properties when they are incorporated in 

dipeptides [95] and some peptide bond or its structural conformation can reduce the 

antioxidant activity of the constituent amino acids [96].  

2.3. In vitro and in vivo activity 

The search for in vitro ACE-inhibitors is the most common strategy followed in the selection 

of potential antihypertensive peptides derived from food proteins. In vitro ACE-inhibitory 

activity is generally measured by monitoring the conversion of an appropriate substrate by 

ACE in the presence and absence of inhibitors. There are several methods, and those based 

on spectrophotometric [97-99] and high-performance liquid chromatography (HPLC) assays 
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are most commonly utilized [100-102]. Hippuryl-His-Leu (HHL) is one of the oldest and 

most used methods for determining the ACE activity or inhibition [97, 99-101]. The broadly 

used spectrophotometric method of Cushman and Cheung [97] is based on the hydrolysis of 

HHL by ACE to hippuric acid and His-Leu, and the extent of hippuric acid released is 

measured after its extraction with ethyl acetate. The liberated hippuric acid can also be 

measured by chromatographic assays avoiding the extraction step [102]. The method based 

on the substrate 2-furanacryloyl-phenylalanylglycyl-glycine (FAPGG) was developed by 

Holmquist and colleagues [103] and can be applied in microtiter plates [98]. Substrates such 

as o-aminobenzoylglycyl-p-nitrophenylalanylproline are designed to perform in 

fluorometric assays [104, 105]. 

Specific assays have not yet been developed or standardized to measure the antioxidative 

capacity of peptides or peptide mixtures. Therefore, assays that are commonly used for 

measuring antioxidative capacity of non-peptidic antioxidants have been used in the 

literature to measure the antioxidative capacity of peptides as well. Due to the complexity of 

oxidative processes occurring in food or biological systems as well as the different 

antioxidative mechanisms by which various compounds may act, finding one method that 

can characterize the overall antioxidative potential of food is not an easy task. Nevertheless, 

methods such as the Trolox equivalent antioxidant capacity (TEAC) assay, oxygen radical 

absorbance capacity (ORAC) assay, and the total radical-trapping antioxidant parameter 

(TRAP) assay have been widely reported in the literature for measuring antioxidative 

capacity of food and biological samples [106, 107]. Commonly used assays include 

measuring the inhibition of lipid peroxidation in a linoleic acid model system and  

the capacity to scavenge the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-

Diphenyl-1-picrylhydrazyl (ABTS/DPPH) radicals. 

In vitro cultured cell model systems allow for rapid, inexpensive screening of compounds 

for their bioavailability, metabolism, as well as bioactivity, compared to expensive and time-

consuming animal studies and human clinical trials. Endothelial cells are currently used as 

in vitro model systems for various physiological and pathological processes, especially in 

angiogenesis research. Endothelial dysfunction, an initiator of atherosclerosis, is manifested 

by altered NO and endothelin-1 (ET-1) homeostasis. ET-1 is one of the most potent 

endogenous vasoconstrictors and impaired NO release precedes the development of 

atherosclerosis [108]. NO is produced by the enzyme endothelial NO synthase (eNOS) 

which converts L-Arg in the presence of O2 and NADPH into L-citruline and NO. There are 

several assays available to analyze NO, ET-1, or expression of eNOS after exposure to 

compounds of interest. Use of cell culture models for antioxidant research is particularly 

important since the studies to date have demonstrated that the mechanism of the action of 

antioxidants in human health promotion go beyond the antioxidant activity of scavenging 

free radicals [109]. During experiments, intracellular oxidation of cells can be induced by 

using a peroxy radical generator or by using hydrogen peroxide (H2O2) [110]. The 20,70-

dichlorofluorescein diacetate (DCFH-DA) probe can be used to measure the extent of 

intracellular radical formation with and without added antioxidative compound in order to 

assess the cellular antioxidant activity (CAA) [111].  
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The antihypertensive effects can be assessed by in vivo experiments using spontaneously 

hypertensive rats (SHR) that constitute an accepted animal model to study human essential 

hypertension [88]. A great number of studies have addressed the effects of both short-term 

and long-term administration of potential antihypertensive milk protein-derived peptides 

using this animal model [88, 112]. In vitro measurements of antioxidant capacity of 

compounds in interest cannot be directly related to their capacity in vivo. Biomarkers of lipid 

and protein peroxides as well as DNA damage can be assessed to monitor changes in 

oxidative stress in vivo. Only few studies so far have been done on plant derived peptides in 

animal models or human clinical trials. 

2.4. ACE-inhibitory and antioxidant peptides 

2.4.1. Potato and other root crops 

During the last decade the in vitro capacity of tuber protein -derived peptides to inhibit ACE 

have gained increasing interest (Table 1). Hsu and colleagues [113] reported that yam 

(Dioscorea alata) tuber dioscorin possess high ACE-inhibitory capacity and the digestion with 

pepsin increased the efficacy further. Moderate ACE-inhibition in vitro has been reported for 

purified yam (Dioscorea batatas) tuber mucilage [114] and for an enzymatic digest as well as 

for an autolysate of yam (Dioscorea opposita) tuber extract [115, 116]. However, the potential 

impact of other compounds, such as phenolic compounds and sugars, on the observed ACE 

inhibition should be taken into consideration. It has been shown that naturally occurring 

phenolic compounds, such as flavonoids and proanthocyanidins, have inhibition activity 

towards ACE [117].  

Sweet potato proteins defensin and thioredoxin h2 which were overproduced in Esherichia 

coli showed moderate ACE-inhibitory capacity (IC50 of 0.190 and 0.152 mg/ml, respectively) 

and both proteins showed mixed type inhibitor against ACE using FAPGG as substrate. 

Hydrolysis with trypsin increased the capacity. Several peptides contained in the 

hydrolysate with IC50 values from 1.31 to 265.43 µM were analyzed [118, 119]. Trypsin 

inhibitor from the root storage protein of sweet potato, inhibited ACE in a dose-dependent 

manner (50-200 µg/ml, with 31.9-53.2% inhibition), and the IC50 value was 187.96 µg/ml. 

After digestion with pepsin the ACE-inhibition increased and peptides were designed by 

simulating the pepsin cutting sites of sporamin A. Finally, ten new ACE-inhibitory peptides 

showed IC50-values from 2.3 to 849.7 µM [120]. Sweet potato protein isolate digested with 16 

different proteases showed variability in digestibility from 44.7 to 97.3% and IC50 values 

from 0.16 to 1.08 mg/ml. Based on these results four most potent enzymes (Thermoase PC 

10F, Protease S, Proleather FG-F and Orientase 22BF) were selected and combined effect of 

enzymes were tested. Combination of Thermoase PC 10F, Protease S and Proleather FG-F 

produced potent ACE-inhibition (IC50 of 0.137 mg/ml). Finally, four different peptides 

derived from sweet potato storage protein, sporamin, were identified with IC50 values from 

9.5 to 300.4 µM [121]. The lowest IC50 values were obtained for synthetic tripeptides, Ile-Thr-

Pro (9.5 µM), Gly-Gln-Tyr (52.3 µM) and Ile-Ile-Pro (80.8 µM). 
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The protein-rich by-product fraction from potato (Solanum tuberosum) starch industry, 

potato tuber liquid, has been found to be a valuable source of ACE-inhibitory peptides [13]. 

The ACE-inhibitory activity of potato tuber liquid was moderate and enzymatic digestion 

was needed to enhance the activity to high level. Alcalase digest showed the highest ACE-

inhibitory activity and the digest was chromatographically separated to highly active 

peptide fractions. The potato liquid Alcalase hydrolysate produced the highest radical 

scavenging potency even though no statistically significant differences were found among 

hydrolysates produced by Alcalase, Neutrase and Esperase. Mäkinen and colleagues [47] 

reported that autolysis of protein isolates from the potato tuber tissue enhances ACE 

inhibition which may be due to the native proteolytic activity of potato tuber proteins. The 

results indicated a relevant role of potato tuber storage proteins in the production of ACE-

inhibitory peptides during the autolysis. Enrichment of recombinant potato tuber protein to 

the autolysis enhanced the production of activity significantly, which suggests possibility to 

enhance potato tuber ACE-inhibitory potential by means of biotechnological tools. Anyhow, 

more research is needed to characterize and identify the ACE-inhibitory potato peptides and 

to evaluate the in vivo antihypertensive potential. 

Recently, antihypertensive effects of some tuber plant –derived protein digests have been 

evaluated in vivo using SHR animal model, although no tuber protein –derived peptides in 

pure form have been reported. The proteins tested in the in vivo trials have concerned the 

antihypertensive effects of the main storage proteins of the tubers and peptides derived 

from these proteins. Among the tuber proteins, the in vivo antihypertensive effects of yam 

(Dioscorea alata) tuber proteins are the most studied. Lin and co-workers [122] purified 

storage proteins, dioscorins from yam tubers, that were digested with pepsin and evaluated 

for their  antihypertensive effects in SHR. The maximum effect after single oral 

administration was observed after 4 h with the dioscorin isolate and after 8 h with the peptic 

hydrolysate, while the antihypertensive effect of the peptic digest was more pronounced (-

33.7 mmHg Mean arterial pressure, MAP) and less transient than that of the dioscorin 

isolate (-21.5 mmHg MAP). The long-term antihypertensive effect of the dioscorin isolate 

was tested for 25 days with daily oral administration and the greatest reductions in systolic 

blood pressure (SBP) and diastolic blood pressure (DBP) were observed on the ninth day. 

Liu and co-workers [123] tested the antihypertensive effects of different yam tuber products 

on SHR. The yam tuber alcohol-insoluble solids and water extract before and after heat 

treatment were observed to decrease the blood pressure after single oral administration. The 

most pronounced effect with the lowest dose was found with the alcohol-insoluble-solids 

product, which contained the yam tuber dioscorins. Iwai and Matsue [124] reported 

moderate antihypertensive effects of an edible tuber Apios Americana Medikus in SHR. The 

animals ingested water extract of the tubers that was rich in Pro. The antihypertensive effect 

was suggested to be due to Pro-rich peptides, which were released during digestion. Sweet 

potato protein digest made with combination of three proteases (Thermoase PC10F, 

Protease S and Proleather FG-F) showed a dose dependent decrease in SBP after single oral 

administration in SHR [121].  
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2.4.2. Oil seed plants-derived peptides 

According to the published data, enzymatic hydrolysis is required to release 

antihypertensive peptides from oil seed plant proteins. Only few peptide sequences have 

been identified from oil seed plants. Four ACE-inhibitory peptides were isolated from the 

rapeseed subtilisin digest of which Ile-Tyr and Arg-Ile-Tyr can be found in the primary 

structure of napin and Val-Trp and Val-Trp-Ile-Ser exist in the primary structure of 

cruciferin and ribosomal protein, respectively. Among the peptides isolated, Ile-Tyr and 

Val-Trp can be considered true ACE-inhibitors because IC50 values for these peptides before 

and after pre-incubation with ACE were found to be the same. Val-Trp-Ile-Ser is a pro-drug 

type ACE-inhibitor, as pre-incubation with ACE of Val-Trp-Ile-Ser intensified inhibitory 

activity of this peptide [125]. In addition, to these rapeseed peptides, two peptide sequences 

with high ACE-inhibitory capacity were identified from canola meal hydrolysed with 

Alcalase, Val-Ser-Val and Phe-Leu, located in the primary structure of canola napin and 

cruciferin proteins [46]. Low-molecular weight cationic peptide fractions from flaxseed 

protein hydrolysed by Alcalase or thermolysin showed concentration dependent ACE-

inhibition (IC50 0.0275-0.151 mg/ml) [126]. The Alcalase cationic peptide and thermolysin 

hydrolysate showed mixed type inhibition of ACE activity. Several peptides were detected 

in a cationic peptide fraction of a trypsin & Pronase digest of flaxseed, which showed 

moderate ACE inhibition in vitro and antihypertensive effects in SHR [44]. A pentapeptide 

Trp-Asn-Ile-Leu-Asn-Ile-Leu and a hexapeptide Asn-Ile-Leu-Asp-Thr-Asp-Ile-Leu were 

identified from flaxseed protein digested with an in vitro digestion model [127]. Anyhow, 

ACE-inhibitory activity of these flaxseed derived peptides has not been evaluated 

individually and thus, the ACE-inhibitory capacity of these peptides in a pure form is not 

clear [44, 126, 127].  

Despite the high in vitro ACE-inhibitory potency of Alcalase digests of oil seed proteins, 

their antihypertensive effects in vivo have not been evaluated yet. Subtilisin digest of 

rapeseed and tryptic digest of flaxseed have shown antihypertensive properties in SHR. 

Marczak and co-workers [125] studied the Subtilisin and pepsin digests of rapeseed in SHR. 

Subtilisin digest of rapeseed protein showed dose dependent antihypertensive effect after 

oral administration to SHR and its effect was significant even at a single dose of 0.15 g/kg. 

The Subtilisin digest was subjected to hydrolysis with different proteases to simulate 

gastrointestinal digestion in vitro and the ACE-inhibitory activity was changed only slightly 

indicating that ACE-inhibitory peptides present in the Subtilisin digest are relatively 

resistant. The antihypertensive activities of Val-Trp, Val-Trp-Ile-Ser, Ile-Tyr and Arg-Ile-Tyr 

were tested following oral administration to SHR. The maximum hypotensive activity of 

Val-Trp, Val-Trp-Ile-Ser and Ile-Tyr occurred 2 h after administration, whereas Arg-Ile-Tyr 

(rapakinin) had the maximum effect 4 h after administration. All peptides displayed dose-

dependent antihypertensive effect. Hypotensive activity of the peptides was compared after 

oral administration to young (19-20 weeks) and old (28-30 weeks) SHR. Usually the 

hypotensive effect of ACE inhibitors in old SHR is lower than in young SHR. The 

hypotensive effects of Val-Trp, Val-Trp-Ile-Ser and Ile-Tyr were lower in old rats, but in the 

case of rapakinin the effect was similar in old and young rats. The authors suggested that 
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another mechanism besides ACE inhibition may be involved in hypotensive effect of 

rapakinin. Recently, the hypotensive effect of rapakinin was found to be mediated mainly 

by the prostaglandin IP (PGI2-IP) receptor followed by CCK1 receptor-dependent 

vasorelaxation [128]. In addition to hypotensive effects, the napin-derived peptide rapakinin 

has been reported to possess multifunctional properties. Rapakinin dose-dependently 

decreased food intake and gastric emptying after oral administration at a dose of 150 mg/kg 

in mice [129] and recently, Yamada and colleagues [130] reported anti-opioid activity related 

to the hypotensive effects for rapakinin. 

Peptide fraction from the enzymatic digest of flaxseed protein was recently reported to 

possess hypotensive activity in SHR [44]. An Arg-rich peptide fraction was produced from 

flaxseed protein using trypsin and pronase and by subsequent concentration with combined 

electrodialysis and ultrafiltration. The hypotensive effect of the flaxseed derived Arg-rich 

peptide fraction was tested on SHR and the effects were compared to the effects of inherent 

flaxseed protein isolate and amino acid form of Arg. The maximum hypotensive effect of the 

cationic peptide fraction was observed already 2 h after oral administration while the amino 

acid form of Arg showed lower hypotensive activity, -10.3 mmHg. On the other hand, the 

flaxseed protein isolate exhibited a slow-acting hypotensive effect with maximum of -18.4 

mmHg (SBP) at 6 h after the administration. The hypotensive effect of the Arg-rich peptide 

fraction was longer-lasting when compared to the free amino acid form of Arg and the 

authors suggested that this might be related to more efficient absorption of peptides and the 

ability of peptides to translocate directly into the cells, obviating the need for transporters. 

The observed hypotensive activity of flaxseed protein and peptide fraction could be due to 

vasodilatory activity of NO synthesized from the Arg through the L-Arg-NO pathway in the 

vascular endothelium, or ACE- and renin-inhibition observed in vitro by the cationic peptide 

fraction. 

2.4.3. Legume derived peptides 

Several enzymes have been used to produce pulse protein hydrolysates having bioactive 

properties. It has been suggested that hydrolysates of chickpea legume and mung bean 

obtained by Alcalase treatments are good sources of ACE-inhibitory peptides [43, 48]. 

Potential ACE-inhibitory potencies of common dry beans, dry pinto beans and green lentils 

increased during in vitro gastrointestinal digestion have been reported, with IC50 values of 

0.78–0.83, 0.15–0.69 and 0.008–0.89 mg protein/ml, respectively [131]. In addition, 15 min 

heat treatment effectively increased the ACE-inhibitory activity of the stomach digest [43, 

131]. Digestion simulating the physiological conditions of pea proteins sufficed to achieve 

the highest ACE-inhibitory activity with IC50 value of 0.076 mg/ml [132]. Furthermore, it has 

been suggested that red lentil protein hydrolysates have ACE-inhibitory properties. The 

ACE-inhibitory property of the tryptic hydrolysates varied as a function of the protein 

fraction with the total lentil protein hydrolysate having the lowest IC50 (0.440 ± 0.004 mg/ml). 

This indicates that lentil varieties having higher amounts of legumin and albumin proteins 

may have higher ACE-inhibitory properties [63]. Pedroche and co-workers [41] hydrolysed 

chickpea protein isolate with Alcalase to produce a bioactive hydrolysate having ACE-



 
Antihypertensive Properties of Plant Protein Derived Peptides 161 

inhibitory properties with an IC50 value of 0.190 mg/ml. Four peptide-fractions with average 

molecular weight of 900 Da, representing peptides with six to eight amino acid residues 

were isolated. The IC50 values were 0.103-0.117 mg/ml and two of the peptides showed 

competitive and two showed uncompetitive mechanism [41]. In addition, six ACE-

inhibitory peptides with IC50 values ranging from 0.011 to 0.012 mg/ml have been isolated 

from chickpea hydrolysed by Alcalase. All these peptides contained Met and were rich in 

other hydrophobic amino acids [43]. Two lentil varieties were hydrolysed with different 

enzymes and IC50 values ranged between 0.053 and 0.190 mg/ml. Furthermore, the 

inhibition mechanism investigated using Lineweaver–Burk plots revealed a non-competitive 

inhibition of ACE with inhibitor constants (Ki) between 0.16 and 0.46 mg/ml [40]. Three 

dipeptides, Ile-Arg, Lys-Phe and Glu-Phe were isolated and identified from Alcalase 

hydrolysate of pea protein isolate. The peptides showed strong inhibitions (IC50 values <25 

mM) of ACE and renin [133]. 

Enzymatic hydrolysate of soy protein showed a moderate ACE-inhibitory activity (0.034 

mg/ml) [39] as compared with values  reported ranging from 0.021 to 1.73 mg/ml [5, 6, 49, 

70]. Lo and co-workers [134] applied the dynamic model for the in vitro digestion of isolated 

soy proteins. They concluded that ACE-inhibitory activity was dependent on the digestion 

time and the heat treatment of soy protein. Pepsin hydrolysis of isolated soy protein 

produced peptides with a higher ACE-inhibitory activity due to the increased digestion 

time. Hydrolysis by pancreatin produced soy peptides with higher ACE‑inhibitory activity 

as compared to pepsin hydrolysates, but decresed inhibitory activity appeared after longer 

digestion time. These results suggest that at the longer digestion time pancreatin may have 

hydrolysed the peptides from pepsin digestion that had strong ACE-inhibitory activity, and 

then turned them into peptides with lower ACE-inhibitory activity.  

Pea protein hydrolysates by thermolysin contained low molecular weight (<3 kDa) peptides 

with various antioxidant activities that were dependent on the amounts of hydrophobic and 

aromatic amino acid constituents [135] (Table 2). Peptide fractions with the least cationic 

property had significantly stronger scavenging activity against DPPH and H2O2. Generally, 

the scavenging of O2˙− and H2O2 was negatively related with the cationic property of the 

peptide fractions [136]. Chick pea hydrolysate with antioxidant activities was prepared from 

chickpea protein isolates by Alcalase. This hydrolysate was separated with Sephadex G-25. 

Four fractions were obtained, and fraction IV had the highest antioxidant activities assayed 

by free radical scavenging effects [137]. The active peptide was identified as Asn-Arg-Tyr-

His-Glu. This peptide quenched the free radical sources DPPH, hydroxyl, and superoxide 

free radicals. Furthermore, the inhibition of the peptide on lipid peroxidation was greater 

than that of -tocopherol [57]. 

Different hydrolysis conditions of soy protein isolates have resulted in peptide mixtures 

with different antioxidant properties. Native and heated soy protein isolate hydrolysed with 

different enzymes resulted in different degree of hydrolysis ranging from 1.7-20.6 with 

antioxidant activity ranging from 28% to 65% [138]. Zhang and coworkers [139] used three 

microbial proteases to produce hydrolysates with degree of hydrolysis values from 13.4% to 

26.1% and with different oxygen radical absorbance capacity (ORAC), DPPH-radical 
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Source of 

proteins or 

hydrolysates 

In vitro methods 

used in measuring 

antioxidant 

capacity 

Enzymes or other 

process conditions 

used 

Antioxidative peptides 

identified 

Ref 

Potato liquid 

fraction 

ABTS+- scavenging Alcalase1, 

Esperase, Neutrase 

Not specified [13] 

Potato protein 

concentration 

ABTS+-- scavenging 

Emulsion oxidative 

stability 

Alcalase SSEFTY 

IYLGQ 

[14] 

Soybean proteins Liposome 

oxidizing system 

Chymotrypsin, 

Pepsin, Papain, 

Flavourzyme, 

Alcalase, Protamex 

Not specified [51]   

Soybean protein 

b-conglycin  

Linoleic acid 

peroxidation 

system 

Protease M, 

Protease N, 

Protease P, 

Protease S 

VNPHDHQN 

LVNPHDQN 

LLPHH 

LLPHHADADY 

VIPAGYP 

LQSGDALRVPSGTTYY 

[141] 

Yellow pea seed 

protein 

Radical (DPPH, O2-

, H2O2) scavenging 

and inhibition of 

linoleic acid 

oxidation 

Thermolysin NRYHE [135]  

Barley glutelin Radical scavenging 

capacity (DPPH/O2-

/OH-), Fe2+-

chelating effect and 

reducing power 

Alcalase QKPFPQQPPF 

PQIPEEF 

LRTLPMSVNVPL 

[54] 

Wheat gluten Linoleic acid 

peroxidation 

system 

Pepsin LQPGQGQQG 

AQIPQQ 

[56] 

Rice endosperm 

protein 

O2-, OH and DPPH 

radical 

sacavenging 

capacity, Linoleic 

acid peroxidation 

system 

Alcalase, 

Chymotrypsin, 

Neutrase, Papain, 

Flavorase 

FRDEHKK 

KHNRGDEF 

[151] 

1 The enzyme indicated in bold is the most effective of the enzymes to produce antioxidative activity/peptides 

Table 2. Antioxidative capacity of plant protein-derived hydrolysates and peptides 

scavenging activities as well transition metal chelating activities. Chen and coworkers [140] 

isolated 6 antioxidative peptide fragments from the digests of -conglycinin, a main soybean 

protein component, by using protease S from Bacillus sp. The antioxidant activity of the 

soybean hydrolysates, based on a linoleic acid oxidation system study, was attributed to the 

Leu-Leu-Pro-His-His peptide sequence [89, 93]. A potent antioxidant peptide, with 

inhibitory activity of lipid peroxidation, was isolated from soy protein isolate hydrolysed by 
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Alcalase. Purification of peptide by ultrafiltration and chromatographic techniques 

enhanced the specific activity 67.9-fold compared to hydrolysate. The final potent 

antioxidant peptide contained hydrophobic amino acids and among them, Phe was 

especially abundant [141]. 

Pea and mung bean protein digests have been reported to possess antihypertensive activity 

in SHR [48, 142]. Mung bean protein hydrolysate prepared with alcalase decreased 

significantly SBP (-30.8 mmHg) of SHR 6 h after single oral administration at a dose of 600 

mg/ml. The blood pressure-lowering effect continued for at least 8 h, and the blood pressure 

returned to initial levels at 12 h after administration [48]. Single administration of mung 

bean raw sprout extract (at dose of 600 mg/kg) reduced significantly SBP (-40 mmHg) 6 h 

after administration. Plasma ACE activities in the treated rats also decreased (0.007 Unit/ml). 

Long-term intervention (1 month) test showed that blood pressure in the treated animals 

fluctuated according to the treatments. While raw sprout extract showed effective results 

after 1 week of intervention, dried sprout extracts did not have significant effects until 2 

weeks [142]. Pea protein hydrolysate was made by thermolysin action followed by 

membrane filtration. Oral administration of the pea protein hydrolysate, containing <3 kDa 

peptides, to SHR at doses of 100 and 200 mg/kg body weight led to a lowering of SBP, with a 

maximum reduction of 19 mmHg at 4 h. In contrast, orally administered unhydrolysed pea 

protein isolate had no blood pressure reducing effect in SHR, suggesting that thermolysin 

hydrolysis may have been responsible for releasing bioactive peptides from the native 

protein [143]. Pea protein peptides from in vitro gastrointestinal digestion were observed to 

absorb poorly with in vitro model and the hypotensive effect was tested with intravenous 

administration [144].   

2.4.4. Cereals 

The seed storage proteins of wheat, barley, rye, and oats contain known ACE-inhibitory di- 

and tripeptides in their primary structures. Barley and barley by-products extract possesses 

a biological activity such as free radical scavenging activity, tyrosinase, xanthin oxidase, and 

ACE-inhibition effect [145]. Hydrolysates of barley prolamin fraction exhibited the highest 

antioxidant and ACE-inhibitory activity compared to other protein fractions and protein 

isolate. Moreover, positive correlations were obtained between antioxidant and ACE-

inhibitory activity and the degree of hydrolysis of hydrolysed protein fractions and protein 

isolate [146]. 

The computer analysis of amino acid sequences of wheat gliadins made by means of 

BIOPEP database [147] showed the presence of fragments that are homological with the 

sequences regarded as antihypertensive peptides. They were: Leu-Gln-Pro (α-, β- and γ-

gliadins), Pro-Tyr-Pro (α-, β- and γ-gliadins), Ile-Pro-Pro (α-and β-gliadins), Leu-Pro-Pro (γ-

gliadins) and Leu-Val-Leu (γ-gliadins). Bioinformatic analysis of cereal proteins sequences 

revealed that particularly four tripeptides with known ACE-inhibitory activity, Leu-Gln-

Pro, Val-Pro-Pro, Ile-Pro-Pro, and Leu-Leu-Pro, are frequently encrypted in the primary 

structure of rye secalin, wheat gluten, and barley hordein. Sourdoughs fermented with 

different strains showed different concentrations of Leu-Gln-Pro and Leu-Leu-Pro. These 
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differences corresponded to strain-specific differences in endopeptidase (PepO) and 

aminopeptidase (PepN) activities. The highest levels of peptides Val-Pro-Pro, Ile-Pro-Pro, 

Leu-Gln-Pro, and Leu-Leu-Pro, 0.23, 0.71, 1.09, and 0.09 mmol/ kg dry matter (DM), 

respectively, were observed in rye malt: gluten sourdoughs fermented with Lactobacillus 

reuteri TMW 1.106 and added protease [148]. Several clinical trials with hypertensive 

humans show a moderate but relatively consistent reduction of blood pressure upon 

consumption of the fermented milk products containing Val-Pro-Pro and Ile-Pro-Pro [88, 

112]. Cheung and co-workers [149] used in silico approach to evaluate the potential of using 

oats as a protein source for generation of ACE-inhibitory peptides, and to screen for 

candidate enzymes to hydrolyse the oat protein for this purpose. It was found that 

thermolysin under high enzyme to substrate ratio (3%) and short time (20 min) conditions 

produced strong and stable ACE-inhibitory activity.  

Barley glutelin possess high hydrophobic amino acid content and enzymatic release by 

Alcalase produced peptides that had antioxidant capacity. Large size peptides possessed 

stronger DPPH scavenging activity and reducing power, whereas small-sized peptides were 

more effective in Fe2+ and hydroxyl radical scavenging activity [54]. Pepsin hydrolysis of by-

product of the wheat starch industry has shown antioxidant properties. Especially 

ultrafiltration produced fraction showed strong inhibition of the autoxidation of linoleic acid 

and scavenging activity of DPPH, superoxide and hydroxyl free radicals. The molecular 

weight distribution ranged from 0.1-1.7 kDa and high content of total hydrophobic amino 

acid was found in the active fraction [150]. Rice endosperm protein was, respectively, 

digested by five different protease treatments (Alcalase, chymotrypsin, Neutrase, Papain 

and Flavorase), and Neutrase produced the most desirable quality of antioxidant peptides. 

Two different peptides showing strong antioxidant activities were isolated from the 

hydrolysate using consecutive chromatographic methods. Especially, Phe-Arg-Asp-Glu-His-

Lys-Lys significantly inhibited lipid peroxidation in a linoleic acid emulsion system more 

effectively than α-tocopherol [151]. 

The Alcalase-generated rice hydrolysate showed ACE-inhibitory activity with an IC50 value of 

0.14 mg/ml. A potent ACE-inhibitory peptide with the amino acid sequence of Thr-Gln-Val-

Tyr (IC50 of 18.2 µM) was isolated and identified from the hydrolysate. Single oral 

administration of the hydrolysate (600 mg/kg) and Thr-Gln-Val-Tyr (30 mg/kg) showed 

significantly decreased blood pressure in SHR, -25.6 and -40 mmHg SBP, respectively, after 6h 

[152]. Three strong ACE-inhibitors with the Leu-Arg-Pro, Leu-Ser-Pro and Leu-Gln-Pro 

sequences were isolated from maize α-zein hydrolysed with thermolysin. After intravenous 

administration of these peptides (30 mg/kg body weight), SBP was found to decrease up to a 

maximum of 15 mmHg [31]. Moreover, a tripeptide (Ile-Val-Tyr) isolated from wheat germ 

hydrolysate reduced MAP of 19.2 mmHg at dose of 5 mg/ml in SHR [153]. 

3. Bioavailability 

Bioavailability is a major issue when establishing correspondence between in vitro and in 

vivo activities of bioactive peptides. The capacity to reach target organ in an active 

conformation determines the physiological effect of bioactive peptides. Various processes 
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take place after oral administration of a bioactive peptide and need to be considered on the 

final activity. It’s highly likely that antihypertensive reported peptide sequences are 

subjected to alteration before the final activity in vivo after the various steps, such as attack 

of gastrointestinal enzymes and brush border peptidases, absorption through the intestinal 

barrier, attack of intracellular peptidases in the transcellular absorption and plasma 

enzymes after the peptides have entered the circulation [58, 154]. Therefore, the different 

aspects of bioavailability of antihypertensive peptide sequences have attracted a growing 

interest in the last years. The possibility of modification or breakdown of peptides during 

the gastrointestinal digestion is one of the most important factors to be considered when 

evaluating potential food-derived peptides for promotion of human health. Various models 

have been implemented to simulate gastrointestinal digestion; static and dynamic models 

which both differ in enzymes applied and reaction conditions, such as agitation and 

duration. For instance, authors in references [155] and [47] utilized human digestive liquids 

to model digestion in vitro whereas several reports have concerned implementation of 

porcine enzyme mixtures [e.g. 60, 127, 132]. In addition to studying the resistance of 

antihypertensive peptide sequences against the digestive enzymes, the models have been 

utilized in order to produce bioactive peptides, plant derived ACE-inhibitory peptides 

among them. For instance pea, lentil, bean and chickpea proteins have been reported to 

release ACE-inhibitory peptides during in vitro digestion [40, 127, 132]. The digestive 

characteristics of commercial proteases mixtures are known to differ from those of human 

origin [155]. Zhu and co-workers [156] reported that the antioxidative activity of a zein 

hydrolysate, which had previously shown antioxidant activity in aqueous solutions and in 

food systems, was either decreased or improved during the course of in vitro digestion, 

depending on the enzymes encountered and the duration of hydrolysis. Thus, direct 

comparison of the results between the different models is difficult. A consensus concerning 

the basic parameters would be relevant in order to harmonize the various in vitro digestion 

models.  

Study of intestinal absorption in vitro is another common aim when elucidating the 

bioavailability. It has been indicated that a small portion of bioactive peptides can pass the 

intestine barrier and although it is usually too small to be considered nutritionally 

important, it can present the biological effects in tissue level [157, 158]. Molecular size and 

structural properties, such as hydrophobicity, affect the major transport route for peptides 

[158]. Research findings indicate that peptides with 2–6 amino acids are absorbed more 

readily in comparison to protein and free amino acids. As the molecular weight of peptides 

increases, their chance to pass the intestinal barrier decreases. Peptides are transported by 

active transcellular transport or by passive process [159]. The absorption studies are 

commonly performed with the monolayer of intestinal cell lines, such as Caco-2 cells, 

simulating intestinal epithelium, and analysis of peptides and metabolites in serum after in 

vivo and clinical studies. Foltz et al. [160] investigated the transport of Ile-Pro-Pro and Val-

Pro-Pro by using three different absorption models and demonstrated that these tri-peptides 

are transported in small amounts intact across the barrier of the intestinal epithelium. In 

another study, the absolute bioavailability of the tri-peptides in pigs was below 0.1%, with 

an extremely short elimination half-life ranging from 5 to 20 min [161]. In humans, maximal 
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plasma concentration did not exceed picomolar concentration [162]. Studies concerning 

absorption of plant derived peptides are rare, but milk-derived peptide Leu-His-Leu-Pro-

Leu-Pro is an interesting example of a peptide with evaluation of bioavailability. This 

peptide resisted gastrointestinal simulation, but cellular peptidases digested the peptide to 

His-Leu-Pro-Leu-Pro before crossing Caco-2 cell monolayer [163, 164]. The degradation 

product, His-Leu-Pro-Leu-Pro, has been demonstrated to absorb in human intestine as it has 

been identified in human plasma after oral administration [165]. 

Fujita and colleagues [166] established a bioavailability factor in relation to antihypertensive 

activity and ACE inhibition mechanism. The classification is based on inhibitor type and 

substrate type, the possible conversion of peptides by ACE into peptides with weaker 

activity and pro-drug type inhibitors, or possible conversion of peptides into true inhibitors 

by ACE or gastrointestinal proteases. A delayed antihypertensive effect is characteristic for 

pro-drug type peptides as they need to degrade further to reach the final active form [167, 

168]. For instance, flaxseed protein showed pro-drug type characteristics compared to 

hydrolysed cationic peptide fraction [126]. The protein fraction showed a delayed 

hypotensive effect in SHR comparable to captopril (3 mg/kg body weight) and the effect was 

more sustained than the effect of the digested peptide fraction. The slow-acting character of 

the protein fraction was expected since the digestion of the proteins. Anyhow, more 

research is needed to identify the active peptide sequences released in the digestive tract 

and to evaluate the bioavailability of these peptides. 

It can be deduced due to the incomplete bioavailability of peptide following oral ingestion, a 

peptide with pronounced antioxidant activity in vitro may exert little or no activity in vivo. 

However, bypass routes which increase the chance of peptide absorption can diminish the 

problem and it is possible that in vivo antioxidant activity can be higher than in vitro activity. 

In such cases, bioactive peptides may display their biological functions by mechanisms 

other than what is applied in experiment. In addition, it has been suggested that the strong 

in vivo activity can be due to increased activity of peptides following their breakdown by 

gastrointestinal proteases [88]. 

The improvement and optimization of bioavailability of antihypertensive peptides have 

gained a great interest during the last decade. The improvement of limited absorption and 

stability of peptides has been a goal when evaluating their effectiveness. For example, some 

carriers interact with the peptide molecule to create an insoluble entity at low pH, which 

later dissolves and facilitates intestinal uptake, by enhancing peptide transport over the 

non-polar biological membrane [169]. Bioavailability of bioactive tri-peptides (Val-Pro-Pro, 

Ile-Pro-Pro, Leu-Pro-Pro) was improved by administering them with a meal containing 

fibre, as compared to a meal containing no fibre. High methylated citrus pectin was used as 

a fibre [170]. Among drug delivery systems, emulsions have been used to enhance oral 

bioavailability or promoting absorption through mucosal surfaces of peptides and proteins 

[169]. Individually, various components of emulsions have been considered as candidates 

for improving bioavailability of peptides. Anyhow, it seems that no general strategy for 

improving bioavailability of antihypertensive peptides exists and due to the number of 

processes involved and different characteristics of peptides depending on the sequence each 
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case must be studied. Many strategies are currently demonstrated for enhancing 

bioavailability [171], among them microencapsulation for controlled release of the active 

compounds, stabilization of the active molecules to improve transportation through the 

intestinal barrier and provide resistance against degradation, and development of highly 

stabile peptide analogues [172-174]. 

4. Health benefits 

ACE-inhibitory peptides have been studied extensively in the past two decades and ACE-

inhibition is the main mechanism concerning bioactive peptides with proven 

antihypertensive effects. ACE is a constituent enzyme of the Renin-Angiotensin-Aldosterone 

System (RAAS), which is a crucial regulator in human physiology. It controls blood 

pressure, fluid and electrolyte balance and affects the heart, vasculature and kidney [2]. 

Among the food-derived ACE-inhibitory peptides milk-derived peptides are the most 

extensively studied. The relevance of vegetable proteins as a source of antihypertensive 

peptides is increasing and several in vivo studies performed in SHR have demonstrated that 

plant-derived ACE-inhibitory protein hydrolysates and peptides significantly reduce blood 

pressure, either after oral or intravenous administration. For instance, a clinical randomized, 

placebo-controlled crossover study was performed in order to elucidate further the 

antihypertensive potential of yam tuber dioscorins [175]. The dioscorin meal or placebo was 

intervened as a morning drink daily for five weeks, followed by a washout stage for one 

week and the trial was then crossed over for five weeks. The SBP and DBP values were 

decreased after the five weeks of dioscorin meal intervention. The clinical trial as well as the 

animal trials with dioscorin intervention suggests that the gastrointestinal digestion may 

produce antihypertensive peptides from the yam tuber dioscorins. 

Furthermore, related to the RAAS, plant derived ACE-inhibitory peptides have been 

reported to possess inhibition activity against renin, the first and rate-determining enzyme 

in RAAS [2]. The inhibition of renin is being suggested as a major alternative in 

hypertension prevention. The first direct renin-inhibitor, aliskiren, is currently under phase 

III trials to evaluate its potential as an antihypertensive drug [176]. Thermolysin digest of 

pea protein decreased remarkably the renal expression of renin mRNA levels in vivo and 

lowered plasma levels of angiotensin II, thus the reduction in blood pressure in SHR and 

human subjects was likely due to the effects on the renal angiotensin system [143]. Pea-

derived peptides Ile-Arg, Lys-Phe and Glu-Phe showed strong inhibitions in vitro studies of 

ACE and renin [133] as well as ACE-inhibitory peptide fractions from flaxseed protein 

hydrolysates possessed inhibition also against renin [126, 177, 178].  

Opioid receptors are involved in various physiological phenomenons, e.g. in the regulation 

of blood pressure and circulation, and these receptors are related to the antihypertensive 

properties of some food derived peptides. Other vasodilatory substances, such as ET-1, have 

also been suggested to be involved in the antihypertensive effects of food-derived peptides 

[173, 178, 179]. However, peptide sequences derived specifically from plant proteins 

inducing endothelial NO liberation have not been reported this far. A cationic Arg-rich 
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peptide fraction from flaxseed, which possessed hypotensive effects in SHR, was suggested 

to mediate blood pressure through vasodilatory activity of NO synthesized from Arg. The 

observed effect might also be due to ACE- and renin-inhibition and in-depth research is 

needed to measure the renin and ACE protein levels and activities in SHR tissues and 

plasma and to specify the prior mechanism of antihypertensive action [44]. 

Calmodulin (CaM) –dependent cyclic nucleotide phosphodiesterase (CaMPDE) regulates a 

large variety of cellular functions and excessive levels of CaM and CaMPDE play important 

roles in many physiological conditions, symptoms of cardiovascular disease among them. 

Recently, food derived peptides capable to inhibit CaMPDE have been reported, flaxseed 

and pea protein derived peptides among them [125, 133, 178]. Oxidative stress is a crucial 

causative factor for the initiation and progression of hypertension and CVD. Increased 

production of ROS, such as H2O2 and superoxide anion, reduced NO synthesis, and 

decreased bioavailability of antioxidants have been demonstrated in experimental and 

human hypertension. Diet rich in antioxidants can reduce blood pressure and thus, 

antioxidant properties of food-derived peptides may also affect on blood pressure 

regulation [180, 181]. Several food derived peptides have been reported to possess dual 

(ACE-inhibition and antioxidant) activity, among them plant protein derived hydrolysates 

of flaxseed [44, 55,182], rapeseed [47], potato [13] and yam [115, 116]. 

New mechanisms of action of antihypertensive peptides have been demonstrated in the 

recent years. The antihypertensive effect of a rapeseed derived tri-peptide rapakinin, was 

suggested to be mediated through other mechanism than ACE-inhibition [125]. Later on, 

different mechanisms were considered and the vasorelaxing activity of rapakinin was not 

blocked by eNOS inhibitor, while antagonists of IP and CCK1 receptor blocked the 

vasorelaxing effect of rapakinin significantly [128]. The results demonstrated that rapakinin 

relaxes the mesenteric artery of SHR through the PGI2-IP receptor followed by CCK 

pathway and the antihypertensive activity is mediated mainly by the PGI2-IP CCK-CCK1 

receptor-dependent vasorelaxation. Moreover, inhibition of platelet-activating factor 

acetylhydrolase (PAF-AH) is suggested to play a crucial role in the hypertension prevention. 

PAF-AH is a circulatory enzyme secreted by inflammatory cells and it is involved in 

atherosclerosis. The discovery and application of natural PAF-AH into health promoting 

foods open up considerable potential [183].  

5. General conclusions 

The interest on foods possessing health-promoting or disease-preventing properties has 

been increasing. So far most of the studies on antihypertensive peptides have been done on 

milk protein-derived peptides. In fact, much work has been done with dietary 

antihypertensive peptides and evidence of their effect in animal and clinical studies. 

However, it has been highlighted that there is a huge potential for obtaining 

antihypertensive peptides from protein sources other than milk. Much work has been done 

on plant protein hydrolysates and their activity in vitro. So far only limited number of 

peptides has been identified from plant proteins. In addition very little is known on the 
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activity of these hydrolysates and peptides in animal or in humans. These findings open up 

an interesting field aiming to revaluation of plant derived protein-rich by-products formed 

in food industry processes in remarkable amounts.  

Certain aspects, such as identification of the active form of the peptides in the organism and 

the different mechanisms of action that contribute in the antihypertensive effect still need to 

be further investigated. Recent advances on specific analytical techniques enable to follow 

small amounts of the peptides or derivatives in complex matrices and biological fluids. This 

will allow performing the kinetic studies in model animals and humans. Similarly, 

identifying novel and more complex biomarkers of exposure and activity by advances in 

new disciplines such as nutrigenomic and nutrigenetic will open new ways to follow 

bioactivity in the organism. There is still poor knowledge on the resistance of peptides to 

gastric degradation, and low bioavailability of peptides has been observed. This reinforces 

the need of various strategies to improve the oral bioavailability of peptides. 

More emphasis has been put on the legal regulation of the health claims attached to the 

products. Systematic approaches for review and assessment of scientific data have been 

developed by authorities around the world. The scientific evidence on the beneficial effects 

of the product should be enough detailed, extensive and conclusive for the use of a health 

claim in the functional food product labeling and marketing. First, it is necessary to identify 

and quantify the active sequences in the product. It is mandatory to monitor the hydrolytic 

or fermentative industrial production process as the antihypertensive peptides are only 

minor constituents in highly complex food matrices. Second, the antihypertensive effect in 

humans as well as the minimal dose needed to show the effect has to be proven in extensive 

investigations to fulfill the requirements of the legislation concerning functional foods. 

Besides being based on generally accepted scientific evidence, the claims should be well 

understood by the average consumer. Japan is the pioneer in the area of regulation of the 

health claims concerning food products. The concept of Foods for Specified Health Use 

(FOSHU) was established in 1991. In EU, the European Regulation on nutrition and health 

claims was established in January 2007 and the regulations are governed by European Food 

Safety Authority (EFSA). 
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