
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3 

 

 

 
 

© 2013 Norris and FitzGerald, licensee InTech. This is an open access chapter distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Antihypertensive Peptides from Food Proteins 

Roseanne Norris and Richard J. FitzGerald 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/51710 

1. Introduction 

Hypertension or elevated blood pressure (BP) is a global health concern, thought to affect up 

to 30 % of the adult population in developed and developing countries. It is defined by a BP 

measurement of 140/90 mmHg or above. Hypertension is a major risk factor concomitant 

with cardiovascular disease (CVD) states such as coronary heart disease, peripheral artery 

disease and stroke, and kidney disease. Essential hypertension, the most common type of 

hypertension and to which 90-95% of cases belong, is manifested as an increase in an 

individual’s BP due to an unknown cause. This class of hypertension can be improved with 

lifestyle choices such as regular exercise, heart-healthy eating, non smoking, reducing 

sodium intake and reducing the level of stress [1]. For these reasons it is defined as a 

controllable risk factor of CVD. At present there is a range of synthetic drugs on the market 

for treatment of hypertension including diuretics, adrenergic inhibitors such as α- and β-

blockers, direct vasodilators, calcium channel blockers, angiotensin II (Ang II) receptor 

blockers and angiotensin converting enzyme (ACE) inhibitors. However, although 

hypertension can be controlled by pharmacological agents, it represents a major burden on 

annual global healthcare costs. According to the Centre for Disease Control and Prevention 

(CDC) [2], it was estimated that hypertension-related costs reached $76.6 billion in the USA 

in 2010. It is thought that prevention through lifestyle choices and early treatment for 

individuals with mild hypertension can significantly reduce global health-care costs. 

Food proteins contain numerous biologically-active peptides (BAPs). These BAPs can exert 

positive physiological responses in the body beyond their basic nutritional roles in the 

provision of nitrogen and essential amino acids. Many bioactivities have been found 

including peptides with antihypertensive capabilities. This has led to significant research on 

the discovery and generation of peptides with antihypertensive properties in vivo. Food 

proteins such as the casein and whey protein components of milk, meat, egg, marine and 

meat proteins have all been found to contain peptides with potential antihypertensive 

properties within their primary sequences. These peptides may become active when 
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released through enzymatic/bacterial hydrolysis [3]. The food industry has recognised the 

potential of these natural antihypertensive agents as possible future functional ingredients, 

aiding in the primary prevention and/or management of hypertension. 

2. Hypotensive mechanisms of action 

The regulation of BP is complex, involving a variety of intertwining metabolic pathways. By 

far, the most studied BP control pathways with regard to food-derived peptides involve 

those shown to inhibit ACE in vitro. This enzyme is one of the main regulators of BP and is 

involved in two main systems, the renin-angiotensin system (RAS) and the kinin-nitric 

oxide system (KNOS). Inhibition of ACE in these systems leads to dilation of the artery 

walls or vasodilation and subsequent lowering of BP. However, it is not yet known whether 

this is the main mechanism followed in vivo or whether there are a number of other BP 

control mechanisms involved [4]. 

2.1. ACE inhibition 

ACE inhibition is an excellent physiological target for clinical hypertensive treatment due to 

its involvement in two BP related systems, the RAS and the KNOS. The RAS is thought to be 

one of the predominant pressor systems in BP control. In the RAS the N-terminus of the 

prohormone angiotensinogen, which is derived from the liver, is cleaved by renal renin to 

produce the decapeptide angiotensin I (Ang I). ACE then removes the C-terminal dipeptide 

HL to form Ang II, a potent vasoconstrictory peptide which acts directly on vascular smooth 

muscle cells. Thus, inhibition of ACE consequentially leads to BP reduction. Ang II binds to 

AT1 and AT2 receptors which are located in peripheral tissues around the body and in the 

brain. The vasocontriction produced by Ang II is mediated by the AT1 receptor. [5-7]. In the 

KNOS, ACE inactivates the vasodilatory peptides bradykinin and kallidin. Kallidin is 

synthesised from kininogen by kallikrein, and its further action on kallidin leads to the 

formation of bradykinin among other vasoactive peptides. Bradykinin binds to β-receptors 

which lead to an eventual increase in intracellular Ca2+ level. The binding of bradykinin to β-

receptors and the increase in Ca2+ stimulates nitric oxide synthase (NOS) to convert L-

arginine to nitric oxide (NO), a potent vasodilator. ACE can therefore, indirectly inhibit the 

production of NO as it hydrolyses bradykinin into inactive fragments [7]. 

There are a number of widely-used synthetic ACE inhibitors currently on the market that 

serve as the first line of approach for the treatment of hypertension. Such inhibitors include 

Captopril, Enalapril and Lisinopril. However, their use is associated with a range of side-

effects including cough, skin rashes, hypotension, loss of taste, angiodema reduced renal 

function and fetal abnormalities [8]. Natural ACE inhibitory peptides from food are not 

associated with the side-effects brought about by the synthetic drugs. They are not as potent 

inhibitors of ACE as the synthetic inhibitors which can have IC50 values in the nM region. As 

they inhibit ACE to a lesser extent, this potentially allows for safer levels of bradykinin in 

the body. Thus, for this reason, ACE-inhibitory peptides have gained interest as potential 

preventative agents for hypertension control. 
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ACE-inhibitory peptides have been identified in a range of food proteins including 

casein, whey, ovalbumin, red algae, wakame, soy, gelatin, chicken muscle, dried bonito, 

corn, sardines, rapeseed, potato, chick pea, tuna muscle, pea albumin, garlic, wheat 

germ, sake, porcine haemoglobin and squid. The ACE inhibitory peptides found in 

different food proteins has been extensively reviewed (for review see [9-12; 3; 131]. 

Examples of recently reported food protein ACE inhibitory peptide sources include loach 

(Misgurnus anguillicaudatus) [13], pork meat [14], lima bean (Phaseolus lunatus) [15], skate 

skin [16] and boneless chicken leg meat [17]. ACE inhibitory peptides have been 

generated in a number of different ways. They can be produced naturally during 

gastrointestinal (GI) digestion by the hydrolytic action of the proteinases pepsin, trypsin, 

chymotrypsin and by brush border peptidases [18]. Simulated GI digestion has been 

carried out on a range of protein sources to assess the effect of GI digestion on ACE-

inhibitory peptides [19-24]. More commonly, ACE-inhibitory peptides are produced 

through enzymatic hydrolysis with GI enzymes such as pepsin and trypsin or with 

enzyme combinations such as Alcalase™ [25]. ACE-inhibitory peptides have also been 

produced during the fermentation of milk during cheese production. Lactobacillus and 

Lactococcus lactis strains have been shown to produce ACE inhibitory peptides. 

Furthermore, fermented soy products such as soy paste, soy sauce, natto and tempeh 

have been found to produce ACE-inhibitory peptides [26-29]. 

ACE inhibitory peptides can work in three ways and are classed as inhibitor-type, substrate-

type or prodrug-type based on changes in ACE inhibitory activity after hydrolysis of 

peptides by ACE [30]. Inhibitor-type peptides are ACE inhibitory peptides whose activity is 

not significantly altered as the peptides are resistant to cleavage by ACE. Substrate-type 

ACE inhibitors show a decrease in ACE activity due to cleavage by ACE. Prodrug type 

refers to the conversion to potent ACE inhibitors following hydrolysis of larger peptide 

fragments by ACE itself. The resulting peptides tend to produce long-lasting hypotensive 

effects in vivo [30]. A prodrug type ACE inhibitor was isolated from a thermolysin-digest of 

Katsuo-bushi, a Japanese traditional food processed from dried bonito. The study reported 

an 8-fold increase in ACE-inhibitory activity when the peptide Leu-Lys-Pro-Asn-Met 

(IC50=2.4 μM) was hydrolyzed by ACE to produce Leu-Lys-Pro [IC50=0.32 μM; 30]. When 

Leu-Lys-Pro-Asn-Met and Leu-Lys-Pro were orally administered to spontaneously 

hypertensive rats (SHR), Leu-Lys-Pro-Asn-Met showed a maximal decrease of BP after 4 

and 6 h, results which are comparable to that of Captopril inhibition. However, the maximal 

hypotensive effect of Leu-Lys-Pro was seen at 2 h [30]. 

Inhibition of ACE is by far the most studied mechanism of BP control with regard to food-

derived biologically-active peptides. Most peptides have been found to inhibit ACE to some 

degree. However, in most cases, it has yet to be answered whether this is the BP mechanism 

being employed in vivo. There are other regulatory pathways of BP control, independent of 

ACE, that are also potential targets for the action of antihypertensive peptides (see Figure 1 

for vasorelaxative peptides and molecules). 
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Figure 1. Vasorelaxative peptides and molecules in blood pressure control systems. 

2.2. Renin Inhibition 

Renin inhibition is another potential target for BP control. It is thought that inhibition of 

renin could provide a more effective treatment for hypertension it prevents the formation of 

Ang-I, which can be converted to Ang-II in some cells independent of ACE, by the enzyme 

chymase [31]. In addition, unlike ACE which acts on a number of substrates in various 

biochemical pathways, angiotensinogen is the only known substrate of renin. Therefore, 

renin inhibitors could ensure a higher specificity in antihypertensive treatment compared to 

ACE inhibitors [31-32]. Food peptides have recently been found to be inhibitors of renin. 

Peptides from enzymatic flaxseed fractions were found to inhibit both human recombinant 

renin and ACE. The study concluded that such peptides with the ability to inhibit both ACE 

and renin may potentially provide better antihypertensive effects in vivo in comparison to 

peptides that only inhibit ACE [33]. A similar outcome was seen in a study carried out by Li 

& Aluko [34] where fractions of pea protein isolates inhibited both ACE and renin to a high 

degree with IC50 values <25 mM.  

2.3. Calcium channel blocking effects 

Calcium channel blockers interact with voltage-gated calcium channels (VGCCs) in 

cardiac muscle and blood vessel walls, reducing intracellular calcium and consequently 

lowering vasoconstriction. It has been shown in various studies that peptides can have 

the ability to act as calcium channel blockers. Fifteen synthetic peptides based on Trp-His 

skeleton analogues were tested for their vasodilatory effects in 1.0 μM phenylephrine-

contracted thoracic aortic rings from Sprague-Dawley rats. It was previously reported 

that Trp-His induced the most potent vasodilation among 67 synthetic di-and 

tripeptides. The study demonstrated that His-Arg-Trp had an endothelium-independent 
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vasorelaxative effect in the phenylephrine-contracted thoracic aorta. It was also shown 

that His-Arg-Trp, at a concentration of 100 μM, caused a significant reduction in 

intracellular Ca2+ concentration. The increase intracellular [Ca2+], brought about by the 

action of Bay K8644 or Ang II, was significantly inhibited by His-Arg-Trp (>30%). It was 

proposed that His-Arg-Trp may have supressed extracellular Ca2+ influx through 

voltage-gated L-type Ca2+ channels [35]. Another recent study reported a similar result 

with Trp-His which was also found to block L-type Ca2+ channels. Trp-His at 300 μM 

elicited an intracellular Ca2+ reduction of 23 % in 8 week-old male Wistar rat thoracic 

aortae smooth muscle cells. In addition, the reduction in [Ca2+] brought about by Trp-His 

was eliminated by verapamil indicating that Trp-His specifically works on L-type Ca2+ 

channels [36]. 

2.4. Opioid peptide vasorelaxive effects 

Food-derived peptides have also been found to be sources of opioid like-activities. These 

peptides bind to opioid receptors to produce morphine-like effects. Natural opioid peptides 

include endorphins, enkephalins and dynorphins. In humans opioid receptors are found in 

the nervous, endocrine and immune systems, and in the intestinal tract. These receptors 

may be involved in various regulatory processes in the body including the regulation of 

circulation which can affect BP [37; 38]. Nurminen et al [39] found an antihypertensive effect 

on oral administration of the tetrapeptide, α-lactorphin (Tyr-Gly-Leu-Phe), to SHR and to 

normotensive Wistar Kyoto rats (WKY). Maximum BP reductions were found in SHR, with 

a decrease of 23 ± 4 and 17 ± 4 mm Hg in systolic BP (SBP) and diastolic BP (DBP), 

respectively. However, the α-lactophin-induced reduction in BP was not found after 

administration of the specific opioid receptor antagonist, Naloxone. Therefore, the 

antihypertensive effect was considered to be a result of interaction with opioid receptors. A 

follow-up study looked at the effects of α-lactophin along with a second milk-derived 

peptide β-lactorphin (Tyr-Leu-Leu-Phe) on mesenteric arterial function to demonstrate the 

regulatory mechanisms of action. It was shown with the NOS inhibitor NG-nitro-L-arginine 

methyl ester (L-NAME) that α-lactophin produced an endothelium-dependant 

vasorelaxation, whereas, β-lactorphin also enhanced endothelium-independent 

vasorelaxation. The study concluded that α-lactophin may stimulate opioid receptors which 

in turn releases NO causing the vasorelaxative effect [40]. The casein-derived peptide 

casoxin D (Tyr-Val-Pro-Phe-Pro-Pro-Phe) has also been reported to have an hypotensive 

effect via opioid receptors. The peptide was found to have an endothelium-dependent 

relaxation in canine mesenteric artery strips. Anti-opioid and vasorelaxing effects were 

mediated by the opioid μ-receptor and BK B1-receptor, respectively [41-42]. Furthermore, it 

has been suggested that opioid-induced BP regulation by such peptides may act upon 

receptors in the intestinal tract. Interestingly, this would mean that the peptide would not 

need to be absorbed into the blood stream at the brush border membrane [43]. It could very 

well be that opioid-mediated reduction in BP may be the principal mechanism for 

antihypertensive peptides.  
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2.5. Endothelin-1 and endothelin converting enzyme (ECE) inhibition 

The vasoconstrictory peptide endothelin-1 (ET-1) is released from big endothelin-1 (big ET-

1) by the action of endothelin-converting enzyme (ECE). ET-1 mediates vasoconstriction via 

2 receptors, ETa and. ETb. Both receptors mediate contractions on smooth muscle, but ETb 

also induces relaxation of endothelial cells by the production of nitric oxide. ET-1 is known 

to have a greater vasocontrictive effect than Ang II [44; 7]. Endothelial-dependent release of 

NOS was found to be the mechanism of action for the antihypertensive egg protein derived 

ovokinin (f2-7) peptide (Arg-Ala-Asp-His-Pro-Phe). Dilation of isolated SHR mesenteric 

arteries was found to be inhibited by L-NAME but not by indomethacin, demonstrating NO 

release from the endothelial cells [45]. A later study showed that ovokinin (2–7) modulates a 

hypotensive effect through interaction via B2 bradykinin receptors [46]. 

It has been found that food proteins have the ability to act as inhibitors of ECE. Okitsu et al 

[47] found ECE inhibitory peptides in pepsin digests of beef and bonito pyrolic appendix. 

Up to 45 and 40 % of ECE activity could be inhibited with the beef and bonito peptides, 

respectively. A second study showed that the ACE-inhibitory peptide Ala-Leu-Pro-Met-His-

Ile-Arg, released through tryptic digestion of bovine β-lactoglobulin, can inhibit the release 

of ET-1 in cultured porcine aortic endothelial cells (PAECs). At a concentration of 1 mM Ala-

Leu-Pro-Met-His-Ile-Arg, ET-1 release was reduced by 29 %. The study concluded that the 

ET-1 reduction may be due to indirect reduction of ET-release by ACE inhibition through 

the BK pathway, rather than direct action on ET-1 by the peptide [48]. ACE breaks down BK 

into inactive fragments in the KNOS. Subsequent accumulation of BK (vasodilator) due to 

ACE inhibition leads to increased release of the vasodilator NO, and antagonises the release 

of the ET-1 by endothelial cells. 

3. Structure activity relationships 

An understanding of the relationship between a peptide and its bioactivity allows for the 

targeted release of potentially potent peptide sequences. This would eliminate the need for 

the time-consuming conventional peptide discovery strategy. There is limited knowledge on 

the structure-activity relationship of hypotensive peptides. To date, the main focus with 

regard to bioactive peptide research has been on the generation and characterisation of these 

peptides. ACE inhibition is by far the most widely studied biomarker with regard to 

antihypertensive effects of bioactive food peptides. ACE can work on a wide range of 

peptide substrates, and appears to have a broad specificity. Some structural features that 

influence the binding of a peptide to the ACE active site have been recognised (Table 1). 

However, potent inhibitory peptides of ACE are generally short sequences, i.e., 2-12 amino 

acids in length. However, some larger inhibitory sequences have been identified. Studies 

have indicated that binding to ACE is strongly influenced by the substrate’s C-terminal 

tripeptide sequence. Hydrophobic amino acid residues with aromatic or branched side 

chains at each of the C-terminal tripeptide positions are common features among potent 

inhibitors. The presence of hydrophobic Pro residues at one or more positions in the C-

terminal tripeptide region seems to positively influence a peptide’s ACE inhibitory activity. 
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Tyr, Phe and Trp residues are also present at the C-terminus of many potent ACE inhibitors, 

especially with di- and tripeptide inhibitors [9]. It has been suggested that Leu residues may 

also contribute to ACE inhibition [49]. Furthermore, the positive charge on the side chains of 

Arg and Lys residues at the C-terminus have been noted to contribute to the ACE inhibitory 

potential of a peptide [50-51; 9]. An L-configured amino acid at position three at the C-

terminus of the inhibitory peptide may be a requirement for potent inhibition. A study 

showed that the IC50 for the tripeptide D-Val-Ala-Pro (2 μM) increased to 550 μM with L-

Val-Ala-Pro, yet only a slight increase in IC50 was seen for the peptide L-Phe-Val-Ala-Pro (17 

μM; Maruyama et al., 1987). It is thought that conformation contributes to the ACE 

inhibitory potential of long-chain peptide inhibitors [3].  

N-Terminus--------------------------------------------------------------------------------------C-Terminus 

Hydrophobic residues 2-12 amino acids in length 

Peptide conformation important 

for longer peptides 

 

C-terminal tripeptide 

Bulky hydrophobic 

residues 

Aromatic or branched 

side chains 

Proline at one or more 

positions 

Positively charged 

residues in position two, 

Arg, Lys 

Tyr, Phe, Trp, Leu 

L-configured residue in 

position three 

Table 1. Some structural features of potent angiotensin converting enzyme (ACE) inhibitory peptides. 

Both domains of ACE (C- and N-domains) contain an active site containing the sequence 

His-Glu-XX-His. These active sites are located within the cleft of the two domains, and are 

protected by an N-terminal ‘lid’. This ‘lid’ blocks access of large polypeptides to the active 

site. This is thought to explain why small peptides are more effective in inhibiting ACE. In 

addition, ACE inhibition may include inhibitor interaction with subsites on the enzyme that 

are not generally occupied by substrates or with an anionic inhibitor binding site that is 

different for the catalytic site of the enzyme. With the catalytic sites of ACE having different 

conformational requirements, this could indicate that for a more complete inhibition of 

ACE, there may be a need to use a variety of peptide inhibitors each with slightly different 

conformational features [52-53].  

Quantitative computational tools are increasingly been applied in medicinal and 

pharmaceutical drug discovery. Recently it has been acknowledged that such models could 

be adapted to food-derived bioactive peptide sequences. Quantitative structure-activity 

relationship modelling (QSAR) and substrate docking can be used as an effective tool to 

assess in silico numerous peptide structures for their bioactivity potential. Thus, this work 

allows for a molecular understanding of peptide structure and bioactivity. QSAR studies are 
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based on the relationship between chemical structure of ligands and receptors, and 

biological activity. Physicochemical variables or descriptor variables of a ligand such as 

steric properties, hydrophobicity and electronic properties, molecular mass and shape are 

used to quantitatively correlate the ligand’s chemical structure with bioactivity [54]. A small 

number of QSAR studies have been carried out on ACE-inhibitory peptides. The structure-

activity relationship of di-and tri-peptides using partial least square analysis (PLS) QSAR 

was assessed by constructing a database of known ACE-inhibitory peptides. Using a 3-z 

scale descriptor approach, two models were developed for the amino acid components of 

the peptide datasets. The dipeptide model had a predictive power of 71.1 % while the 

tripeptide model had a predictive power of 43.4 %. The dipeptide model indicated that 

amino acids with bulky and hydrophobic side chains were favoured by ACE while the 

tripeptide model suggested that C-terminal aromatic residues, positively charged residues 

in position two and hydrophobic residues at the amino terminus were preferred [55]. 

Another study by the same authors used a 5-z scale model to assess peptides of 4-10 amino 

acids in length. The study concluded that the tetrapeptide residue at the C-terminus has a 

large influence on the potency of peptide’s 4-10 amino acids in length [56].  

Substrate docking involves the docking of molecules (ligands) to a receptor or into a protein 

target such as an enzyme. All possible docking or binding conformations are assessed for 

their binding affinity to a molecule, and their potential as high affinity binding ligands is 

estimated by use of a scoring function. An integrated QSAR and Artificial Neural Network 

(ANN) approach was used to assess the ACE-inhibitory potential of 58 dipeptides present in 

the sequence of defatted wheat germ protein. The model was used to investigate preferred 

structural characteristics of ACE-inhibitory dipeptides and following this, appropriate 

proteases were successfully selected to produce the dipeptides predicted to be potent 

inhibitors by the QSAR-ANN model. The QSAR model predicted that the C-terminal of the 

peptide had principal importance on ACE inhibitory activity, with hydrophobic C-terminal 

residues being essential for high potency. Furthermore, proteins with a high abundance of 

hydrophobic residues were considered to be good substrates for the production of potent 

ACE inhibitory peptides [57]. Recently, the ability of docking to predict ACE inhibitory 

dipeptide sequences was assessed using the molecular docking program AutoDock Vina. 

All potential dipeptides and phospho-dipeptides were docked and scored. Phospho-

dipeptides were predicted by the program to be good inhibitors of ACE. However, the 

experimentally determined IC50 results for selected phospho-dipeptides did not correlate 

and the study concluded that phospho-dipeptides may not be potent inhibitors of ACE in 

vivo. Furthermore, LIGPLOT analysis, a program to plot schematic diagrams of protein-

ligand interactions, carried out on two newly identified ACE inhibitory dipeptides Asp-Trp 

and Trp-Pro (ACE IC50 values of 258 and 217 μM, respectively) interestingly showed no zinc 

interaction with the ACE active site [58]. 

4. Peptide bioavailability  

The potential antihypertensive effect of a peptide depends on the peptides ability to reach 

their target organ intact and in an active form. However, there are several barriers which lie 
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in the way of this outcome. Antihypertensive peptides must be resistant to digestive 

proteinases and peptidases; they must be able to be transported through the bush border 

membrane intact and must be resistant to serum peptidases. With regard to ACE inhibition, 

while there have been many studies focusing on the production, isolation and 

characterisation of ACE-inhibitory peptides, to date little attention has been placed on their 

bioavailability. It is therefore difficult to determine the relationship between in vitro ACE-

inhibitory activity and an in vivo hypotensive effect. This is made even more difficult with 

the utilisation of several different in vitro assays and assay conditions for the determination 

of ACE-inhibition [59]. Furthermore, variations in in vivo experimental design such as 

administration by intravenous subcutaneous or oral administration, and the use of animal 

models or hypertensive patients, all hinder the ability to compare results among different 

studies [60].  

Bioactive peptides when taken orally may be inactived by several digestive proteinases and 

peptidases including pepsin in the stomach, and the pancreatic enzymes trypsin, elastase, α-

chymotrypsin and carboxypeptidase A and B in the small intestine. A number of studies 

have been carried out investigating ACE-inhibitory peptides and their ability to resist 

gastrointestinal digestion by these enzymes. These studies involve simulating the 

gastrointestinal process by sequential hydrolysis of ACE inhibitory peptides with pepsin 

and Pancreatin™, each concluding the importance of gastrointestinal digestion analysis in 

the ACE inhibitory activity of the peptide [61-66; 49; 21; 20] . It has been noted that certain 

protein/peptide structures are resistant to gastrointestinal digestion due to the composition 

and position of amino acids in their primary chains. The rate of hydrolysis of a peptide is 

also dependent on the peptide’s amino acid composition. Peptides containing Pro and 

hydroxy Pro residues have been found to be resistant to hydrolysis. Furthermore, 

glycosylated peptides and peptides which have undergone changes during food processing 

such as during the formation of Maillard reaction products have been shown to be resistant 

to GI tract enzyme cleavage [67]. Once the peptides reach the brush border membrane of the 

large intestine, they may also be subjected to further cleavage by a variety of membrane 

anchored epithelial cell intestinal peptidases. These include a number of aminotripeptidases 

and several dipeptidases, each with varying specificities [60]. However, it has been found 

that certain free amino acids released during gastrointestinal breakdown may in turn serve 

as inhibitors of the brush border membrane dipeptidases, Moreover, it has been reported 

that during gastrointestinal proteolysis at the brush border membrane, the large variety and 

high concentration of peptides present would exceed the apparent Vmax for hydrolysis, 

allowing for safe passage of many di- and tripeptides through the membrane wall. 

Absorption through the membrane is possible for both di- and tripeptides with the help of a 

peptide transporter termed PepT1. PepT1 operates as an electrogenic proton/peptide 

symporter having wide substrate specificity [67]. There is an increasing body of research 

that shows the presence of the lactotripeptides (LTPs) Ile-Pro-Pro and Val-Pro-Pro in human 

and animal circulatory systems after oral administration, suggesting the resistance of these 

peptides to gastrointestinal degradation and their absorption intact across the brush border 

membrane [68-72]. However, it has been suggested that intestinal absorption of Val-Pro-Pro 
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may operate via paracellular transport, rather than with the help of PepT1 [73]. Larger Pro-

rich peptides have also been found to be transported intact across the brush border 

membrane. A study found that the ACE-inhibitory and antihypertensive peptide Leu-His-

Leu-Pro-Leu-Pro, β-casein (f133-138), was resistant to gastrointestinal digestion. However, 

this peptide was hydrolysed to the pentapeptide His-Leu-Pro-Leu-Pro by cellular peptidases 

before transportation across the intestinal epithelium. The study concluded by use of a 

Caco-2 monolayer model that the likely mechanism of transport was via paracellular passive 

diffusion [74]. An earlier study quantifying ACE-inhibitory peptides in human plasma 

found the pentapeptide to be present in human plasma after oral administration which 

demonstrates the ability of the peptide to be absorbed through the human brush border 

membrane [75].  

Absorption of peptides across the brush border membrane can be studied by Caco-2 cell 

monolayers, the representative model for human intestinal epithelial cell barrier. The 

intestinal transport of pea and whey ACE inhibitory peptides was also studied using a 

Caco-2 monolayer. It was found that only minor ACE inhibitory activity crossed the Caco-2 

cell monolayer in 1 h. However, it was concluded that the extent of ACE inhibitory peptides 

that may be transported in vivo would be higher, as the Caco-2 model is tighter than 

intestinal mammalian tissue [76]. The transepithelial transport of oligopeptides across the 

intestinal wall was assessed using a Caco-2 cell monolayer [133]. The study showed that the 

hydrolysis of peptides by brush-border peptidases is the rate-limiting step for the 

transepithelial transport of oligopeptides (≥4 residues in length). Bradykinin and Gly-Gly-

Tyr-Arg, which were found to be resistant to cellular peptidases, were investigated for their 

apical-to-basolateral transport mechanism. Bradykinin and its analogues were found to be 

transported by the intracellular pathway, probably the adsorptive transcytosis. The 

transport rate was found to be dependent on the hydrophobic properties of the peptides. 

Gly-Gly-Tyr-Arg was suggested to be transported mainly via the paracellular pathway 

[133]. Foltz et al., [77] devised a predictive in silico amino acid clustering model for 

dipeptides which can predict a dipeptide’s ability to withstand small intestinal digestion. 

Dipeptides (220 in total) were tested for small intestinal stability by simulated digestion and 

their relative stability (% of initial dipeptide concentration) was plotted against time. Using 

the area under the curve (AUC) approach, the contribution of N- and C-terminal amino 

acids were calculated, based on the average AUC of all peptides containing the amino acid 

of interest. Data clustering allowed for ranking of the N- and C-terminal amino acid 

residues and they were grouped by their average AUC values. Correlations with 

experimentally measured stability allowed for classification of dipeptides as intestinally 

‘stable’, ‘neutral’ or ‘instable’ using the clustering model.  

Following absorption of a peptide into the blood stream, it may undergo hydrolysis by 

serum peptidases. The ACE inhibitory peptide may need to be able to with-stand hydrolysis 

in order to reach their target organs intact and yield their antihypertensive effect. It has been 

suggested that potent ACE inhibitors may be produced in circulation by the action of serum 

peptidases on less potent inhibitors of ACE and by the action of ACE itself. These peptides 

have been referred to pro-drug type inhibitors of ACE [78; 60].  
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Thus, the bioavailability of ACE-inhibitory peptides is essential for their activity. Several 

approaches to aid in peptide delivery are been considered. Peptides may be chemically 

modified in order to reduce the rate of enzymatic degradation and to increase bioavailability 

while also in some cases enhancing bioactivity. The half-life of unmodified peptides in the 

blood is in most cases very short. They also generally have poor bioavailability in tissues 

and organs, limiting their ability as preventative therapeutic agents [79; 80]. Modifications 

such as end changes, glycosylation, alkylation, and conformational changes to amino acids 

within the peptide may therefore have potential for ACE inhibitory peptides [80; 81]. These 

approaches have already been adapted to opioid peptides [81]. There is significant scope for 

these modifications to also be applied to ACE inhibitory and antihypertensive peptides. 

Encapsulation via nanoparticles and liposomes is also a strategy previously employed for 

opioid peptides that has possibility for adaption to for ACE inhibitory peptides. These 

approaches may aid in the passage of a peptide through the GI tract and may enhance the 

plasma half-life of the peptides. Furthermore, there is potential for bioactive peptides to be 

produced by microorganisms through genetic engineering to be delivered to target organs 

in situ [60]. Lastly, there is also the possibility to cross-link BAP to protein transduction 

domains that have been found to be able to cross biological membranes thus promoting 

peptide and protein delivery into cells [60; 82]. Morris et al [82] also devised a similar 

strategy using the peptide transporter PepT-1 to carry target peptides into cells. 

5. Ex-vivo and in vivo animal studies 

The first step employed to determine if a peptide is hypotensive is to conduct trials with 

small animals such as SHRs, the accepted model for human essential hypertension. A 

bioactive peptide can only be referred to as ‘antihypertensive’ after a significant decrease in 

BP is observed in trials with SHR. There have been many studies carried out in animals to 

elucidate whether food-derived ACE-inhibitory peptides can lead to an antihypertensive 

effect in vivo. Antihypertensive peptides from milk, egg, animal (including meat and marine 

animals), plant and macroalgae have recently been reviewed [4; 25; 83-86]. 

Ile-Pro-Pro (β-casein f74-76; κ-casein f108-110) and Val-Pro-Pro (β-casein f84-86) were 

among the first dietary peptides found to have a hypotensive effect in SHR. The peptides 

were first isolated from milk fermented with Lactobacillus helveticus and Saccharomyces 

cerevisiae (Ameal S) and their ACE-inhibitory IC50 values were obtained (Val-Pro-Pro and Ile-

Pro-Pro having IC50s of 9 and 5 μM, respectively [87]). The antihypertensive effect was first 

demonstrated when SHR were administered with a single oral dose of the LTPs which 

resulted in a significant decrease SBP between 6 to 8 h after administration [88]. Thereafter, 

several studies have been conducted to further characterise the in vivo effect of the LTPs. 

Their long-term effects (12-20 weeks) of administration have been assessed [89-93]. 

Administration of the peptides via a peptide supplement and via a sour milk drink to SHR 

resulted in a decrease in SBP of 12 and 17 mm Hg, respectively, compared to the control 

(water) after 12 weeks [90]. Endothelial function protective effects of Ile-Pro-Pro and Val-

Pro-Pro were investigated using isolated SHR mesenteric arteries stored in solutions of 
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Krebs containing Ile-Pro-Pro and Val-Pro-Pro (1 mM), when mounted in an organ bath. 

Vascular reactivity measurements demonstrated better preservation of endothelium-

dependent relaxation in arteries stored with the LTPs compared to controls [94]. Their 

bioactive effect in double transgenic rats (dTGR) harbouring human renin and 

angiotensinogen genes was also assessed. These transgenic rats develop malignant 

hypertension, cardiac hypertrophy, renal damage, and endothelial dysfunction due to 

increased Ang II formation. A decrease of 19 mm Hg in SBP was seen in rats administered 

with fermented milk supplemented with the peptides (Ile-Pro-Pro (1.8 mg/100 ml) and Val-

Pro-Pro (1.8 mg/100 ml) compared to the control group Thus, it was concluded that the 

supplemented fermented milk product can aid in preventing the development of malignant 

hypertension. There was no effect on BP reported from a group receiving the peptides 

dissolved in water, despite the higher intake level of peptides. The authors concluded that 

the reported antihypertensive effect of the fermented milk product can not be explained 

solely by the Ile-Pro-Pro and Val-Pro-Pro supplements and suggested that a combination of 

factors such as calcium and potassium content, and less sodium may have contributed to the 

observed hypotensive effect [95].  

Other rat models, such as the normotensive WKY rat, have been used to evaluate the effect 

of food peptides on arterial BP. However, a significant hypotensive effect is not always 

observed in WKY. Single oral administration of Ameal S containing the LTPs decreased BP 

from 6 to 8 h after administration in SHR. However, no change in SBP was observed in 

normotensive WKYs [88]. Similarly, the ACE inhibitory peptide Leu-Arg-Pro-Val-Ala-Ala 

from bovine lactoferrin was found to have a significant antihypertensive effect in SHR but 

no change in BP was found when the peptide was administered via intravenous injection to 

WKY rat [96]. Thus, the hypotensive effect of some food-derived peptides may be specific to 

the hypertensive state of the animal. The effect of fermented milk with LTPs on BP and 

vascular function in salt-loaded type II diabetic Goto–Kakizaki rats has also been assessed. 

GK rats are characterized by impaired glucose-induced insulin secretion, abnormal glucose 

regulation, insulin resistance and polyuria. They are normotensive but when on a high-salt 

diet can develop hypertension. The study showed a significant decrease in BP and enhanced 

endothelium-dependent relaxation of mesenteric arteries [97]. 

There are wide variations in BP responses from different food proteins. These variations 

may be due to the different food sources themselves but also may be due to differences in 

experimental models such as the type of animal used, the dosage of peptide required for a 

significant decrease in BP, duration of administration and administration route, i.e., oral 

versus intravenous administration. In general, it has been found that peptides administered 

intravenously have a higher decrease in BP than peptides administered orally. This may be 

due to lower bioavailability of these peptides in the blood stream as transport of the 

peptides across the brush border membrane in an intact state may not be possible. 

Hydrolysis or partial hydrolysis of the peptides by GI and serum enzymes may lead to 

inactive or less active hypotensive peptide forms. Thus, bioavailability studies are essential 

to assess the antihypertensive potential of a peptide [3].  
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Furthermore, it must be noted that although dietary peptides have lower ACE IC50 in vitro in 

comparison to the synthetic ACE drug inhibitor Captopril (IC50 in nM range), in most cases 

they display higher in vivo hypotensive effects than are expected with respect to their in vitro 

results. It has been suggested that this may be due to a higher affinity of dietary peptides to 

the tissues and a slower elimination in comparison to Captopril. Moreover, it is possible that 

several BP mechanisms of action are being employed [30; 98]. It was demonstrated that 

neither the egg-protein derived peptide ovokinin (2-7) (Arg-Ala-Asp-His-Pro-Phe) or Arg-

Pro-Leu-Lys-Pro-Trp, the most potent derivative obtained from the structural modification 

of ovokinin,, inhibit ACE in vitro. IC50 values obtained were >1000 μmol/L, despite having a 

significant effect on BP when orally administered to SHR [99]. Thus, it must be 

acknowledged that in vitro ACE inhibitory determination may not be the best approach to 

assess the potential of a peptide as an antihypertensive agent. In a study by da Costa et al 

[100] it was found that the most potent in vitro ACE inhibitory peptides from whey did not 

have a significant effect on BP when orally administered to SHR. However, whey peptides 

with relatively low in vitro ACE-inhibitory activity in comparison achieved significant 

reductions in BP. 

6. Human studies 

The majority of the clinical trials regarding the antihypertensive effects of milk-derived 

peptides to date have been carried out on the LTPs, Ile-Pro-Pro and Val-Pro-Pro. Although 

some conflicting results exist, the majority of these trials have reported a significant decrease 

in BP. Their effect on office BP has been well documented (for reviews see 101; 3; 25). It is 

essential that the BP of test subjects is evaluated in comparison to placebo values and not to 

baseline values of the test product. As with test products, placebo groups have been found 

to often decrease in BP over the test period [101]. Furthermore, the 24-h ambulatory BP 

monitoring (ABPM), of patients BP is thought to be a more reliable method for evaluation of 

BP as it reduces the ‘white coat effect’. Recent clinical trials with LTPs have employed 

ABPM [102-104; 91]. ABPM was used to assess the effects of LTP administration on dipper 

(where BP decreases at night time) and non-dipper (where BP does not decrease at night 

time) hypertensive subjects. Non-dippers are thought to have a higher cardiac vascular risk 

and BP monitoring in the morning and night can help predict cardiac events such as stroke 

and myocardial infarction. Twelve patients received a fermented milk product containing 

Ile-Pro-Pro (1.52 mg) and Val-Pro-Pro (2.53 mg) daily for 4 weeks. The study reported a 

significant reduction in night-time and early-morning SBP for nondipper subjects but not for 

dipper subjects [105]. A range of hemodynamic parameters was recently evaluated for 52 

human subjects with high-normal BP or first-degree hypertension. These included office BP 

and ABPM, stress-induced BP increase and cardiac output-related parameters. Subjects were 

treated with LTPs (3 mg/day) for 6 weeks. The study reported a reduction in office SBP as 

well as an improvement in pulse wave velocity (an instrumental biomarker for vascular 

rigidity), stroke volume and stroke volume index (markers of cardiac flow) and acceleration 

and velocity index (markers of cardiac contractility). No effect on ABPM and BP reaction to 

stress was observed [106]. LTPs have also been reported to reduce arterial stiffness in 
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humans. In a double-blind parallel group intervention study, 89 hypertensive subjects 

received daily milk containing a low dose of 5 mg/day of Ile-Pro-Pro and Val-Pro-Pro for 12 

weeks and a dose of 50 mg/day for the following 12 weeks. Arterial stiffness, measured by 

the augmentation index (AI), decreased in the peptide group by -1.53% compared to 1.20% 

in the placebo group at the end of the second intervention period [107]. A similar result was 

seen in a study by Nakamura et al [108]. Twelve hypertensive subjects were administered 

four tablets containing Val-Pro-Pro (2.05 mg) and Ile-Pro-Pro (1.13 mg) daily for 9 weeks 

and were monitored for various hemodynamic parameters. A significant reduction in AI as 

well as peripheral SBP and DBP along with central SBP (cSBP) was observed. Furthermore, 

it has been suggested that LTPs may also have a positive effect on vascular endothelial 

function in subjects with stage-I hypertension [109] and may improve arterial compliance in 

postmenopausal women [110]. 

Other hypotensive peptides and food preparations used in human trials include peptides 

from casein [111], whey [112], dried bonito [113], fermented milk containing gamma-

aminobutyric acid (GABA; 114) sardine muscle [115] and wakame (Undaria pinnatifida; 116). 

Recently, a number of meta-analyses on antihypertensive peptides have been carried out. 

Pripp et al [117] performed a meta-analysis on antihypertensive peptides from milk and fish 

proteins which included 15 human trials. A pooled decrease in SBP of -5.13 mm Hg and a 

decrease of -2.42 mm Hg for DBP were found. A similar result was found with a meta-

analysis of 12 trials with LTPs, (623 participants in total) when pooled data in forest plots 

found a decrease of -4.8 mm Hg and 2.2 mm Hg in SBP and DBP, respectively. The observed 

hypotensive effects also seemed to be greater in hypertensive patients than in patients with 

pre-hypertension [118]. Another meta-analysis carried out on data from LTPs trials 

interestingly found that the effect of LTPs on BP was more evident in Asian subjects (SBP = -

6.93 mm Hg; DBP=-3.98 mm Hg) than in Caucasians (SBP=-1.17 mm Hg; DBP = -0.52 mm 

Hg). The study also found that the LTP-induced hypotensive effects were not related to 

subject age, baseline BP value, administered dose or length of treatment [119]. Conflicting 

results however, were reported in a recent meta-analysis by Usinger et al [132]. Data from 15 

controlled trials (1232 subjects in total) that observed the effect of fermented milk or similar 

products produced by Lactobacilli fermentation of milk proteins were used in the meta-

analysis. The study reported a pooled decrease in SBP of just -2.45 mm Hg and found no 

significant decrease for pooled DBP data. Furthermore, the authors stated that the included 

studies were of variable quality and when excluding the studies with a high risk of bias no 

significant decrease in SBP or DBP were found. 

7. Hypotensive peptides as functional food ingredients 

The main considerations which need to be taken into account in the utilisation of 

antihypertensive peptides as functional ingredients in food products include 

characterisation of their organoleptic and physicochemical properties. In the first instance, 

establishment of the optimal method for peptide release via protein hydrolysis is 

required. Industrial scale processing of BAPs requires that peptides be able to withstand 
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and retain their bioactivity during multi-step processing including pasteurisation, 

homogenisation, pressure-driven membrane-based processing such as ultrafiltration and 

nanofiltration, dehydration by spray-drying or freeze-drying, and peptides must also be 

stable during long-term storage. Little data exists on the effects of different processing 

techniques on BAPs in food products. Dehydration via spray drying has been found to 

produce changes in peptide confirmation, a reduction in amino acid content and may also 

lead to non-enzymatic browning reactions [43]. The industrial-scale production of a casein 

hydrolysate containing the antihypertensive peptides Arg-Tyr-Leu-Gly-Tyr (αs1-CN f90-

94) and Ala-Tyr-Phe-Tyr-Pro-Glu-Leu (αs1-CN f143-149) and the stability of the 

hydrolysate incorporated in a yoghurt to processing conditions, i.e. drying, 

homogenisation and pasteurisation, and to storage at 4°C was recently investigated. The 

study showed the hydrolysate to be stable after processing as both in vitro ACE-inhibitory 

activity and the in vivo antihypertensive properties in SHR were maintained. Analysis by 

reverse phase-high pressure liquid chromatography-mass spectrometry (RP-HPLC-MS) 

showed that the integrity of the antihypertensive peptides was also maintained during 

storage at 4 °C for 1 month [120]. Similar studies are required for other antihypertensive 

peptides in order to evaluate the optimal processing conditions required for retention of 

bioactivity.  

It has been shown that heat treatments and mechanical damage can reduce peptides 

bioactivity. As a result of changes in protein structure, the profile of peptides released may 

differ as digestive enzymes may be capable of digesting these regions of the protein that 

were previously inaccessible to the enzyme. This has been previously shown to be the case 

for whey protein [121-122]. Furthermore, ACE inhibitory peptides from whey protein 

isolates (WPI) pretreated at 65 °C were shown to have greater inhibitory activity than 

peptides from WPI pretreated at 95 °C. This result can be explained by the formation of 

whey aggregates [100]. 

Optimisation of the hydrolytic process should also be considered when planning to up-scale 

the production of BAPs. Bioactive peptides may be produced by enzymatic or microbial 

hydrolysis. However, it is thought that enzymatic hydrolysis is more suited for food-grade 

BAP production over microbial fermentation [123]. Enzyme immobilisation offers several 

advantages over the addition of soluble enzymes directly to the product. They can be 

recycled and the use of immobilized enzymes potentially avoids the generation of 

interfering metabolite products due to autolysis of the enzymes. Furthermore, protein 

hydrolysis using immobilized enzymes can also be carried out in milder more controlled 

conditions and does not need to be inactivated by heat or acidification, which may be 

damaging for the product [124; 123]. The use of membrane bioreactors may be a substitute 

for the development of functional materials from food proteins. This system integrates a 

reaction vessel with a membrane separation system allowing for the recycling of the 

enzyme, separation, fractionation and/or concentration of the bioactive compound. The use 

of membrane bioreactors for the development of functional materials from sea-food 

processing wastes has been recently reviewed [125]. 
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BAP fractionation and enrichment steps include membrane processing incorporating 

ultrafiltration and liquid chromatography, ion exchange, gel filtration and reverse phase 

matrices. Electro-membrane filtration (EMF), a combination of conventional membrane 

filtration and electrophoresis, may be a consideration for industrial scale isolation of BAPs. 

EMF is more selective than conventional membrane filtration (ultrafiltration) and is less 

costly than chromatography [123]. 

As mentioned earlier, a large portion of antihypertensive peptides are of low molecular 

weight and many contain hydrophobic residues, attributes which have been classically 

associated with bitterness in foods. Hence, this is notably an obstacle that must be resolved 

during the processing of antihypertensive food products. A number of strategies have been 

applied with the aim of debittering protein hydrolysates including absorption of bitter 

peptides on activated carbon, selective extraction with alcohols and chromatographic 

removal using different matrices. Peptidase-mediated debittering has also been applied. 

This involves the concomitant or sequential incubation of the protein hydrolysates with 

exopeptidases, with priority cleavage at hydrophobic residues [126]. However, these 

debittering strategies may lead to the loss of some amino acid residues from hydrolysates. 

As bioactivity relies greatly on peptide sequence, these debittering methods may not 

therefore be suitable for debittering of BAPs including antihypertensive peptides, as 

hydrolysis may result in loss of activity. Changes in peptide structure may also have 

implications for absorption at the brush border membrane. Therefore, enzymatic debittering 

strategies need to be approached on a case-by-case basis. 

The widespread commercialisation of antihypertensive food products is dependent on the 

availability of scientific data from in vivo animal and human models that positively 

demonstrates their contribution in reducing BP. Furthermore, legislation which governs 

health claims in relation to functional foods needs to be taken into account. In Japan, the 

FOSHU (food for specified health use) licensing system was put in place whereby foods 

claiming health benefits must first be approved by the system before been allowed to be put 

on the market [127]. Since then a number of antihypertensive products currently on the 

market in Japan have been granted FOSHU approval. ‘Ameal-S’ which is manufactured by 

Calpis Co., Ltd. is a fermented sour milk containing the LTPs Ile-Pro-Pro and Val-Pro-Pro. 

The soft drink Casein DP ‘Peptio’ manufactured by Kanebo Co., Ltd. contains the 

antihypertensive peptide Phe-Phe-Val-Ala-Pro-Phe-Pro-Gln-Val-Phe-Gly-Phe (αs1-casein 

f23–34) and is also FOSHU approved. There has been a new European Regulation on 

nutrition and health claims in the EU since 2007 (Regulation 1924/2006). Advised by the 

European Commission (EC), the European Food Safety Authority (EFSA) reviews evidence 

of health claims made by food companies. Interestingly, EFSA has not allowed/approved 

any peptide related hypotensive claim to date [128-129]. For both the C12-peptide and the 

bonito protein-derived peptide Leu-Lys-Pro-Asn-Met, it was concluded that a cause and 

effect relationship has not been established between the consumption of the peptides and 

maintenance of normal BP [128-129]. In the US, the Food and Drug Administration (FDA) 

assesses the scientific evidence for health claims under the 1990 Nutrition Labelling and 

Education Act [130] and the 1994 Dietary Supplement Health and Education Act [131]. 
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Therefore, industrial manufacturers of functional food products need to provide a 

significant amount of scientific evidence that satisfies the legislative governing body in the 

specific market region before any new food products can be put on the market claiming to 

have hypotensive effects. 

8. Conclusion 

Antihypertensive peptides have major potential as functional ingredients aiding in the 

prevention and management of hypertension. Although these peptides have been found to 

be less potent than antihypertensive synthetic drugs, as part of the daily diet they could play 

an important part as natural and safe BP control agents. Further detailed mechanistic studies 

on food protein-derived antihypertensive peptides must be carried out to elucidate the BP 

mechanism(s) involved. With regard to ACE-inhibitory peptides, a better understanding of 

the interactions involved in the binding of peptides to the active site of ACE is required such 

that more effective food peptide-based inhibitors of ACE can be discovered. The use of 

bioinformatics and in silico methods for identification of potential bioactive sequences may 

allow for more substrates to be assessed in a shorter time scale. Cost effective production 

methods including enrichment, isolation and purification procedures must first be 

considered and ease of scalability must be achieved. Before advancement of functional 

hypotensive products onto the market, moreover, the physicochemical, technofunctional 

and sensory properties must be considered prior to production of new antihypertensive 

food products. 
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