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1. Introduction

Early childhood tumors that originate from the adrenal medulla and sympathetic nervous
system are classified as neuroendocrine tumors [2]. Based on immunohistological criteria,
neuroendocrine tumors can be broadly categorized as either neural or epithelial. As the name
implies, tumors of the neural subtype display various degrees of neuronal differentiation and
they stain positive for the neuroendocrine markers, synaptophysin and chromogranin A [3,
4]. Less well-differentiated or more primitive neural tumors are referred to as neuroblastoma
(NB) while tumors with more differentiated features, such as ganglion and nerve bundles, are
referred to as ganglioneuroblastoma and ganglioneuroma. This chapter focuses on NB, a form
of cancer that occurs in infants and young children. NB is by far the most common cancer in
infants, and the fourth most common type of cancer in children [5]. There are approximately
650 new cases each year in the United States, and NB accounts for 15% of all cancer deaths in
children. At present, NB patients have limited options for therapy and there is a pressing need
to find better treatment options. To develop better treatment options, it is critical to understand
the origins of this disease, and mechanisms involved in disease progression. The first section
of this chapter is dedicated to a review of neuroendocrine embryology in order to shed some
light on the cell that may be responsible for NB. The exact NB progenitor cell has not been
identified, however there is evidence that these cells are derived from the neural crest (NC).
Understanding the differentiation of NC to cell types that constitute the peripheral nervous
system, and the mechanisms utilized during this process is critical to our knowledge of NB
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progression. In particular, migration of NC cells along the dorsal-ventral axis of the developing
embryo, and the role of matrix in this process is likely to benefit our understanding of
mechanisms of cancer metastasis in general. Subsequent sections of this chapter will address
NB progression and the many factors (including genetic alterations such as N-Myc (MYCN)
amplification) and cues from the surrounding microenvironment that determine tumor cell
proliferation, survival, migration and angiogenesis. The tumor microenvironment is com‐
posed of endothelial cells, immune cells, and stromal cells, and, based on their phenotype,
either contribute or prevent the progression or metastasis of tumor. We will focus on the
contributions of Schwann cells, extracellular matrix, endothelial and immune cells to NB
progression and pathogenesis to highlight the intricacies of how the microenvironment affects
tumor development.

2. Neuroblastoma developmental mechanisms

Two branching networks that often develop side-by-side during embryonic development
include nerves and blood vessels [6]. During embryogenesis, the neural network comprised
of both the central nervous system (CNS) and peripheral nervous system (PNS) develops first,
and is composed of specialized cells called neurons that relay and transmit signals across
different parts of the body [7]. The CNS includes the brain, spinal cord and retina while the
PNS consists of sensory neurons, ganglia and the interconnecting nerves that connect to the
CNS. Neurons project long cable like cellular extensions called axons that, via electrochemical
waves, transmit signals by the release of neurotransmitters at axonal junctions or synapses.

2.1. NB: A peripheral nervous system tumor

NB is a PNS tumor derived from embryonic neural precursor cells. To understand the ontogeny
of NB, the development and differentiation of neural precursor cells that are involved in PNS
development will be discussed to obtain a better appreciation of the cells, signaling pathways
and mechanisms involved in NB. Within the PNS there are somatic and visceral neurons. The
somatic neurons innervate skin, bone joints and muscles, and their cell bodies often lie in the
dorsal root ganglia of the spinal cord. The visceral neurons innervate internal organs, blood
vessels and glands. The visceral component of the PNS is called the autonomic nervous system
(ANS), and consists of two parts: the sympathetic nervous system (SNS) and the parasympa‐
thetic nervous system (PSNS). Both the SNS and PSNS often work in complementary but
opposite fashions to maintain homeostasis in most organs. Two types of neurons, namely the
pre-and post-ganglion, represent the majority of ANS, and are responsible for regulating the
function of target organs. The pre-ganglionic neurons of the SNS are short while those of the
PSNS are long. As a general principle, neurotransmitters are secreted at a synapse that usually
occurs at the junction of two axons emerging from two neurons. One exception to this rule is
observed in the chromaffin cells of the adrenal medulla. These neuroendocrine cells do not
possess axons and directly release neurotransmitters (catecholamines, noradrenalin, adrena‐
line) into systemic circulation thereby affecting multiple organs. The chromaffin cells play an
important role in the fight-or-flight response and are found in small numbers in structures
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such as the carotid aorta, vagus nerve, bladder and prostate in addition to the adrenal medulla.
The origin of these chromaffin cells has been attributed to a common precursor population
called sympathoadrenal (SA) cells that give rise to both sympathetic neurons and chromaffin
cells. Because NB is often associated with the SA cell or its progenitors [8], the development
of these cells in embryogenesis provides clues to the disease inception and progression. During
early PNS development there are three overlapping stages in which NBs could arise [9]. These
are (1) the formation and fate specification of NC into sympathoadrenal (SA) progenitors, (2)
bilateral migration and differentiation of SA cells and their coalescence near the aorta, and (3)
differentiation of PNS neurons into fully developed ganglia and the establishment of synaptic
connections.

2.2. Signaling mechanisms guiding neural crest development

Since chromaffin cells and neurons of the SA system arise from neural crest (NC) cells, it has
been proposed that NC cells may be the origin for NB. The NC is a transient embryonic
population of cells that arise from the dorsal region of the newly formed neural tube [10]. NC
cells undergo epithelial-to-mesenchymal (EMT) transition, and begin to migrate through the
developing mesenchyme to differentiate into the craniofacial skeleton, melanocytes as well as
the SA system.

a. Formation and fate specification of NC into SA progenitors: The NC cells form at the
border between neural and non-neural tissue in the vertebrate embryo. As the neural fold
elevates, cells induced to become NC are located in the dorsal neural tube. The specifica‐
tion of NC cells is intricately linked to neural induction since these two processes also
dictate the neural-non-neural boundary. It is well accepted from evidence in multiple
model systems that loss of bone morphogenetic protein (BMP) signaling coincides with
neural induction and thereby NC induction. BMP signaling alone is not sufficient for NC
induction, as members of the Wnt and fibroblast growth factor (FGF) families have also
been associated with NC induction [11]. Studies in mice, chicken, frog and zebrafish have
implicated a cascade of transcription factors that confer NC cell identity. These include
NC specifier genes such as Slug, Zic5, Sox9, Sox10, FoxD3, c-Myc and AP2 [12]. These
factors are expressed in premigratory, and, or early migratory NC cells and are likely
involved in the induction and survival of these cells. The differentiation of NC cells into
the SA progenitor pathway is poorly understood. Single cell labeling studies in zebrafish
[13] support the premise that Neurogenin-2 in pre- and early migrating NC cells promotes
the sensory neuron differentiation at the expense of sympathetic neurons [13]. These data
imply that the SA lineage is specified at an early migratory stage; however, it is unclear
which molecular mechanisms trigger expression of Neurogenin-2 in a subset of NC cells.
Cells during this early less differentiated stage could contribute to NB since alteration in
the transcriptional signaling cascade may lead to precocious precursor cell proliferation
or lack of further differentiation of these cells into the next phase of NC development.

b. Bilateral migration and differentiation of SA cells: Once specified, NC cells must delami‐
nate from the neural tube in order to migrate to their final destination (Figure 1). Delami‐
nation is a process of tissue splitting into separate populations regardless of cellular
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mechanisms [14, 15]. With reference to NC, delamination is often used interchangeably
with epithelial-to-mesenchymal transition. EMT is a series of molecular events that
orchestrate changes from an epithelial cell phenotype into a mesenchymal (migratory)
phenotype [16]. Several EMT-inducing transcription factors such as Snail, SoxE and Foxd3
function during multiple steps of NC development. In addition, EMT induces changes in
junctional proteins such as N-cadherin and cadherin6B. These processes are reminiscent
of events during general tumorigenesis whereby cancer cells undergo EMT and lose the
ability to adhere to substratum leading to loss of contact-mediated inhibition. Therefore,
NC cells provide a relevant model to investigate different aspects of tumorigenesis and
metastasis especially with respect to NB.

Figure 1. Neural crest cell development in zebrafish. A high power image of the trunk neural crest cell migration is
depicted. A cartoon of the cross-section of the trunk region is indicated. Black cells overlying the ectoderm are neural
crest cells that specify from the dorsal roof plate (yellow region) of the neural tube (NT). NC cells that migrate dorso‐
ventrally (teal color) will differentiate into melanocytes (black shaped cells). NC cells that migrate ventromedially dif‐
ferentiate into sympathetic ganglia (purple cells). NC cells (red) that migrate through the somite form Schwann cells
and sensory neurons and glia of DRG. NC cells that migrate between the somite and the neural tube as indicated dif‐
ferentiate into sympathetic ganglia.and chromaffin cells. Inhibitory signals (inverted T) and activation signals (arrows)
guide the migration of the NC cells from the dorsal to ventral region. DA: dorsal aorta, NO: notochord, and blue struc‐
tures are somites.
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As NC cells delaminate from the neural tube, tissues surrounding the neural tube produce
both positive and negative cues that guide NC along defined pathways [17]. Trunk NC
migration is guided by signals emerging from adjacent somites [18], which falls under three
distinct phases, (1) Directed migration resulting from contact with the ectoderm and cues from
the microenvironment, (2) Contact-mediated guidance facilitating homing to the target site,
and (3) Contact-inhibition of movement upon entry and colonization of the target site (i.e. the
trunk for SA) [15]. These migratory behaviors occur as streams of cells, and once in the trunk,
NC cells migrate either ventromedially or dorsolaterally (Figure 1) [8]. NC cells migrating via
the ventromedial route (without invading the somite) become neurons and glia of the sym‐
pathetic ganglia and adrenal chromaffin cells. NC cells that take the ventromedial route and
invade and remain in the sclerotome coalesce to form Schwann cells, and the sensory neurons
and glia of the dorsal root ganglia (DRG). We will discuss the role of Schwann cells in NB
Pathogenesis later in this chapter. NC cells that take a dorsolateral route, in between the dorsal
Ectoderm and the dermamyotome, differentiate into melanocytes (Figure 1) [17]. Because NBs
often emerge in the sympathetic ganglia, it is conceivable that during the migratory process,
NC cells that carry mutations in critical genes implicated in NBs, such as MYCN, may lose
contact inhibition and prematurely proliferate in response to molecular signals that emanate
from surrounding tissue. In terms of molecular cues, trunk NC cells that migrate via the
ventromedial route enter the somite via attraction cues from CXCR4/CXCL12 signaling, which
has also been implicated in breast cancer metastasis [19, 20]. These NC cells are confined to the
rostral sclerotome by Neuropilin2/Semaphorin3F repulsion molecules working in concert with
Eph/ephrin signalling, F-spondin and proteoglycans, which, reinforce this migration route.
Similarly, signaling through CXCR4/CXCl12, ErbB2 and 3/Neuregulin, and GFRá3/artemin
mediate NC cell attraction past the somite and work in concert with Neuropilin1/Semaphor‐
in4A repulsion cues from surrounding tissues that restricts NC cell migration to the dorsal
aorta [17].

c. Differentiation of PNS neurons into fully developed ganglia: Once the migrated partially
differentiated NC cells (SA progenitors) reach the vicinity of dorsal aorta, bone morpho‐
genetic proteins secreted by SA cells trigger a molecular signaling cascade that is essential
and sufficient to initiate the differentiation into both the noradrenergic sympathetic
neurons and the cholinergic parasympathetic neurons of the ANS. Interestingly, BMP
signaling is used at the first (NC induction) and third (NC differentiation into PNS
neurons) stage of NC development implying its critical role in this pathway, and perhaps
in NB. BMP-2 treatment of human NB cell lines (RTBM1 and SH-SY5Y) leads to growth
arrest and differentiation [21]. BMP receptor IA expressed on SA progenitors responds to
BMP inducing the expression of the proneural gene mammalian achaete-scute homolog
(Mash-1) and the paired-like homebox2B (PHOX2B) transcription factors. PHOX2B is
essential for maintaining Mash-1 expression and proliferation of SA progenitors. Human
NB cell lines show high Hash-1 expression, and retinoic acid treatment decreases Hash-1
expression and promotes neurite extension [22, 23]. Germline mutations of PHOX2B in
both a familial case of NB and in a patient with a genetically determined congenital
malformation of NC-derived cells-namely, Hirschsprung disease (HSCR) exemplifies the
underlying contribution of late stage genes in NC development to NB pathogenesis [24].
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2.3. Model system contribution to neuroblastoma pathogenesis

Much information contributing to the pathogenesis of NB has been generated from in vitro
studies performed on cell lines derived from patients [8]. Similar to other tumors, oncogene
amplification or allelic loss has been linked to NB progression. Proto-oncogenes v-myc
myelocytomatosis viral related oncogene (MYCN), anaplastic lymphoma kinase (ALK) and,
more recently, transforming tyrosine kinase receptor type A (TrkA) [25] have been widely
suspected as likely contributors in NB pathogenesis. In fact, MYCN amplification is one of the
few predictors of a poor clinical outcome for patients with NB. Tumors without MYCN
amplification that correlate with poor survival frequently show an aberrant up regulation of
genes in the MYC pathway, and down regulation of genes in the SA lineage differentiation
pathway emphasizing the importance of MYC signaling in NB pathogenesis. BMP signal
transducers in SA cells, namely transcription factors PHOX2A and PHOX2B, bind and activate
noradrenergic marker genes, tyrosine hydroxylase (TH) and dopamine-β-hydroxylase that are
essential enzymes for noradrenaline production. Evidence shows that MYCN overexpression
under the tyrosine hydroxylase promoter in mice drives tumor formation that resembles
human NB [26]. Recently, a dopamine-β-hydroxylase promoter driving MYCN and ALK genes
in zebrafish [27] also resulted in NB formation. In this fish model, the authors demonstrated
that upregulated MYCN mediated sympathetic neuroblast proliferation, which is eventually
mitigated by a developmentally timed apoptosis of neuroblast cells. The concomitant activa‐
tion of ALK blocks the neuroblast apoptosis at a critical window in development thereby
establishing a novel synergistic mechanism for these two oncogenes in NB pathogenesis. These
tumor models clearly imply that turning on oncogenes in cells that are undergoing transitions
during NC development is at the heart of NB ontogeny and progression.

Figure 2. Schwann cell development. Schematic representation of different developmental stages of Schwann cells
showing the transitory cell types being involved during embryogenesis and after birth.
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3. Role of Schwann cells in NB tumor microenvironment

NB is characterized by the co-existence of both stromal Schwann cells and neuroblastic tumor
cells. The NC origin of Schwann cells suggests that they may co-evolve with tumor cells from
common  neural  progenitors.  However,  the  origin  and  functional  relevance  of  tumor-
associated Schwann cells remain controversial. Although widely assumed to be infiltrating
normal Schwann cells, the finding of common genetic alterations shared with neuroblastic
tumor cells argues for the same origin as tumor cells. It is well established that stroma-rich
NB is associated with differentiated tumors of favorable prognosis. On the contrary, stroma-
poor NB is associated with metastatic diseases and poor outcomes. Among the various organs,
a high fraction of NB disseminates to the bone and bone marrow. How Schwannian stroma
affect tumor dissemination has not been extensively studied. To this end, several soluble
factors have been isolated from Schwann cells that have proliferative, survival and angiogen‐
ic activities in the tumor microenvironment. These include Chemokine C-X-C motif ligand
13 (CXCL13), Secreted Protein Acidic and Rich in Cysteine (SPARC), and Pigment Epithelium-
Derived  Factor  (PEDF).  Determining  their  roles  in  NB  progression  will  aid  in  future
development of novel treatments for this childhood malignancy, and will be discussed in
detail here.

3.1. Schwann cells in normal development and NB

In the PNS, Schwann cells serve as the major glial cell type for individual neurons. During
development, NC progenitors differentiate into multiple lineages including neurons, glial
cells, pigment cells, endocrine cells and mesenchymal cells [28]. Based on the hierarchical
organization of lineage segregation, NC-derived stem cells (NCSC) first undergo gliogene‐
sis  to  generate  a  pool  of  Schwann  cell  precursors  (SCP)(Figure  2).  The  helix-loop-helix
transcription factor, Sox10, is required for this event by promoting the survival of NCSC and
glial cell specification [29-31]. Sox10 also plays an instructive role in determining how NCSC
response  to  neuregulin-1  (NRG-1)[32,  33].  In  the  PNS,  NRG-1  stimulates  Schwann  cell
proliferation, migration, and myelination [34]. NRG-1 also regulates the migratory behavior
of NC cells [35, 36].

The maturation of SCP gives rise to immature Schwann cells, which in E15 mouse embryos,
encapsulate bundles of axons through a process of radial sorting [37-39]. At this stage the ratio
of Schwann cells to axons is 1:1 and this fine balance is partly achieved by axon-driven
proliferation of immature Schwann cells. A host of factors are implicated that includes NRG-1
[40], transforming growth factor-β (TGF-β) [41-44], and laminins. Further differentiation of
immature Schwann cells generates myelinating Schwann cells which surround large diameter
axons, while smaller diameter axons are covered with nonmyelinating Schwann cells [45]. The
functional importance of Schwann cells in neuronal survival is well established. For example,
mice lacking the NRG-1 receptor, ErbB3, are devoid of SCP and have extensive neuronal cell
death in the dorsal root ganglia [46]. Apart from NRG-1, additional trophic factors implicated
in neuronal survival include brain-derived neurotrophic factor (BDNF), ciliary neurotrophic
factor (CNTF), leukemia inhibitory factor (LIF), and hepatocyte growth factor (HGF) [47].
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In early childhood, tumors originating from the adrenal medulla and sympathetic nervous
system are classified as neuroendocrine tumors. Based on immunohistological criteria,
neuroendocrine tumors can be broadly categorized into two types – neural and epithelial. As
its name implies, tumors of the neural subtype display various degrees of neuronal differen‐
tiation and they stained positive for neuroendocrine markers, synaptophysin and chromog‐
ranin A [3, 4]. Less well-differentiated or more primitive neural tumors are referred to as NB
while tumors with more differentiated features, such as ganglion and nerve bundles, are
referred to as ganglioneuroblastoma (GNB) and ganglioneuroma (GN) (Figure 3A). Overall,
GNB and GN show greater immunoreactivities towards the three neurofilament (NF) phos‐
phoisoforms, NF-L (light), NF-M (medium), and NF-H (heavy)[48]. Also, well-differentiated
tumors have higher expression of neuronal markers such as microtubule associated proteins
(MAPS) and tau. Furthermore, in GNB and GN, both glial cell markers, glial fibrillary acidic
protein (GFAP) and myelin basic protein (MBP) are detected, providing evidence of differen‐
tiation into non-myelinating and myelinating Schwann cells, respectively [48].

Figure 3. Neural crest tumor typesA. The different histologic groups and subtypes of neural crest tumors with their
characteristics depicted [1]. B. Brightfield photomicrographs of neuroblastic SH-SY5Y and Schwannian SH-EP1 cell
lines (gifts from Dr. Robert A. Ross).

3.2. Histology and origin of Schwannian stroma in NB

The relevance of Schwannian stroma in the diagnosis and prognosis of NB has been addressed
by the seminal study by Shimada et. al. [1]. In general, NB can be subdivided into stroma-poor
and stroma-rich groups. Stroma-poor tumors have diffuse growth patterns of neuroblastic
tumor cells divided by thin septa of fibrovascular tissues. This subgroup represents the
classical NB and has either an undifferentiated or differentiating histology with various
degrees of mitoses and karyorrhexis or nuclear fragmentation (MKI). In general, stroma-poor
tumors are considered as favorable if diagnosed <1.5 yr old, with a low MKI and a differenti‐
ating histology. This group has a survival rate of 84%. On the contrary, stroma-poor tumors
that are unfavorable have a high MKI (for <1.5 yr old), undifferentiated histology (1.5-5 yr old)
and occur in patients greater than 5 years of age. This group has a survival rate of only 4.5%.

Tumors of the stroma-rich group have extensive Schwannian stroma and are representative
of the GNB and GN histological types. This group can be further classified into three histo‐
logical subtypes – well-differentiated, intermixed and focal nodular (Figure 3A). The overall
survival for stroma-rich tumors is 67% as compared to 47% for stroma-poor counterparts.
Expectedly, patients with stroma-rich tumors that are well-differentiated or intermixed have
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90-100% survival survival. Interestingly, patients with the focal nodular subtype has the
poorest survival of only 18%. Thus, tumors with good prognosis are the favorable stroma-poor
and well-differentiated or intermixed stroma-rich. These tumors have non-advanced staging.
In contrast, unfavorable stroma-poor and focal nodular stroma-rich lead topoor prognosis, and
they are frequently stage III and IV diseases.

At the molecular level, stroma-poor tumors have a higher frequency (24%) of MYCN gene
amplification as opposed to 10% for stroma-rich tumors [49, 50]. In this case, the overexpression
of MYCN most likely leads to the expansion of the NC progenitor population. Indeed, silencing
MYCN in NB cell lines promotes differentiation [51-53]. MYCN expression appears to be
differentially regulated in neuroblastic and Schwannian S-type cells. For instance, LA1-55n, a
neuroblastic tumor subline, has readily detectable MYCN expression while this oncoprotein
was not present in the S-type counterpart, LA1-5s [54]. Similarly, ALK mutant protein can be
detected in the neuroblastic subline of SK-N-SH while absent in several S-type sublines [55].
Thus, while MYCN amplification drives the expansion neuronal progenitors [56], this onco‐
genic event does not appear to impede differentiation into either neuronal or Schwann cell
lineages [57, 58].

The common NC origin of Schwann cells and neurons would argue that Schwannian stroma
in NB is derived from a common cancer initiating cell [59]. However, this assertion is not
without controversy. An earlier study using cytogenetic analysis of 19 NBs demonstrated that
18 of these tumors displayed near-triploidy while no chromosomal aberrations were detected
in Schwann cells [60]. This leads to the conclusion that Schwann cells in tumor stroma are
reactive in nature and most likely from infiltrating normal Schwann cells. With the advent of
laser-capture microdissection and allelotyping techniques, Mora et. al. have demonstrated in
27 of 28 NBs, S100-positive Schwann cells have identical allelic compositions as the neuro‐
blastic tumor cells [59, 61]. Also, Schwannian stromal cells isolated from bone metastases have
identical marker chromosomes as neuroblastic tumor cells [62]. Finally, the Schwannian S-type
cell line, SH-EP1, harbors a F1174L mutation in the ALK gene that is also present in the
neuroblastic N-type tumor cell line, SH-SY5Y (author’s unpublished results)(Figure 3B). Both
cell lines are derived from the widely used SK-N-SH NB cells [63]. All these data provide
evidence that Schwann cells are tumor-derived.

3.3. The role of trophic factors in Schwannian stromal and NB pathogenesis

Since Schwannian stroma-rich tumors are associated with favorable prognosis, it is logical to
assume that Schwann cells harbor tumor-suppressing properties. To this end, experiments
aiming to address the biological relevance of Schwann cells in NB are limited and confined
mostly to in vitro studies. By co-cultivation experiments, neuroblastic tumor cells have been
shown to stimulate the proliferation of Schwann cells [64]. This observation may explain the
rapid expansion of Schwannian stromal during NB maturation. In the same study, Schwann
cells also promote neurite outgrowth in neuroblastic tumor cells. Similar survival and
differentiation promoting activities were also reported when Schwann cell conditioned
medium was tested on four NB cell lines [55, 65]. These results are consistent with the
differentiated histology associated with stroma-rich tumors. One caveat is that Schwann cells
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used in these studies were isolated from normal human peripheral nerves. It will be of interest
to compare tumor-derived versus normal Schwann cells in their abilities to promote differen‐
tiation and survival of neuroblastic tumor cells. Several trophic factors have been implicated
in neuronal homeostasis. These include NGF, BDNF, LIF, and CNTF [66]. The biological effects
of conditioned medium mentioned above are most likely the results of a combination of these
soluble factors. Clearly defining their specific biological activities, for example, differentiation
versus survival may have therapeutic implications. For instance, factors that only promote
differentiation but not growth can have therapeutic effects in stroma-poor tumors. Alterna‐
tively, targeting the receptors for survival promoting factors such as the TrkB receptor for
BDNF may be a plausible treatment strategy [25].

The paracrine effects of trophic factors produced by Schwann cells are not restricted to
neuroblastic tumor cells. For instance, three factors secreted by Schwann cells are known to
inhibit angiogenesis. These include tissue inhibitor of metalloproteinase-2 (TIMP-2)[67], PEDF
[68] and SPARC [69]. TIMP-2 was identified as a potential anti-angiogenic mediator in the
conditioned medium of Schwann cells derived from both adult nerves and stroma-rich GN
[67]. The negative effects of TIMP-2 on angiogenesis are independent of its ability to inhibit
metalloproteinase (MMP) activities [70]. Instead TIMP-2 binds directly to endothelial cells
through α3β1 integrin and dampens β1-mediated signaling and cell proliferation. PEDF, on
the other hand, is a 50 kDa glycoprotein that belongs to the SERPIN family of serine protease
inhibitors [71], and it binds to a PLA2/nutrin/patatin-like phospholipase domain-containing 2
(PNPLA2) receptor [72]. PEDF suppresses angiogenesis by inducing apoptosis in endothelial
cells, blocking motility and tube formation [73]. In NB, PEDF enhances Schwann cell growth
and inhibits basic fibroblast growth factor (bFGF) and vascular endothelial growth factor
(VEGF) induced endothelial cell migration [68]. Consistent with these activities, the least
differentiated NB show weak staining for PEDF while high levels are observed in well-
differentiated GNB and GN. Finally, SPARC is a matricellular protein implicated in adipo‐
genesis [74]. Surface receptors such as Stabilin-1 and α5β3 integrin have been implicated in
mediating SPARC biological activities [75, 76]. Its anti-angiogenic activities are mediated by
the direct binding to a host of angiogenic mediators such as VEGF, and platelet-derived growth
factor (PDGF)[77, 78]. High levels of SPARC are associated with favorable outcomes in NB [69].
In vivo experimental proof further supports the anti-tumorigenic role of Schwannian stroma.
Using an NB xenotransplant model, NB cells implanted in sciatic nerve have greater number
of infiltrating Schwann cells, more differentiated neuroblasts and reduced vascularity when
compared to tumor cells injected outside of the sciatic nerves [79]. All these findings reinforce
the notion that the favorable prognosis in stroma-rich NB is the consequence of a host of anti-
angiogenic factors produced by the Schwannian stromal compartment.

3.4. Plasticity of Schwannian stroma

During NB progression, there is evidence of dynamic remodeling of the Schwannian tumor
microenvironment that involves additional stromal cell types. One such cell type is cancer-
associated fibroblasts (CAFs). CAFs are frequently detected in epithelial tumors such as breast
carcinomas [80]. CAFs are “reactive” in nature and differ from normal fibroblasts by having
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a more motile or myogenic phenotype [81, 82]. In addition, CAFs also confer a pro-tumorigen‐
ic microenvironment by remodeling the extracellular matrices and producing pro-angiogen‐
ic and pro-mitogenic trophic factors. In one study, an evaluation of 60 NBs revealed an inverse
correlation between the existence of CAFs and Schwannian stroma [83]. In stroma-rich GNs,
alpha-smooth  muscle  actin  (α-sma)-positive  and  h-Caldesmon-negative  CAFs  are  rarely
detected. On the contrary, ~90% of stromal cells in Schwannian stroma-poor NB stained
positive for CAFs. Indeed, the presence of CAFs in NB is associated with microvascular
proliferation. All these findings reiterate the role of Schwann cells in conferring homeosta‐
sis in NB tumor microenvironment and this may be achieved by blocking the expansion of
CAFs. However, it is unclear how the relative fractions of Schwann cells versus CAFs are
being regulated and whether neuroblastic tumor cells can play an instructive role in these
events.

One plausible link between Schwann cells and CAFs is the well-established role of bone
marrow-derived human mesenchymal stem cells (hMSCs) in the formation of tumor stroma.
hMSCs are pluripotent and can differentiate into multiple cell types such as bone, cartilages,
and adipose tissues [84]. hMSCs when co-mixed with weakly metastatic breast cancer cells
greatly enhance their metastatic potential [85]. Interestingly, hMSCs co-mixed with NB
undergo a conversion to a cell type expressing the Schwann cell markers, S100 and Egr-2 [86].
Similarly, prolonged exposure of hMSCs to tumor-derived conditioned media also results in
their transition to myofibroblasts [87]. Thus, it is plausible that neuroblastic tumor cells may
dictate the composition of tumor stroma by instructing hMSCs to differentiate into either
Schwann cells or CAFs. Another interesting aspect of hMSCs in NB is that bone marrow is a
common site of metastatic spread [88]. The ability of the chemokine, stromal-derived factor
(SDF-1/CXCL12), in bone marrow homing by binding to its receptor, CXCR4, on neuroblastic
tumor cells has been reported [89]. Following seeding in the bone marrow, neuroblastic tumor
cells may instruct hMSCs to differentiate into Schwann cells, thereby creating a favorable
metastatic niche in an otherwise non-permissive environment.

An additional intriguing finding is that Schwann cells isolated from quail sciatic nerves can
undergo transdifferentiation into myofibroblasts [90]. In vitro, TGF-β drastically enhanced the
conversion of cultured Schwann cells to α-sma+ and sox10+ myofibroblasts. When transplanted
into the first branchial arch of E2 chick embryos, these Schwann cells incorporate into the
perivascular space of developing vessel walls as α-sma+ cells [90]. Based on these observations,
it is tempting to speculate that neuroblastic tumor cells secrete TGF-β to remodel tumor stromal
by converting Schwannian-rich to a CAF-rich tumor microenvironment. In summary, this level
of plasticity in stromal remodeling may allow tumor cells to adapt to local hypoxic environ‐
ment or in seeding of metastatic cells.

3.5. The role of Schwannian stromal in NB therapy

From a treatment standpoint, NB in infants has a more favorable prognosis with low-grade
tumors that resolved spontaneously. However, the overall survival for patients greater than 4
year old remains around 40%. Also, there are few options once tumors are refractory to
conventional chemo- and radiation-therapies. How can studying the role of Schwann cells in
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NB can translate into better treatment? As mentioned above, the ability of NB to differentiate
into neurons and Schwann cells even in the presence of MYCN gene amplification can be
explored in the clinical settings. Resident cancer initiating (stem) cells or “intermediate I-type”
cell lines such as NUB-7 and BE(2)-C can be differentiated into neurons by retinoic acid (RA)
exposure or into Schwann cells by 5-bromo-2’-deoxyuridine (BrdU) exposure [58, 91, 92]. The
current standard therapy for high risk NB includes initial induction chemotherapy, followed
by autologous hematopoietic stem cell transplantation, and residual disease is treated with a
maintenance dose of 13-cis-RA [93, 94]. Under this aggressive treatment regimen, only one-
third of patients survived [95]. It will be of interest to test if a combination of RA and BrdU is
more effective in differentiating residual NB. In fact, the role of BrdU as a radiosensitizing
agent is well established [96, 97].

Another treatment modality is inhibition of angiogenesis. Bevacizumab (Avastin), a human‐
ized monoclonal antibody against VEGF has been shown to enhance the efficacy of topotecan
in a NB xenograft model [98]. It has moderate toxicity with overall severe adverse events of
17% [99]. Extensive clinical trial data of Bevacizumab for NB is lacking and its therapeutic
efficacy in treating this pediatric tumor is yet to be determined. Nevertheless, the fact that
Schwann cells secrete a host of soluble anti-angiogenic factors can be harnessed for therapeutic
use. For example, PEDF is effective in blocking growth in a wide variety of tumors [73, 100,
101]. In fact, the delivery of PEDF by adenoviral-mediated gene transfer in NB suppresses
angiogenesis and blocks tumor growth [102].

One of the overarching concerns in treatment-resistant high risk NB is the involvement of
developmental plasticity inSchwann cells. Indeed, Schwann cells have the capacity to dedif‐
ferentiate into less mature progenitors in vivo under regenerative conditions. This level of
plasticity in Schwann cells has been observed in injured axons wherethis activity requires an
active Raf kinase [103]. One scenario is that following intense chemotherapies, while most
hyperproliferative neuroblastic tumor cells are expected to be eradicated, residual stromal cells
survive and undergo dedifferentiation into neural progenitors to repopulate the primary
tumor site. Alternatively, as reported by our group, treatment of the ALK-positive tumor cell
line SK-N-SH with an ALK inhibitor leads to the outgrowth of S-type cell populations while
N-type cells are mostly eliminated [55]. Conditioned media from these Schwann-like cells
confer striking survival toward N-type cells. Thus, tumor-associated Schwann cells or CAFs
may provide a chemoresistant niche to support tumor recurrence from the few neuroblastic
tumor cells that survive.

In summary, while Schwannian stroma have been considered as a benign byproduct of
maturing NB, their presence is intimately linked to the survival and differentiation of neuro‐
blastic tumor cells. The development of transgenic animal models that can recapitulate features
of stroma-rich and stroma-poor tumors will be necessary to better understand this interaction.
These in vivo models will be useful for deciphering the biological effects of Schwannian stroma
on tumor cells, the paracrine factors involved and their intracellular signaling. Although
Schwannian stroma is an attractive target for NB therapy, the NB tumor stroma/microenvir‐
onment, which is composed of the extracellular matrix plays an equally important role in NB
pathogenesis, which is discussed next.
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4. Cell-matrix and cell-cell molecular interactions in the neuroblastoma
tumor microenvironment

In 1986 Harold F. Dvorak coined the phrase: “Tumors are wounds that never heal”. His
comment was based on similarities in the content of new blood vessels, lymphocytes, macro‐
phages, and connective tissue components (including cellular and extracellular matrix
elements) present in healing wounds and tissue surrounding tumor cells [104]. During tumor
(parenchyma) development, the wound repair resolution stage fails, resulting in a microen‐
vironment (stroma) that never “heals”. Multiple factors in the “wounded” tumor microenvir‐
onment promote NB progression. In this section, we highlight the role of the extracellular
matrix (ECM) in this process.

4.1. Biochemical and biophysical cues from the extracellular matrix

4.1.1. ECM stiffness conveys differentiation signals

The NB tumor microenvironment provides biochemical and mechanical signals similar to the
microenvironments of other tumor types, but there is specificity in how NB tumor cells respond
to these signals. It is well recognized that the interaction of tumor with stroma occurs via
biochemical signaling and that the ECM provides a source of signals that instruct cellular
behavior. Our understanding of how biomechanical signaling generated by shear stress,
compression, and tension affect survival, proliferation, migration, and gene expression is
increasing [105]. Changes in tension homeostasis occur in cancer, with breast cancer as one of
the best studied examples [106]. Mechanical cues from the ECM may influence retinoic acid-
mediated differentiation, which in turn may regulate clinically relevant aspects of NB biology.
Recent studies show that ECM stiffness provides a physical cue that reduces NB proliferation
and promotes differentiation [107]. Increasing ECM stiffness enhances neurite extension
(neuritogenesis) and suppresses cell proliferation. Increased ECM stiffness also reduces
expression of the oncogenic MYCN transcription factor. Furthermore, the addition of RA
enhances ECM stiffness. Together, the data suggest that the mechanical signals from the
cellular microenvironment influence NB differentiation in synergy with the RA biochemical
differentiation factor [107].

4.1.2. SPARC and cell survival

One of the matrix proteins with a documented role in tumor progression is SPARC (osteonectin
or BM-40). SPARC is a 34 kDa calcium-binding glycoprotein shown to associate with the cell
membrane and membrane receptors [108, 109]. SPARC appears to have a cancer-type specific
effect on tumor metastasis. In prostate cancer, SPARC is linked with increased migration and
prostate cancer metastasis to bone. This occurs via activation of integrins αvβ3 and αvβ5
expressed on tumor cells [110]. In contrast, SPARC appears to act as a tumor suppressor in NB.
This tumor suppressor effect has been studied in the context of radiation therapy. Irradiation
of NB tumor cells was shown to inhibit SPARC expression. Interestingly, SPARC expression
was significantly decreased in radiation-therapy resistant cancer cells [111]. Exogenous
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overexpression of SPARC significantly suppressed the activity of AKT. This suppression was
accompanied by an increase in the PTEN tumor suppressor protein both in vitro and in vivo,
[112] and sensitized NB cells to radiation by inhibiting irradiation-induced cell cycle arrest.
Therefore, SPARC expression restored NB radiosensitivity. In addition to this function, SPARC
expressed by NB cells appears to affect endothelial cells in the immediate vicinity. Interest‐
ingly, SPARC overexpression and secretion by NB cells induced endothelial cell apoptosis,
inhibited angiogenesis and suppressed expression of the pro-angiogenic molecules, VEGF,
FGF, PDGF and MMP-9 in endothelial cells. This suppressed expression of growth factors was
mediated by inhibition of the Notch signaling pathway [113]. Therefore, promoting SPARC
expression may be a plausible anti-NB therapy.

4.2. Role of cell adhesion molecules in NB progression

4.2.1. NCAM and NB progression

Intercellular communication is a fundamental biological property that is regulated during
cellular growth and differentiation. In general terms, abnormalities in gap junction intracel‐
lular communication (GJIC) and cell-cell adhesion correlate with poor prognosis for cancer
treatment [114-117]. Loss of either cell-cell adhesion or GJIC occurs in cancers, and gain of
communication or adhesion suppresses tumor growth [118, 119]. Cell adhesion molecules
(CAMs) have been reported to regulate tumor progression and metastasis, acting as oncogenes
or tumor suppressors [120-122], and one such molecule namely Neural cell adhesion molecule
(NCAM) is of particular importance for both, normal brain development [123] and NB
regulation. NCAM is the main protein carrier of polysialic acid (polySia), a major regulator of
cell-cell interactions in the developing nervous system that is required for neuronal plasticity.
Studies in NCAM knockout mice showed that the effects of polySia occur via the expression
of NCAM [123]. During normal neuronal differentiation or upon RA induced differentiation
of a NB cell line, NCAM appears in non-polysialated form. This allows for its hemophilic
interactions, and in turn triggers enhanced ERK signaling and MAPK-dependent neuritogen‐
esis [124]. Therefore, it can be expected that inhibition of polysialation will promote neuronal
differentiation and may inhibit NB progression.

4.2.2. N-cadherin and NB progression

Clinical studies suggest that tumor invasiveness, not the ability to detach from the primary
tumor are determinants of the progression to metastasis [125]. In epithelial-derived tumors,
metastasis is often preceded by the loss of E-cadherin cell-cell adhesion [126, 127]. The loss of
E-cadherin is often accompanied by de novo expression of N-cadherin, which promotes cell
motility and migration; a phenomenon called “the cadherin switch” [128-130]. Further, N-
cadherin homophilic interactions between tumor cells and surrounding tissue such as tumor
vessel endothelium and stroma facilitate the transit and survival of tumor cells in distant
organs [131-133]. N-cadherin thus may play a role in preventing metastasis in NB through
such homotypic and heterotypic cell-cell interactions. In line with this hypothesis, N-cadherins
are expressed on various NB tumors and NB cell lines, with lowest levels in patients under‐
going metastasis. Therefore, its expression negatively correlates with metastasis [134].
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4.2.3. Reelin signaling in NB

Reelin is an extracellular secreted protein of the Cajal-Retzius cells located in the marginal zone
of the developing cerebral cortex, and is required for the organization of the cortex into layers
of neurons [135]. In the absence of reelin, neurons exhibit a broader and irregular pattern of
positioning [136]. Although reelin interacts with integrins and cadherins, signals from reelin are
transduced by cell membrane receptors: ApoER2 and Very Low Density Lipoprotein Receptor
(VLDLR) and by the intracellular regulatory protein disabled-1 (Dab1) [137, 138]. Down‐
stream signaling involves adapter protein crk and the small GTPase Rap1 [139]. Reelin trig‐
gers the activation of Rap1 in migrating cerebral cortical neurons when they are midway through
their migration path (from the ventricular zone toward the cortical plate). This activation of Rap1
by reelin is critical for neuronal multipolar polarization and migration along glia, and there‐
fore, normal cerebral cortex organization [140-143]. However, reelin expression is not limited to
the normal tissues such as brain, but is also detected in several different tumor pathologies where
it has been linked with tumor aggressiveness [144]. A recent study suggests that reelin signal‐
ing regulates a migratory switch promoting metastasis  in NB [145].  Reelin expression is
negatively regulated by miR-128, a brain-enriched microRNA. miR-128 is downregulated in
untreated NB patients, and ectopic miR-128 overexpression reduced NB cell motility and
invasiveness and impaired cell growth. Furthermore, a small series of primary human NBs
showed an association between high levels of miR-128 expression and favorable features, such
as a favorable stage score based on the International Neuroblastoma Staging System Classifica‐
tion (Shimada category, [146]). In addition to the autocrine function in differentiating tumors,
reelin acts as a chemoattractant for several NB cell lines. It is also expressed in blood vessels in
several NB cell lines, but not in normal tissue. Therefore, it is postulated that in addition to the
autocrine function, paracrine reelin presented by NB blood vessels may act as a chemoattrac‐
tant and promote hematogenic and lymphogenic dissemination in NB progression [145].

4.2.4. Gap junctions – Cellular connectivity and suppression of growth

Cell-cell interactions are mediated by specialized connections between membranes of adjacent
cells called gap junctions. Gap junctions form by connecting two hemichannels (connexons)
on neighboring cells, with each hemichannel comprised of a hexamer of connexin. Of the 20
known connexins, connexin 43 is the most ubiquitously expressed [147]. Gap junctional
coupling in NB is negatively regulated by protein kinase C (PKC) [148]. PKC isozymes regulate
various aspects of proliferation and PKC inhibitors are under study in clinical trials as potential
anti-cancer therapy. Tamoxifen, an estrogen receptor antagonist, exerts some of its anti-tumor
effects via PKC signaling [149, 150]. However, the exact cellular mechanisms targeted by PKC
inhibitors are not known. Recently, it was shown that inhibition of PKC in NB cell lines
increases GJIC via a mechanism that does not depend on the redistribution of connexin 43 or
its phosphorylation [148]. Furthermore, PKC inhibition promoted cell-cell adhesion, a finding
that suggests that suppression of tumor growth by PKC inhibition may be due to effects on
increased GJIC and cell-cell adhesion [148].

Overall, these studies suggest that the extracellular matrix and CAMs play an important role
in the biochemical and biophysical regulation of NB. The careful examination of NB environ‐
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ment-specific cues to fully define their effects on NB tumor progression offers an opportunity
for NB targeted therapy.

5. Role of endothelial cells in NB microenvironment pathogenesis

5.1. Role of angiogenesis in NB pathogenesis

In 1962, Dr. Judah Folkman described the seminal observation that tumor angiogenesis is
dependent on de novo blood vessel formation [151]. The sprouting of new blood vessels from
pre-existing ones is a multi-step process consisting of endothelial cell proliferation, migration
and tube formation [152]. Tumor angiogenesis is not only induced by growth factors and
cytokines secreted from tumor cells [153], but also modulated by cell-cell interaction [152].
Aberrant angiogenesis is associated with excessive growth-promoting signals and a lack of
sufficient “pruning,” cues that spatially and temporally modulate vessel growth, remodeling
and stabilization [152]. As compared to normal blood vessels, tumor vessels are more dilated
and tortuous, form arteriovenous shunts, and lack the normal artery-capillary-vein hierarchy
[154]. Tumor vasculature not only provides oxygen and nutrients to promote tumor prolifer‐
ation and progression, but also facilitates tumor metastatic spreading. Thus, tumor angiogen‐
esis represents an attractive new target for tumor therapy because it is well accepted that new
blood vessel formation promotes tumor growth and metastatic spread [152, 155, 156].

In terms of NB, current evidence suggests that advanced and aggressive stages of NB are
dependent on angiogenesis [157-159]. Meitar et al [160] demonstrated the association of the
tumor angiogenesis and poor outcome in human NB. Like most solid tumors, several well-
known pro-angiogenic growth factors such as VEGF-A, VEGF-B, bFGF, angiopoietin-2
(Ang-2), transforming growth factor alpha (TGF-α) and PDGF were found in advanced-stage
NB tumors [161]. Human NBs produce extracellular matrix-degrading enzymes, that induce
endothelial cell proliferation and are angiogenic in vivo [162]. Integrins αvβ3 and αvβ5 are
more highly expressed in blood vessels of high-risk versus low-risk NB tumors [163]. In
addition, lymphatic vessels are observed in NB [164] with higher expression of the VEGF-C
lymphangiogenesis growth factor observed in advanced stage of NB [161]. These evidences
suggest that tumor angiogenesis likely contributes to NB pathogenesis.

5.2. Contributions of MYCN amplification and trks-mediated signaling pathways to NB
tumor angiogenesis

NB is an embryonic tumor that is derived from cells of the primitive NC [165]. In general,
genetic abnormalities play a key role in determining tumor phenotype, [165, 166]. MYCN
amplification is one of the first identified genetic defects in NB, and high levels of MYCN are
associated with aggressive tumor behavior and poor survival [167]. MYCN is member of the
MYC family of basic helix-loop-helix transcription factors that control a broad regulatory
network implicated in cell cycle, DNA damage response, differentiation and apoptosis [168].
There is evidence that MYCN amplification is also associated with tumor angiogenesis. Several
studies demonstrated that MYCN amplification in NB suppressed the expression of angio‐
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genesis inhibitors, such as activin A, interleukin-6 and leukemia inhibitory factor [169, 170].
Activin A represses NB growth, endothelial cell proliferation and angiogenesis [171, 172]. In
addition, highly expressed activin A in differentiated NB strongly correlates with a favorable
NB outcome [173]. Interestingly, inhibition of PI3K/rapamycin results in the degradation of
MYCN in NB tumor cells and results in blockage of angiogenesis indirectly [174].

A second gene family implicated in NB is the TRK family of neurotrophin receptors (NTRK)
that play critical roles in the development of the CNS and PNS [25, 175]. The 3 characterized
members are TrkA (NTRK1), TrkB (NTRK2) and TrkC (NTRK3) with nerve growth factor
(NGF), BDNF and neurotrophin-3 (NT-3) as their primary ligands, respectively [175]. The
sequential Trk expression is important for complete differentiation of normal sympathetic
neurons, and the Trk genes expressed reflect the stage of neuronal differentiation [176]. High
expression of TrkA and TrkC are associated with the ability for NB to differentiate and
spontaneous regress, and are predominately found in clinically favorable NB. One mechanism
that could explain this is that high expression of TrkA reduces the expression of angiogenic
factors in NB cells and suppresses NB tumor xenograft growth associated with reduced
angiogenic factor expression and vascularization of tumors [177]. In contrast, TrkB and its
ligand, BDNF, are highly expressed in aggressive NB associated with increased cell survival,
angiogenesis and drug resistance [25, 175].

5.3. Anti-angiogenesis treatments in NB - conventional anti-VEGF/VEGFR2 signaling
pathways

Although targeting of the tumor vasculature represents a promising tool for cancer therapy,
there are no current clinical trials of anti-angiogenesis therapy for NB [157-159]. There are
several pre-clinical studies in NB animal models [157-159], and depending on the unique
aspects of NB, several different approaches for anti-angiogenesis therapy is feasible. VEGF
and its cognate receptor 2 (VEGFR2) are major regulators of angiogenesis. Anti-VEGF/VEGFR2
signaling pathways and inhibition of endothelial cell proliferation and migration are the most
common anti-angiogenesis therapeutic approaches. The recently approved anti-angiogenesis
drug, bevacizumab (Avastin), is a recombinant monoclonal antibody that binds VEGF-A and
subsequently blocks the activation of its receptors. Bevacizumab reduces NB tumor growth by
reducing angiogenesis [178]. In addition, treatment with bevacizumab can transiently induce
tumor vasculature remodeling allowing for improved delivery and efficacy of chemotherapy
in NB tumor xenografts [98]. A VEGFR-2 tyrosine kinase inhibitor Sugen 5416 (SU5416,
Semoxinal) is a specific VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1) tyrosine kinase inhibitor that has
shown efficacy in inhibiting angiogenesis in vivo models of NB [179]. Efficacy of inhibiting
tumor growth was increased when SU5416 was given in combination with irradiation or
chemotherapy [180, 181]. In addition to VEGF inhibitors, other angiogenesis inhibitors have
shown efficacy on NB tumor angiogenesis and growth, which is discussed in detail elsewhere
[157, 159, 182]. TNP-470 is a synthetic analog of fumagillin, an antibiotic isolated from the
fungus Aspergillus fumigatus fresenius with antineoplastic activity. TNP-470 is a potent
selective inhibitor of Methionine aminopeptidase-2 (MetAP-2) resulting in endothelial cell
cycle arrest late in G1 phase and leading to inhibition of tumor angiogenesis [183]. TNP-470
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treatment in a NB tumor xenograft model reduced the tumor growth rate and decreased
capillary density [184-188], and increased the efficacy of chemotherapy [181]. Taken together,
these results suggest that anti-angiogenesis is an effective approach for reducing NB growth
and burden. In addition to direct approaches targeting the vasculature in NB, indirect anti-
angiogenesis approaches have also shown efficacy in NB. For the most part, these approaches
rely on the induction of differentiation of NB. For example, retinoids have been shown to exert
their effects by inducing differentiation of NB cells. Retinoids and fenretinide, a synthetic
retinoid, have demonstrated anti-angiogenic effects in NB tumor xenografts [189, 190]. The
inhibitory effects were mediated by retinoic acid induced expression of thrombospondin-1
(TSP-1) in NB cells. TSP-1 is an important endogenous angiogenesis inhibitor that inhibits
endothelial cell proliferation and migration. Interestingly, TSP-1 is silenced in a subset of
undifferentiated advanced-stage NB tumors and NB cell lines due to promoter methylation
[191]. Remarkably, ABT-510, a peptide derived from TSP-1, suppressed the growth of NB
tumor xenografts [192]. In combination with valproic acid, ABT-510 showed potent inhibitory
effects on the growth of NB tumor xenografts. Taken together, these results suggest that both
direct and indirect approaches of targeting angiogenesis are feasible therapeutic approaches
for NB.

6. Molecular and cellular mechanistic interface between endothelial and
immune cells in NB

The statement that “tumors are wounds that never heal” [21] has relevance for which pheno‐
type of immune cells are present in the tumor microenvironment, and whether these cells
interact to promote or prevent tumor. During the initial stage of wound healing there is an
inflammatory response that is produced by an influx of immune cells that release inflammatory
mediators. The next stage of tissue remodeling is characterized by a down-regulation of the
immune response, cell proliferation, and revascularization of the wound via angiogenesis
[193-195]. In the resolution stage of tissue remodeling, cell proliferation is halted and vessels
are stabilized. In the tumor microenvironment, there is a perpetual state of inflammation, cell
proliferation and angiogenesis similar to an unhealed wound. Chronic hypoxia in the tumor
microenvironment is a contributing factor as to why tumors are wounds that never heal. The
cellular response to hypoxia is controlled by the expression of hypoxia inducible factors (HIF)
[196]. Low oxygen tension prevents the ubiquitination and subsequent proteosomal degrada‐
tion of HIF-α proteins allowing them to translocate to the nucleus and dimerize with HIF-β
forming functional transcription factors (HIF-1α/HIF-β or HIF-2α/HIF-β) that promote up-
regulation of angiogenic target genes. There is also evidence that HIF-1α regulates energy
homeostasis and plays a role in the differentiation of immune cells that can have pro or anti-
tumor effects [197]. Notably, HIF-2α expression is required to maintain an undifferentiated
state of NB tumor-initiating cells, and expression of HIF-2α is associated with poor outcome
in NB [197, 198]. Hypoxia and chronic inflammation are key characteristics of the tumor
microenvironment that promote immune suppression and vascularization. In NB as well as
other solid tumors, cytokine and chemokine mediators as well as angiogenic factors influence
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the differentiation state of immune cells which ultimately determines whether or not these
cells can be activated to contribute to anti-tumor immunity. This section highlights how
immune cells are affected by factors in the tumor microenvironment to become both tolero‐
genic and pro-angiogenic with an emphasis on the interconnection between angiogenesis and
tumor immunity. In addition, future prospects for treating NB with combinations of anti-
angiogenic agents and immune-based therapies as a strategy to reverse the immune suppres‐
sion in the tumor microenvironment is discussed.

Figure 4. The contribution of immune cells in the tumor microenvironment. Pro M: pro-monocyte; MM: myelo‐
monocytic stem cell; M: monocyte; M1 and M2: type 1 and 2 macrophages; MDSC: myeloid-derived suppressor cell;
DC: dendritic cell; iDC: immature dendritic cell; VLC: vascular leukocyte cell; Tregs: T regulatory cells; IFN-γ: interferon
gamma; TNF-α: tumor necrosis factor alpha; TGF-β: transforming growth factor beta; VEGF: vascular endothelial
growth factor; bFGF: basic fibroblast growth factor; PIGF: placental growth factor; and MMP9: matrix metalloprotei‐
nase 9.

6.1. Myeloid cells

Innate immune cells of the myeloid lineage, including monocytes, macrophages and dendritic
cells have been implicated as drivers of angiogenesis (Figure 4). Of these cells, the contribution
to angiogenesis has been best characterized for macrophages. Studies in both human tumors
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and murine tumor models have shown that the presence of tumor associated macrophages
(TAMs) correlates with enhanced vessel density, tumor progression and metastasis [199].
During inflammation, monocytes are attracted by chemo-attractants to damaged tissues,
where they differentiate into macrophages. These macrophages are phenotypically plastic, and
depending on the environmental signals within wounds or tumors, they differentiate into
functional subsets with different activation states [200]. At sites of inflammation, interferon
gamma (IFN-γ) and TNF-α facilitate macrophage differentiation into cytotoxic “M1” cells that
secrete pro-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-23). M1 macrophages are
phagocytic, sustain tissue inflammation, and promote a T helper-1 (TH1) anti-tumor immune
response [201, 202]. Alternatively, when induced in the presence of IL-4, IL-13, IL-10 and TGF-
β, macrophages differentiate into “M2” cells that secrete IL-10 and participate in tissue
remodeling and immune suppression. M2 macrophages also produce angiogenic factors.
These factors include VEGF, placental growth factor (PIGF), arginase and the Tie2 angiopoietin
cell surface receptor [203, 204]. Monocytes/macrophages that express Tie2 (referred to as
TEMS) are a source of VEGF and have been found in human and murine spontaneous and
orthotopic tumors [205, 206]. TEMS reside in close proximity to the tumor vasculature and are
possibly recruited by angiopoietin-2-expressing endothelial cells [199].

Using a physiologic model of  skin wound repair,  CCR2hi/VEGF-expressing macrophages
were shown to initiate vascular sprouts during the early stages of tissue repair [195]. During
the early repair period, macrophages with both M1 and M2 gene profiles were present, but
cells with a M2 phenotype predominated during the later stages of repair. Results of this
study imply that VEGF-expressing macrophages initiate wound-tissue vascularization. The
presence of both M1 and M2 macrophages during early repair may be a reflection of the
presence of M1 cells during the resolution of inflammation and the presence of M2 cells
associated with initiation of an immune-suppressive tissue repair program. The data obtained
from this physiologic model of wound healing parallels the process that occurs within the
tumor microenvironment. In tumors, M1 cells are often found in sites of chronic inflamma‐
tion, simulating the inflammatory stage of wound healing, while M2 cells are associated with
vascularization, immune suppression and tissue repair [207].  However,  this paradigm of
tissue repair is not absolute for tumors as demonstrated by an aggressive inflammatory form
of breast cancer where there is up-regulation of both VEGF and the IL-6 pro-inflammatory
(M1) cytokine [208].

Dendritic cells (DCs) are professional antigen-presenting cells by nature, and they are inti‐
mately involved in the activation of tumor-specific T cells. DCs originate from CD34+ bone
marrow precursors, and they differentiate into heterogeneous subsets due to differentiation
plasticity. Within this heterogeneity there are functionally 2 major distinct subtypes of
dendritic cells classified as myeloid DC (mDCs) and plasmacytoid DC (pDCs). Plasmacytoid
DCs produce anti-angiogenic type I interferons [209], and mDC have the capacity to function
as potent antigen-presenting cells. The maturation state of DCs adds another layer of com‐
plexity as immature DCs have high endocytic activity, but they lack expression of the co-
stimulatory molecules that are necessary for T cell activation. Based on these properties,
immature DCs are considered as immune-tolerogenic rather than immune-activating. VEGF
affects the development and maturation of DCs. Binding of VEGF to the VEGFR-1 receptor on
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CD34+ bone marrow progenitor cells limits differentiation along the DC lineage [210], and
engagement of VEGFR-2 inhibits the maturation of DCs [210-212]. Furthermore, high levels of
tumor-derived VEGF are associated with the presence of DCs with decreased co-stimulatory
molecule expression [213]. There is evidence that tumor-infiltrating immature DCs also
promote angiogenesis by secreting VEGF and bFGF [214, 215], and that immature DCs
participate in de novo formation of blood vessels or neovascularization in the tumor micro‐
environment. Under the influence of VEGF or angiogenic factors, immature mDCs trans-
differentiate into endothelial-like DCs (called vascular leukocytes, VLC) expressing both DC
and endothelial markers such as von Willebrand factor, VEGFR-2, and VE-cadherin (CD31)
[216]. Remarkably, human VLC were able to form perfusable blood vessels when transplanted
into immune-deficient mice, indicating a potential to support neovascularization.

In addition to macrophages and DCs, neutrophils, eosinophils and mast cells can contribute
to tumor angiogenesis. Tumor-infiltrating neutrophils and mast cells secrete VEGF and
MMP-9 [217]. Secretion of MMP-9 facilitates the availability of pro-angiogenic factors through
a remodeling of the extracellular matrix. Interestingly, an increase in the number of neutrophils
in the tumor microenvironment correlates with increased micro-vessel density [218]. The
presence of mast cells in murine models of melanoma [219], squamous cell carcinoma [220]
and pancreatic islet tumors [221] has been associated with increased angiogenesis. Mast cells
are present in the tumor microenvironment prior to vessel formation [222], and they congre‐
gate near tumor-derived vessels [220, 223]. Since mast cells contain pro-angiogenic factors in
their secretory granules, it has been hypothesized that secretion of these factors by mast cells
promotes tumor angiogenesis [199]. There is indirect evidence that eosinophils promote tumor
angiogenesis, as they have been detected in human tumors [199], and they are also a source of
pro-angiogenic factors [224].

Myeloid-derived suppressor cells (MDSC) are immature myeloid progenitors of monocytes,
neutrophils and DCs. As tumor-resident cells, MDSC facilitate tumor progression by their
immunosuppressive properties. However, these cells may also have a role in promoting
angiogenesis. Studies have shown that tumor angiogenesis is decreased when the MDSC
chemo-attractant, BV8 (PROK2), was neutralized [225], and tumor blood vessel density
increased when MDSC were co-injected with colorectal cancer cells into mice [226]. MDSC also
secrete matrix metalloproteases.

6.2. T cells

Cancer patients have a decrease in immune function that can be attributed in part to the
tolerogenic differentiation of innate immune cells. However, there is evidence that VEGF also
interferes with T cell development. Effective T cells have the ability to specifically recognize
and kill tumors. In fact, the most significant predictor of survival from solid tumors is the
presence of CD8 T cells in the tumor core and invasive margins [227]. In vivo administration
of a supraphysiologic concentration of recombinant VEGF blocks bone marrow-derived
progenitor cells from seeding in the thymus reducing T cell production [228]. These data imply
that VEGF secreted from tumors or cells in the tumor microenvironment may contribute to a
systemic decrease in T cells.
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As previously described, cells of the innate immune system have an important pro-angiogenic
role in the tumor microenvironment. However, cells that mediate adaptive immunity also
contribute to angiogenesis. The tumor microenvironment is immune suppressive due to the
presence of multiple tolerogenic mechanisms. One of the most potent immune suppressive
mediators arises through the differentiation of CD4+CD25- T cells into CD4+CD25+FoxP3+

regulatory T cells (Tregs) [229]. In addition to promoting tumorigenesis through immunosup‐
pression, there is evidence that Tregs contribute to tumor angiogenesis. Accumulation of Tregs
in the tumor microenvironment is associated with increased angiogenesis and increased
microvessel density [230]. CD4+CD25+ Tregs secrete higher amounts of VEGF than
CD4+CD25- CD4 T cells, and when Tregs are depleted from the tumor microenvironment there
is less VEGF and angiogenesis present [231]. Therefore, elimination of Tregs as a form of tumor
immunotherapy may provide two benefits: a release from immune suppression and decreased
angiogenesis.

To summarize the pro-tumorigenic role of immune cells in the tumor microenvironment,
there is now convincing evidence that suppressive immune cells can contribute to tumor
angiogenesis.  This angiogenic activity may be a reflection of  the natural  wound healing
process,  as  wounds  naturally  switch  from  an  immune-activating  acute  inflammatory
environment to one that is immune suppressive and pro-angiogenic. As an unhealed wound,
the  tumor  microenvironment  may  continually  cycle  between  one  of  inflammation  and
immune suppression. An understanding of how immune cells, tumor cells, endothelial cells
and other cells in the microenvironment contribute to immune suppression and angiogene‐
sis is key in order to devise therapies that can reprogram cells in this environment to be both
immune  activating  and  anti-angiogenic.  Given  the  parallels  between  suppressed  anti-
tumor  immunity  and  angiogenesis,  therapies  designed  to  relieve  anti-tumor  immune
suppression may halt the angiogenic program, or vice versa. Studies to test synergy between
immune-based and anti-angiogenic therapies have recently emerged; however, for NB, this
field is in its infancy.

6.3. Anti-angiogenic and immune therapies to treat NB

The current standard of care for high-risk NB patients includes myeloablative chemotherapy
followed by autologous hematopoietic stem cell transplant (AHSCT) and isotretinoin (13-cis-
retinoic acid). While these treatments have improved the survival of patients with high-risk
disease, approximately 60% of these patients will relapse and die of their disease. Recently,
immune therapy has been added to standard treatment protocols as a strategy to improve
survival. Post-transplant treatment with an antibody that targets the highly expressed GD2
disialoganglioside on NB tumor cells, in combination with interleukin-2 (IL-2) and granulocyte
macrophage colony-stimulating factor (GM-CSF), has resulted in a 2-year 20% increase in
event-free survival compared to patients treated with standard therapy alone [232]. Despite
this multimodal therapy, the mortality rate remains high for patients with metastatic NB.
Indicators of disease associated with a poor prognosis include a paucity of stromal Schwann
cells, MYCN amplification, expression of the TrkB receptor tyrosine kinase and a high vascular
index [233]. Infiltration of immune cell subsets has also been associated with high-risk disease.
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TAMs expressing CD68 and IL-6, as well as IL-6-expressing CD33+CD14+ myelomonocytic cells
in the bone marrow, are indicators of poor survival [234]. Expression of inflammation-
associated genes (IL-6, IL-6R, IL-10 and TGFβ1) also correlates with a poor 5-year event-free
survival [235]. In search of new therapies aimed at targeting these high-risk factors, both
preclinical and clinical studies designed to test either immune or anti-angiogenic therapies are
in progress.

The goal of immune therapy is to summon immune effector cells to the tumor microenviron‐
ment and promote activation against the tumor. Much of the effort in cancer immunotherapy
has focused on the activation of effector T cells, but in order to achieve an effective anti-tumor
T cell response, tumor antigen, mature antigen-presenting DCs and tumor antigen-reactive T
cells must be present [236]. Autologous or allogeneic whole tumor cell vaccines, tumor lysate
vaccines, antigen–primed DC vaccines, and induction of endogenous tumor cell lysis are all
strategies to provide a source of tumor antigens. Agents such as GM-CSF, toll-like receptor
(TLR) ligands, or agonistic anti-CD40 antibody are administered to promote DC migration and
maturation. Blockade of T cell inhibitory receptors with anti-CTLA-4 or anti-PD-1 antibodies,
administration of T cell survival chemokines (IL-2, IL-12 or IL-15), Treg blockade, or adoptive
transfer of immune cells are therapies that can promote T cell activation. Recent attention has
been directed to targeting immune suppressive factors in the tumor microenvironment using
molecular inhibitors or antibodies. As previously noted, the functional complexity of immune
cells, and their modulation by the tumor microenvironment to become immune suppressive,
is recognized as key factor in the failure of effective anti-tumor immunity.

For NB, the efficacy of several different immune therapies has been examined in both preclin‐
ical murine tumor models (Table 1) and clinical trials (Table 2). Preclinical therapies include
whole-cell tumor vaccines secreting immune activating cytokines (GM-CSF, IFN-γ, IL-21) or
expressing immune co-stimulatory molecules (CD54 (ICAM), CD80, CD86, CD137L). In the
N2a murine tumor model, our laboratory and others have shown that depletion of Tregs using
anti-CD4 or anti-CD25 mAbs increases vaccine-induced anti-tumor immunity [242, 246].
Another immune therapy designed to augment the number of anti-tumor T cells involves the
adoptive cell transfer (ACT) of lymphocytes or T cells. For this therapy, autologous T cells are
expanded ex vivo and returned to the patient after they have been activated against tumor
antigens. Tumor-specific T cell receptors genetically attached to T cell activating domains
(chimeric antigen receptors or CARS) have been transduced into T cells as a method to increase
the anti-tumor cytolytic activity provided by ACT. In a preclinical model, adoptive transfer of
T cells expressing an anti-GD2 CAR and the CCR2b chemokine receptor promoted trafficking
of T cells to the tumor and resulted in tumor regression [245]. Of 11 patients enrolled in a
clinical trial testing ACT of Epstein-Barr virus (EBV)-specific T cells expressing the anti-GD2
CAR, 2 patients had tumor regression and 2 patients experience stable disease (Table 2). One
of the earliest pre-clinical strategies used a combination of anti-human GD2 antibody and IL-2
treatment in a human-mouse NB xenograft model [237]. After over a decade of study, a
combination of anti-GD2, IL-2, GM-CSF and cis-retinoic acid, given in the context of autolo‐
gous hematopoietic stem cell transplantation, has now been shown to improve the event-free
survival of treated patients [232].
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Model Therapy Response References

SCID (immune deficient)

mouse

Human/mouse chimeric anti-

GD2 and IL-2 (ch14.8-IL-2) plus

IL-2-activated human PBMCs

Suppressed dissemination of

human SK-N-AS NB injected

under the splenic capsule

[237]

N2a syngeneic mouse IL-2-secreting N2a tumor vaccine Induced protective immunity

against N2a and prolonged

survival of N2a-bearing mice

[238]

N2a syngeneic mouse GM-CSF or GM-CSF and IFN-γ

secreting N2a tumor vaccine

Regression of tumor in

retroperitoneal inoculated N2a-

bearing mice

[239]

AGN2a (N2a subclone)

syngeneic mouse

AGN2a tumor vaccine transiently

transfected to express CD54,

CD80, CD86 and CD137L

Protection from AGN2a tumor

challenge

[240]

AGN2a (N2a subclone)

syngeneic mouse

Anti-CD25 mAb followed by

AGN2a CD80, CD86-expressing

tumor vaccine

Enhanced protection to AGN2a

tumor challenge

[241]

N2a syngeneic mouse IL-21-secreting AGN2a tumor

vaccine

Protective anti-tumor immunity

and detection of survivin-

specific CTLs

[242]

NXS2 syngeneic mouse Survivin DNA minigene vaccine Increase in CD8 T cells at the

tumor site and reduced tumor

growth

[243]

NXS2 Tyrosine hydroxylase DNA

minigene vaccine

Induced tyrosine hydroxylase-

specific CTLs and eradicated

primary tumor

[244]

SCID ACT of T cells expressing anti-

GD2 CAR and CCR2b

Reduction in growth of huNB

xenograft and increased

trafficking of CD2 CAR CCR2b T

cells to the tumor

[245]

N2a IL-21-secreting N2a tumor

vaccine and anti-CD4 mAb

Reduced dissemination of

intravenous inoculated N2a

tumor.

[242]

AGN2a (N2a subclone) ACT of CD25-depleted T cells

following TBI and HSCT and

AGN2a tumor vaccine expressing

CD54, CD80, CD86, and CD137L

Increase in survival of AGN2a-

bearing mice

[246]

Table 1. Immunotherapies for neuroblastoma (pre-clinical)
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In addition to infiltration of specific immune cellular subsets, a high NB vascular index also
correlates with aggressive disease [255]. High expression of pro-angiogenic factors (HIF-2α,
VEGF-A, bFGF, TGF-α, PDGF-A, angiopoietin-2, MMP-2, MMP-9, and integrins αvβ3 and
αvβ5) as well as down-regulation the endothelial cell growth inhibitor, activin A, have been
reported in advance stage or high risk NB [256-260]. Given these findings, studies have been
designed to target angiogenesis with (1) Agents that directly target endothelial cells (endosta‐
tin, thrombospondin-1, thalidomide), (2) Agents that indirectly block the production or activity
of pro-angiogenic molecules (antibodies to VEGF or VEGF receptors), or (3) Or agents that
target both endothelial and tumor cells (receptor tyrosine kinase inhibitors (RTK) and inter‐
feron alpha (IFN-α)). For a complete review, refer to [233]. TPN-470 is an agent that inhibits
the proliferation of endothelial cells by inactivating methionine aminopeptidase; however,
biochemical instability may limit its application [261]. Fenretinide (N-(4-hydroxyphenyl or
4HPR) is a synthetic analog of retinoic acid that represses endothelial cell proliferation and is

Therapy Response Reference

IL-2 No objective tumor response. [247]

Autologous NB transfected to produce

IL-2

Of 10 patients, 1CR, 1PR and 3SD; 4 patients

with anti-tumor CTLs

[248]

Allogeneic NB secreting IL-2 No cytotoxicity against the vaccinating cell

line; 1PR, 7SD and 4PD

[248]

Allogeneic NB secreting IL-2 and

lymphotactin

Of 21 patients with relapsed or refractory

disease: 2CR 1PR; increased NK cytolytic

activity

[249]

Anti-GD2 (hu14.18)/IL-2 fusion

protein

Of 27 patients there were no CR or PR, 3

patients had anti-tumor activity

[250]

Anti-LI-CAM CAR Of 6 patients, 1 with limited disease had a PR [251]

Autologous IL-2-secreting tumor

vaccine

In patients with minimal disease there was a

rise in circulating CD4 and CD8 T cells specific

for autologous tumor

[252]

ACT of EBV-specific T cells transduced

with anti-GD2 CAR

Of 11 patients 2CR and 2SD [253]

Anti-GD2 (hu14.18)/IL-2 fusion

protein

Of 23 patients with non-bulky tumor there

were 5CR

[254]

Anti-GD2 (ch14.18) GM-CSF, IL-2 and

cis-retinoic acid following

myeloablative conditioning and

AHSCT

Improved event-free survival

Incorporated into standard of care

[232]

Table 2. Immunotherapies for neuroblastoma (clinical)
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associated with a reduction in VEGFR-2 and FGF-2R-2 receptor expression on endothelial cells
[262]. Retinoids are promising anti-tumor agents because they also induce the differentiation
of NB cells and promote the survival of tumor-reactive CD8 T cells [233, 263]. As mentioned
previously, the isotretinoin retinoid has recently been added to standard care protocols for the
treatment of refractory NB. Bevacizumab is an anti-VEGF monoclonal antibody that binds to
VEGF receptors, blocking signaling through these receptors. A VEGF Trap decoy is another
agent used to block VEGFR. This agent is composed of VEGFR-1 and VEGFR-2 segments fused
to an IgG1 molecule [264]. The receptor tyrosine kinase inhibitors, SUGEN, axitinib, imatinib
mesylate, sunitinib, sorafenib and ZD6474 differentially target various receptors including
PDGFR, VEGFR, the stem cell factor receptor (c-KIT), the FMS-related tyrosine kinase 3,
epidermal growth factor receptor (EGFR) and RET on endothelial and tumor cells [265, 266].
Preclinical studies testing the effects of these agents on human-mouse NB xenografts have been
performed. For these studies, human NB cell lines were grafted (orthotopically or subcutane‐
ously) into immune compromised mice. Tumor growth, apoptosis of tumor and endothelial
cells, and tumor vascularization were examined after treatment with the anti-angiogenic
agent(s). It is important to note that these mouse models cannot accurately assess impact of
the immune system on tumor growth because they lack an intact human immune system. A
summary of NB anti-angiogenic preclinical studies is shown in Table 3.

Model Therapy Response Reference

NB xenografts into

immune-

compromised (Nude,

SCID, NOD-SCID)

TNP-470 (AMG-1470) Inhibited endothelial cell

proliferation and migration

[267]

Fenretinide Prevented the induction of

endothelial cell proliferation

and angiogenesis

[268]

High dose VEGF Trap decoy Disrupted early vessel

formation and vessel

remodeling

[264]

Imatinib mesylate (Gleevec) Inhibited NB growth and

suppressed PDGFR and c-Kit

phosphorylation

[269]

SUGEN (SU11657) Reduced angiogenesis,

tumor growth and increased

apoptosis of NB

[265]

Bevacizumab Decrease in tumor micro-

vessel density, tumor

growth and angiogenesis

[270, 271]
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Model Therapy Response Reference

Combined treatment with a

thrombospondin-1 peptide

and valproic acid histone

deacetylase inhibitor

Inhibited growth of NB

xenografts and stabilized

the growth of large tumors

[272]

ZD6474 RTK Inhibited tumor growth and

induced endothelial cell

apoptosis

[266]

Sunitinib and sorafenib Inhibited angiogenesis and

tumor growth

[273]

Bevacizumab and

cyclophosphamide

Synergistic anti-tumor effect [274]

Axitinib Tumor growth delay, but no

regression

[275]

Table 3. Neuroblastoma pre-clinical anti-angiogenic therapies

Since the infiltration of immune-suppressive cells and a high vascular index both correlate
with aggressive NB, interventions designed to reverse both immune suppression and angio‐
genesis represent promising treatment approaches. However, studies testing such combina‐
tion therapies for the treatment of NB or other cancers are relatively scarce (Table 4). One
ongoing phase I NB trial combines immune therapy with anti-angiogenic therapy. For this
study, an iodine 131I-conjugated anti-GD2 monoclonal antibody is administered in combination
with bevacizumab [276]. Combination therapies for other cancers (renal cell carcinoma) have
included treatment with bevacizumab and IFN-α [277] or IL-2 [278]. Surprisingly, combina‐
tions of anti-tumor immune and anti-angiogenic therapies have not been tested preclinically
in NB, and there are relatively few preclinical studies in other tumor models (Table 4).
However, there is evidence that these therapies can act synergistically to elicit anti-tumor
responses: (1) Combinations of cytokine-secreting tumor cell-based vaccines and agents that
block VEGFR signaling were tested in melanoma and breast cancer models; (2) Immune-
activating cytokines, endostatin, and pigment epithelium-derived factor were tested in a
hepatocellular carcinoma model; (3) Adoptive transfer of tumor-antigen specific T cells with
anti-VEGF and IL-2 was tested in a melanoma tumor model; and (4) Vaccination with a viral
vector encoding immune stimulatory molecules and treatment with sunitinib was tested in a
colon cancer transgenic mouse model.

While it is almost certain that a combination of therapies (chemotherapy, radiation, targeted
therapies, immune and/or anti-angiogenic) will be required to mount an effective anti-tumor
response, the appropriate combination will likely vary among the different cancer types. For
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System Therapy Response Reference

Neuroblastoma clinical
trial

131I-labeled anti-GD2 mAb
and bevacizumab

In progress Clinicaltrials.gov

Clinical trials in other
tumor models
Renal cell carcinoma Bevacizumab and IFN-α Significant increase in

progression-free survival
compared to IFN-α alone

[277]

Renal cell carcinoma Bevacizumab and IL-2 No clinical benefit [278]
Preclinical Studies in
other tumor models
B16F10 melanoma GM-CSF secreting tumor

vaccine with a
recombinant adeno-
associated virus vector
expressing a soluble VEGF
receptor

A significant increase in
tumor-free survival
associated with a reduction
in tumor-infiltrating
immature DC and Tregs
and an increase in effector
T cells

[279]

Her2/neu breast cancer Her2/neu expressing GM-
CSF secreting tumor
vaccine in combination
with anti-VEGFR-1,
DC101 mAb

In non-tolerant WT
syngeneic mice there was
accelerated tumor
regression associated with
expansion of CD4 and CD8
T cells. In tolerant neu
transgeneic mice there was
delayed tumor growth, but
no regression

[280]

Woodchuck
hepatocellular carcinoma

Adenovirus vectors
encoding IL-12, GM-CSF,
endostatin and pigment
epithelium-derived factor

Regression of large tumor
(>8,000 mm2) required
infusion of all vectors

[281]

B-16 melanoma Adoptive transfer of
Pmel-1 transgenic T cells
with anti-VEGF, a tumor
vaccine expressing
melanoma tumor
antigen, gp100, and IL-2
after non-myeloablative
total body irradiation

There was a significant
increase in survival in
tumor-bearing mice when
anti-VEGF was
administered prior to
irradiation and immune
therapy

[282]

MC38-CEA colon
carcinoma in CEA-
transgenic mice

Sunitinib plus primary
vaccination with CD80,
ICAM1, LFA-3 and CEA
expressing vaccinia virus
and a boost with fowlpox
virus

Treatment with sunitinib
prior to vaccination
resulted in a significant
reduction in tumor growth

[283]

Table 4. Combined immune and anti-angiogenic therapy
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NB, the ideal combination is yet to be determined. Bevacizumab (Avastin®) is FDA-approved
for other solid tumors and represents a promising addition to augment immune and chemo‐
therapeutic anti-tumor efficacy for NB. Receptor tyrosine kinase inhibitors, including imatinib
mesylate (Gleevec®), sorafenib (Nexavar®), and sunitinib (Sutent®) have shown some anti-
tumor efficacy in NB preclinical studies, and these agents are also FDA-approved for the
treatment of some solid tumors. The results from studies using combined anti-angiogenic and
anti-tumor immune therapy are encouraging and offer a new avenue to explore more effective
eradication of NB and other cancers. Given the multiple types of immunotherapy and anti-
angiogenic agents, as well as different platforms of delivery, more studies using combinations
of these therapies are warranted.

7. Conclusion

NB is an enigmatic childhood cancer that has developmental origins in NC cell lineage. MYCN,
ALK and TRKA are the key target genes for NB prognosis. Extracellular matrix and cell
adhesion molecules that participate in interactions and signaling across endothelial cells,
immune and Schwann cells in the NB microenvironment have potential for targeting. The
future for NB biology and therapy looks bright and multiple modalities affecting various cell
types and signals in NB microenvironment are anticipated.

Nomenclature

ALK:  anaplastic  lymphoma kinase;  ANS:  autonomic  nervous  system;  Ang-2:  angiopoie‐
tin-2; ACT: adoptive cell transfer; BMP: bone morphogenic protein; BDNF: brain-derived
neurotrophic factor; bFGF: basic fibroblast growth factor; BrdU: 5-bromo-2’-deoxyuridine;
CNS: central  nervous system; CNTF: ciliary neurotrophic factor;  CAFs: cancer-associated
fibroblasts; CAM: cell adhesion molecules; CAR: chimeric antigen receptor; CR: complete
response;  DRG:  dorsal  root  ganglia;  DC:  dendritic  cell;  EMT:  epithelial  to  mesenchymal
transition; ECM: extracellular matrix; EBV: Epstein-Barr virus; EGFR: epidermal growth factor
receptor; FDA: Federal Drug Administration; FGF: fibroblast growth factor; GNB: ganglio‐
neuroblastoma; GN: ganglioneuroma; GFAP: glial fibrillary acidic protein; GJIC: gap junction
intracellular communication; GM-CSF: granulocyte macrophage colony-stimulating factor;
HGF:  hepatocyte  growth  factor;  hMSC:  human  mesenchymal  stem  cells;  HIF:  hypoxia
inducible factor; IFN-γ: interferon gamma; IFN-α: interferon alpha; LIF: leukemia inhibito‐
ry  factor;  MYCN:  v-myc  myelocytomatosis  viral-related  protein;  MAPs:  microtubule
associated  proteins;  MBP:  myelin  basic  protein;  MKI:  mitosis-karyorrhexis  index;  MMP:
metalloproteinase; mDC: myeloid dendritic cell;  MDSC: myeloid-derived suppressor cell;
NB: neuroblastoma; NC: neural crest; NCSC: neural crest-derived stem cell; NRG-1 neuregu‐
lin-1; NF: neurofilament; NCAM: neural cell adhesion molecule; NGF: nerve growth factor;
NT-3: neurotropin-3; PBMC: peripheral blood mononuclear cell; PNS: peripheral nervous
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system; PSNS: parasympathetic nervous system; PEDF: pigment epithelium-derived factor;
PDGF: platelet-derived growth factor; PolySia: polysialic acid; PIGF: placental growth factor;
pDC: plasmacytoid dendritic cell; PD: progressive disease; PR: partial response; RA: retinoic
acid; RTK: receptor tyrosine kinase; SA: sympathoadrenal; SPARC: Secreted Protein Acidic
and Rich in Cysteine; SC: Schwann cell; SCP: Schwann cell precursor; SAE: severe adverse
effect; SD: stable disease; Trk: tyrosine kinase receptor; TH: tyrosine hydroxylase; TGF-β :
transforming growth factor-beta;  TIMP-2:  tissue  inhibitor  of  metalloproteinase-2;  TGF-α:
transforming  growth  factor-alpha;  TSP-1:  thrombospondin-1;  TAMs:  tumor-associated
macrophages; TNF-α: tumor necrosis factor-alpha; TH1: T helper-1; TEMS: Tie2 monocytes/
macrophages; Tregs: T regulatory cells;  TLR: toll-like receptor; VLC: vascular leukocytes;
VEGF: vascular endothelial growth factor
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