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1. Introduction 

Tumor metabolism and bioenergetics are important areas for cancer research and present 

promising targets for anticancer therapy. Growing tumors alter their metabolic profiles to 

meet the bioenergetic and biosynthetic demands of increased cell growth and proliferation. 

These alterations include the well-known aerobic glycolysis, the Warburg effect, which has 

been considered as the central tenet of cancer cell metabolism for more than 80 years [1]. 

Interest in cancer cell metabolism has been refueled by recent advances in the study of 

signaling pathways involving known oncogene and tumor suppressor genes, which reveal 

their close interaction with metabolic pathways [2-4]. For example, recent studies document 

an important role of glutamine catabolism in tumor stimulated by the oncogenic 

transcriptional factor c-MYC (herein termed MYC) which has been previously shown to 

stimulate glycolysis [5, 6]. Although glucose and glutamine serve as the main metabolic 

substrate for tumor cells, proline as a microenvironmental stress substrate has attracted lots 

of attention due to its unique metabolic system, its availability in tumor microenvironments 

and its responses to various stresses.    

1.1. Special features of proline metabolism 

Proline is the only proteinogenic secondary amino acid, and it has special functions in 

biology [7-11]. Proline metabolism is distinct from that of primary amino acids. The 

inclusion of an alpha-nitrogen within its pyrrolidine ring precludes its being the substrate 

for the usual amino acid-metabolizing enzymes, such as, the decarboxylases, 

aminotransferases, and racemases. Instead, proline metabolism has its own family of 

enzymes with their tissue and subcellular localization and their own regulatory 

mechanisms. As shown in the schematic of proline metabolic pathway (Figure 1), these 

enzymes include proline dehydrogenase/oxidase (PRODH/POX) and pyrroline-5-

carboxylate reductase (PYCR) catalyzing the interconversion of proline and Δ1-pyrroline-5-

carboxylate (P5C), P5C dehydrogenase (P5CDH) and P5C synthase (P5CS) mediating the 
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interconversion of P5C and glutamate, and ornithine aminotransferase (OAT) catalyzing the 

interconversion of P5C and ornithine. Glutamate can be converted to α-ketoglutarate (α-KG) 

entering the tricarboxylic acid (TCA) cycle, which is also the main pathway of glutamine 

catabolism. Ornithine can be converted to arginine entering the urea cycle. Thus proline 

metabolism is closely related with glutamine metabolism, TCA cycle, and urea cycle, the 

main metabolic pathways in human body. 

 

Figure 1. Proline metabolic pathway. Proline metabolism is closely related with glutamine 

metabolism, TCA cycle, urea cycle and pentose phosphate pathway (PPP). Abbreviations: P5C, Δ1 -

pyrroline-5-carboxylate; GSA, glutamic-gamma-semialdehyde; PRODH/POX, proline 

dehydrogenase/oxidase; PYCR, P5C reductase; P5CDH, P5C dehydrogenase; GS, glutamine synthase; 

GLS, glutaminase; P5CS, P5C Synthase; OAT, ornithine aminotransferase. The interconversion between 

P5C and GSA is spontaneous. 

Importantly, the interconversion between proline and P5C, catalyzed by PRODH/POX and 

PYCR, respectively, forms the “proline cycle” in the cytosol and mitochondria as shown in 

Figure 2, which acts as a redox shuttle transferring reducing and oxidizing potential. In the 

mitochondria, during the degradation of proline to P5C, PRODH/POX, the flavin adenine 

dinucleotide-containing enzyme tightly bound to mitochondrial inner membranes, donates 

electrons through its intervening flavine adenine dinucleotide into the electron transport 

chain (ETC) to generate ATP or ROS [7, 12, 13]. This characteristic of PRODH/POX serves as 

the basis of its function in human cancers, which will be discussed in detail in the following 

sections. P5C produced from the oxidation of proline, emerges from mitochondria and is 

converted back to proline in the cytosol using NADPH or NADH as cofactor, which 

interlock with the pentose phosphate pathway (Figure 1) or other metabolic pathways.  

Proline metabolism has been shown to play an important role in various human physiologic 

and pathologic situations. For example, in the early 1970s, P5C, the immediate product of 

proline catabolism was found to be also the immediate biosynthetic precursor [7]. And in 
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the 1980s, the conversion of P5C to proline was recognized to regulate redox homeostasis as 

mentioned above [8, 14, 15]. A variety of evidence has shown the inborn errors of the proline 

metabolic pathway in several human genetic diseases and their potential roles [11, 16], such 

as familial hyperprolinemias [11, 17], mutations of PRODH/POX in neuropsychiatric 

diseases [18, 19], mutations of PYCR1 in cutis laxa [20], mutations of P5CS in 

hyperammonemia [21, 22], and so on. During the last decade, our understanding of the roles 

of proline metabolism as represented by the regulation and functions of PRODH/POX in 

tumorigenesis and tumor progression has made significant advances, which will be main 

focus in this chapter.    

1.2. Proline availability in tumor microenvironment  

Proline is one of the most abundant amino acids in the cellular microenvironment. Together 

with hydroxyproline, proline constitutes more than 25% of residues in collagen, the 

predominant protein (80%) in the extracellular matrix (ECM) of the human body. Although 

proline can be obtained from the dietary proteins, an important source of proline is from the 

degradation of collagen in the ECM by sequential enzymatic catalysis of matrix 

metalloproteinases (MMPs) and prolidase [9, 23]. The upregulation of MMPs in tumors has 

been considered a critical step for tumor progression and invasion [24-26]. A number of 

reports have shown that proline concentration is increased in various tumors, which may 

result from the upregulated MMPs degrading collagen. Previous work from our lab showed 

that glucose depletion activated MMP-2 and MMP-9 in cancer cells, which accompanied an 

increase in intracellular proline levels [27].  

Autophagy-induced degradation of the intracellular protein, which has been shown to 

regulate cancer development and progression as a survival strategy of cancer cells [28, 29], 

may also provide an important source of free proline. Furthermore, proline can be 

biosynthesized from either glutamate or ornithine as shown in Figure 1 and Figure 2. Our 

latest finding showed that a large part of products from glutamine catabolism stimulated by 

MYC is proline [30], suggesting proline biosynthesis might serve as an additional source of 

proline availability in cancer. Taken together, the ample sources of proline in tumor 

microenvironment ensure its availability as an important stress substrate for metabolism in 

human cancers.  

2. PRODH/POX as a mitochondrial tumor suppressor 

2.1. PRODH/POX induces apoptosis through ROS generation 

PRODH, the gene encoding PRODH/POX was discovered to be a p53-induced gene in a 

screening study in 1997 [31]. Importantly, the p53-initiated apoptosis was later found to 

depend on the induction of PRODH/POX [32]. To further study the function of 

PRODH/POX, we developed a DLD1-POX colorectal cancer cell line (designated as DLD1-

POX tet-off cell line), which was stably transfected with the PRODH gene under the control 

of a tetracycline-controllable promoter [33]. When doxycycline (DOX) was removed from 
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the culture medium and the expression of PRODH/POX was induced, apoptotic cell death 

was initiated.  

 

Figure 2. Proline metabolism in cancer. 1. Proline cycle: Interconversion of proline and P5C forms the 

proline cycle in the cytosol and mitochondria. Proline cycle acts as a redox shuttle transferring reducing 

potential generated by the pentose phosphate pathway or other metabolic pathway into mitochondria 

for the production of either ROS or ATP responding to different stresses. 2. Proline availability in 

human tumor microenvironment: dietary proteins, glutamate and ornithine catabolism, and 

degradation of extracellular matrix by matrix metalloproteinases (MMPs) are all important sources of 

proline, especially the last one. 3. The central enzyme of proline metabolism, PRODH/POX, localized in 

the mitochondrial inner membrane, function as a mitochondrial tumor suppressor. PRODH/POX is 

induced by p53, PPARγ and its ligands, and suppressed by miR-23b* and oncogenic protein MYC. 

PRODH/POX overexpression could initiate apoptosis, inhibit proliferation and induce G2 cell cycle 

arrest through ROS generation, and suppress HIF-1 signaling through increasing α-KG production. 

Abbreviations: X-PRO, x-prolyl dipeptide; Pro, proline; Orn, ornithine; Gln, glutamine; Glu, glutamate. 

ROS, which include superoxide radical (O2-·), hydroxyl radicals (OH·) and the non-radical 

hydrogen peroxide (H2O2), play an important role in the induction of apoptosis [34]. 

PRODH/POX could donate electron to the ETC to generate ROS. In cells overexpressing 

PRODH/POX, the addition of proline increased ROS generation in a concentration-

dependent manner, and the proline-dependent ROS increased with PRODH/POX 

expression [35]. N-acetyl cysteine (NAC), a widely used antioxidant agent, dramatically 

reduced PRODH/POX-induced apoptosis, indicating PRODH/POX induces apoptosis 

through ROS generation [13]. By introducing the recombinant adenoviruses containing 

different antioxidant enzymes, such as manganese superoxide dismutase (MnSOD), Cu/Zn 

superoxide dismutase (CuZnSOD) or catalase (CAT) into the DLD1-POX tet-off cells, we 

found that only the expression of MnSOD, which localizes in the mitochondria, inhibited 

PRODH/POX-induced apoptosis, suggesting that it is superoxide as the form of ROS 

initially mediating PRODH/POX-induced apoptosis [13].  

Further investigation on the molecular signaling involved in PRODH/POX-induced 

apoptosis showed that PRODH/POX activated both intrinsic and extrinsic apoptotic 

pathways [35, 36]. The DLD-1-POX cells overproducing PRODH/POX exhibited the 
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mitochondria (intrinsic pathway) and death receptor (extrinsic pathway)-mediated 

apoptotic responses in a proline-dependent manner [35]. Intrinsic pathway induced by 

PRODH/POX includes the release of cytochrome c, activation of caspase-9, chromatin 

condensation, DNA fragmentation, and cell shrinkage. Extrinsic pathway induced by 

PRODH/POX involves the stimulation of the expression of tumor necrosis factor-related 

apoptosis inducing ligand (TRAIL), and death receptor 5 (DR5) and then cleavage of 

caspase-8 [36]. Both pathways culminate in the activation of caspase-3 and cleavage of 

substrates. NFATc1, a member of the nuclear factor of activated T cells (NFAT) family of 

transcription factors is partially responsible for the TRAIL activity stimulated by 

PRODH/POX [36]. All of these effects mediated by PRODH/POX could be partially reversed 

by MnSOD, further confirming the role of ROS/superoxides in PRODH/POX-induced 

apoptosis [36].   

Parallel studies showed that peroxisome proliferator activated receptor gamma (PPARγ) is 

another critical regulator of PRODH/POX, besides p53. PPARγ belongs to the nuclear 

hormone receptor superfamily and functions as a ligand-dependent transcription factor [37]. 

It is widely expressed in many malignant tissues, and its ligands can induce terminal 

differentiation, apoptosis, and cell growth inhibition in a variety of cancer cells [38-40]. 

Using a PRODH-promoter luciferase construct [41], we found that PPARγ was the most 

potent effector activating the PRODH promoter. PRODH/POX contributes greatly to 

apoptosis induced by the pharmacologic ligands of PPARγ through ROS signaling in 

human colorectal cancer cells and non-small cell lung carcinoma cells [41, 42]. 

More recently, we found that PRODH/POX was upregulated to contribute to ATP 

production under nutrient stress, such as glucose deprivation [27]. Under hypoxic 

conditions [43] or high levels of oxidized low-density lipoproteins (oxLDLs) [44], ROS 

produced by PRODH/POX contributes to autophagy as a survival signal. These effects seem 

paradoxical with PRODH/POX-induced apoptosis, but they can be well understood 

considering the temporal and spatial development of the evolving tumor, like the “two 

faces” of tumor suppressor p53 [45]. A detailed description of this point can be found in our 

recent review [9].   

2.2. PRODH/POX inhibits tumor cell growth through ROS generation 

In addition to initiating apoptosis, PRODH/POX also inhibits tumor cell growth and 

proliferation. In DLD1-POX tet-off cells, soft agar colony formation assays showed that the 

cells readily formed clones when PRODH/POX expression was inhibited by DOX, whereas 

the cloning ability of the cells was totally blocked when POX was overexpressed [46].  

Several signaling pathways associated with tumor growth are downregulated by 

PRODH/POX. First, PRODH/POX suppresses the phosphorylation of three major subtypes 

of the mitogen-activated protein kinase (MAPK) pathways, including MEK/ERK, JNK, p38 

[36]. In fact, MAPK pathways play an important role in a variety of cellular responses, 

including proliferation, differentiation, development, transformation, and apoptosis. The 

inhibition of MEK/ERK pathway is involved in PRODH/POX-induced apoptosis. Secondly, 
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PRODH/POX markedly reduces the expression of cyclooxygenase-2 (COX-2), and thus 

suppresses the production of prostaglandin E2 (PGE2) [47]. The addition of PGE2 partially 

reverses the apoptosis and inhibits tumor growth induced by PRODH/POX. 

Cyclooxygenase is an enzyme that catalyzes the key step of the conversion of free 

arachidonic acid to prostaglandins. It has been widely accepted that elevated COX2/PGE2 

signaling plays a critical role in the initiation and development of various solid tumors, 

especially colorectal cancer [48-50]. Thirdly, PRODH/POX inhibits the phosphorylation of 

epidermal growth factor receptor (EGFR). Activating mutants and overexpression of EGFR 

signaling contributes to carcinogenesis of various tumors by inducing cell proliferation and 

counteracting apoptosis [51]. Fourthly, Wnt/β-catenin signaling is decreased by 

PRODH/POX [47]. Constitutive activation of this signaling pathway is found in many 

human cancers, which regulates proliferation, differentiation and cell fate [52]. 

Phosphorylation of β-catenin by GSK-3β leads to its ubiquitination and proteasomal 

degradation. PRODH/POX decreases phosphorylation of GSK-3β and thereby increases 

phosphorylation of β-catenin, resulting in the reduced activity of Wnt/ β-catenin signaling. 

All of aforementioned changes induced by PRODH/POX are partially reversed by MnSOD, 

further indicating the critical role of ROS/superoxides in PRODH/POX-mediated effects. 

Furthermore, PRODH/POX induces G2 cell cycle arrest through affecting the regulators of 

cell cycle, such as geminin, cyclin-dependent kinase (CDC), and growth arrest and DNA 

damage inducible proteins (GADDs) [46]. Geminin is a nuclear protein that inhibits DNA 

replication, and has been used as a marker for G2 phase [53]. Its expression is up-regulated 

by PRODH/POX. CDC2 normally drives cells into mitosis and is the ultimate target of 

pathways that mediate rapid G2 arrest in response to DNA damage [54]. Although total 

CDC2 did not change with PRODH/POX expression, the phosphorylated CDC2 at tyrosine 

15 increased, whereas phosphorylation at threonine 161 decreased when PRODH/POX was 

overexpressed, indicating that CDC2 is in an inactive status. CDC25C, the phosphatase that 

removes the inhibitory phosphates from CDC2 and activates cyclinB-CDC2, is 

downregulated by PRODH/POX. Additionally, the most important regulators of G2 cell 

cycle arrest, GADDs [55] also play a role in PRODH/POX-induced G2 cell cycle arrest, 

including GADD34, GADD45a, GADDh, GADDg [46].    

2.3. PRODH/POX inhibits HIF signaling mainly through increasing α-KG 

production   

The above described PRODH/POX-mediated induction of apoptosis together with the 

suppression of cell growth suggests that PRODH/POX could function as a tumor 

suppressor. PRODH/POX protein is located in the mitochondrial inner membrane, and has 

an anaplerotic role through glutamate and α-KG for the TCA cycle (Fig.1). The identification 

of several mitochondrial tumor suppressors has demonstrated that one of the critical ways 

they exert their antitumor effects is through hypoxia inducible factor-1 (HIF-1) signaling, 

which mediates the transcriptional response to hypoxia as a transcriptional factor and plays 

an important role in angiogenesis and tumor growth [56, 57]. Similarly, PRODH/POX also 

downregulates HIF-1 signaling including its downstream gene VEGF in both normoxic and 
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hypoxic conditions [46]. This is another mechanism, along with those described above, by 

which PRODH/POX exerts its tumor-suppressing role. However, unlike the effects of 

PRODH/POX on other signaling pathways, its effect on HIF-1 signaling could not be 

reversed by MnSOD, suggesting ROS is not the mediator for HIF inhibition.  

The stability and transcriptional activity of HIF-1α are regulated through oxygen-sensitive 

modifications. Briefly, the posttranslational hydroxylation of specific prolyl and asparaginal 

residues in its α-subunits of HIF-1, catalyzed by prolyl hydroxylases (PHD), results in the 

degradation of HIF-1 through ubiquitinal and proteasomal degradation systems [58]. As an 

important substrate of PHD, the members of the 2-oxoglutarate (α-KG) dioxygenase family 

could increase the hydroxylation and degradation of HIF-1α [58]. HPLC analysis showed 

that α-KG was increased by overexpression of PRODH/POX [46]. When PRODH/POX 

expression is high, P5C, glutamate and α-KG are sequentially produced from proline, 

forming an important link between proline and the TCA cycle. The widely used cell-

permeating α-KG analogue, dimethyloxalylglycine, was shown to block the inhibition of 

HIF-1 signaling by PRODH/POX, suggesting the pivotal role of α-KG in the down-

regulation of HIF by PRODH/POX.   

In addition, several TCA cycle intermediates and glycolytic metabolites, such as succinate 

and fumarate, have been revealed to inhibit PHD activity and stabilize HIF-1 signaling [58-

61]. PRODH/POX expression could decrease succinate, fumarate and lactate as measured by 

gas chromatography-mass spectrometry (GC-MS) [46], which may also contribute to the 

impaired HIF-1 signaling.  

2.4. PRODH/POX suppresses tumor formation in vivo and is downregulated in 

human tumors  

The inhibitory effects of PRODH/POX on tumor cell growth are corroborated in a human 

colon cancer mouse xenograft model [46]. DLD-1 POX Tet-off cells were injected into 

immunodeficient mice. The expression of PRODH/POX was controlled by giving mice 

doxycycline in their drinking water. When PRODH/POX was suppressed by doxycycline, 

tumors readily formed in all the mice within a few days. By contrast, when PRODH/POX 

was overexpressed by removal of doxycycline in their drinking water, tumor development 

was greatly reduced and none of the mice developed tumors.  

Further investigation on a variety of cancer tissues along with normal tissue counterparts 

including kidney, bladder, stomach, colon and rectum, liver, pancreas, breast, prostate, 

ovary, brain, lung, skin, etc., showed that 61% of all tumors had decreased expression of 

PRODH/POX compared to normal tissues, especially the tumor from kidney and digestive 

tract [46, 47, 62], suggesting tumor could eliminate the tumor suppressor roles of 

PRODH/POX. Suppression of PRODH/POX was more significant in kidney and digestive 

tract. More interestingly, PRODH/POX protein levels showed more striking decrease than 

mRNA levels in renal cancers, implicating that PRODH/POX might be regulated at the post-

transcriptional level.  
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Sequencing the PRODH gene showed no somatic mutation or functionally significant single 

nucleotide polymorphisms (SNP) in tumor tissues. Hypermethylation analysis also didn’t 

show any differences of PRODH genomic DNA between tumor and normal tissues. 

Therefore, PRODH does not satisfy the canonical requisite for tumor suppressor genes 

which often show genetic or epigenetic mutations in human cancers. With the discovery of 

microRNAs (miRNAs), a new mechanism to regulate protein expression has been revealed. 

Considering the inconsistency between PRODH/POX mRNA and protein expression and 

the importance of miRNAs in cancer, the regulation of miRNAs on PRODH/POX 

represented a very promising hypothesis. 

3. MiRNA in cancer 

3.1. Biogenesis and function of miRNAs  

3.1.1. Discovery of miRNAs 

MiRNAs are a class of post-transcriptional regulators. They are conserved, endogenously 

expressed, non-coding small RNAs of 18-25 nucleotides in length. MiRNAs were first 

discovered in 1993 by Lee RC et al. [63] and Wightman R et al. [64] in the nematode 

Caenorhabditis elegans (C. elegans) as a regulator of developmental timing regarding the gene 

lin-14. They found that the lin-14 could be regulated by the small RNA products from lin-4, 

a gene that does not code for any protein but instead produces a pair of small RNAs. These 

lin-4 RNAs had antisense complementarity to multiple sites in the 3’ UTR of the lin-14 

mRNA. However, it did not attract substantial attention until seven years later when let-7 

was discovered to repress the expression of several mRNAs including lin-14 during 

transition in developmental stages in C. elegans [65]. Since then over 4000 miRNAs have 

been identified in eukaryotes including mammals, fungi and plants. More than 700 miRNAs 

have been found in humans.  

3.1.2. Processing and biogenesis of miRNAs 

In mammals, miRNA genes are usually transcribed as long primary transcripts (pri-

miRNAs) by RNA polymerase II from DNA [66]. The pri-miRNAs then are cropped into the 

hairpin-shaped miRNA precursors (pre-miRNAs) by the RNase III enzyme Drosha [67, 68]. 

A single pri-miRNA may contain one to six pre-miRNAs which are composed of about 70 

nucleotides. They are exported from the nucleus to the cytoplasm by exportin-5 (XPO5), a 

member of the Ran-dependent nuclear transport receptor family [69-71]. In cytoplasm, the 

pre-miRNA hairpin is subsequently cleaved by the endonuclease Dicer [72] into an 

imperfect miRNA:miRNA* duplex. Usually, only one strand of the duplex is incorporated 

into the RNA induced silencing complex (RISC) where the miRNA and its mRNA target 

interact. The thermodynamic stability, strength of base-pairing and the position of the stem-

loop determine which strand becomes mature miRNA to incorporate into the RISC [73-75]. 

The other strand is normally degraded and is denoted with an asterisk (*) due to its lower 

levels in the steady state. However, recent evidence indicates that both strands of duplex are 

viable and become functional miRNA that target different mRNA populations [62, 76-78]. 
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RISC is a multiprotein complex that incorporates mature miRNA to recognize 

complementary target mRNA. Once binding to target mRNA, miRNAs inhibit their target 

genes with the help of RISC. The key component of the RISC complex is the Argonaute 

(Ago) proteins, which are consistently found in RISC complexes from a variety of organisms 

[79]. Ago proteins directly interact with the miRNA [80, 81]. They are needed for miRNA-

induced silencing and contain two conserved RNA binding domains: a PAZ domain, that 

can bind the single stranded 3’ end of the mature miRNA, and a PIWI domain, that 

structurally resembles ribonuclease-H (RNaseH) and functions in slicer activity through 

interacting with the 5’ end of the guide strand [82]. Most eukaryotes contain multiple Ago 

family members, with different Ago often specialized for distinct functions [83]. The human 

genome encodes four Ago proteins and Ago2 is the only Ago capable of endonuclease 

cleavage of target transcripts directly [84, 85]. 

Additional components of RISC involved in miRNA processing include the Vasa intronic 

gene (VIG) protein, the fragile X mental retardation protein (FMRP), human 

immunodeficiency virus transactivating response RNA binding protein (TARBP), protein 

activator of the interferon induced protein kinase (PACT), the SMN complex, Gemin3 and 

DICER1, and so on [86-92]. However their generality or precise function in miRNA silencing 

remains to be determined.  

3.1.3. Stability of miRNAs 

Turnover of mature miRNA is needed for rapid changes in miRNA expression profiles. 

Besides inducing the cleavage of the target mRNAs, Ago proteins have been recently 

reported to regulate the stability of miRNAs [93-98]. Mature miRNAs are stabilized after 

incorporation into Ago proteins, and release from this complex leaves miRNAs vulnerable 

to decay by exonucleases [94, 95]. Ectopic overexpression of Ago proteins prevents 

degradation of miRNAs, and loss of Ago2 significantly reduces miRNA stability and 

differentially regulates miRNAs production [93, 96]. 

In addition to taking refuge in protein complexes, mature miRNAs can undergo protective 

modifications [97]. For example, as indicated by work in the model organism Arabidopsis 

thaliana, mature plant miRNAs appear to be stabilized by the addition of methyl groups at 

the 3' end which prevents uridylation of miRNAs [99]. The addition of adenines to 3’ end of 

miRNAs detected in many different plant and animal miRNAs also has a stabilizing effect 

on miRNAs [100-104]. 

3.1.4. Function of miRNAs     

MiRNAs inhibit the expression of their target genes through three different mechanisms 

[105, 106]. The first one is direct endonucleolytic cleavage of mRNAs supported by the slicer 

activity of specific Ago proteins present within RISC. As mentioned above, Ago2 is the only 

one of the four mammalian Ago proteins capable of directing cleavage [84, 85]. This 

mechanism is generally favored by a complete match of the so called seed-sequence of the 

miRNA (nucleotides 2-7 of 5’ end of miRNAs) and target mRNA [107], although some 
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mismatches can be tolerated and still allow cleavage to occur [108, 109]. The 

complementarity of the seed region defines the targets of the miRNA because the seed 

region binds to the mRNA as governed by binding of complementary nucleotides. The 

second mechanism is by inhibiting protein translation but without degradation of the 

mRNA [110-112]. It seems to be the most prevalent in mammals [113]. In this mechanism, 

the seed region of the miRNA does not need to be fully complementary; yet, efficient 

translation repression by miRNAs often requires multiple miRNA-binding sites, as suggested 

by the observations that the identified mRNA targets of miRNAs contained multiple sites for 

miRNA binding, either the same miRNA or a combination of several different miRNAs [114, 

115]. However, many predicted mRNA targets of miRNAs contain only a single miRNA-

binding site in their 3’UTR [107], indicating that such single sites may lead to fine “tuning” of 

mRNA function [116]. Distinct from the slicer activity of the specific Ago in the first manner, 

translation repression by miRNAs is common to all members of the Ago protein family. The 

third mechanism is called mRNA decay independent of slicer [117, 118]. In this manner, 

miRNAs either promote mRNAs decapping and 5’ to 3’ degradation, or target mRNAs by an 

unknown decay pathway. In the former way, the protecting poly-A-tail and ‘‘cap’’ of the 

mRNAs are removed, resulting in their rapid destruction by RNA splicing enzymes.  

MiRNAs are now known to target thousands of genes. Bioinformatics analyses estimated 

that up to 30% of known human genes are under miRNAs’ control [107], whereas later 

reports increased this number to 74~92% [119]. A key issue in miRNAs function is the 

specificity of their interactions with their target mRNAs and how each interaction leads to 

discrete downstream consequences. Some miRNAs regulate specific individual targets, 

while others can function as master regulators of a process. Key miRNAs regulate the 

expression levels of hundreds of genes simultaneously, and many types of miRNAs regulate 

their targets cooperatively. Because of their potent and wide action on gene expression, 

miRNAs become critical regulators of cellular functions. They are involved in modulating a 

variety of biological processes, including cellular proliferation, differentiation, metabolic 

signaling, apoptosis and development. The aberrant expression or alteration of miRNAs has 

been linked to a range of human diseases, especially cancers.  

3.2. Dysregulation of miRNA in cancer  

In 2002, Calin et al. first demonstrated that miR-15 and miIR-16 are frequently deleted or 

down-regulated in chronic lymphocytic leukemia [120]. Subsequently, aberrant miRNA 

expression, and amplification or deletion of miRNAs are observed in various human tumors 

[121, 122]. MiRNAs are differentially expressed in cancer cells, in which they form distinct 

and unique miRNA expression patterns [123]. These properties make miRNAs become 

potential biomarkers for cancer diagnosis, in particular for the early detection of cancer 

[124]. The control of gene expression by miRNAs is seen in virtually all cancer cells. Their 

target genes are usually important proteins such as oncogenic factors (i.e., MYC, RAS), 

tumor suppressors (i.e., p53), or proteins regulating the cell cycle (i.e., the cyclin family). 

Even small changes in these crucial proteins can have profound effects on tumorigenesis or 

tumor development. Conversely, miRNAs are often critical downstream effectors of classic 

oncogene/tumor suppressor networks, such as MYC and p53 described below.  
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miRNAs can act as oncogenes or tumor suppressor genes in tumorigenesis depending on 

the targets they regulate. Oncogenic miRNAs repress known tumor suppressors, whereas 

tumor-suppressor miRNAs often negatively regulate protein-coding oncogenes (this has 

been reviewed in detail by others [125-127]). Oncogenic miRNAs are overexpressed in 

various human cancers. For example, the miR-17-92 cluster miRNAs which are transcribed 

as a polycistronic unit, are highly expressed in B-cell lymphoma and various solid cancer, 

such as breast, colon, lung, pancreas, prostate and stomach [128-130]. They function as 

oncogenes to promote proliferation, inhibit apoptosis, induce tumor angiogenesis, and 

augment the oncogenic effects of MYC [131-134]. Their effects on cell cycle and proliferation 

are at least in part through its regulation of E2F transcription factors [130, 135], and anti-

apoptotic effects are through their inhibition of BIM, PTEN and p21 [135]. MiR-221 and miR-

222 are frequently overexpressed in lung, liver and ERα- breast cancers. Their overexpression 

has been demonstrated to enhance tumorigenicity through suppressing the expression of 

different tumor suppressors, such as CDKN1B/C, BIM, PTEN, TIMP3 and FOXO3 [136, 137]. 

Overexpression of miR-504 promotes tumorgenicity of colon cancer in vivo, which directly 

targets tumor suppressor p53 and functions in apoptosis and cell cycle [138]. 

On the other hand, miRNAs that act as tumor suppressors are often found to be deleted or 

mutated in various human cancers. For example, Let-7 family miRNAs are frequently down-

regulated in various cancers, including lung and colorectal cancers [139]. They can directly 

suppress the expression of oncogenes, including RAS and MYC, and therefore show tumor 

suppressive functions [139, 140]. MiR-15a and miR-16-1 are often deleted or down-regulated in 

B-cell chronic lymphocytic leukemia (B-CLL). They negatively regulate anti-apoptotic protein 

BCL2. Therefore, decreased expression of miR-15a and miR-16-1 up-regulates BCL2 levels and 

reduces apoptosis, contributing to malignant transformation [141]. 

Based on the critical role of miRNAs in tumorigenesis, recent research efforts are directed 

towards translating these basic discoveries into clinical applications in diagnosis, prognosis 

and therapy through identifying and targeting dysregulated miRNAs. Both silencing the 

oncogenic miRNAs and restoring the expression of silenced tumor-suppressor miRNAs 

have yielded positive results in mouse models of cancer and thus becomes promising 

therapeutic strategy for cancer [142, 143]. The silencing of oncogenic miRNAs can be 

achieved by using antisense oligonucleotides (antagomirs or anti-miRs), sponges or locked 

nucleic acid (LNA) constructs [144]. By contrast, the restoration of tumor-suppressor 

miRNA expression can be achieved by the use of synthetic miRNA mimics, adenovirus 

vectors, and pharmacological agents [144]. Although the drug delivery, proper drug 

composition and off-target effects are still the current challenges in the clinical application of 

miRNAs, the future is bright for miRNA-based therapy.  

3.3. MiRNAs regulated by transcriptional factors, genetic and epigenetic changes 

3.3.1. MiRNAs regulated by oncogenic transcriptional factor MYC 

MiRNAs can be dysregulated by multiple transcription factors in cancer. Oncogenic 

transcriptional factor MYC regulates a variety of gene expression affecting a series of 
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cellular processes in cancer including cell growth and proliferation, metabolism, cell-cycle, 

differentiation, apoptosis, angiogenesis and metastasis [145-147]. Recently, it was found that 

MYC is also an important regulator of miRNAs. Consistent with their ability to potently 

influence cancer phenotypes, the regulation of miRNAs by MYC affects virtually all aspects 

of the MYC oncogenic program.  

MYC directly activates the transcription of miR-17-92 polycistronic cluster though binding 

to an E-box within the first intron of the gene encoding the miR-17-92 primary transcript 

[148, 149]. Given its oncogenic role, the inhibition of key targets of miR-17-92 contributes to 

MYC-induced tumorigenesis. MiR-9 could also be activated directly by MYC, which 

regulates E-cadherin and cancer metastasis [150]. In contrast, MYC activity also results in 

repression of numerous miRNAs [151]. This repression involves the downregulation of 

miRNAs with antiproliferative, antitumorigenic and pro-apoptotic activity, such as let-7, 

miR-15a/16-1, miR-26a miR-29 or miR-34 family members [143, 151-153]. MiR-23a/b is an 

additional important example to be directly suppressed by MYC, which targets glutaminase 

to enhance glutamine catabolism [5]. MYC-driven reprogramming of miRNA expression 

patterns was shown to be a contributing factor in hepatoblastoma (HB), a rare embryonal 

neoplasm derived from liver progenitor cells [154]. Like an embryonic stem cell expression 

profile, undifferentiated aggressive HBs overexpress the miR-371-3 cluster with concomitant 

down-regulation of the miR-100/let-7a-2/miR-125b-1 cluster, which exerts antagonistic 

effects on cell proliferation and tumorigenicity. Chromatin immunoprecipitation (ChIP) and 

MYC inhibition assays in hepatoma cells demonstrated that both miR clusters are regulated 

by MYC in an opposite manner.  

Although further investigation is necessary, the current studies have indicated that MYC 

uses both transcriptional and post-transcriptional mechanisms to modulate miRNA 

expression [151, 155]. Primary transcript mapping and ChIP revealed that MYC associates 

directly with evolutionarily conserved promoter regions upstream of several miRNAs [151], 

such as the direct activation of miR-17-92 cluster and direct suppression of miR-23a/b 

described above. MYC is also able to modulate the maturation of specific miRNAs without 

affecting transcription of the pri-miRNAs. For example, MYC activity results in repression 

of mature let-7 miRNAs while the expression of let-7 primary transcripts is unchanged [151, 

156]. This phenomenon could be due to Lin28A and Lin28B being the direct target of MYC, 

which interacts with let-7 pre-miRNA stem-loops and may regulate let-7 at multiple levels 

including Drosha and Dicer processing [156, 157]. Additionally, interaction of Lin28A and 

Lin28B recruits the 3′ terminal uridylyl transferase 4 (TUT4) to pre-let-7, resulting in 

uridylation and subsequent decay of the pre-miRNA [158, 159].  

3.3.2. MiRNAs regulated by tumor suppressor p53 

The tumor suppressor p53 is another transcription factor that regulate the expression of a 

group of miRNAs mediating a variety of anti-proliferative processes [160]. The miR-34 

family, which consists of miR-34a, miR-34b and miR-34c, was initially reported to be 

induced directly by p53 [161] and mediate some of the p53 effects. ChIP and luciferase 

assays showed that p53 binds to p53 response elements (REs) in miR-34 promoters and 
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activates their transcription [162]. MiR-34 family members directly repress the expression of 

several targets involved in the regulation of cell cycle and in the promotion of cell 

proliferation and survival. These targets include cyclin E2, cyclin-dependent kinases 4 and 6 

(CDK4 and CDK6), BCL2 and hepatocyte growth factor receptor c-Met [161]. Later on, p53 

was reported to directly regulate the transcriptional expression of several additional 

miRNAs, including miR-145, miR-107, miR-192 and miR215, miR-149* [160, 163]. MiR-145 

negatively regulates oncogene MYC, which accounts partially for the miR-145-mediated 

inhibition of tumor cell growth both in vitro and in vivo [164]. MiR-107 contributes to the role 

of p53 in the regulation of hypoxia signaling and anti-angiogenesis through repressing the 

expression of HIF-1β, which interacts with HIF-1α subunits to form a HIF-1 complex, a key 

player in tumor formation. MiR-192 and miR-215 induce cell cycle arrest and reduce tumor 

cell growth through targeting a number of regulators of DNA synthesis and cell cycle 

checkpoints, such as CDC7, MDA2L1 and CUL5 [165]. MiRNA-149* targets glycogen 

synthase kinase-3α, resulting in increased expression of Mcl-1 and resistance to apoptosis in 

melanoma cells [163]. 

Moreover, p53 also enhances the post-transcriptional maturation of miRNAs. In response to 

doxorubicin, P53 interacts with the Drosha processing complex through the association with 

DEAD box RNA helicases p68 (also known as DDX5) and p72 (also known as DDX17), and 

facilitates the Drosha-mediated processing of pri-miRNAs to pre-miRNAs. These miRNAs 

include miR-16-1, miR-143 and miR-145 with growth-suppressive functions. 

Transcriptionally inactive p53 mutants interfere with a functional assembly between Drosha 

complex and p68, leading to attenuation of miRNA processing activity [166].  

3.3.3. MiRNAs regulated by other transcription factors 

Estrogen receptor alpha (ERα), a member of the nuclear receptor superfamily of 

transcription factors, was found to negatively regulate expression of miR-221 and miR-222 

by promoter binding and recruiting the corepressors NCoR and SMRT [137]. 

Overexpression of miR-221 and miR-222 conversely suppresses the expression of ERα, 

conferring estrogen-independent growth. They also suppress the expression of different 

tumor suppressors, such as CDKN1B, CDKN1C, BIM, PTEN, TIMP3, DNA damage-

inducible transcript 4, and FOXO3, to promote high proliferation [137]. Transcription factor 

c-Jun could also activate miR-221 and miR-222 [136]. 

Microarray-based expression profiles reveal that a specific spectrum of miRNAs is induced 

in response to low oxygen, at least some via a HIF-dependent mechanism, such as miR-210, 

miR-26a-2, miR-24 and miR-181c [167]. Of these, miR-210 as a direct transcriptional target of 

HIF-1α has emerged as a critical element of the cellular hypoxia response in a broad variety 

of cell types ranging from cancer cell lines to human umbilical vein endothelial cells [168-

170]. MiR-210 has diverse functions, including modulating angiogenesis [171], stem cell 

survival [172], and hypoxia-induced cell cycle arrest [173]. MiR-143 and miR-145 could be 

repressed by RAS-responsive element-binding protein 1 (RREB1), a zinc finger transcription 

factor which binds to RAS-responsive elements (RREs) of their promoters. Thus these two 

miRNAs are embedded in KRAS oncogenic network [174]. 
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In general, miRNAs can be dysregulated by transcription factors and, therefore, genetic or 

epigenetic alterations that result in the dysregulation of transcription factors can cause 

miRNA dysregulation. Importantly, miRNAs can also be directly regulated by genetic or 

epigenetic alterations. 

3.3.4. MiRNAs regulated by genetic and epigenetic changes 

MiRNAs are frequently located in fragile regions of the chromosomes, such as common 

chromosomal-breakpoints that are associated with the development of cancer [175, 176]. 

These fragile regions are often missing, amplified or mutated in cancer cells, resulting in the 

genetic alterations of miRNAs. The genetic alterations can affect the production of the 

primary miRNA transcript, their processing to mature miRNAs and/or interactions with 

mRNA targets. The dysregulation of miR-15 and miR-16 in most B cell chronic lymphocytic 

leukemias, one of the first observations between miRNAs and cancer development, is the 

result from chromosome 13q14 deletion [120]. Interestingly, somatic translocations in 

miRNA target sites can also occur, representing a drastic means of altering miRNA function 

[177, 178]. 

In addition to the structural genetic alterations, dysregulation of miRNAs in cancer can 

occur through epigenetic changes, such as methylation of the CpG islands of their 

promoters, the modification of histone [179-181]. As the example, miR-127 is silenced by 

promoter methylation, which leads to the overexpression of BCL6, an oncogene involved in 

the development of diffuse large B cell lymphoma [179]. The expression of miR-127 could be 

restored by using hypomethylating agents such as azacytidine. MiRNA-200 family could 

serve as another example. The miR-200 family can be shifted to hypermethylated or 

unmethylated 5'-CpG island status corresponding to the epithelial-mesenchymal transition 

(EMT) and mesenchymal-epithelial transition (MET) phenotypes, respectively, which 

contributes to the evolving and adapting phenotypes of human tumors [181].  

4. miR-23b* targets PRODH/POX 

Although numerous targets of miRNAs have been identified, miRNA regulators of critical 

cancer proteins and pathways remain largely unknown. As described above, PRODH/POX 

is frequently reduced in a variety of human cancers, including renal cancer, and 

PRODH/POX protein but not mRNA level is markedly down-regulated in renal cancers [46, 

62]. The fact that miRNAs are critical post-transcriptional regulators, and miRNAs function 

as oncogenes to inhibit the expression of tumor suppressors raises attractive possibility that 

some specific miRNAs may regulate PRODH/POX and proline catabolism. Target-

prediction algorithms have been used to identify the protein targets of miRNAs or miRNAs 

regulators of known protein, followed by experimental validation to eliminate false 

positives [141]. The bioinformatic analysis according to target-prediction algorithms 

predicted that 91 potential miRNAs could target PRODH/POX mRNA 3’UTR [62]. In 

miRNA microarrays, 10 miRNAs showed an increased expression in renal cancer cells 

relative to normal cells. However, only miR-23b* was shown to significantly inhibit 
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PRODH/POX protein expression, but not mRNA level. This is consistent with many previous 

reports, that is, in mammals, miRNAs more often inhibit protein translation of the target 

mRNA, other than inducing its degradation [113]. Subsequently, miR-23b* directly binding to 

PRODH/POX mRNA 3’UTR was experimentally confirmed through luciferase assays by co-

transfecting the mimic miR-23b* and the luciferase reporter containing 3’UTR of PRODH/POX 

mRNA. Functional analysis showed that this miRNA impaired PRODH/POX functions, 

including PRODH/POX-mediated ROS generation, apoptosis, and PRODH/POX-inhibited 

HIF-1 signaling [62]. In contrast, the inhibitory antagomir of miR-23b* increased the expression 

of PRODH/POX protein in renal cancer cells. As a result, ROS production, the percentage of 

cells undergoing apoptosis increased, and HIF-1 signaling decreased. 

The clinical relevance of these in vitro findings was substantiated by the data obtained in 

human renal carcinoma tissues in vivo [62]. There were statistical significant differences in 

both miR-23b* and PRODH/POX protein expression between carcinoma tissues and 

corresponding normal tissues, but not PRODH/POX mRNA levels. A negative correlation 

between miR-23b* and PRODH/POX protein was found.   

In summary, PRODH/POX is subject to the negative regulation of miR-23b*, which is a 

novel mechanism for cells to regulate PRODH/POX protein level and functions. The 

increased miR-23b* might contribute to renal oncogenesis and progression by 

downregulating tumor suppressor PRODH/POX. This provides a possible strategic opening 

to inhibit tumor growth by decreasing the levels of miR-23b* or by blocking its function.   

5. Regulation of miR-23b* in cancer    

5.1. MiR-23b* regulation by oncogenic protein MYC    

Recently, the oncogenic transcription factor MYC has been reported to transcriptionally 

suppress miR-23b to stimulate mitochondrial glutaminase expression and glutamine 

metabolism in lymphoma cells [5]. MiR-23b and miR-23b* are sibling miRNAs processed 

from the same transcript. Thus, this finding attracted our attention and compelled us to seek 

the potential effect of MYC on miR-23b* and related PRODH/POX expression and proline 

metabolism. As described above, MYC is a critical regulator of miRNAs expression at both 

transcriptional and post-transcriptional levels. Furthermore, proline and glutamine 

metabolism are closely related: not only their interconversions, but also both can be 

anaplerotic in the TCA cycle as an important energy source, as mentioned above. These facts 

strengthened our hypothesis that MYC may regulate the expression of miR-23b*, thereby 

PRODH/POX, and link proline and glutamine metabolism.   

Using human Burkitt lymphoma model P493 cells that bear a tetracycline-repressible MYC 

construct, we found that MYC upregulated the expression of miR-23b* [30]. In PC3 prostate 

cancer cells which overexpress MYC, the same result was obtained, i.e., MYC knockdown by 

siRNA resulted in the decrease of miR-23b* expression. These results are distinct from the 

previous report which showed MYC directly bound to the transcriptional unit 

encompassing miR-23b, and regulated its expression at the transcriptional level [5]. Re-
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examination of the expression of miR-23b*, miR-23b, and their primary transcript (pri-

miR23b) showed that pri-miR23b increased about 50% with MYC suppression by 

tetracycline and then decreased on MYC re-induction in P493 cells [30]. Similarly, in PC3 

prostate cancer cells, with MYC knockdown by siRNA, miR-23b* decreased 68%, while miR-

23b and Pri-miR-23b increased 51% and 70%, respectively [30]. Thus, the level of miR-23b* is 

higher than miR-23b in cells without MYC knockdown. These results support previous work 

that MYC suppresses miR-23b expression at the transcriptional level. Considering the fact that 

MYC enhances the expression of miR-23b*, the sibling of miR-23b, we hypothesized that 

differential effects of MYC on the sibling miRNAs may be due to their differential stabilization 

and/or degradation mediated by MYC. As a consequence, even if MYC suppressed the 

expression of miR-23b primary transcript, its effects on miR-23b* stabilization and/or 

degradation could account for net higher levels of miR-23b* as observed in this report.  

The mechanisms responsible for stabilized miRNA expression have been largely elusive. As 

mentioned above, Ago proteins, the key players in miRNA processing and function, recently 

have been shown to regulate miRNA stability [93-96]. Ago2 differentially regulates miRNAs 

expression [93, 96]. Not surprisingly, MYC significantly upregulated the expression of Ago2 

[30]. Knockdown of Ago2 in P493 MYC-overexpressed cells, the expression of miR-23b* and 

miR-23b were differentially decreased (76% vs. 42%, respectively), but not Pri-23b. Although 

the differential effects on miR-23b* and miR-23b resulted from Ago2 regulation by MYC do 

not completely account for the observed differential effects of MYC, they do support our 

hypothesis that MYC may regulate miRNA levels by differential effects on the stabilization 

of miRNAs, which can serve as a model for the effects on sibling miRNAs.    

Since a large number of RISC components are involved in the miRNA processing [86]. It is 

likely that MYC with its multitude of target genes may affect many proteins like Ago2 and 

differentially affect miR-23b* and miR-23b expression. In fact, several reports have described 

the regulation of MYC on other RISCs or accessory RISCs, such as the upregulation of XPO5 

and DEAD box protein 5 (DDX5) [86, 182, 183], and the aforementioned Lin28A and Lin28B 

regulation by MYC which affects the expression of mature let-7 miRNAs at multiple levels 

including their processing and modification [151, 156-159], but further studies are needed to 

elucidate how they affect the final expression of mature miRNAs and their interaction.  

5.2. miR-23b* regulation by other factors 

As mentioned above, PRODH/POX is encoded by a p53-induced gene [31]. Maxwell SA et al. 

reported that reduced expression of PRODH/POX mRNA in renal cancer was due to a p53 

mutation [184]. On the other hand, p53 is a critical regulator of miRNAs. Thus, the 

possibility exists that wild-type p53 may regulate the expression of PRODH/POX by both 

direct and indirect (miR-23b*-dependent) mechanism. Interestingly, the experiment showed 

that ectopic expression of p53 in p53-mutant renal cancer cell line TK10 increased the 

expression of miR-23b* [62]. This suggests that the upregulation of miR-23b* by p53 may 

counteract the direct induction of p53 on PRODH/POX gene expression in clear cell renal 

cell carcinoma. This interaction might also account for discrepancies between PRODH/POX 

mRNA and protein expression. 
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In addition, current evidence suggests that miR-23b* could be regulated by factors other 

than p53 and MYC. For example, as discussed above, several reports have shown the link 

between upregulation of miR-23b and hypoxia [167, 185, 186]. As miR-23b and miR-23b* 

share the same precursor, miR-23b* could also be regulated by HIF. In renal cell carcinoma, 

the constitutive expression of HIF due to VHL deficiency may link this regulation of miR-

23b* with VHL. The fact that HIF-1 negatively regulates mitochondrial biogenesis by 

inhibiting MYC activity in VHL-deficient renal carcinoma cells [187] further increases the 

possibility that miR-23b* could be regulated by VHL, HIF, thereby affecting the expression 

of PRODH/POX. These regulatory interactions are of great interest and worth to be pursued. 

6. Regulation of proline metabolism by MYC 

6.1. MYC suppresses PRODH/POX primarily through miR-23b* 

In view of the above findings, it is not surprising that MYC suppresses the expression of 

PRODH/POX through upregulating miR-23b*. First, PRODH/POX protein increased in a 

time-dependent fashion with diminished MYC expression and then decreased on MYC 

recovery in P493 cells. PRODH/POX mRNA expression also showed a significant increase 

with suppressed MYC expression, but the increase was far less than that of protein levels, 

raising the likelihood that miRNA mediates the effect of MYC on PRODH/POX at the post-

transcriptional level. MYC knockdown in PC3 prostate cancer cells by siRNA resulted in the 

inhibition of PRODH/POX expression with a pattern similar to the P493 cells. Secondly, the 

inhibition of miR-23b* by its antagomirs in the P493 cells with MYC overexpression 

increased PRODH/POX protein level [30]. By contrast, the transfection of mimic miR-23b* 

into the P493 cells under MYC inhibition by tetracycline resulted in a marked decrease of 

PRODH/POX protein expression. However, the decrease of PRODH/POX still was not 

comparable with that without tetracycline treatment, indicating that MYC could suppress 

PRODH/POX expression through pathways other than miRNA, such as the regulation at the 

transcriptional level, which also is supported by the decrease of PRODH/POX mRNA by 

MYC. Thirdly, the luciferase assays in PC cells showed that knockdown of MYC increased 

the luciferase activity of the luciferase reporter containing POX 3’UTR with the binding site 

of miR-23b*, indicating the decrease of miR-23b* by siMYC. Without MYC knockdown, the 

luciferase activity of this reporter was much lower than that of the original reporter without 

POX 3’UTR, due to high levels of miR-23b* binding to PRODH/POX mRNA 3’UTR, thereby 

suppressing luciferase expression. 

By transfecting the PRODH promoter/luciferase reporter construct containing PRODH 

promoter region in PC3 prostate cancer cells, knockdown of MYC resulted in the increase of 

PRODH promoter activity, which confirmed that MYC regulates PRODH/POX at the 

transcriptional level [41]. Analysis of PRODH promoter nucleotide sequence revealed one 

canonical MYC binding site 5’-CACGTG-3’ (E-box) and one noncanonical binding site (5’-

ACGGTG-3’) at -2808 to -2813bp and -637 to -642bp of the PRODH promoter region, 

respectively. However, ChIP assay showed none of these PRODH promoter regions had 

significant PCR amplification, suggesting that MYC does not directly interact with the 
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PRODH gene, and the decreased PRODH/POX mRNA expression may be mediated through 

other transcription factors regulated by MYC [30].  

6.2. Suppression of proline catabolism is essential for MYC-mediated cancer cell 

proliferation and survival 

In addition to PRODH/POX, MYC also inhibits the expression of another enzyme in proline 

catabolism, P5CDH [30], but the mechanism remains unclear. However, the suppression of 

proline catabolism reflected by PRODH/POX inhibition by MYC has been shown to be 

essential for MYC-induced proliferation and cell survival. First, knockdown of PRODH/POX 

in P493 cells with MYC suppressed by tetracycline consistently reduced the production of 

ROS at different time points [30], although the suppression of MYC itself by tetracycline also 

decreased the accumulation of ROS at late stage which implicates the different effects of 

various MYC regulated genes on ROS production at various stages [188-190]. 

Correspondingly, the apoptosis assay by flow cytometry showed that PRODH/POX 

knockdown decreased the percentage of apoptotic and dead cells occurring with MYC 

suppression. In contrast, PRODH/POX siRNA significantly rescued 30~40% of the 

diminished growth rates resulting from MYC suppression by tetracycline [30]. These results 

indicated that PRODH/POX suppression is critical for MYC-mediated cancer cell 

proliferation and survival. The same assays performed in PC3 prostate cancer cells 

confirmed these results [30].    

To summarize, oncogenic transcription factor MYC inhibits PRODH/POX expression and 

thereby inhibits its tumor suppressor function. When MYC is suppressed, the increase of 

PRODH/POX promotes proline catabolism to generate ROS, leading to the initiation of 

apoptosis and the decrease of cell proliferation and growth. MYC-induced suppression of 

PRODH/POX contributes to MYC-mediated changes of cell behavior including proliferation 

and metabolic reprogramming, which in turn may contribute to tumorigenesis and tumor 

progression. These findings further indicate the critical roles of proline catabolism catalyzed 

by PRODH/POX in human cancers.  

6.3. MYC increases the biosynthesis of proline from glutamine  

Since MYC plays an important role in glutamine metabolism which is closely related with 

proline metabolism due to the interconversion of proline and glutamate, we not only 

investigated the effect of MYC on proline catabolism catalyzed by PRODH/POX as shown 

above, but also examined proline biosynthesis, especially from glutamine. Western blots 

showed that MYC robustly increased the expression of GLS, P5CS and PYCR1 in the 

pathway from glutamine to proline biosynthesis [30]. PC3 prostate cancer cells displayed 

the same correlation between MYC and glutamine and proline metabolism. The 

measurement of the intracellular proline levels showed that MYC dramatically increased the 

intracellular levels of proline. Consistently, using [13C,15N]-Glutamine as a tracer, the direct 

production of proline from glutamine induced by MYC was confirmed by GC-MS and NMR 

analysis [30]. Thus, MYC not only suppresses proline catabolism and stimulates glutamine 

oxidation to glutamate, but also markedly enhances proline biosynthesis from glutamate. 
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Both normal and tumor cells depend on glucose and glutamine consumption as sources of 

metabolic energy, and as precursors for biosynthesis of macromolecules [6, 191]. MYC 

oncogene is considered a master regulator of tumor cell metabolism and proliferation. It not 

only promotes glucose uptake and induces aerobic glycolysis, but also enhances glutamine 

uptake and stimulates glutamine catabolism. Although glutamine catabolism is linked to 

biosynthesis of protein, nucleotides and lipids, redox homeostasis and energy metabolism, 

the report from Wise et al. suggests that little of the glutamine uptake stimulated by MYC is 

used for macromolecular synthesis [6]. MYC-induced glutamine catabolism is involved in 

reprogramming mitochondrial metabolism to sustain cellular viability and TCA cycle 

anapleurosis [6]. More recent findings reported by Le et al. [192] and Wang et al. [193] 

emphasized the metabolic reprogramming controlled by MYC in tumor cells and activated 

T cells. The latter showed that glutamine catabolism driven by MYC coupled with multiple 

biosynthetic pathways, especially ornithine and polyamine biosynthesis [193]. However, the 

importance of the biosynthesis of the ornithine and polyamine from glutamine is 

understood only in part. Similarly, the metabolic advantage afforded by the increased 

conversion of glutamine to proline and how biosynthetic pathway fits into the MYC-driven 

metabolic reprogramming also remain unclear. The connection between the conversion of 

P5C to proline, the last step of proline biosynthesis and pentose phosphate pathway through 

the oxidation-reduction reactions of NADPH and NADP+ [8, 14, 15] provides us a clue to 

understand the importance of proline biosynthesis induced by MYC in cancer, since proline 

synthesis from P5C could also oxidize NADH to NAD+ to maintain glucose metabolism, 

glycolysis. In fact, our unpublished data showed that the blockade of proline biosynthesis 

by knocking down P5CS or PYCR1 markedly decreased glycolysis, which supports our 

hypothesis.     

It’s noteworthy that glutamine may be not the only source of proline biosynthesis promoted 

by MYC, since the increase of PYCR1 is much greater than that of P5CS and GLS [30], and 

ornithine could also be converted to proline by ornithine aminotransferase and PYCR1 (see 

Figure 1). This possibility and its importance in MYC-induced metabolic reprogramming are 

also worth pursuing. 

7. Conclusion 

Proline, the unique proteinogenic secondary amino acid, is metabolized by its own family of 

enzymes. Early studies showed that proline metabolism is linked with TCA cycle, pentose 

phosphate pathway and urea cycle. During the conversion of proline to P5C, the central 

enzyme of proline metabolism, PRODH/POX, donates electron to ETC to generate ROS or 

ATP depending on context. As a tumor suppressor, PRODH/POX is induced by p53, PPARγ 

and its ligands, and contributes to the initiation of apoptosis and the inhibition of tumor 

growth through ROS generation (Figure 2). On the other hand, PRODH/POX is suppressed 

by miR-23b* and oncogene MYC. MYC not only suppresses proline catabolism, but 

increases proline biosynthesis from glutamine (Figure 3). Thus, these recent studies reveal a 

new link in human cancer between MYC, miRNA regulation, proline metabolism, glutamine 

metabolism, TCA cycle, and even glycolysis. These metabolic links emphasizes the 
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complexity of tumor metabolism. Further studies of proline metabolism in tumor 

microenvironment will provide a deeper understanding of tumor metabolism and novel 

therapeutic strategies in cancer.  

 

Figure 3. MYC regulation of proline and glutamine metabolism. MYC suppresses proline catabolism 

through its inhibition of the expression of PRODH/POX and P5CDH. MYC inhibits the expression of 

PRODH/POX at both transcriptional and post-transcriptional levels (upregulation of miR-23b*), which 

is essential for MYC-induced proliferation and cell survival. On the other hand, MYC stimulates 

glutamine catabolism through miR-23a/b-mediated glutaminase (GLS) upregulation. Furthermore, 

MYC not only suppresses proline catabolism, but also enhances proline biosynthesis from glutamine. 

Proline and glutamine metabolism are connected by MYC and miRNA regulation.  

Author details 

Wei Liu and James M. Phang* 

Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Frederick National 

Laboratory for Cancer Research, NIH. Frederick, MD 

Acknowledgement 

The work was supported by the Intramural Research Program of the NIH, National Cancer 

Institute, Center for Cancer Research. This project also has been funded in part with Federal 

funds from the National Cancer Institute, NIH, under contract no. HHSN27612080001. The 

content of this review does not necessarily reflect the views or policies of the Department of 

Health and Human Services, nor does mention of trade names, commercial products, or 

organizations imply endorsement by the U.S. government. We thank Dr. Ziqiang Zhu for 

his reading of the manuscript. 

8. References 

[1] Warburg O (1956) On the origin of cancer cells, Science 123, 309-314. 

                                                                 
* Corresponding Author 



 
MiRNA and Proline Metabolism in Cancer 379 

[2] Vander Heiden MG, Cantley LC, & Thompson CB (2009) Understanding the Warburg 

effect: the metabolic requirements of cell proliferation, Science 324, 1029-1033. 

[3] Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, & Ruoslahti E (2010) 

Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance 

of oxidative phosphorylation, Mol Cell Biol 30, 1303-1318. 

[4] Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine 

metabolism, Cancer Res 70, 859-862. 

[5] Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. (2009) c-Myc 

suppression of miR-23a/b enhances mitochondrial glutaminase expression and 

glutamine metabolism, Nature 458, 762-765. 

[6] Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. (2008) 

Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis 

and leads to glutamine addiction, Proc Natl Acad Sci U S A 105, 18782-18787. 

[7] Adams E (1970) Metabolism of proline and of hydroxyproline, Int Rev Connect Tissue 

Res 5, 1-91. 

[8] Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid, 

Curr Top Cell Regul 25, 91-132. 

[9] Phang JM, Liu W, & Zabirnyk O (2010) Proline metabolism and microenvironmental 

stress, Annu Rev Nutr 30, 441-463. 

[10] Phang JM & Liu W (2012) Proline metabolism and cancer, Front Biosci 17, 1835-1845. 

[11] Phang JM, Hu CA, & Valle D (2001) Disorders of proline and hydroxyproline 

metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. In Metabolic and 

Molecular Bases of Inherited Disease, New York: McGraw-Hill. pp. 1821-1838. 

[12] Adams E & Frank L (1980) Metabolism of proline and the hydroxyprolines, Annu Rev 

Biochem 49, 1005-1061. 

[13] Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, et al. (2005) MnSOD 

inhibits proline oxidase-induced apoptosis in colorectal cancer cells, Carcinogenesis 26, 

1335-1342. 

[14] Phang JM, Downing SJ, Yeh GC, Smith RJ, Williams JA, & Hagedorn CH (1982) 

Stimulation of the hexosemonophosphate-pentose pathway by pyrroline-5-carboxylate 

in cultured cells, J Cell Physiol 110, 255-261. 

[15] Yeh GC, Roth EF, Jr., Phang JM, Harris SC, Nagel RL, & Rinaldi A (1984) The effect of 

pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and 

glucose-6-phosphate dehydrogenase-deficient subjects, J Biol Chem 259, 5454-5458. 

[16] Hu CA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, & Valle D (2008) Functional 

genomics and SNP analysis of human genes encoding proline metabolic enzymes, 

Amino Acids 35, 655-664. 

[17] Schafer IA, Scriver CR, & Efron ML (1962) Familial hyperprolinemia, cerebral 

dysfunction and renal anomalies occuring in a family with hereditary nephropathy and 

deafness, N Engl J Med 267, 51-60. 

[18] Willis A, Bender HU, Steel G, & Valle D (2008) PRODH variants and risk for 

schizophrenia, Amino Acids 35, 673-679. 



 

Oncogene and Cancer – From Bench to Clinic 380 

[19] Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, et al. (2005) Functional 

consequences of PRODH missense mutations, Am J Hum Genet 76, 409-420. 

[20] Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, et al. (2009) 

Mutations in PYCR1 cause cutis laxa with progeroid features, Nat Genet 41, 1016-1021. 

[21] Baumgartner MR, Hu CA, Almashanu S, Steel G, Obie C, Aral B, et al. (2000) 

Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new 

inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate 

synthase, Hum Mol Genet 9, 2853-2858. 

[22] Baumgartner MR, Rabier D, Nassogne MC, Dufier JL, Padovani JP, Kamoun P, et al. 

(2005) Delta1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts 

and connective tissue manifestations combined with hyperammonaemia and reduced 

ornithine, citrulline, arginine and proline, Eur J Pediatr 164, 31-36. 

[23] Dixit SN, Seyer JM, & Kang AH (1977) Covalent structure of collagen: amino-acid 

sequence of chymotryptic peptides from the carboxyl-terminal region of alpha2-CB3 of 

chick-skin collagen, Eur J Biochem 81, 599-607. 

[24] Stallings-Mann M & Radisky D (2007) Matrix metalloproteinase-induced malignancy in 

mammary epithelial cells, Cells Tissues Organs 185, 104-110. 

[25] Deryugina EI & Quigley JP (2006) Matrix metalloproteinases and tumor metastasis, 

Cancer Metastasis Rev 25, 9-34. 

[26] Kakkad SM, Solaiyappan M, O'Rourke B, Stasinopoulos I, Ackerstaff E, Raman V, et al. 

(2010) Hypoxic tumor microenvironments reduce collagen I fiber density, Neoplasia 12, 

608-617. 

[27] Pandhare J, Donald SP, Cooper SK, & Phang JM (2009) Regulation and function of 

proline oxidase under nutrient stress, J Cell Biochem 107, 759-768. 

[28] Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in 

less than a decade, Nat Rev Mol Cell Biol 8, 931-937. 

[29] Mathew R, Karantza-Wadsworth V, & White E (2007) Role of autophagy in cancer, Nat 

Rev Cancer 7, 961-967. 

[30] Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. (2012) Reprogramming of 

proline and glutamine metabolism contributes to the proliferative and metabolic 

responses regulated by oncogenic transcription factor c-MYC, Proc Natl Acad Sci U S A 

109, 8983-8988. 

[31] Polyak K, Xia Y, Zweier JL, Kinzler KW, & Vogelstein B (1997) A model for p53-induced 

apoptosis, Nature 389, 300-305. 

[32] Rivera A & Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates 

apoptosis through a calcineurin-dependent pathway, J Biol Chem 280, 29346-29354. 

[33] Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, et al. (2001) Proline oxidase, encoded 

by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen 

species, Cancer Res 61, 1810-1815. 

[34] Simon HU, Haj-Yehia A, & Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) 

in apoptosis induction, Apoptosis 5, 415-418. 



 
MiRNA and Proline Metabolism in Cancer 381 

[35] Hu CA, Donald SP, Yu J, Lin WW, Liu Z, Steel G, et al. (2007) Overexpression of proline 

oxidase induces proline-dependent and mitochondria-mediated apoptosis, Mol Cell 

Biochem 295, 85-92. 

[36] Liu Y, Borchert GL, Surazynski A, Hu CA, & Phang JM (2006) Proline oxidase activates 

both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT 

and MEK/ERK signaling, Oncogene 25, 5640-5647. 

[37] Willson TM, Brown PJ, Sternbach DD, & Henke BR (2000) The PPARs: from orphan 

receptors to drug discovery, J Med Chem 43, 527-550. 

[38] Robbins GT & Nie D (2012) PPAR gamma, bioactive lipids, and cancer progression, 

Front Biosci 17, 1816-1834. 

[39] Reka AK, Goswami MT, Krishnapuram R, Standiford TJ, & Keshamouni VG (2011) 

Molecular cross-regulation between PPAR-gamma and other signaling pathways: 

implications for lung cancer therapy, Lung Cancer 72, 154-159. 

[40] Phang JM, Pandhare J, Zabirnyk O, & Liu Y (2008) PPARgamma and Proline Oxidase in 

Cancer, PPAR Res 2008, 542694. 

[41] Pandhare J, Cooper SK, & Phang JM (2006) Proline oxidase, a proapoptotic gene, is 

induced by troglitazone: evidence for both peroxisome proliferator-activated receptor 

gamma-dependent and -independent mechanisms, J Biol Chem 281, 2044-2052. 

[42] Kim KY, Ahn JH, & Cheon HG (2007) Apoptotic action of peroxisome proliferator-

activated receptor-gamma activation in human non small-cell lung cancer is mediated 

via proline oxidase-induced reactive oxygen species formation, Mol Pharmacol 72, 674-

685. 

[43] Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A, & Phang JM (2012) Proline 

oxidase promotes tumor cell survival in hypoxic tumor microenvironments, Cancer Res 

72, 3677-3686. 

[44] Zabirnyk O, Liu W, Khalil S, Sharma A, & Phang JM (2010) Oxidized low-density 

lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy, 

Carcinogenesis 31, 446-454. 

[45] Smith ML & Kumar MA (2010) The "Two faces" of Tumor Suppressor p53-revisited, 

Mol Cell Pharmacol 2, 117-119. 

[46] Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, & Phang JM (2009) Proline 

Oxidase Functions as a Mitochondrial Tumor Suppressor in Human Cancers, Cancer 

Res 69, 6414-6422. 

[47] Liu Y, Borchert GL, Surazynski A, & Phang JM (2008) Proline oxidase, a p53-induced 

gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in 

colorectal cancers, Oncogene 27, 6729-6737. 

[48] Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. 

(2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation 

to the tumour microenvironment, Carcinogenesis 30, 377-386. 

[49] Brown JR & DuBois RN (2004) Cyclooxygenase as a target in lung cancer, Clin Cancer 

Res 10, 4266s-4269s. 

[50] Arun B & Goss P (2004) The role of COX-2 inhibition in breast cancer treatment and 

prevention, Semin Oncol 31, 22-29. 



 

Oncogene and Cancer – From Bench to Clinic 382 

[51] Henson ES & Gibson SB (2006) Surviving cell death through epidermal growth factor 

(EGF) signal transduction pathways: implications for cancer therapy, Cell Signal 18, 

2089-2097. 

[52] Yao H, Ashihara E, & Maekawa T (2011) Targeting the Wnt/beta-catenin signaling 

pathway in human cancers, Expert Opin Ther Targets 15, 873-887. 

[53] Zhu W, Chen Y, & Dutta A (2004) Rereplication by depletion of geminin is seen 

regardless of p53 status and activates a G2/M checkpoint, Mol Cell Biol 24, 7140-7150. 

[54] Stark GR & Taylor WR (2006) Control of the G2/M transition, Mol Biotechnol 32, 227-

248. 

[55] Liebermann DA & Hoffman B (2008) Gadd45 in stress signaling, J Mol Signal 3, 15. 

[56] Gottlieb E & Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and 

biochemical update, Nat Rev Cancer 5, 857-866. 

[57] Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, et al. (2010) 

P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis, Proc Natl Acad Sci 

U S A 107, 6334-6339. 

[58] Verma A (2006) Oxygen-sensing in tumors, Curr Opin Clin Nutr Metab Care 9, 366-378. 

[59] Hewitson KS, Lienard BM, McDonough MA, Clifton IJ, Butler D, Soares AS, et al. (2007) 

Structural and mechanistic studies on the inhibition of the hypoxia-inducible 

transcription factor hydroxylases by tricarboxylic acid cycle intermediates, J Biol Chem 

282, 3293-3301. 

[60] Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, & Myllyharju J (2007) 

Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle 

intermediates: possible links between cell metabolism and stabilization of HIF, J Biol 

Chem 282, 4524-4532. 

[61] Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, & Verma A (2005) Reversible 

inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1, 

J Biol Chem 280, 41928-41939. 

[62] Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S, et al. (2010) miR-23b 

targets proline oxidase, a novel tumor suppressor protein in renal cancer, Oncogene 29, 

4914-4924. 

[63] Lee RC, Feinbaum RL, & Ambros V (1993) The C. elegans heterochronic gene lin-4 

encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843-854. 

[64] Wightman B, Ha I, & Ruvkun G (1993) Posttranscriptional regulation of the 

heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, 

Cell 75, 855-862. 

[65] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. (2000) 

The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis 

elegans, Nature 403, 901-906. 

[66] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. (2004) MicroRNA genes are 

transcribed by RNA polymerase II, EMBO J 23, 4051-4060. 

[67] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. (2003) The nuclear RNase III Drosha 

initiates microRNA processing, Nature 425, 415-419. 



 
MiRNA and Proline Metabolism in Cancer 383 

[68] Denli AM, Tops BB, Plasterk RH, Ketting RF, & Hannon GJ (2004) Processing of 

primary microRNAs by the Microprocessor complex, Nature 432, 231-235. 

[69] Yi R, Qin Y, Macara IG, & Cullen BR (2003) Exportin-5 mediates the nuclear export of 

pre-microRNAs and short hairpin RNAs, Genes Dev 17, 3011-3016. 

[70] Bohnsack MT, Czaplinski K, & Gorlich D (2004) Exportin 5 is a RanGTP-dependent 

dsRNA-binding protein that mediates nuclear export of pre-miRNAs, RNA 10, 185-191. 

[71] Lund E, Guttinger S, Calado A, Dahlberg JE, & Kutay U (2004) Nuclear export of 

microRNA precursors, Science 303, 95-98. 

[72] Lund E & Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the 

biogenesis of microRNAs, Cold Spring Harb Symp Quant Biol 71, 59-66. 

[73] Khvorova A, Reynolds A, & Jayasena SD (2003) Functional siRNAs and miRNAs 

exhibit strand bias, Cell 115, 209-216. 

[74] Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, & Zamore PD (2003) Asymmetry in 

the assembly of the RNAi enzyme complex, Cell 115, 199-208. 

[75] Lin SL, Chang D, & Ying SY (2005) Asymmetry of intronic pre-miRNA structures in 

functional RISC assembly, Gene 356, 32-38. 

[76] Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, et al. (2008) MicroRNA miR-199a* 

regulates the MET proto-oncogene and the downstream extracellular signal-regulated 

kinase 2 (ERK2), J Biol Chem 283, 18158-18166. 

[77] Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, et al. (2009) 

MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be 

used to differentiate primary from metastatic brain tumors, Brain Pathol 19, 375-383. 

[78] Okamura K, Chung WJ, & Lai EC (2008) The long and short of inverted repeat genes in 

animals: microRNAs, mirtrons and hairpin RNAs, Cell Cycle 7, 2840-2845. 

[79] Carmell MA, Xuan Z, Zhang MQ, & Hannon GJ (2002) The Argonaute family: tentacles 

that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis, 

Genes Dev 16, 2733-2742. 

[80] Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, et al. (2003) The 

crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in 

RNAi effector complexes, Nat Struct Biol 10, 1026-1032. 

[81] Ma JB, Ye K, & Patel DJ (2004) Structural basis for overhang-specific small interfering 

RNA recognition by the PAZ domain, Nature 429, 318-322. 

[82] Lingel A & Sattler M (2005) Novel modes of protein-RNA recognition in the RNAi 

pathway, Curr Opin Struct Biol 15, 107-115. 

[83] Okamura K, Ishizuka A, Siomi H, & Siomi MC (2004) Distinct roles for Argonaute 

proteins in small RNA-directed RNA cleavage pathways, Genes Dev 18, 1655-1666. 

[84] Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. (2004) 

Argonaute2 is the catalytic engine of mammalian RNAi, Science 305, 1437-1441. 

[85] Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, & Tuschl T (2004) 

Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol 

Cell 15, 185-197. 

[86] van Kouwenhove M, Kedde M, & Agami R (2011) MicroRNA regulation by RNA-

binding proteins and its implications for cancer, Nat Rev Cancer 11, 644-656. 



 

Oncogene and Cancer – From Bench to Clinic 384 

[87] Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, et al. (2009) A 

TARBP2 mutation in human cancer impairs microRNA processing and DICER1 

function, Nat Genet 41, 365-370. 

[88] Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, et al. (2009) 

DICER1 mutations in familial pleuropulmonary blastoma, Science 325, 965. 

[89] MacRae IJ, Ma E, Zhou M, Robinson CV, & Doudna JA (2008) In vitro reconstitution of 

the human RISC-loading complex, Proc Natl Acad Sci U S A 105, 512-517. 

[90] Murchison EP & Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the 

RNAi machinery, Curr Opin Cell Biol 16, 223-229. 

[91] Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. (2002) miRNPs: 

a novel class of ribonucleoproteins containing numerous microRNAs, Genes Dev 16, 

720-728. 

[92] Caudy AA, Myers M, Hannon GJ, & Hammond SM (2002) Fragile X-related protein and 

VIG associate with the RNA interference machinery, Genes Dev 16, 2491-2496. 

[93] Winter J & Diederichs S (2011) Argonaute proteins regulate microRNA stability: 

Increased microRNA abundance by Argonaute proteins is due to microRNA 

stabilization, RNA Biol 8, 1149-1157. 

[94] Diederichs S & Haber DA (2007) Dual role for argonautes in microRNA processing and 

posttranscriptional regulation of microRNA expression, Cell 131, 1097-1108. 

[95] O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, et al. (2007) A 

Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway, 

Genes Dev 21, 1999-2004. 

[96] Zhang X, Graves PR, & Zeng Y (2009) Stable Argonaute2 overexpression differentially 

regulates microRNA production, Biochim Biophys Acta 1789, 153-159. 

[97] Kai ZS & Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the 

disappearance of miRNAs, Nat Struct Mol Biol 17, 5-10. 

[98] Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, et al. (2008) 

Characterization of endogenous human Argonautes and their miRNA partners in RNA 

silencing, Proc Natl Acad Sci U S A 105, 7964-7969. 

[99] Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. (2005) Methylation as a 

crucial step in plant microRNA biogenesis, Science 307, 932-935. 

[100] Li J, Yang Z, Yu B, Liu J, & Chen X (2005) Methylation protects miRNAs and siRNAs 

from a 3'-end uridylation activity in Arabidopsis, Curr Biol 15, 1501-1507. 

[101] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. (2007) A 

mammalian microRNA expression atlas based on small RNA library sequencing, Cell 

129, 1401-1414. 

[102] Lu S, Sun YH, & Chiang VL (2009) Adenylation of plant miRNAs, Nucleic Acids Res 

37, 1878-1885. 

[103] Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, et al. (2008) Mouse 

let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ 

cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes, Genome 

Res 18, 1571-1581. 



 
MiRNA and Proline Metabolism in Cancer 385 

[104] Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, & Baba T (2009) Selective 

stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic 

poly(A) polymerase GLD-2, Genes Dev 23, 433-438. 

[105] Valencia-Sanchez MA, Liu J, Hannon GJ, & Parker R (2006) Control of translation and 

mRNA degradation by miRNAs and siRNAs, Genes Dev 20, 515-524. 

[106] Billeter AT, Druen D, Kanaan ZM, & Polk HC, Jr. (2012) MicroRNAs: new helpers for 

surgeons?, Surgery 151, 1-5. 

[107] Lewis BP, Burge CB, & Bartel DP (2005) Conserved seed pairing, often flanked by 

adenosines, indicates that thousands of human genes are microRNA targets, Cell 120, 

15-20. 

[108] Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, et al. 

(2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing 

to the microRNA 5' region, EMBO J 23, 3356-3364. 

[109] Yekta S, Shih IH, & Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA, 

Science 304, 594-596. 

[110] Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 

116, 281-297. 

[111] Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, et al. (2005) 

Inhibition of translational initiation by Let-7 MicroRNA in human cells, Science 309, 

1573-1576. 

[112] Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. (2005) miR-

15 and miR-16 induce apoptosis by targeting BCL2, Proc Natl Acad Sci U S A 102, 

13944-13949. 

[113] Williams AE (2008) Functional aspects of animal microRNAs, Cell Mol Life Sci 65, 545-

562. 

[114] Zeng Y, Yi R, & Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit 

mRNA expression by similar mechanisms, Proc Natl Acad Sci U S A 100, 9779-9784. 

[115] Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, et al. 

(2004) A combined computational-experimental approach predicts human microRNA 

targets, Genes Dev 18, 1165-1178. 

[116] Bartel DP & Chen CZ (2004) Micromanagers of gene expression: the potentially 

widespread influence of metazoan microRNAs, Nat Rev Genet 5, 396-400. 

[117] Eulalio A, Huntzinger E, & Izaurralde E (2008) GW182 interaction with Argonaute is 

essential for miRNA-mediated translational repression and mRNA decay, Nat Struct 

Mol Biol 15, 346-353. 

[118] Behm-Ansmant I, Rehwinkel J, & Izaurralde E (2006) MicroRNAs silence gene 

expression by repressing protein expression and/or by promoting mRNA decay, Cold 

Spring Harb Symp Quant Biol 71, 523-530. 

[119] Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. (2006) A pattern-

based method for the identification of MicroRNA binding sites and their corresponding 

heteroduplexes, Cell 126, 1203-1217. 



 

Oncogene and Cancer – From Bench to Clinic 386 

[120] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. (2002) Frequent 

deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in 

chronic lymphocytic leukemia, Proc Natl Acad Sci U S A 99, 15524-15529. 

[121] Caldas C & Brenton JD (2005) Sizing up miRNAs as cancer genes, Nat Med 11, 712-

714. 

[122] Calin GA & Croce CM (2006) MicroRNAs and chromosomal abnormalities in cancer 

cells, Oncogene 25, 6202-6210. 

[123] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. (2005) MicroRNA 

expression profiles classify human cancers, Nature 435, 834-838. 

[124] Sandhu S & Garzon R (2011) Potential applications of microRNAs in cancer diagnosis, 

prognosis, and treatment, Semin Oncol 38, 781-787. 

[125] Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer, Nat 

Rev Genet 10, 704-714. 

[126] Nicoloso MS, Spizzo R, Shimizu M, Rossi S, & Calin GA (2009) MicroRNAs--the micro 

steering wheel of tumour metastases, Nat Rev Cancer 9, 293-302. 

[127] Lujambio A & Lowe SW (2012) The microcosmos of cancer, Nature 482, 347-355. 

[128] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. (2006) A 

microRNA expression signature of human solid tumors defines cancer gene targets, 

Proc Natl Acad Sci U S A 103, 2257-2261. 

[129] Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, et al. (2008) 

Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 

expression in lymphocytes, Nat Immunol 9, 405-414. 

[130] Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. (2008) 

Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 

family of miRNA clusters, Cell 132, 875-886. 

[131] He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. (2005) 

A microRNA polycistron as a potential human oncogene, Nature 435, 828-833. 

[132] Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink 

WJ, et al. (2009) MiR-17-92 cluster is associated with 13q gain and c-myc expression 

during colorectal adenoma to adenocarcinoma progression, Br J Cancer 101, 707-714. 

[133] Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, et al. (2009) Genetic 

dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas, 

Genes Dev 23, 2806-2811. 

[134] Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. (2008) 

E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis 

in gastric cancer, Cancer Cell 13, 272-286. 

[135] Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease, 

Cell 133, 217-222. 

[136] Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, et al. (2009) miR-

221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and 

TIMP3 downregulation, Cancer Cell 16, 498-509. 



 
MiRNA and Proline Metabolism in Cancer 387 

[137] Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. (2010) 

MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer, J 

Natl Cancer Inst 102, 706-721. 

[138] Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, et al. (2010) Negative regulation of 

tumor suppressor p53 by microRNA miR-504, Mol Cell 38, 689-699. 

[139] Roush S & Slack FJ (2008) The let-7 family of microRNAs, Trends Cell Biol 18, 505-516. 

[140] Bueno MJ, Gomez de Cedron M, Gomez-Lopez G, Perez de Castro I, Di Lisio L, 

Montes-Moreno S, et al. (2011) Combinatorial effects of microRNAs to suppress the Myc 

oncogenic pathway, Blood 117, 6255-6266. 

[141] Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. (2008) MiR-

15a and miR-16-1 cluster functions in human leukemia, Proc Natl Acad Sci U S A 105, 

5166-5171. 

[142] Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. (2008) The 

miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic 

activities, Nat Med 14, 1271-1277. 

[143] Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. 

(2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver 

cancer model, Cell 137, 1005-1017. 

[144] Garzon R, Marcucci G, & Croce CM (2010) Targeting microRNAs in cancer: rationale, 

strategies and challenges, Nat Rev Drug Discov 9, 775-789. 

[145] Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and 

metabolism, Mol Cell Biol 19, 1-11. 

[146] Eilers M & Eisenman RN (2008) Myc's broad reach, Genes Dev 22, 2755-2766. 

[147] Dang CV, Le A, & Gao P (2009) MYC-induced cancer cell energy metabolism and 

therapeutic opportunities, Clin Cancer Res 15, 6479-6483. 

[148] Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al. (2006) 

Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat Genet 

38, 1060-1065. 

[149] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, & Mendell JT (2005) c-Myc-regulated 

microRNAs modulate E2F1 expression, Nature 435, 839-843. 

[150] Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. (2010) miR-9, a 

MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis, Nat Cell 

Biol 12, 247-256. 

[151] Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. (2008) Widespread 

microRNA repression by Myc contributes to tumorigenesis, Nat Genet 40, 43-50. 

[152] Bui TV & Mendell JT (2010) Myc: Maestro of MicroRNAs, Genes Cancer 1, 568-575. 

[153] Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. (2010) The DLEU2/miR-15a/16-

1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic 

leukemia, Cancer Cell 17, 28-40. 

[154] Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, et al. (2010) Stem cell-

like micro-RNA signature driven by Myc in aggressive liver cancer, Proc Natl Acad Sci 

U S A 107, 20471-20476. 



 

Oncogene and Cancer – From Bench to Clinic 388 

[155] Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al. (2007) 

Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle 

progression, Mol Cell Biol 27, 2240-2252. 

[156] Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, et al. (2009) 

Lin-28B transactivation is necessary for Myc-mediated let-7 repression and 

proliferation, Proc Natl Acad Sci U S A 106, 3384-3389. 

[157] Newman MA, Thomson JM, & Hammond SM (2008) Lin-28 interaction with the Let-7 

precursor loop mediates regulated microRNA processing, RNA 14, 1539-1549. 

[158] Hagan JP, Piskounova E, & Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to 

inhibit let-7 maturation in mouse embryonic stem cells, Nat Struct Mol Biol 16, 1021-

1025. 

[159] Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, et al. (2009) TUT4 in concert with Lin28 

suppresses microRNA biogenesis through pre-microRNA uridylation, Cell 138, 696-708. 

[160] Feng Z, Zhang C, Wu R, & Hu W (2011) Tumor suppressor p53 meets microRNAs, J 

Mol Cell Biol 3, 44-50. 

[161] He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. (2007) A microRNA 

component of the p53 tumour suppressor network, Nature 447, 1130-1134. 

[162] Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. 

(2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Mol 

Cell 26, 731-743. 

[163] Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P, et al. (2011) MicroRNA-149*, a p53-

responsive microRNA, functions as an oncogenic regulator in human melanoma, Proc 

Natl Acad Sci U S A 108, 15840-15845. 

[164] Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. (2009) p53 represses c-Myc 

through induction of the tumor suppressor miR-145, Proc Natl Acad Sci U S A 106, 

3207-3212. 

[165] Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, et al. (2008) 

Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 

and miR-215, Cancer Res 68, 10105-10112. 

[166] Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, & Miyazono K (2009) 

Modulation of microRNA processing by p53, Nature 460, 529-533. 

[167] Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. 

(2007) A microRNA signature of hypoxia, Mol Cell Biol 27, 1859-1867. 

[168] Mutharasan RK, Nagpal V, Ichikawa Y, & Ardehali H (2011) microRNA-210 is 

upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways 

and exerts cytoprotective effects, Am J Physiol Heart Circ Physiol 301, H1519-1530. 

[169] Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, et al. (2010) MicroRNA-210 as a 

novel therapy for treatment of ischemic heart disease, Circulation 122, S124-131. 

[170] Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. (2008) hsa-miR-210 

Is induced by hypoxia and is an independent prognostic factor in breast cancer, Clin 

Cancer Res 14, 1340-1348. 



 
MiRNA and Proline Metabolism in Cancer 389 

[171] Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. 

(2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the 

receptor tyrosine kinase ligand Ephrin-A3, J Biol Chem 283, 15878-15883. 

[172] Kim HW, Haider HK, Jiang S, & Ashraf M (2009) Ischemic preconditioning augments 

survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 

2, J Biol Chem 284, 33161-33168. 

[173] Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. (2009) MicroRNA 

miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT, 

Cell Cycle 8, 2756-2768. 

[174] Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, et al. 

(2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-

promoting feed-forward pathway, Genes Dev 24, 2754-2759. 

[175] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. (2004) 

Human microRNA genes are frequently located at fragile sites and genomic regions 

involved in cancers, Proc Natl Acad Sci U S A 101, 2999-3004. 

[176] Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. (2006) 

microRNAs exhibit high frequency genomic alterations in human cancer, Proc Natl 

Acad Sci U S A 103, 9136-9141. 

[177] Mayr C, Hemann MT, & Bartel DP (2007) Disrupting the pairing between let-7 and 

Hmga2 enhances oncogenic transformation, Science 315, 1576-1579. 

[178] Veronese A, Visone R, Consiglio J, Acunzo M, Lupini L, Kim T, et al. (2011) Mutated 

beta-catenin evades a microRNA-dependent regulatory loop, Proc Natl Acad Sci U S A 

108, 4840-4845. 

[179] Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. (2006) Specific 

activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by 

chromatin-modifying drugs in human cancer cells, Cancer Cell 9, 435-443. 

[180] Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, et al. (2011) 

Coordinated regulation of polycomb group complexes through microRNAs in cancer, 

Cancer Cell 20, 187-199. 

[181] Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, et al. (2011) 

Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and 

mesenchymal transitions in human tumorigenesis, Oncogene doi: 10.1038/onc.2011.383. 

[182] Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M, et al. (2000) Identification of c-

myc responsive genes using rat cDNA microarray, Cancer Res 60, 5922-5928. 

[183] Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, & Ren B (2003) A global 

transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells, Proc Natl Acad 

Sci U S A 100, 8164-8169. 

[184] Maxwell SA & Rivera A (2003) Proline oxidase induces apoptosis in tumor cells, and 

its expression is frequently absent or reduced in renal carcinomas, J Biol Chem 278, 

9784-9789. 

[185] Kulshreshtha R, Davuluri RV, Calin GA, & Ivan M (2008) A microRNA component of 

the hypoxic response, Cell Death Differ 15, 667-671. 



 

Oncogene and Cancer – From Bench to Clinic 390 

[186] Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, et al. (2009) 

Correlation of microRNA levels during hypoxia with predicted target mRNAs through 

genome-wide microarray analysis, BMC Med Genomics 2, 15. 

[187] Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. (2007) HIF-1 

inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell 

carcinoma by repression of C-MYC activity, Cancer Cell 11, 407-420. 

[188] Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. (2002) c-Myc can 

induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a 

mechanism for oncogene-induced genetic instability, Mol Cell 9, 1031-1044. 

[189] DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. (2011) 

Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis, 

Nature 475, 106-109. 

[190] Wonsey DR, Zeller KI, & Dang CV (2002) The c-Myc target gene PRDX3 is required for 

mitochondrial homeostasis and neoplastic transformation, Proc Natl Acad Sci U S A 99, 

6649-6654. 

[191] Fan TW, Tan JL, McKinney MM, & Lane AN (2011) Stable isotope resolved 

metabolomics analysis of ribonucleotide and RNA metabolism in human lung cancer 

cells Metabolomics doi:10.1007/s11306-011-0337-9. 

[192] Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. (2012) Glucose-

Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in 

B Cells, Cell Metab 15, 110-121. 

[193] Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. (2011) The 

transcription factor Myc controls metabolic reprogramming upon T lymphocyte 

activation, Immunity 35, 871-882. 


