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1. Introduction 

The question of which regions of the human genome constitute its functional elements—

those expressed as genes or serving as regulatory elements—has long been a central topic in 

biology. In the 1970s and 1980s, early cloning-based methods revealed the presence of more 

than 7000 genes in human genome [1], and large-scale analyses of expressed sequence tags 

(ESTs) in the 1990s suggested that the estimated number of human genes range from 35,000 

to 100,000 [2]. The completion of the human genome project narrowed the focus 

considerably by highlighting the surprisingly small number of protein-coding genes, which 

is now conventionally cited as less than 25,000 [3]. While the number of protein-coding 

genes (20,000–25,000) has maintained broad consensus, recent studies of the human 

transcriptome have revealed an astounding number of non-coding RNAs (ncRNAs) [4-6]. In 

fact, the increased sensitivity of genome tiling arrays provides an even more detailed view, 

revealing that the extent of non-coding sequence transcription is at least four times greater 

than coding sequence, and that the abundance of non-coding transcripts had been 

previously overlooked. The RNA world hypothesis proposes that early life was based on 

RNAs, which subsequently devolved the storage of information to more stable DNA, and 

catalytic functions to more versatile proteins. Consequently, despite crucial roles in the 

ancient processes of translation and splicing, RNA is assumed to have been largely relegated 

to an intermediate between gene and protein, encapsulated in the central dogma ‘DNA 

makes RNA makes protein’ [7]. However, the finding that most of the genome in complex 

organisms is transcribed and the discovery of new classes of regulatory non-coding RNAs 

(ncRNAs) challenges this assumption and suggests that RNAs have continued to evolve and 

expand alongside proteins and DNA. 

ncRNAs are considered as RNA transcripts that do not encode for a protein. In the past 

decade, a great diversity of ncRNAs has been observed. Depending on the type of ncRNA, 

transcription can occur by any of the three RNA polymerases (RNA Pol I, RNA Pol II, or 

RNA Pol III). General conventions divide ncRNAs into two main categories: small ncRNAs 
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less than 200 bp and long ncRNAs greater than 200 bps [8]. Within these two categories, 

there are also many individual classes of ncRNAs (Table1), although the degree of 

biological and experimental support for each class ranges substantially and should be 

evaluated individually. The relevance of ncRNAs in gene regulation has been rapidly 

unveiling during the last decade. However, the functional elements in the primary sequence 

of noncoding genes that determine their role as RNA molecules remain unknown. Protein-

coding genes have a defined language with a set of grammatical rules: three nucleotides 

forms a codon that translates into a specific amino acid [9]. Aberrations in codons of a 

protein-coding gene can be interpreted in terms of the amino acids they encode. We can 

recognize a mutation in a codon and determine its contribution to a given disease. In 

contrast to the genetic code for protein synthesis, ‘the ncRNA alphabet’ – a specific set of 

RNA sequences or structural motifs important for ncRNA function – remains to be largely 

elucidated. However, it has become increasingly apparent that the ncRNAs are of crucial 

functional importance for normal development, physiology and disease [10]. The functional 

relevance of the ncRNAs is particularly evident for a class of small non-coding RNAs called 

microRNAs (miRNAs) [11-12]. In human diseases, particularly cancer, it has been shown 

that epigenetic and genetic defects in miRNAs and their processing machinery are a 

common hallmark of disease [13-16]. However, miRNAs are just the tip of the iceberg, and 

other ncRNAs such as small nucleolar RNAs (snoRNAs), PIWI-interacting RNAs (piRNAs), 

large intergenic non-coding RNAs (lincRNAs) and, overall, the heterogeneous group of long 

non-coding RNAs (lncRNAs), might also contribute to the development of many different 

human disorders. Here we discuss the most recent genetic studies on ncRNAs and their 

related proteins in the context of cancer and we will analyze the new regulatory elements of 

the noncoding language to interpret their contribution to the pathogenesis of cancer. 

2. MicroRNAs 

In 1993, Victor Ambros and colleagues discovered a gene, lin-4, that affected development in 

Caenorhabditis elegans and found that its product was a small nonprotein-coding RNA [31]. 

The number of known small RNAs in different organisms such as Caenorhabditis elegans, 

Drosophila melanogaster, plants, and mammals—including humans—has since expanded 

substantially, mainly as a result of the cloning and sequencing of size-fractionated RNAs. 

MiRNAs are single stranded RNAs (ssRNAs) of 19–25 nucleotides in length that are 

generated from endogenous hairpin transcripts [32]. They play an important role in the 

negative regulation of gene expression by base-pairing to partially complementary sites on 

the target messenger RNAs (mRNAs), usually in the 3’ untranslated region (UTR). Binding 

of a miRNA to the target mRNA typically leads to translational repression and 

exonucleolytic mRNA decay, although highly complementary targets can be cleaved 

endonucleolytically. A genomic analysis of miRNAs has revealed that more than 50% of 

mammalian miRNAs are located within the intronic regions of annotated protein-coding or 

non-protein-coding genes [33]. These miRNAs could therefore use their host gene 

transcripts as carriers, although it remains possible that some are actually transcribed 

separately from internal promoters. Other miRNAs, located in intergenic regions, 

apparently have their own transcriptional regulatory elements and thus constitute  
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Table 1. Non coding RNA in human genome. 

independent transcription units. Animal miRNAs are processed from longer primary 

transcripts (pri-miRNAs) that can contain multiple miRNAs [34,35]. Few pri-miRNA 

transcripts have been studied in detail, but in general miRNAs are regulated and 

transcribed similar to protein encoding genes by (Pol) II with the exception of the rapidly 

evolving RNA polymerase (Pol) III transcribed miRNA cluster [36]. MiRNA processing 

occurs in three essential steps (Figure 1). First, the nuclear endoribonuclease protein Drosha 

recognizes the miRNA hairpins in the primary transcript and cleaves each hairpin ~11 nt 

from its base [37-38]. It has been proposed that Drosha may recognize the pri-miRNA 

through the stem-loop structure and then cleave the stem at a fixed distance from the loop to 

liberate the pre-miRNA. How is the Drosha enzyme able to discriminate the pri-miRNA 

stem-loop structure from the other stem-loop cellular RNAs? Both cell culture experiments 

and in vitro Drosha cleavage assays have shown that proteins associated with Drosha confer 

specificity to this process. In fact, Drosha has been found to be part of a large, ~650-kDa 

protein complex known as the Microprocessor [39], where Drosha interacts with its cofactor 

DGCR8 (the DiGeorge syndrome critical region gene 8 protein) in the human and interacts 

with Pasha in Drosophila melanogaster [40]. The next step in miRNA biogenesis is recognition 

of the ~60 nt pre-miRNA by exportin-5 and export into the cytoplasm in a ran-guanine-GTP-

dependent manner [41-43]. The Exp5/Ran-GTP complex has a high affinity for pre-miRNAs, 
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Figure 1. miRNA biogenesis and function. The primary miRNA (pri-miRNA) is transcribed by RNA 

pol II from its genomic location and cleaved by the microprocessor complex, which comprises Drosha 

and DGCR8. The resulting pre-miRNA is actively transported to the cytoplasm by exportin 5 (Expt.5), 

where the pre-miRNA undergoes further processing into the mature miRNA by Dicer and its co-factors, 

protein activator of interferon-induced protein kinase (PACT) and TAR RNA binding protein (TRBP). 

Normally, one strand of this duplex is degraded (miRNA star), whereas the other strand accumulates as 

a mature miRNA. From the miRNA-miRNA duplex, only the miRNA enters preferentially in the 

protein effector complex, formed by the RNA-induced silencing complex (RISC) and miRgonaute and 

binds with partial complementarity to the 3′ untranslated region (UTR) of target messenger RNAs 

(mRNAs) to mediate translational repression. 
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protecting them from the moment they are generated in the nucleus until they are ready for 

the next cleavage step in the cytoplasm, where GTP is hydrolyzed to guanosine diphosphate 

(GDP); at that point, the Exp5/Ran-GDP complex releases its cargo. Third, the 

endoribonuclease protein Dicer cleaves the pre-miRNA into ~22 nt duplexes and, with the 

help of cofactors such as TAR RNA binding protein (TRBP) and protein activator of the 

interferon-induced protein kinase (PACT), preferentially incorporates one of the duplex 

strands Into the RNA induced-silencing complex (RISC) [44-50]. The final product is a 

miRNA-miRNA duplex that needs to be unwound to act as a single-stranded guide in the 

RISC to recognize its target mRNAs. It was originally proposed that an ATP-dependent 

helicase (known as unwindase) separates the two small RNA strands, after which the 

resulting single-stranded guide is loaded into Ago proteins. However, it was later shown 

that Drosophila Ago2 [51], as well as human Ago2 [52], directly receive double-stranded 

small RNA from the RISC-loading complex. Ago2 then cleaves the passenger strand, 

thereby liberating the single-stranded guide to form mature Ago2-RISC. In mammals, 

miRNAs guide the RISC to complementary target sites in mRNAs, where 

endonucleolytically active Ago proteins cleave the RNA [53] (Figure 1). Finally, RISC can 

cleave [54-55] degrade [56-57] or suppress translation [58-59] of target mRNAs depending 

on the complementarity between miRNA and mRNA. Imperfect base pairing between small 

RNAs and their target mRNAs leads to repression of translation and/or deadenylation 

(removal of the polyA tail of the target), followed by destabilization of the target [60], 

whereas perfect base pairing usually leads to mRNA degradation. 

3. MicroRNAs and cancer 

Cancer is a multistep process in which normal cells experience genetic changes that progress 

them through a series of pre-malignant states (initiation) into invasive cancer (progression) 

that can spread throughout the body (metastasis). The dysregulation of genes involved in 

cell proliferation, differentiation and/or apoptosis is associated with cancer initiation and 

progression. Genes linked with cancer development are characterized as oncogenes and 

tumor suppressors. Recently, the definition of oncogenes and tumor suppressors has been 

expanded from the classical protein coding genes to include miRNAs [61-62]. MiRNAs have 

been found to regulate more than 60% of mRNAs and have roles in fundamental processes, 

such as development [63], differentiation [64], cell proliferation [65], apoptosis [66], and 

stress responses [67]. Over the past few years, many miRNAs have been implicated in 

various human cancers. The first evidence that miRNAs are involved in cancer comes from 

the finding that miR-15 and miR-16 are downregulated or deleted in most patients with 

chronic lymphocytic leukemia [68]. This discovery has projected miRNAs to the center stage 

of molecular oncology and, in the past few years, a myriad of genome-wide miRNA 

expression profiling analyses have shown a general dysregulation of miRNA expression in 

all tumors (Table 2) [69]. Surprisingly, the use of miRNA profiles is newly becoming highly 

preferred to the traditional mRNA signature for a variety of reasons. First, the remarkable 

stability of miRNAs, due to their short length, has allowed scientists to perform analyses 

also in samples considered to be technically challenging, such as formalin fixed specimens. 

High sensitive and refined miRNA detection technique provide high reliability in the use of 

miRNAs as a diagnostic tools. Finally, miRNA fingerprints have demonstrated the ability to 
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identify the tissue of origin for cancer that have already spread in multiple metastatic sites, 

thereby reducing patient’s psychological burden and overall procedure costs. To date, over 

1000 miRNAs have been reported in humans (miRbase: 1527 at November 2011), and both 

loss and gain of miRNA functions contribute to cancer development through a range of 

different mechanisms that we will discuss in the following sections.  
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c 

Table 2. miRNA profiling in cancer. 

4. Oncogenic microRNAs 

Although studies linking miRNA dysfunctions to human diseases are in their infancy, a 

great deal of data already exists, establishing an important role for miRNAs in the 

pathogenesis of cancer. Many miRNAs have been shown to function as oncogenes in the 
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majority of cancers profiled to date (Table 3). MiR-21 displays a strong evolutionary 

conservation across a wide range of vertebrate species in mammalian, avian and fish clades 

[70]. It has been demonstrated that a primary transcript containing miR-21 (i.e., pri-miR-21) is 

independently transcribed from a conserved promoter that is located within the intron of 

the overlapping protein-coding gene TMEM49 [71]. Several studies suggest that this miRNA 

is oncogenic [72-74] and that it may act as an antiapoptotic factor. For example, Chan et al. 

have found that miR-21 is commonly and markedly up-regulated in human glioblastoma 

and that inhibiting miR-21 expression leads to caspase activation and associated apoptotic 

cell death [72]. Moreover, Zhu and collaborators provided the first evidence that miR-21 

regulates invasion and metastasis, at least in part, by targeting metastasis-related tumor 

suppressor genes such as TPM1, programmed cell death 4 (PDCD4) and maspin [73]. 

Furthermore, examination of human breast tumor specimens revealed an inverse correlation 

of miR-21 with PDCD4 and maspin [74]. The final proof of miR-21 oncogenic activity came 

from the Slack laboratory where the first conditional knock-in of miR-21 overexpressing 

mice was generated. The mice developed a severe pre-B-cell lymphoma but when miR-21 

was reduced to endogenous levels, the mouse tumors completely disappeared, defining the 

concept of  “oncomiR addition” [75].  

Another important oncogenic miRNA is represented by miR-155. Several groups have 

shown that miR-155 is highly expressed in pediatric Burkitt’s lymphoma [76], Hodgkin’s 

disease [77], primary mediastinal non-Hodgkin’s lymphoma [77], chronic lymphocytic 

leukemia (CLL) [78], acute myelogenous leukemia (AML) [79], lung cancer [80], pancreatic 

cancer [81], and breast cancer [80]. Dr. Croce laboratory reported that miR-155 transgenic 

mice develop acute lymphoblastic leukemia/high-grade lymphoma and that most of these 

leukemias start at approximately nine months, irrespective of the mouse strain, preceded by 

a polyclonal pre-B-cell proliferation [82]. 

Another example of “oncomiR” is represented by miR-221&222 cluster that is highly 

upregulated in a variety of solid tumors, including thyroid cancer [83], hepatocarcinoma 

[84], estrogen receptor negative breast tumor [85], and melanoma [86]. Elevated miR-

221&222 expression has been causally linked to proliferation [85-87], apoptosis [88-89], and 

migration [89] of several cancer cell lines. We recently reported that the hepatocyte growth 

factor receptor (MET) oncogene, through c-Jun transcriptional activation, upregulates miR-

221&222 expression, which, in turn, by targeting PTEN and TIMP3, confers resistance to 

tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and enhances 

tumorigenicity of lung and liver cancer cells [89]. The results suggest that therapeutic 

intervention involving the use of miRNAs should not only sensitize tumor cells to drug-

inducing apoptosis but also inhibit their survival, proliferation, and invasion [89]. 

The miR-106b-25 polycistron is composed of the highly conserved miR-106b, miR-93, and 

miR-25 that accumulate in different types of cancer, including gastric, prostate, and 

pancreatic neuroendocrine tumors, as well as neuroblastoma and multiple myeloma. 

Petrocca and collaborators [90] demonstrated that E2F1 regulates miR-106b, miR-93, and 

miR-25, inducing their accumulation in gastric tumors. Conversely, miR-106b and miR-93 

control E2F1 expression, establishing a negative feedback loop that may be important in 

preventing E2F1 self-activation and apoptosis. On the other hand, miR-106b, miR-93, and 
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Table 3. -oncomiRs 
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miR-25 overexpression causes a decreased response of gastric cancer cells to TGFβ by 

downregulating p21 and Bim, the two most downstream effectors of TGFβ-dependent cell 

cycle arrest and apoptosis, respectively.  

Another example of a miRNA locus with oncogenic properties is represented by the miR-17-

92 cluster, which consists of six miRNAs: miR-17-5p, -18, -19a, -19b, -20a, and -92-1. The 

miR-17-92 cluster is located in a region frequently amplified in several types of lymphoma 

and solid tumors [91-92]. It has been shown that mice deficient for miR-17-92 die shortly 

after birth with lung hypoplasia and a ventricular septal defect. This cluster is also essential 

for B cell development; its absence, in fact, leads to increased levels of the proapoptotic 

protein Bim and inhibits B cell development at the pro-B-to-pre-B transition [93]. All 

together these studies indicate that many miRNAs have oncogenic activity. Importantly, 

their knockdown through the use of antisense oligonucleotides, inhibits the development of 

cancer-associated phenotypes, laying the groundwork for the creation of miRNA-based 

therapies [94-96]. 

5. Tumor suppressor microRNAs 

The first evidence that miRNAs are involved in cancer comes from the finding that miR-15 

and miR-16 are downregulated or deleted in most patients with chronic lymphocytic 

leukemia (CLL) (Table 4) [68]. They are transcribed as a cluster (miR-15a–miR-16-1) that 

resides in the 13q14 chromosomal region. Deletions or point mutations in region 13q14 

occur at high frequency in CLL, lymphoma, and several solid tumors [97]. Their expression 

is inversely correlated to BCL2 expression in CLL [98]. The tumor suppressor function of 

miR-15a/16-1 has also been addressed in vivo. In immunocompromised nude mice, ectopic 

expression of miR-15a/16-1 was found to cause dramatic suppression of tumorigenicity of 

MEG-01 leukemic cells that exhibited a loss of endogenous expression of miR-15a/16-1. 

Furthermore, Klein et al. [99] generated transgenic mice with a deletion of the miR-15a–miR-

16-1 cluster, causing development of indolent B-cell-autonomous, clonal 

lymphoproliferative disorders, recapitulating the spectrum of CLL-associated phenotypes 

observed in humans. Recently, Bonci et al. reported that the miR-15a–miR-16-1 cluster 

targets not only BCL2 but also CCND1 (encoding cyclin D1) and WNT3A mRNA, which 

promote several prostate tumorigenic features, including survival, proliferation, and 

invasion [100]. Together, these data suggest that miR-15a/16-1 genes are natural antisense 

interactors of BCL2 and probably other oncogenes and that they can be used to suppress 

tumor growth in therapeutic application for a variety of tumors [100]. 

In mammalians, the miR-34 family comprises three processed miRNAs that are encoded by 

two different genes: miR-34a is encoded by its own transcript, whereas miR-34b and miR-

34c share a common primary transcript. The miR-34 family has been shown to form part of 

the p53 tumor-suppressor network: their expression is directly induced by p53 in response 

to DNA damage or oncogenic stress [101-102]. He et al. identified different miR-34 targets 

such as cyclin E2 (CCNE2), CDK4, and MET. Silencing these selected miR-34 targets through 

the use of small interfering RNAs (siRNAs) led to a substantial cell cycle arrest in G1. 
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Moreover, ectopic miR-34 delivery caused a decrease in levels of phosphorylated 

retinoblastoma gene product (Rb), consistent with lowered activity of both CDK4 and 

CCNE2 complexes [102]. BCL2 and MYCN were also identified as miR-34a targets and 

likely mediators of the tumor suppressor phenotypic effect in neuroblastoma [103]. It has 

been also reported that p53 activation suppressed the EMT-inducing transcription factor 

SNAIL via induction of the miR-34a/b/c genes. In fact, suppression of miR-34a/b/c by anti-

miRs caused up-regulation of SNAIL and cells displayed EMT markers, enhanced migration 

and invasion [104]. 

MicroRNA-122 (miR-122) is a liver-specific microRNA and is frequently downregulated in 

liver cancer [105]. Xu et al. reported that restoration of miR-122 in hepatocellular carcinoma 

cells could render cells sensitive to chemotherapeutic agents adriamycin or vincristine 

through downregulating  antiapoptotic gene Bcl-w and cell cycle related gene cyclin B1 

[106]. Another group found that over-expression of miR-122 inhibits hepatocellular 

carcinoma cell growth and promotes the cell apoptosis by affecting Wnt/β-catenin signalling 

pathway [107]. Coulouarn et al. showed that miR-122 is specifically repressed in a subset of 

primary hepatocellular tumors that are characterized by poor prognosis [108]. They further 

reported that loss of miR-122 resulted in an increase of cell migration and invasion and that 

restoration of miR-122 reverses this phenotype [108]. The final understanding of the tumor 

suppressor role for mir-122 role in liver cancer came from a recent study where miR-122 

knockout mice were studied. When miR-122 KO mice aged, hepatic inflammation ensued, 

preceding the progressive onset of fibrosis and, eventually, tumors resembling human liver 

cancer. These pathologic manifestations were associated with hyperactivity of oncogenic 

pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic 

cytokines, including IL-6 and TNF [109]. 

 

Table 4. Tumor suppressor miRS 
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6. MetastamiRs 

Metastasis is the result of cancer cells detaching from a primary tumor, consequently 

adapting to distant tissues and organs, and forming a secondary tumor [110] and this ability 

of cancer cells to metastasize is a hallmark of malignant tumors [111-112]. To successfully 

metastasize, a tumor cell must complete a complex set of processes, including invasion, 

survival and arrest in the circulatory system, and colonization of foreign organs. Despite 

great advancements in knowledge of metastasis biology, the molecular mechanisms are still 

not completely understood. Several miRNAs have been shown to initiate invasion and 

metastasis by targeting multiple proteins that are major players in these cellular events, thus 

they have been denominated as metastamiRs (Table 5). It seems that these metastasis-

associated miRNAs do not influence primary tumor either in development or initiation 

steps of tumorigenesis, but they regulate key steps in the metastatic program and processes, 

such as epithelial-mesenchymal transition (EMT), apoptosis, and angiogenesis. Ma et. al 

reported that miR-10b is highly expressed in metastatic breast cancer cells and positively 

regulates cell migration and invasion. Overexpression of miR-10b in otherwise non-

metastatic breast tumors initiates robust invasion and metastasis [113]. The team led by Joan 

Massague found that miR-335, miR-126, and miR-206 are metastasis-suppressors in breast 

cancer [114]. MiR-126 and miR-206 restoration reduced overall tumor growth and 

proliferation, whereas miR-335 inhibits metastatic cell invasion through targeting of the 

progenitor cell transcription factor SOX4 and extracellular matrix component tenascin C 

[114]. Others miRNAs with prominent roles in breast cancer metastasis have been reported. 

It has been reported that miR-31 inhibited multiple steps of metastasis including invasion, 

anoikis, and colonization leading to almost complete reduction of lung metastasis [115]. 

Clinically, miR-31 levels were lower in breast cancer patients with metastasis. In addition, 

miR-9, which is up-regulated in breast cancer cells, directly targets CDH1, the E-cadherin-

encoding messenger RNA, leading to increased cell motility and invasiveness [116].  

Another important aspect of the metastatic dissemination is represented by the epithelial-to-

mesenchymal transition (EMT) that allow neoplastic cells to abandon their primary site and 

survive in the new tissue. During EMT, an epithelial neoplastic cell looses cell adhesion by 

repressing E-cadherin expression and thereby the cell increases its motility. Numerous 

studies have shown that different microRNAs are modulated during EMT and one of the 

best-studied example is represented by the miR-200 family. These miRs are commonly lost 

in aggressive tumors such as lung, prostate, and pancreatic cancer. It has been shown that 

miR-200 family members directly target ZEB1 and ZEB2, transcription repressors of E-

cadherin [117]. In fact, in the highly aggressive mouse lung cancer model where KRAS is 

constitutively activated and p53 function is perturbed, miR-200 ectopic expression 

prevented metastasis by repressing ZEB1 and ZEB2 and preventing E-cadherin down-

regulation [117]. However, overexpression of the miR-200 family is associated with an 

increased risk of metastasis in breast cancer and this overexpression promotes metastatic 

colonization in mouse models, phenotypes that cannot be explained by E-cadherin 

expression alone [118]. By using proteomic profiling of the targets of mesenchymal-to-

ephitelial (MET)-inducing miR-200, the authors discovered that miR-200 globally targets 

secreted proteins in breast cancer cells. Between the 38 modulated target genes, Sec23a, 
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which is involved in transporting protein cargo from the endoplasmic reticulum to the 

Golgi, shows a superior association with human metastatic breast cancer as compared to the 

currently recognized miR-200 targets ZEB1 and the EMT marker E-cadherin. EMT is first 

acquired in the onset of transmigration and then reversed in the new metastatic site. Korpal 

et al. have shown that the miR-200 status predicts predisposition of the cancer to successful 

metastasis [119]. 

 

 

Table 5. metastamiRS 

7. Other non-coding RNAs: Biology and implications in cancer 

7.1. snoRNAs: From post-transcriptional modification to cancer 

Small nucleolar RNAs (snoRNAs) have, for many years, been considered one of the best-

characterized classes of non-coding RNAs (ncRNAs) [120-123] but despite the common 

assumption that snoRNAs only have cellular housekeeping functions, in the past few years, 

independent reports have converged in implicating snoRNAs in the control of cell fate and 

oncogenesis [124-130]. SnoRNAs are small RNAs of 60-300nt in lenght that specifically 

accumulate in the nucleolar compartment of the cell where are in charge of the 2′-O-ribose 

methylation and pseudouridylation of specific ribosomal RNA nucleotides, essential 
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modification for the efficient and accurate production of the ribosome [120-122]. The 

snoRNAs carry out their function in the form of small nucleolar ribonucleoproteins 

(snoRNPs), each of which consists of a box C/D or box H/ACA guide RNA, and four 

associated C/D or H/ACA snoRNP proteins (Figure 2). In both cases, snoRNAs hybridize 

specifically to the complementary sequence in the rRNAs, and the associated protein 

complexes then carry out the appropriate modification on the nucleotide that is identified by 

the snoRNAs. Biogenesis of vertebrate snoRNPs is remarkable and highly variable: in fact 

snoRNA gene organization ranges from independently transcribed genes, endowed with 

their own promoter elements, to intronic coding units lacking an independent promoter. In 

both yeast and animals, processing of intron-encoded snoRNAs is largely splicing-

dependent; in contrast, the production of plant snoRNAs from introns seems to rely on a 

splicing-independent process [131]. Moreover, in both contexts (intergenic or intronic), 

genes can be either single or part of clusters. In the latter case, the generation of individual 

snoRNAs involves the enzymatic processing of polycistronic precursor RNAs. Such a 

processing, at least in yeast, appears to involve the same combination of endo- and 

exoribonucleases required for the maturation of monocistronic pre-snoRNAs [132-134]. The 

first indication that snoRNAs might have important roles in human disease was provided 

by the genetic studies on Prader–Willi syndrome (PWS), an inherited human disorder 

characterized by a complex phenotype, including mental retardation, decreased muscle tone 

and failure to thrive at birth, short stature, hypogonadism, sleep apnea, behavioral problems 

and hyperphagia (an insatiable appetite) that can lead to severe obesity [135]. The disease is 

caused by the genomic loss of the imprinted chromosomic 15q11-q13 locus which is 

normally only active on the paternal allele. The only characterized and conserved genes 

within this 121-kb-long genomic interval are the numerous HBII-85 snoRNA gene copies, 

thus suggesting that loss of expression of these repeated small C/D RNA genes might play a 

role in conferring some (or even all) phenotypes of the human disease and PWS-like 

phenotypes in mice (neonatal lethality, growth retardation and hypotonia). In fact, it has 

been shown that a site-specific deletion of the entire murine MBII-85 gene cluster led to 

post-natal growth retardation with low postnatal lethality (<15%) only seen in some genetic 

backgrounds, but no obesity [136]. Although all the imprinted C/D RNAs that have been 

tested accumulate within the nucleolus, none of them appear to act as RNA guides to 

modify rRNAs or spliceosomal U-snRNAs; they are called ‘orphan C/D RNAs’. So far, the 

MBII-52 gene clusters have attracted much attention, given that the neuronal-specific MBII-

52 small RNA is predicted to interfere (A-to-I RNA editing and/or alternative RNA splicing) 

with the post-transcriptional regulation of the pre-mRNA that encodes the 5-HT2C (5-

hydroxytryptamine 2C) receptor, playing a key role in regulating serotonergic signal 

transduction [137-138]. These observations raised the possibility that snoRNAs could have 

functions completely independent from their traditional activities and carry out other 

regulatory roles. The first insights into the potential roles of snoRNAs in cancer began with 

a study that identified C/D box snoRNA U50 and its host gene U50HG at the breakpoint in 

the t(3;6) (q21;q15) translocation in a diffuse large B cell lymphoma [139]. Moreover, 

snoRNAU50 gene has been found to undergo to a frequent copy number loss and a 

transcriptional downregulation in breast and prostate cancer samples [139,140]. In addition, 

a 2-bp deletion in U50 sequence also occurred both somatically and in germline, leading to 

increased incidence of homozygosity for the deletion in cancer cells [140]. 
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Figure 2. snoRNAs. A. Boxed sequences C and D (named from conserved, nuclease-resistant sequences 

that were originally identified in snoRNA U3) are hallmarks of the C/D box snoRNAs; boxed sequences 

H (Hinge region) and ACA are hallmarks of the H/ACA box snoRNAs. These conserved boxed 

sequences are important for the associations with protein components that are required to form the 

functional small nucleolar ribonucleoprotein (snoRNP) complexes and for accumulation in the 

nucleolus. C/D box snoRNAs associate with several proteins, including fibrillarin, which is the methyl 

transferase that is involved in the 2′-O-methylation of particular ribonucleotides, and H/ACA box 

snoRNAs associate with proteins such as the pseudouridine synthase dyskerin. Antisense sequences 

within the C/D box and H/ACA box snoRNAs guide the snoRNP complex to the appropriate nucleotide 

within the target RNA (most often ribosomal RNA). In a minority of cases both C/D-associated and 

C′D′-associated antisense sequences within the same C/D box snoRNA can act as guides for 2′-O-

methylation of the target RNA. The eukaryotic H/ACA box snoRNAs contain two hairpin domains with 

complementary regions flanking the uridine to be converted in the target rRNA, at a position 14–16 

nucleotides upstream of the conserved H and/or ACA box. Most mammalian snoRNAs are encoded 

within the introns of genes producing 5′ terminal oligopyrimidine (5′TOP) RNAs. B. Organization of 

snoRNA genes in representative eukaryotic genomes C. Small nucleolar RNAs (snoRNAs) in vertebrate 

are predominantly located in introns. Following splicing, debranching and trimming, mature snoRNAs 

are either exported, in which case they function in ribosomal RNA (rRNA) processing, or remain in the 

nucleus, where they are involved in alternative splicing and additional yet unknown functions.  

SnoRNA42 (SNORA42) is located on chromosome 1q22 which is a commonly frequent 

amplified genomic region in lung cancer and overexpression of SNORA42 is frequently and 

remarkably found in NSCLC cells [141]. In addition, SNORA42 exhibited close correlations 

between its increases of copy number and expression level, suggesting that SNORA42 
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overexpression could be activated through its amplification. Importantly, engineered 

repression of SNORA42 caused marked repression of lung cancer growth in vitro and in 

vivo and it is associated with increased apoptosis by a p53-dependent pathway. Although 

not exhibiting apoptosis, p53 null and mutant p53 cancer cells with reduced levels of 

SNORA42 also show inhibited proliferation and growth,  suggesting that SNORA42 

knockdown can inhibit cell proliferation in p53-dependent or -independent manner. These 

independent studies on U50 and SNORA42 provide evidence for the functional importance 

of snoRNAs in cancer, and they show that snoRNAs can promote, as well as suppress, 

tumour development. In 2002, Wu and coworkers demonstrated that the expression of 

snoRNAs 5S was differentially displayed in different tissues and noticeably was highly 

expressed in normal brain, but its expression drastically decreased in meningioma [142]. 

Recently, genome-wide approaches identified six snoRNAs (SNORD33, SNORD66, 

SNORD73B, SNORD76, SNORD78, and SNORA42) that were statistically differently 

expressed between the non small cell lung cancer tumor and paired noncancerous samples 

[143]. Specifically, all these snoRNAs displayed a strong up-regulation in lung tumor 

specimens and the majority of them is located in commonly frequent genomic amplified 

regions in lung cancer: SNORD33 is located in chromosome 19q13.3 that contain potential 

oncogenes in lung cancer, while SNORD66 and SNORD76 are situated in chromosomal 

regions 3q27.1 and 1q25.1, respectively 3q27.1 and 1q25.1 are two of the most frequently 

amplified chromosomal segments in solid tumors, particularly NSCLC [143]. 

As well as the initial evidence that snoRNAs are involved in cancer development, there are 

some preliminary data showing that the genes that host snoRNAs might also contribute to 

the aetiology of this disease. A research screening for potential tumor-suppressor genes 

identified that Growth arrest-specific transcript 5 (gas5) gene as almost undetectable in 

actively growing cells but highly expressed in cells undergoing serum starvation or density 

arrest [144-145]. Gas5 is a multi-snoRNA host gene which encodes 9 (in mouse) or 10 (in 

human) snoRNAs and like all known snoRNA host genes exhibit characteristics which 

belong to the class of genes encoding 5′ terminal oligopyrimidine (5′TOP) mRNAs [146]. The 

first and stronger evidence that GAS5 is related to cancer is the identification that GAS5 

transcript levels are significantly reduced in breast cancer samples relative to adjacent 

unaffected normal breast epithelial tissues and some, but not all, GAS5 transcripts sensitize 

mammalian cells to apoptosis inducers [147]. Other studies have also showed that GAS5 

reduced expression is associated with poor prognosis in both breast cancer and head and 

neck squamous cell carcinoma [148]. Of note, GAS5 has been also identified as a novel 

partner of the BCL6 in a patient with diffuse large B-cell lymphoma, harboring the 

t(1;3)(q25;q27) [149]. Another example of a mature spliced transcript that harbors C/D-box 

snoRNAs and can function independently of the snoRNAs is represented by the transcript 

Zfas1 [150]. This gene intronically hosts three C/D box snoRNAs (Snord12, Snord12b, and 

Snord12c) and has been identified as one of the most differentially expressed gene during 

mouse mammary development. siRNA-mediated downregulation of Zfas1 mRNA in a 

mouse mammary cell line increased proliferation and differentiation without substantially 

affecting the levels of the snoRNA hosted within its intron. The human homologue, ZFAS1 

(also known as ZNFX1-AS1), which is predicted to share secondary structural features with 
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mouse Zfas1, is expressed at high levels in the mammary gland and is downregulated in 

breast cancer. Taken together, these findings indicates that snoRNA host genes might have 

important functions in regulating cellular homeostasis and, potentially, cancer biology but 

more studies are needed to understand their involvement in molecular basis of disease and 

classify them as sources of potential biomarkers and therapeutic targets. 

Another important aspect of the association between snoRNAs and tumorigenesis is 

represented by the involvement of their associated proteins in cancer. A point mutations in 

the DKC1 gene is the cause of a rare X-linked recessive disease, the dyskeratosis congenita 

(DC) [151-152]. Individuals with DC display features of premature aging, as well as nail 

dystrophy, mucosal leukoplakia, interstitial fibrosis of the lung, and increased susceptibility 

to cancer. DKC1 codes for dyskerin, a putative pseudouridine synthase, which carries out 

two separate functions, both fundamental for proliferating cells. One function is the pseudo-

uridylation of ribosomal RNA (rRNA) molecules as a part of the H/ACA ribonucleoprotein 

complex, and the other is the stabilization of the telomerase RNA component necessary for 

telomerase activity. Dkc1 mutant mice recapitulate the major features of DC, including an 

increased susceptibility to tumor formation. Early generation (G1 and G2) of Dkc1 mutant 

mice showed a full spectrum of DC and presented alterations in rRNA modification, 

whereas defects in telomere length were not evident until G4 mice, suggesting that 

deregulated ribosome function is important for the initiation of DC and that impairment in 

telomerase activity in Dkc1 mutant mice may modify and/or exacerbate the disease in later 

generations. To this regard, DKC1 was identified as one of only seventy genes that, 

collectively, constitute a gene expression profile that strongly correlates with the 

development of aneuploidy and is associated with poor clinical prognosis in a variety of 

human cancers. Therefore, one hypothesis is that an alteration of physiologic dyskerin 

function, irrespective of the mechanism, may perturb mitosis and contribute to 

tumorigenesis but this idea will require more detailed investigation. Another possibility is 

related to the strong effect of dyskerin loss on H/ACA accumulation. Recent finding in fact 

have shown that some H/ACA box and C/D box can be processed to produce small RNAs, 

at least some of which can function like miRNAs [153]. Such processing may be of crucial 

importance, as miRNAs have important roles in the development of many cancers as 

previously discussed. To date, Xiao and colleagues have recently reported that an H/ACA 

box snoRNA- derived miRNA, miR-605, has a key role in stress-induced stabilization of the 

p53 tumour suppressor protein [154]. p53 transcriptionally activates its negative regulator, 

MDM2, in addition to miR-605. miR-605 counteracts MDM2 through post-transcriptional 

repression; under conditions of stress, this snoRNA-derived miRNA offsets the MDM2 

negative-feedback loop, generating a positive-feedback loop to enable the rapid 

accumulation of p53. However, whether this regulation of p53 by miR-605 is relevant to 

cancer biology has not yet been addressed. Like dyskerin, NHP2 and NOP10 proteins, both 

components of the H/ACA snoRNPs, are also significantly up-regulated in sporadic cancers 

and high levels may be associated with poor clinical prognosis. Moreover, germline NHP2 

and NOP10 mutations give rise to autosomal recessive forms of dyskeratosis congenita, and 

cancer susceptibility is also a feature of these genetic forms of the disease. Since the 

functions of several snoRNAs have not yet been identified (orphan snoRNAs), it is possible 



 
Non-Coding RNAs and Cancer 335 

that disruption of snoRNP biogenesis by any mechanism may affect an array of important 

cellular processes, and could potentiate cancer development and/or progression.  

7.2. piRNAs: Guardians of the genome 

Piwi-interacting RNAs (piRNAs) are germline-specific small silencing RNAs of 24–30 nt in 

length, that suppress transposable elements (TE) activity and maintain genome integrity 

during germline development, a role highly conserved across animal species [155-156]. TEs 

are genomic parasites that threaten the genomic integrity of the host genome: they are able 

to move to new sites by insertion or transposition and thereby disrupt genes and alter the 

genome [157]. In animals, endogenous siRNAs also silence TEs, but the piRNA pathway is 

at the forefront of defense against transposons in germ cells [158]. piRNAs specifically 

associate with PIWI proteins, which are germline-specific members of the AGO protein 

family, AGO3, Aubergine (Aub) and Piwi, and form a piRNA-induced silencing complex 

(piRISC) which will guide the TE silencing [159-162]. Any mutations in each of the three 

members of the PIWI family lead to transposon derepression in the germline, indicating that 

they act non-redundantly during TE silencing. Initial screening of piRNA sequences 

revealed that there are hundreds of thousands, if not millions, of individual piRNA 

sequences [163-165]. Furthermore, they are characterized by the absence of specific sequence 

motifs or secondary structures such as miRNA precursors. Despite their large diversity, 

most piRNAs can be mapped to a relatively small number of genomic regions called piRNA 

clusters. Each cluster extends from several to more than 200 kilobases, it contains multiple 

sequences that generate piRNAs and some piRNAs map to both genomic strands, 

suggesting bidirectional transcription [163-165] Indeed, analysis of piRNA clusters in 

different Drosophila species has shown that, although the clusters locations are conserved, 

their sequence content has evolved very quickly suggesting adjustments in the piRNAs 

patrimony in order to suppress new active transposons invading the species. Therefore, 

piRNA clusters may be considered as repositories of information, enabling production of 

many mature piRNAs that target diverse TEs. Two main pathways, highly conserved in 

many animal species, have been discovered to be responsible for the biogenesis of the 

piRNAs: the primary pathways and the Ping-Pong amplification (Figure 3) [166-168]. First, 

the primary piRNA biogenesis pathway provides an initial pool of piRNAs that target 

multiple TEs. Next, the Ping-Pong cycle further shapes the piRNA population by amplifying 

sequences that target active transposons. It is currently unclear how primary piRNAs are 

produced from piRNA clusters but it is likely that piRNA precursors are single-stranded 

and therefore do not require Dicer for their processing. Interestingly, piRNAs that associate 

with each member of the PIWI protein family have a distinct size, suggesting that PIWI 

proteins can act as ‘rulers’ that define the size of mature piRNAs. Several additional proteins 

(e.s. Zucchini, Armitage and Yb) have also been identified that are involved in primary 

piRNA biogenesis and mutations in and/or depletion of any of these three proteins 

eliminates primary piRNAs associated with PIWI proteins. In some cell types, such as 

somatic follicle cells of the D. melanogaster ovary, primary piRNA biogenesis is the only 

mechanism that generates piRNAs. However, in germline cells of the D. melanogaster ovary 

and in the pre-meiotic spermatogonia in mice, there is another mechanism called the Ping-

Pong cycle that amplifies specific sequences generated by the primary biogenesis pathway 
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[163,169]. Mainly the Ping-Pong pathway engages AGO3 and Aubergine, both of which are 

accumulated in perinuclear structures located at the cytoplasmic face of the nuclear 

envelope in animal germline cells, named “nuage”. The pathway depends on the 

endoribonuclease or Slicer activity of AGO3 and Aubergine, which act catalytically one after 

the other, leading to a cleavage of the target RNAs between their tenth and eleventh 

nucleotides relative to the ‘guide’ small RNAs. This process results in the generation of 

repeated rounds of piRNA production having exactly the same sequence of the original 

primary piRNA. The ping-pong pathway amplifies piRNAs in D. melanogaster testes, 

especially those originating from TEs. Non-TE-derived piRNAs seem to be barely amplified 

by the amplification loop. This two steps of piRNA biogenesis can be compared with the 

function of the adaptive immune system in protecting against pathogens. The primary 

piRNA biogenesis pathway resembles the initial generation of the hypervariable antibody 

repertoire, whereas the amplification loop is analogous to antigen-directed clonal expansion 

of antibody-producing lymphocytes during the acute immune response. An emerging 

number of studies highlight the role of piRNAs or PIWI proteins in the regulation of 

tumorigenesis. First examples of the piRNA involvement in cancer is represented by the up-

regulation of HIWI, one of the four human Piwi homologues, in about 60 % of seminomas 

[170]. In fact, HIWI maps to a locus known as a germ cell tumor susceptibility locus 

(12aq24.33). HIWI overexpression has also been found in somatic cells such as soft-tissue 

sarcomas or ductal pancreas adenocarcinoma, and strongly correlates with bad prognosis  

and high incidence of tumor-related death, providing an example for a potential 

tumorigenic role of a piRNA-related protein in somatic cells [171,172]. In some cancers, 

PIWIL2 overexpression has been suggested to induced resistance in cells to cisplatin, which 

might arise because of increased chromatin condensation that prevents the normal process 

of DNA repair [173]. Furthermore, new high-throughput sequencing data revealed the 

presence of piRNAs in somotic cells, such as HeLa cells. These somatic piRNAs appear 

located in the nucleolus and in the cytoplasmic area surrounding the nuclear envolope and 

in contrast with the large population of known piRNAs in male germ cells, this population 

of piRNAs is dramatically smaller [174]. Another recent study demonstrated that the level of 

piR-651 is significantly higher in several cancer histotype including lung, mesothelium, 

breast, liver, and cervical cancer compared to non-cancerous adjacent tissues and inhibition 

of piR-651 induced block of gastric cancer cells at the G2/M phase [175,176]. Another 

example is represented by the downregulation of  piR-823 in gastric cancer tissues; its 

enforced expression inhibited gastric cancer cell growth in vitro and in vivo, suggesting a 

tumor suppressive properties for piR-823 [177]. Interestingly, piRNAs not are only involved 

in direct regulation by degradation of TE but they have also been linked to DNA 

methylation of the retrotraspon regions, extending piRNA functions beyond post-

transcriptional silencing. In fact, CpG DNA methylation, which is required for efficient 

transcriptional silencing of LINE and LTR retrotransposons in the genome, is decreased in 

the male germ line of mice with defective PIWI proteins. Specifically, mice with defective 

PIWI proteins fail to establish de novo methylation of TE sequences during 

spermatogenesis, leading to the hypothesis that the piRISC can also guide the de novo 

methylation machinery to TE loci. In this scenerio, piRNAs may present a perfect guide for 

discriminating TE sequences from normal protein-coding genes and marking them for DNA 

methylation; however, the biochemical details of how these two mechanisms of piRNA 
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action might be linked have not yet been revealed [178,179]. All together, these data 

revealed that PIWI-associated RNAs and PIWI pathway has a more profound function 

outside germline cells than was originally thought but many more studies are needed to 

clarify their specific role in tumorigenesis. 

 

Figure 3. piRNAs. A, schematic representation of the Drosophila egg chamber. B,piRNAs (which are 

24–32 nt in length) are processed from single-stranded RNA precursors that are transcribed largely from 

mono- or bidirectional intergenic repetitive elements known as piRNA clusters. Unlike miRNAs and 

siRNAs, piRNAs do not require Dicer for their processing. First, primary piRNAs are produced through 

the primary processing pathway and are amplified through the ping-pong pathway, which requires 

Slicer activity of PIWI proteins. Subsequently, additional piRNAs are produced through a PIWI-protein-

catalysed amplification loop (called the 'ping-pong cycle') via sense and antisense intermediates. 

Primary piRNA processing and loading onto mouse PIWI proteins might occur in the cytoplasm. The 

PIWI ribonucleoprotein (piRISC) complex functions in transposon repression through target 

degradation and epigenetic silencing. C, total number of piRNA clusters in different animal species 

according to the piRNA Database (http://pirnabank.ibab.ac.in/).  

8. The emergence of long non-coding RNAs 

Over the last decade, advances in genome-wide analyses of the eukaryotic transcriptome 

have revealed that most of the human genome is transcribed, generating a large repertoire 

of (>200 nt) long non-coding RNAs (lncRNA or lincRNA, for long intergenic ncRNA) that 
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map to intronic and intergenic regions [181,181]. Given their unexpected abundance, 

lncRNAs were initially thought to be spurious transcriptional noise resulting from low RNA 

polymerase fidelity [182]. However, the restricted expression of many long ncRNAs to 

particular developmental contexts, the often exhibiting precise subcellular localization  and 

the binding of transcription factors to non-coding loci, suggested that a significant portion of 

ncRNAs fulfills functional roles beyond transcriptional remodelling [183-187]. lncRNA 

typically refers to a polyadenylated long ncRNA that is transcribed by RNA polymerase II 

and is associated with epigenetic signatures common to protein-coding genes, such as 

trimethylation of histone 3 lysine 4 (H3K4me3) at the transcriptional start site (TSS) and 

trimethylation of histone 3 lysine 36 (H3K36me3) throughout the gene body [188-189]. 

lncRNAs also commonly exhibit splicing of multiple exons into a mature transcript, and 

their transcription occurs from an independent gene promoter and is not coupled to the 

transcription of a nearby or associated parental gene. RNA-Seq studies now suggest that 

several thousand uncharacterized lncRNAs are present in any given cell type [188-189], and 

that the human genome may harbor nearly as many lncRNAs as protein-coding genes 

(perhaps ~15,000 lncRNAs), although only a fraction is expressed in a given cell type. One 

main characteristic of the lncRNAs is their very low sequence conservation that had fueled 

the idea that they are not functional. This assertion needs to be carefully considered and 

takes in consideration several points. First, a recent study identified the presence of 1,600 

lncRNAs that show a strong evolutionary conservation and function ranging from from 

embryonic stem cell pluripotency to cell proliferation [189]. In contrast to the protein coding 

genes, long ncRNAs can exhibit shorter stretches of sequence that are conserved to maintain 

functional domains and structures. Indeed, many long ncRNAs with a known function, such 

as Xist, only exhibit high conservation over short sections of their length [190]. Third, rather 

than being indicative of non-functionality, low sequence conservation can also be explained 

by high rates of primary sequence evolution if long ncRNAs have, like promoters and other 

regulatory elements, more plastic structure–function constraints than proteins [190]. The 

diverse selection pressures acting on long ncRNAs probably reflect the wide range of their 

functions which can be regrouped in three major subclasses: chromatin remodeling, 

transcriptional modulation and nuclear architecture/subnuclear localization.  

long ncRNAs can mediate epigenetic changes by recruiting chromatin remodelling 

complexes to specific genomic loci resolving the paradox of how a small repertoire of 

chromatin remodelling complexes are able To specify the large array of chromatin 

modifications without any apparent specificity for the genomic loci [191,192]. A recent study 

found that 20% of 3300 human long non coding RNAs are bound by Polycomb Repressive 

Complex 2 (PRC2) [193]. Although the specific molecular mechanisms are not defined, there 

are several examples that can illustrate the silencing potential of lncRNAs (Figure 4). The 

first most known example is represented by the X-chromosome inactivation which is carried 

out by a number of lncRNAs including Xist and RepA, which bind PRC2 complex, and the 

antogonist of Xist, Tsix [194]. In pre-X-inactivation cells, Tsix competes with RepA for the 

binding of PRC2 complex; when the X-inactivation starts Tsix is downregulated and PRC2 

becomes available to RepA which can actively induced the transcription of Xist. The up-

regulated Xist in turn preferentially binds to PRC2 and spreads across the chromosome X 
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inducing PCR2-mediated trimethylated histone H3 lysine27. Another important example is 

represented by the hundreds of long ncRNAs which are sequentially expressed along the 

temporal and spatial developmental axes of the human homeobox (Hox) loci, where they 

define chromatin domains of differential histone methylation and RNA polymerase 

accessibility [195]. One of these ncRNAs, Hox transcript antisense RNA (HOTAIR), 

originates from the HOXC locus and silences transcription across 40 kb of the HOXD locus 

in trans by inducing a repressive chromatin state, which is proposed to occur by recruitment 

of the Polycomb chromatin remodelling complex PRC2 by HOTAIR (Figure 4). Recently, it 

has been proposed that HOTAIR has the ability to bind other histone-modifying enzymes 

such as the demethylase LSD1 [196]. In fact, knockdown of HOTAIR induces a rapid loss of 

LSD1 or PRC2 at hundreds of gene loci with the corresponding increase in expression. This 

model fits other chromatin modifying complexes, such as Mll, PcG, and G9a 

methyltransferase, which can be similarly directed by their associated ncRNAs [196]. As 

modulator of epigenetic landmark, it has been shown that HOTAIR has a profound effect on 

tumorigenesis. In fact, HOTAIR is upregulated in breast carcinoma and colon cancer and its 

correlates with metastasis and poor prognosis [197] Enforced expression of HOTAIR 

consistently changed the pattern of occupancy of Polycomb proteins from the typical 

epithelial mammary cells pattern to that of embryonic fibroblasts [198]. Another important 

effect of lncRNAs on chromatin modification that can highlight their impact on cancer is the 

relationship between the lncRNA ANRIL and the INK4b/ARF/INK4a locus, encoding for 

three tumor-suppressor genes highly deleted or silenced in a large cohort of tumors [199]. 

ANRIL, which is transcribed antisense to the protein coding genes of the locus, controls the 

epigenetic status of the locus by interacting with subunits of PRC1 and PRC2. High 

expression of ANRIL is found in some cancer tissues and is associated to a high levels of 

PCR-mediated trimethylated histone H3 lysine27. Inhibition of ANRIL releases PRC1 and 

PRC2 complexes from the locus, decreases the histone methylation status with the following 

increase of the protein coding gene transcription. Many other tumor suppressor genes that 

are frequently silenced by epigenetic mechanisms in cancer also have antisense partners, 

which can affect gene expression with different other mechanism. First, antisense ncRNAs 

can mask key cis-elements in mRNA by the formation of RNA duplexes, as in the case of the 

Zeb2 antisense RNA, which complements the 5′ splice site of an intron of Zeb2 mRNA [200]. 

Expression of the ncRNA prevents the splicing of the intron that contains an internal 

ribosome entry site required for efficient translation and expression of the ZEB2 protein 

with a further efficient translation (Figure 4). In this context, it has been evaluated that the 

prevalence of lncRNAs are antisense to introns, hypothesizing their role in the regulation of 

splicing or capable of generating mRNA duplexes that fuel the RISC machinery to silence 

gene expression. One major emergent theme is the involvement of the lncRNAs in the 

assembly or activity of transcription factors functioning as a scaffold for the docking of 

many proteins, mimicking functional DNA elements or modulation of PolII itself. The first 

example is represented by the suppression of CCND1 mediated by the lncRNAs through the 

recruitment and integration of the RNA binding protein TLS into a transcriptional 

programme. DNA damage signals induce the expression of long ncRNAs associated with 

the cyclin D1 gene promoter, where they act cooperatively to recruit the RNA binding  
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Figure 4. lncRNAs. Schematic representation of the control operated on protein coding gene by the 

lncRNAs at the level of chromatin remodelling, transcriptional control and post-transcriptional 

processing. A, lncRNAs (Xist, HOTAIR, ANRIL, etc) can recruit chromatin modifying complexes to 

specific genomic loci to localize their catalytic activity. In this case, the lncRNA recruits the Polycomb 

complex by inducing trimethylation of the lysine 27 residues (me3K27) of histone H3 to produce 

heterochromatin formation and repress gene expression. B, C, D, lncRNAs can regulate the transcriptional 

process through a range of mechanisms. First, lncRNAs tethered to the promoter of the cyclin D1 gene 

recruit the RNA binding protein TLS to modulate the histone acetyltransferase activity of CREB binding 

protein (CBP) and p300 to repress gene transcription. Second, an ultraconserved enhancer is transcribed as 

a long ncRNA, Evf2, which subsequently acts as a co-activator to the transcription factor DLX2, to regulate 

the Dlx6 gene transcription. Third, a lncRNA transcribed from the DHFR minor promoter form a triplex at 

the major promoter to reduce the access of the general transcription factor TFIID, and thereby suppress 

DHFR gene expression. E, a lncRNA is antisense to Zeb2 mRNA and mask the 5′ splice site resulting in 

intron retention. This retention results in an efficient Zeb2 translation related to the presence of an internal 

ribosome entry site (IRE) in the retained intron. 

protein TLS. The modified and promoter-docked TLS inhibits the histone acetyltransferase 

activities of CReB binding protein and p300 inducing the silencing of cyclin D1 expression 

(Figure 4) [201]. A different co-activator activity mediated by lncRNAs is also evident in the 

regulation of Dlx genes, important modulators of neuronal development and patterning 

[202]. Dlx5-6 expression is regulated by two ultraconserved enhancers one of which is 

transcribed in a lncRNA, named Evf-2. Evf2 forms a stable complex with the homodomein 

protein DLX-2 which in turn acts as a transcriptional enhancer of Dxl5-6 gene (Figure 4). In 

some cases, lncRNAs can also affect RNA polymerase activity by influencing the initiation 

complex in the choice of the promoter.  For example, in humans, a ncRNA transcribed from an 

upstream region of the dihydrofolate reductase (DHFR) locus forms a triplex in the major 
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promoter of DHFR to prevent the binding of the transcriptional co-factor TFIID (Figure 4). This 

could be a widespread mechanism for controlling promoter usage as thousands of triplex 

structures exist in eukaryotic chromosomes. Recently, lncRNAs have also shown their 

tumorigenic potential by modulating the transcriptional program of p53 [203]. An 3kb 

lncRNAs, linc-RNA-p21, transcriptionally activated by p53, has been shown to collaborate 

with p53 in order to control the gene expression in response to DNA damage. Specifically, 

silencing of lincRNA-p21 derepresses the expression of hundred of genes which are also 

derepressed following p53 knockdown. It has also been discovered that lincRNA-p21 

interacts with hnRNPK and this binding is essential for the modulation of p53 activity.  

The final category of lncRNAs is represented by those molecules capable to generate the 

formation of compartmentalized nuclear organelles, subnuclear membraneless nuclear 

bodies whose funtion is relative unknown. One of them is represented by cell-cycle 

regulated nuclear foci, named paraspeckles. In addition to protein components, two 

lncRNAs, NEAT1 and Men epsilon, have been detected as essential part of the paraspeckles. 

While depletion of NEAT or Men epsilon disrupts the paraspeckles, their overexpression 

strongly increases their number. There is a number of different lncRNAs that localize to 

different nuclear regions [204]. Metastasis-associated lung adenocarcinoma transcript 1 

(MALAT1) localizes to the splicing speckles, Xist and Kcnq1ot1 both, localize to the 

perinucleolar region during the S phase of the cell cycle, a class of repeat-associated 

lncRNAs (es SatIII) are associated to nuclear stress bodies which are produced on specifc 

pericentromeric heterochromatic domains containing SatIII gene itself.        

9. Conclusions 

Alterations in microRNAs and other short or long non-coding RNA (ncRNA) are involved in 

the initiation, progression, and metastasis of human cancer. Over the last decade, a growing 

number of non-coding transcripts have been found to have roles in gene regulation and RNA 

processing. The most well known small non-coding RNAs are the microRNAs, but the 

network of long and short non-coding transcripts is complex and is likely to contain as yet 

unidentified classes of molecules that form transcriptional regulatory networks. The field of 

small and long non coding RNAs is rapidly advancing toward in vivo delivery for therapeutic 

purposes. Advanced molecular therapies aimed at downmodulating or upmodulating the 

level of a given miRNA in model organisms have been successfully established. RNA-based 

gene therapy can be used to treat cancer by using RNA or DNA molecules as therapy against 

the mRNA of genes involved in cancer pathogenesis or by directly targeting the ncRNAs that 

participate in pathogenesis. The use of miRNAs is still being evaluated preclinically; no clinical 

or toxicologic studies have been published but the future is promising. Kota and collegues 

reported that systemic administration of this miRNA in a mouse model of HCC using adeno-

associated virus (AAV) results in inhibition of cancer cell proliferation, induction of tumor-

specific apoptosis, and dramatic protection from disease progression without toxicity (116). 

Recently, Pineau et al. (117) identified DNA damage-inducible transcript 4 (DDIT4), a 

modulator of the mTor pathway, as a bona fide target of miR-221. They introduced into liver 

cancer cells, by lipofection, LNA-modified oligonucleotides specifically designed for miR-221 
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(antimiR-221) and miR-222 (antimiR-222) knockdown. Treatment by antagomiRs, but not 

scrambled oligonucleotide, reduced cell growth in liver cancer cell lines that overexpressed 

miR-221 and miR-222 by 35% and 22%, respectively. Thus the use of synthetic inhibitors of 

miR-221 may prove to be a promising approach to liver cancer treatment (117). Despite recent 

progress in silencing of miRNAs in rodents, the development of effective and safe approaches 

for sequence-specific antagonism of miRNAs in vivo remains a significant scientific and 

therapeutic challenge. Recently, Elmen and collaborators (118) showed for the first time, that 

the simple systemic delivery of an unconjugated, PBS-formulated LNA-antimiR effectively 

antagonizes the liver-expressed miR-122 in nonhuman primates. Administration by 

intravenous injections of LNA-antimiR into African green monkeys resulted in the formation 

of stable heteroduplexes between the LNA-antimiR and miR-122, accompanied by depletion of 

mature miR-122 and dose-dependent lowering of plasma cholesterol. These findings 

demonstrate the utility of systemically administered LNA-antimiRs in exploring miRNA 

functions in primates and show the impressive potential of this strategy to overcome a major 

hurdle for clinical miRNA therapy. In conclusion, the discovery of small RNAs and their 

functions has revitalized the prospect of controlling expression of specific genes in vivo, with 

the ultimate hope of building a new class of gene-specific medical therapies. Just how 

significant are the ncRNAs? They appear to be doing something important and highly 

sophisticated; there are so many of them, their sequences are so highly conserved, their 

expression is tissue specific, and they have recognition sites on more than 30% of the entire 

transcriptome. It seems that ncRNAs were overlooked in the past simply because researchers 

were specifically looking for RNAs that code proteins. The above discussed data highlight that 

the complexity of genomic control operated by the ncRNAs is somewhat greater than 

previously imagined, and that they could represent a total new order of genomic control. In 

this scenario, understanding the precise roles of ncRNAs is a key challenge. The targeting of 

other ncRNAs, in addition to miRNAs, is still in its infancy, but new important developments 

are expected in this area. Therefore, small RNAs could become powerful therapeutic tools in 

the near future. 
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