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1. Introduction 

1.1. The concepts of recognition of non-self by innate immune receptors 

Immunity may be regarded as the most sophisticated part of the tissue repair process. In 

order to reach the “restitutio ad integrum” of tissues while minimizing the general 

consequences of external aggression, multicellular organisms have evolved mechanisms that 

allow rapid detection of non-self or injured self. Early recognition represents the first stage 

of protection against pathogens that enables any cell to elicit promptly various forms of 

protective responses that altogether represent the so-called “innate immune response”. In 

addition, the innate immune response turns on two types of specialized effector immune 

cells responsible for the adaptive immune response, the T and the B lymphocytes 

During the last two decades, two concepts have emerged in an effort to elucidate the basis of 

the key-initiating step, i.e., the molecular recognition of non-self. On one side, it was first 

reasoned, and later amply demonstrated, that the structures that are recognized early by the 

so-called innate immunity must share some important features that allows their recognition 

as non-self. This led to the model of “Pathogen Associated Molecular Patterns” (or PAMPs), 

which implies that distinction relies on differences in shape of molecules shared by 

pathogens, as they have been conserved during the evolution to fulfill important functions. 

On the other side, the concept of Pathogen Recognition Receptors (PRRs) was built on the 

assumption that a limited number of germline-encoded receptors should have the capacity 

to detect the differences in shape displayed by the PAMPs. In agreement with the model, 

each of the main categories of PRRs displays features that are well suited for discriminating 

non-self. 

The lectins are either soluble or membrane-bound proteins that recognize saccharides 

through single or multiple Carbohydrate Recognition Domains (CRD). Given the differences 
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in enzymatic equipment for polysaccharide synthesis, and therefore in the nature (and the 

shape) of saccharides expressed at the surface of pathogens when compared to eukaryotic 

cells, those structures represent ideal targets for pathogen detection.  

The cytoplasmic nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) 

share domain architecture comprising a nucleotide-binding domain (NBD) and a leucine-

rich repeat (LRR) domain. NOD1 and NOD2 recognize distinct building blocks of 

peptidoglycan (PGN) found in bacterial walls. 

The RIG-I (retinoic acid inducible gene-I, DDX58) and MDA5 (melanoma-differentiation-

associated gene-5, RH116) represent the RIG-I-like helicases (RLH) family of cytosolic 

sensors that specifically recognizes double stranded RNA (dsRNA), while AIM2 (absent in 

melanoma 2) appears to be essential for mediating inflammatory reactions triggered by 

cytoplasmic DNA that signs the presence of pathogens. Recently, a complex formed of three 

helicases DDX1-DDX21-DHX36 [1] and a fourth helicase DHX9 [2] have been shown to 

detect dsRNA in the cytosol of myeloid dendritic cells (mDCs). 

Last but not least, the membrane-bound Toll-like receptors constitute a family of 10 

members in human (11 in mouse) that share a LRR extracellular domain involved in the 

binding of PAMPs. TLR1, 2, 4, 5 and 6 are expressed at the cell surface membrane and 

recognize pathogens-derived lipids, lipopolysaccharides, PGN or proteins. In contrast, 

TLR3, 7, 8 and 9 recognize (poly)nucleotides in endolysosomes. 

2. Toll-like receptor 3: a PRR that activates various types of cells in 

response to dsRNA 

TLR3 is a highly glycosylated type I membrane receptor that appears to be dedicated to the 

recognition of dsRNA [3] that represents a replication intermediate for many viruses. TLR3 

is thus involved in the innate immune response against various viruses [4], and plays a non-

redundant role in HSV-1 infection of the CNS [5]. Like all TLRs, TLR3 possesses an 

extracellular domain made of (23) LRRs and a cytoplasmic toll/IL-1 receptor (TIR) domain 

required for downstream signaling. Compared with other PRRs also responsive to RNA, the 

specificity of TLR3 resides in its location at the membrane of endolysosomes and in its 

affinity for a large range of dsRNA sizes (form > 50 bp to over 2000 bp). In contrast, RIG-I 

and MDA5 are activated by the presence in the cytoplasm of short or long dsRNA, 

respectively, while the membrane-bound TLR7 detects the presence of single stranded RNA 

(i.e. bacterial mRNA). 

The trachea, the pancreas and the placenta are the three organs that show the highest 

expression of TLR3 mRNA (http://www.ncbi.nlm.nih.gov/geoprofiles). However, TLR3 can 

also be detected by immunohistochemistry in many tissues, including the skin [6], the 

muscles [7], and the kidneys [8]. At the cellular level, myeloid dendritic cells and 

macrophages, but not other leukocytes, including monocyte precursors have been found to 

express TLR3. TLR3 is also present in non-immune cells such as epithelial cells of various 

origins (lung [9], intestine [10], breast [11], kidney [12], pancreas [13]) but also in 
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mesenchymal cells [14] and in endothelial cells [15]. Of interest, TLR3 is the TLR that is 

expressed most strongly in the brain, especially in astrocytes, glia, and neurons[16].  

External dsRNA appears to be first internalized by cells through the binding on surface 

scavenger receptors [17]. In endolysosomes, dsRNA binding leads to TLR3 dimerization and 

to recruitment through TIR domains homotypic interaction of a single adaptor, TRIF (TIR 

domain-containing adapter protein inducing interferon beta). TRIF in turns recruits several 

signaling kinases that activate different transcription factors: 1) through the activation of 

tumor necrosis factor receptor (TNFR)-associated factor (TRAF6) E3 ubiquitin ligase, TRIF 

recruits the transforming growth factor--activated kinase 1 (TAK1) which mediates 

downstream NF-kB activation[18]. 2) Protein kinase R (PKR) is associated with TAK1 and 

contributes to the activation of the p38 mitogen-activated protein kinase pathway by 

interaction with MKK6 [19]. 3) TRIF also recruits TBK1 and IKK through TRAF3, which 

phosphorylates IRF3 [20, 21] Activated IRF3 translocates into the nucleus and induces 

expression of Type I IFN [22]. 4) The receptor interacting protein 1 kinase (RIP1K) is also 

essential for NF-kB activation but not for IRF3 activation by TRIF [23, 24].  

3. Activities of TLR3 ligands on cancer cells 

3.1. Inflammatory and proliferative responses of cancer cells 

Many types of cancer cells express TLR3. This was established by immunohistochemistry on 

tumor tissue sections of breast carcinoma [25], oral squamous cell carcinoma [26], cervical 

carcinoma [27], ovarian carcinoma [28], prostate carcinoma, head and neck carcinoma [29]. 

Furthermore, the level of TLR3 expression by prostate cancer cells was shown to be 

significantly associated with higher probability of biochemical recurrence [30]. We have also 

observed TLR3 staining on lung squamous cell carcinoma and on a portion of HCC (our 

unpublished data). Furthermore, overexpression of TLR3 has been detected by flow 

cytometry, by western blot and/or by qPCR in melanoma cells [31, 32], esophageal 

squamous cell carcinoma[33], head and neck carcinoma cells [34] and multiple myeloma 

cells [35].  

Like normal cells, human cancer cell lines will respond to TLR3 ligand by secreting 

inflammatory cytokines, IFN-I and chemokines. As an example, we found that NSCLC, 

OSCC and HCC cell lines could secrete IL-6, IL-8, RANTES, IP-10, and IFN-I, although at 

different levels depending on the line under consideration (our unpublished data). 

Likewise, prostate cancer cells secrete IL-8, chemokine (C-C motif) ligand 3, CCL3, CCL5 

and IP-10 in response to Poly(I:C) [36], and head and neck cancer cells secrete IL-1, IL-6 

and IL-8 [29]. 

Few data have been published regarding the changes of surface membrane protein 

expression by cancer cells after TLR3 activation. Nevertheless, two reports have shown that 

CD54 is upregulated, while MHC-I expression remained constant [29, 37]. 

Regarding cancer cells migration in response to TLR3 stimulation, divergent results have 

been reported. Studying nasopharyngeal carcinoma (NPC), Zhang et al. observed that TLR3 
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agonist downregulated the expression of chemokine receptor CXCR4 and inhibited cell 

migration in response to CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha) in 

chemotaxis assays [38]. Moreover, TLR3 activation reduced the capacity of NPC cells to 

form metastasis in draining lymph nodes when injected in athymic mice. In contrast, 

stimulation of TLR3-expressing head and neck OC2 cells with Poly(I:C) was found to induce 

the secretion of CCL5 and to promote CCL5-mediated migration in OC2 cells [26]. Similarly, 

Goto et al. showed that Poly(I:C) enhanced the migration of melanoma cells in vitro [32]. 

Related to those observations, we regularly observe significant changes in the morphology 

of cultured cancer cells in the presence of Poly(I:C), but little is known yet on the effects of 

TLR3 activation on the cytoskeleton. 

Lastly, rare examples of cancer cells proliferating in response to TLR3 activation have 

been published. For example, one multiple myeloma cancer cell lines showed an NF-kB-

dependent proliferation in response to Poly(I:C) [39]. Moreover, indirect evidences led to 

the conclusion that TLR3 might support the proliferation of some head and neck cancer 

cell lines proliferation through c-Myc upregulation [40], and of papillary thyroid 

carcinoma [41]. 

3.2. Anti-proliferative effects on cancer cell 

Direct inhibition of tumor growth by TLR3 agonists has been reported in vitro for human 

breast, melanoma, prostate, head and neck, multiple myeloma, clear renal carcinoma, colon, 

lung, and cervical cancer cells [11, 31, 42-51]. Two mechanisms contribute to the inhibition of 

tumor growth upon TLR3 activation; (i) decrease of proliferation and (ii) induction of 

apoptotic cell death.  

3.2.1. TLR3 decreases proliferation of cancer cells by blocking progression through the cell 

cycle  

Decrease of tumor cell proliferation in response to TLR3 activation by Poly(I:C) dsRNA has 

been demonstrated by BrDu incorporation experiments for breast and prostate cancer cells 

[11, 46], and by Ki-67 staining in prostate cell lines [51], and likely participates to the dsRNA 

anti-tumoral effect in the other types of cancers listed above. The blockade of cell cycle 

appears to result form the combined downregulation of cyclin D1 and upregulation of 

cyclin-dependent kinase inhibitor p27 [11, 46, 52] and/or the inhibition of the Akt signaling 

pathway [51]. 

3.2.2. TLR3 triggers the apoptosis of cancer cells 

a. General considerations on apoptosis  

Apoptosis is an evolutionarily programmed cell death that was first described by Kerr and 

colleagues in 1972 [53]. It is crucial for successful embryonic development and for the 

maintenance of normal cellular homeostasis in adult organisms. Deregulation of apoptosis is 
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involved in an extensive variety of diseases such as cancer and autoimmunity, but also in 

immunodeficiency, degenerative diseases, or infertility. 

Apoptotic cell death results from the dismantlement of the cell by the sequential activation 

of cysteine proteases, called caspases, that cleaves numerous proteins in the cell. Two major 

pathways of apoptosis have been identified: the “extrinsic pathway” and the “intrinsic 

pathway”. The first one is typically triggered by ligation of cell surface Death Receptors of 

the TNFRI superfamilly (such as TRAIL-R or FAS) which allows the formation of a 

supramolecular complex called DISC (for Death Inducing Signaling Complex) in which 

FADD plays a key role in the recruitment and the activation of the initiator caspase-8 (and 

also caspase-10) inside this platform. Inactive caspase-8 monomers are forced to dimerize 

when in close proximity inside the DISC, which triggers their catalytic activity leading to 

autocleavage and stabilization of caspase-8 in its active form. The “intrinsic pathway”, also 

called the “mitochondrial pathway” is typically initiated by a diverse range of stress 

condition such as DNA damage, ER stress, or withdrawal, and leading to mitochondria 

alterations and cytochrome C release, and activation of the initiator caspase-9 in a molecular 

platform called Apoptosome. The “extrinsic” and “intrinsic” pathways are tightly regulated 

by FLIP and BCL-2 family proteins, respectively, and converge to the activation of the 

executioner caspase-3 and -7 that cleave essential proteins required for cellular homeostasis. 

In “Type I cells”, such as lymphocytes, activation of caspase-8 directly catalyzes the 

maturation of caspase-3 and triggers cell death. In other cells, such as hepatocytes, caspase-8 

activation cleaves the BH3-only protein BID, generating a mitochondrion-permeabilizing 

fragment (t-BID for truncated BID) which creates an amplification loop of the death signal 

that is required for cell death to occur. These cells are called “Type II cells”. 

b. TLR3 activates the extrinsic pathway of apoptosis in cancer cells 

The first demonstration that TLR3 activation by dsRNA Poly(I:C) can directly induce 

apoptotic death of cancer cells in vitro was recently achieved by our group in 2006, in a 

model of breast carcinoma cell lines [11]. Since this first observation, an increasing number 

of studies has been started, and to date, the direct inhibitory effect of TLR3 ligands on tumor 

cell survival has been reported on melanoma, head and neck, prostate, clear renal 

carcinoma, multiple myeloma, colon, cervical, and lung cancer cells. Moreover, the 

relevance of TLR3 expression in cancer cells for dsRNA antitumor effects has now been 

demonstrated in immunodeficient mouse models and has been validated as a biomarker for 

the therapeutic efficacy of dsRNA on metastatic relapse [25].This indicates that TLR3 

targeting could represent an opportunity for the development of novel cancer therapy 

strategies. 

Several studies have clearly demonstrated that TLR3-induced apoptosis in cancer cells is 

dependent on caspase-8 activation [44, 50, 54, 55], suggesting that TLR3 activation triggers 

the “extrinsic pathway” of apoptosis. Interestingly, caspase-8 activation and apoptosis 

triggering in response to TLR3 activation is independent of the classical Death Receptors 

since invalidation of these receptors by siRNA or by neutralizing antibodies do not block 

TLR3-mediated caspase-8-dependent apoptosis [54, 55]. 



 

Oncogene and Cancer – From Bench to Clinic 252 

The canonical activation of caspase-8 by Death Receptor relies on a particular domain 

shared by these receptors at their C-terminal side, and called Death Domain (DD). This DD 

is crucial for the assembling of the DISC through its association with the DD of the adapter 

FADD which in turn recruits caspase-8 through homotypic interaction between their 

respective Death Effector Domain (DED). However, TLR3 does not contain such a DD, and 

the mechanism by which TLR3 activates caspase-8 remained unexplained until recently. 

c. TLR3 behaves like a Death Receptor in cancer cells 

Clues to understand how TLR3 activates caspase-8 came from cell death models of ectopic 

TRIF transfection [56, 57]. Genetic modifications of TRIF allowed to conclude that the RHIM 

(RIP Homotypic Interaction Motif) C-terminal domain of TRIF is crucial for TRIF-induced 

caspase-8 activation. This domain was previously shown to be required for homotypic 

association with the RHIM domain of RIP1 kinase and for NF-kB signaling triggering [23]. 

Interestingly, RIP1 contains also a DD, and the hypothesis of a molecular platform 

containing TRIF/RIP1/FADD/caspase-8 and mediating apoptosis was born. However, 

evidences of the molecular assembly of this platform to TLR3 in physiologic conditions were 

lacking. 

Our group and that of Martin Leverkus recently highlighted the molecular mechanism of 

TLR3-mediated cell death [54, 55]. In these two independent studies, TLR3 activation by 

dsRNA Poly(I:C) lead to the formation of a DISC-like complex containing caspase-

8/FADD/FLIP/RIP1 and TRIF - RIP1 playing a crucial role in the formation of this complex - 

confirming at a physiologic level the previous studies. Generation of new anti-TLR3 

monoclonal antibodies allowed us to establish that TLR3 was also present in the complex 

[55], indicating that even in absence of a DD in its C-terminal side, TLR3 is able to directly 

engage the “extrinsic pathway” of apoptosis by recruiting the initiator caspase-8 to itself, a 

characteristic initially observed for the death receptors TRAIL-R or FAS. We propose that 

dsRNA-mediated TLR3 dimerization allows the recruitment of TRIF through TIR homotypic 

interaction which in turn allows the recruitment of the DD-containing RIP1, the adapter 

FADD, and caspase-8 to trigger apoptosis (Figure 1a). 

However, when we investigated the role of FADD in TLR3-mediated caspase-8 activation 

we were struck by the fact that invalidation of FADD by siRNA transfection did not prevent 

TLR3-induced caspase-8 activation and apoptosis whereas FAS- or TRAIL-R-dependent 

apoptosis were prevented [55]. FADD possesses both a DD and a DED, and was therefore 

expected to provide the molecular link between RIP1 and caspase-8. Additional works are 

required to elucidate the role of FADD in the TLR3-dependent caspase-8-containing 

complex, but we can hypothesize that another adapter (such as FAF1 [58]) might exert a 

redundant function, or that RIP1-caspase-8 association is direct and does not require an 

adaptor molecule (which was previously observed in vitro with purified proteins [59]) 

d. Several molecular checkpoints negatively regulates TLR3-induced apoptosis 

When screening the effect of dsRNA on lung tumor cell lines, we observed that not all the 

cells were sensitive to dsRNA-induced apoptosis, even when they express a functional  
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TLR3. Moreover, normal lung epithelial cells were also resistant to apoptosis, indicating that 

physiologic negative regulators of the TLR3 apoptotic pathway exist in the cells. Two major 

and complementary checkpoints can be inferred from the literature. 

 

Figure 1. Hypothetical model of TLR3-triggered apoptosis: mechanisms. a, TLR3 activation by 

dsRNA induces the formation of an atypical caspase-8-activating complexe containing caspase-

8/FADD/RIP1/TRIF and TLR3. Successive homotypic interactions are required for TLR3 to recruit 

caspase-8. TLR3 possesses a TIR domain that binds to the adaptor TRIF through homotypic TIR domain 

interaction, while TRIF possesses a RHIM (RIP Homotypic Interaction Motif ) domain in its C-terminal 

side allowing its association with the RHIM domain of RIP1. Then, RIP1 can recruit FADD through 

homotypic interaction between their Death Domain (DD), and FADD recruits caspase-8 through theur 

respective Death Effector Domain (DED). b, Regulatory mechanisms of caspase-8 recruitment and 

activation by TLR3. In addition to RIP1, the adaptor TRIF recruits an ubiquitin ligase complexe 

containing the adaptor TRADD and the ubiquitin ligases TRAF2 and cIAPs which drives ubiquitination 

of RIP1, a post-translational modification required for NF-kB activation, that limits its association with 

caspase-8 by directly preventing and/or destabilizing the binding. In absence of cIAPs, which can be 

achieved by smac mimetics (SMs) treatments that triggers cIAPs auto-ubiquitination and degradation 

by the proteasome, RIP1 is not ubiquitinated which favours the recruitment of caspase-8. In presence of 

FLIP at sufficient level, the affinity of FLIP for caspase-8 favours the formation of FLIP-caspase-8 

heterodimers, hence preventing the formation of apoptotic caspase-8 homodimers. cIAPs and FLIP may 

constitute two different molecular checkpoints acting at two different levels for the negative regulation 

of caspase-8 recruitment by TLR3. 
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d.1. The upstream antiapoptotic IAPs-dependent checkpoint 

The mammalian Inhibitor of APoptosis (IAP) proteins, c-IAP1, c-IAP2, and XIAP, are critical 

regulators of cell death through their direct activity towards caspases. IAPs are also well 

known modulators of inflammatory signaling and immunity. These proteins consist of three 

N-terminal Baculovirus IAP Repeat (BIR) domains, a C-terminal Really Interesting New 

Gene (RING) domain that confers E3 ubiquitin ligase activity, and a CAspase-Recruitment 

Domain (CARD) – in c-IAP1 and c-IAP2 – required for autoinhibition of their ligase activity 

at steady state. Notably, c-IAP1 and c-IAP2 regulate ubiquitin-dependent innate immune 

signaling in aval of TLRs or TNF-R, such as the activation of nuclear factors NF-kB, through 

their ubiquitin ligase activity toward key molecules of the signaling pathways. Based on the 

contribution of IAPs in cancer cell survival, small pharmacological inhibitors have recently 

been developed. These antagonist molecules, dubbed Smac-mimetics (SMs), mimic the N-

terminal IAP-binding motif of SMAC (an endogenous mitochondrial IAP inhibitor), and 

selectively bind the BIR2 and BIR3 domains of IAPs. In particular, interaction of SMs with c-

IAP1and c-IAP2 results in auto-ubiquitination activity and rapid proteasomal degradation 

[60-62]. 

The use of SMs shed new light on cIAPs functions. Notably, it has been demonstrated that 

non-degradative K63-linked ubiquitination of RIP1 by cIAPs is required for efficient NF-kB 

activation and prosurviving signaling in response to TNFR-I activation [61, 63, 64]. 

Moreover, RIP1 ubiquitination by cIAPs prevents RIP1 from binding caspase-8 and blocks 

apoptosis after TNF stimulation [63, 65, 66]. Hence, cIAPs dependent RIP1 ubiquitination 

functions as an early checkpoint to protect from TNF-RI-induced cell death until a later 

checkpoint take place via the expression of pro-survival genes through the NF-kB pathway 

(reviewed in [67]). Ubiquitination of RIP1 is also important for TLR3-induced NF-kB 

activation, and like for TNF signalling, the adaptor TRADD and the ubiquitin ligase TRAF2 

are required for efficient RIP1 ubiquitination [68, 69]. 

Recently, two groups described a new RIP1-mediated death platform, termed the 

ripoptosome, which is formed upon downregulation of cIAPs and XIAP by SMs treatment 

or genotoxic stress [54, 70]. They showed that invalidation of IAPs allows the self-

assembling of a cytosolic molecular complex containing RIP1, FADD and caspase-8, 

independently of Death Receptor signaling, and mediating apoptotic cell death. 

Interestingly, IAPs inhibition by SMs treatment sensitizes a variety of cancer cells 

(melanoma, nasopharyngeal carcinoma, cervix, NSCLC…) to TLR3-mediated apoptosis [44, 

49, 50, 54, 55]. cIAP1 and cIAP2 play non-redundant roles in this apoptotic process since 

specific invalidation of cIAP1 or cIAP2 can potentiate the deleterious effect of dsRNA. Two 

non-mutually exclusive models can be proposed to explain the sensitizing effect of cIAP 

invalidation. In the first one, cIAP elimination by SMs allows the formation of the 

ripoptosome which can bind to TRIF following TLR3 stimulation by dsRNA treatment, and 

favouring induction of apoptosis. In the second one, TLR3 ligation allows the recruitment of 

the adapter TRIF that functions as a platform to recruit signaling molecules such as RIP1, 

TRAF2, cIAPs, and TRADD for activation of the NF-kB pathway. In absence of cIAP, 
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ubiquitination of RIP1 is defective which favours (or stabilizes) its association with caspase-

8 and induces apoptosis (Figure 1b). This second model is supported by the fact that TLR3-

induced apoptosis can occur without a prior invalidation of cIAPs in some tumor cells, and 

that ripoptosome formation may not be a prerequisite for caspase-8 activation.  

d.2. The downstream antiapoptotic FLIP-dependent checkpoint 

Two FLIP isoforms exist in the cell: FLIPS (short form) et FLIPL (long form). FLIPL is similar 

to caspase-8 but lacks the catalytic site. FLIPS contains the two DED and is structurally 

related to the FLIP inhibitor from viruses. FLIPS and FLIPL bind FADD and block caspase-8-

mediated apoptosis in response to death receptor ligation [71, 72]. FLIP represents one of the 

most important anti-apoptotic proteins whose expression is tightly regulated by the NF-kB 

pathway for blocking TNF-mediated caspase-8-dependent apoptosis [73]. Moreover, 

heterodimers FLIP-caspase-8 assemble preferentially in the cell because of a greater affinity 

and/or stability than caspase-8 homodimers [74]. 

Like classical death receptors of the TNFR family, TLR3-induced caspase-8-mediated 

apoptosis is negatively regulated by FLIP. Indeed, FLIP invalidation by specific shRNA 

potentiates TLR3-dependent caspase-8 activation and apoptosis in different tumor cell lines 

([54] and unpublished data). At the contrary, FLIPL overexpression blocks the apoptotic 

effect of dsRNA poly(I:C) treatment [54, 55]. In contrast to TNF-RI pathway, for which the 

role and the regulation of FLIP have been extensively studied, TLR3-mediated FLIP 

regulation as well as the mechanism of FLIP-dependent blockade of pro-apoptotic activation 

of caspase-8 are not clear and require further investigations. However, we can hypothesis 

(from death receptor signalling literature) that FLIP inhibit TLR3-induced apoptosis through 

associating with caspase-8 to form FLIP-caspase-8 heterodimers, and hence, preventing the 

formation of apoptotic caspase-8 homodimers (Figure 1b) 

Although both IAPs- and FLIP-dependent checkpoints are likely to protect cells form TLR3-

triggered apoptosis, it remains unknown to which extent they each contribute to the 

resistance of normal cells and of different tumor cells. For example, it would be interesting 

to determine whether the higher sensitivity to TLR3-induced apoptosis of metastatic head 

and neck cancer cells relative to primary tumors [75] could be explained by differences in 

the efficacy of either or both of those two molecular barriers. 

3.2.3. TLR3 and necroptosis 

It is important to note that although FLIPL prevents apoptotic activation of caspase-8, FLIPL-

caspase-8 heterodimers are proteolytically active, which is not true for FLIPS-caspase-8 

heterodimers [74, 76, 77]. This non-apoptotic protease activity of FLIPL-caspase-8 

heterodimers is required to protect from lethality of mouse embryos during development, 

indicating that caspase-8 plays a survival role [78]. Indeed, caspase-8 knock-out is lethal at 

around embryonic day 10.5 due to alteration in the development of yolk sac vasculature [79, 

80]. A molecular mechanism of caspase-8-induced survival has been recently highlighted, 

and indicates that FLIPL-caspase-8 heterodimers confers protection from necroptosis [78, 81], 
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a form of programmed necrotic cell death, which is regulated by RIP1 and RIP3 [82, 83]. To 

prevent necroptosis, caspase-8 protease activity is required to cleave and inactivate RIP1 and 

RIP3, but also CYLD, a deubiquitinating enzyme that removes Lys 63-linked polyubiquitin 

chains on RIP1 and regulates the interaction between RIP1 and caspase-8 [66, 84]. 

Necroptosis can be triggered by death receptor ligation in condition of caspase-8 inhibition, 

and is inhibited by necrostatin-1, a specific inhibitor of RIP1 kinase activity [85]. Necroptotic 

cell death is currently under intensive investigations (for review see [86-88]) 

Since TLR3 behaves like a death receptor and activates caspase-8 through the recruitment of 

RIP1, it is reasonable to assume that TLR3 could also induce necroptotic cell death in 

condition of caspase-8 inhibition. Indeed, it has been reported that Poly(I:C)-induced TLR3 

activation can trigger necroptosis in presence of the pan-caspases inhibitor Z-VAD [54], this 

cell death is inhibited by necrostatin-1 treatment. FLIP isoforms play differential roles in this 

type of cell death, FLIPL preventing both apoptosis and necroptosis while FLIPs is an 

inhibitor of only apoptosis [54]. However, TLR3-mediated necroptosis seems to be cell 

specific and probably depends on the expression of RIP3 [54, 55], which is also true for other 

inductors of necroptosis. Nevertheless, these data indicate that TLR3 activation can trigger 

the formation of a “necroptosome” containing at least RIP1 and RIP3 which could have 

relevant function in virus-infected cell death and in immune responses. Further studies are 

required to address the role of necroptosis in virus-induced diseases and in TLR3-mediated 

tumor growth inhibition. 

3.3. dsRNA in clinical trials 

It is known for long time that in human and primate, Poly(I:C) has a short half-life(~6min) 

because of rapid hydrolysis by RNase from serum, and its capacity to induce IFN 

production is weak compare to what is observed in mouse models [89, 90]. Moreover, no 

GMP preparation are currently available and poly(I:C) has too much toxicity by causing 

fever, renal failure, coagulopathies and hypersensitivity reactions [90], indicating that 

Poly(I:C) can’t be used in clinic. However, two type of Poly(I:C) analogues are currently 

evaluated in several clinical trials: Poly-ICLC that correspond to Poly(I:C) complexed with 

polylysine and carboxymethylcellulose, and Poly(I:C12U) or Ampligen (Hemispherx 

Biopharma of Philadelphia) which is a Poly(I:C) modified by introduction of unpaired bases 

(uracil). Poly-ICLC is 4- to 10-fold more resistant to hydrolysis than Poly(I:C), with a longer 

half-life in serums of primate, and a great inducer of IFN [91]. Poly(I:C12U) is a GMP-grade 

molecule that, in contrast to Poly-ICLC, undergoes accelerated hydrolysis because of regular 

regions of mismatching. However, Poly(I:C12U) maintains pharmacological activity [92]. 

Poly-ICLC remains toxic – notably with doses greater than 12 mg/m2 – whereas Poly(I:C12U) 

showed no evidence of dose-limiting organ toxicity. Indeed, Poly(I:C12U) has been 

previously tested in the treatment for chronic fatigue syndrome and AIDS without apparent 

toxicity [92]. Moreover, Poly(I:C12U) is shown to specifically target TLR3 [93]. 

Owing to its strong capacity to activate the adaptive immunity notably through its action on 

dendritic cells, dsRNA ligands are currently tested in several clinical trials mainly as 
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adjuvant for antigen peptide vaccinations against various types of cancer [94]. The antigen 

peptide will be mainly taken up by the dendritic cells that play a major role in the innate 

immune response as professional Antigen-Presenting Cells (APCs). The peptide is then 

processed by APCs, and epitopes presented at the cell surface through MHC class I 

molecules for antigen cross-presentation to CD8+ T-cells. The adjuvant (here the dsRNA 

ligands) plays an important role for the up-regulation of co-stimulatory molecules by 

dendritic cells and their maturation, leading to direct activation of CD8+ and CD4+ T-cells 

through MHC class II and I molecules respectively, and indirectly to NK cells. Several phase 

0/I/II clinical trials - http://www.clinicaltrials.gov/ - are in progress in which Poly-ICLC is 

used in ~ 80% of the studies as adjuvant for antigen-peptide vaccination such as TARP for 

prostate cancer, MUC1 for triple negative breast cancer or prostate cancer, or NY-ESO1 for 

ovarian cancer or melanoma. Poly-ICLC is also used in combination with radiotherapy for 

low-grade recurrent B and T cell lymphoma, and for brain and central nervous system 

tumors in phase I and II clinical phase. Interestingly, a phase II clinical trial from the North 

American Brain Tumor Consortium for 30 patients with newly diagnosed supratentorial 

glioblastoma showed that treatment with radiotherapy in combination with Poly-ICLC 

followed by Poly-ICLC as a single agent was relatively well-tolerated and enhanced the 

survival of patients compared to historical studies using radiotherapy alone [95]. Then, the 

New Approaches to Brain Tumor Therapy (NABTT) consortium assigned 365 patients with 

newly diagnosed glioblastoma in phase II clinical trial for testing novel agents in 

combination with radiation + temozolomide and compared the results with the data from 

the European Organization for Research and Treatment of Cancer (EORTC) phase II study 

[96, 97]. It is interesting to note that patients treated with radiation + temozolomide + Poly-

ICLC had significantly longer survival than patients treated with only radiation + 

temozolomide between 2000 and 2002 [96]. However, these encouraging data have to be 

interpreted with circumspection because of the changing patterns of care. Concerning 

Ampligen product, only two clinical trials (phase I/II) are in progress (recruiting status) in 

which the dsRNA Ampligen is used as adjuvant for oxidized tumor cell lysate vaccination 

for patients with ovarian, fallopian tube, or primary peritoneal cancer, or as adjuvant for 

HER2 protein vaccination for patients with HER2-positive breast cancers. 

4. Integrated view of the activities of TLR3 ligand in cancer 

TLR3 agonist would have multiple cellular targets that could all contribute to the efficacy of 

their use in cancer.  

As described above, targeting TLR3 expressed by tumor cells could trigger apoptosis and/or 

block cell cycle progression. It can also elicit the secretion of chemokines, which may recruit 

immune effectors at the site of the tumor and thereby enhance anticancer immune responses 

[36], or reduce the sensitivity of cancer cells to immuno-chemotherapy [98].Furthermore, 

many of the cytokines secreted by TLR3-stimulated cancer cells, and particularly the type I 

IFNs will enhance the intratumoral innate immune responses, while the upregulation of 

CD54 on cancer cells may also enhance the cytotoxic activity T cells, as it has been observed 

in vitro [37]. 
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Among the human immune cells, TLR3 is mostly expressed by myeloid Dendritic Cells 

(mDC) [99], which represent the major Antigen-Presenting Cells, and by macrophages. 

However, TLR3 is only one of the dsRNA receptor present in mDC, altogether with RIG-I, 

MDA-5 and the two helicases complexes DDX1-DDX21-DHX36 and DHX9. In the presence 

of Poly(I:C), human mDC undergo phenotypic maturation and produce high amounts of IL-

12 p70 [100, 101]. Moreover, TLR3 activation had been shown to enhance the antigen cross-

presentation capability of mouse CD8+ DC [102]. Recently, a subset of human mDC 

expressing BDCA3+ was found to internalize material from dead cells in vitro, and to cross-

present exogenous antigens to CD8+ T cells upon treatment with poly(I:C) [103]. 

Activation of human T cells by Poly(I:C) is generally regarded as an indirect consequence of 

TLR3 DC stimulation. However, TLR3 can also be expressed by T cells, at least on 

gamma/delta T cells, and acts as co-stimulatory receptor to enhance proliferation and/or 

cytokine production of T-cell receptor-stimulated T lymphocytes [104].The clinical grade 

poly(I:C)-analogue (Ampligen) was reported to promote optimal human DC maturation and 

Th1-type T cell responses in vitro [105]. 

Moreover, Poly(I:C) was reported to induce CD4+ human T cells synthesis of both IL-17A 

and IL-21 and was able to drive the differentiation of naive T helper cells into an IL-21-

producing phenotype [106].TLR3 has also been described to directly increase IFN-gamma 

production by human Ag-specific CD8+ T cells [107]. Regarding human NK cells, in contrast 

to the initial description [108], their activation by dsRNA now appears to be secondary to 

IFN-gamma production by mDC in response to TLR3 stimulation [109, 110]. Thus, the 

combined activities of TLR3 on human mDC and T cells are likely to help developing Th1-

polarized and strong cytotoxic T cells responses.  

Indeed, syngeneic mouse tumor models have shown the importance of TLR3 expressed on 

non-cancer cells not only in tumor immunosurveillance but also for the control of tumor 

growth. Protection conferred by tumor vaccine including Poly(I:C) was mediated by 

primary and memory CD8+ T cells that has been robustly activated by antigen cross-

presenting DC [111-115], and by IFN-I-activated NK cells [115]. Moreover, in a mouse model 

of established pulmonary metastasis, Poly(I:C) elicited a Th1-like, Th17-like, and cytotoxic 

immune environment following the activation of DCs and the production of IFN type [116]. 

Those animal models allowed also to show that combining Poly(I:C) with CD40 signaling 

dramatically increased the efficacy of mouse tumor vaccine [117, 118]. Such adjuvant 

combination was also able to convert mouse ovarian cancer-infiltrating dendritic cells from 

immunosuppressive to immunostimulatory cells [119] 

TLR3 agonist might also restrain tumor-driven blood supply, as multiple human endothelial 

cell types express surface TLR3, and as dsRNA-induced TLR3 activation inhibits in vitro 

angiogenesis [120]. Moreover, siRNA was found to inhibit in a sequence-independent, and 

possibly TLR3-dependent manner, the dermal neovascularization in mice [121] and the 

proliferation and morphogenesis of endothelial cells in a mouse model of hepatocellular 

carcinoma in vivo [122].  
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Figure 2. (1)TLR3 can stimulate cancer cells to secrete proinflammatory cytokine sand chemokines that 

attract and activate immune cells, respectively; (2)TLR3 can inhibit the proliferation of cancer cells; (3) 

TLR3 can trigger the apoptosis of cancer cells and the release of apoptotic bodies; (4)TLR3 can activate 

DC; (5) TLR3 can enhance the efficacy of DC to generate Th1 cells and cytotoxic T cells; (6) TLR3 can 

help NK cells to become cytotoxic; (7) TLR3 can inhibit tumor-driven neoangiogeneis; (8) TLR3 can 

switch MSC from immunosuppressive to immunosupportive phenotype. 

Lastly, Toll-Like Receptor 3, which is strongly expressed by human mesenchymal stem cells 

(MSC), inhibits their Notch-dependent immunosuppressive effect on T cells [14]. In 

addition, in response to TLR3-triggering, MSC sustain and amplify the functions of 

neutrophils and may consequently contribute to local inflammation [123]. 

Many of the above-mentioned mechanisms summarized in figure 2 probably contribute to 

the remarkable activity of Poly(I:C) used as vaccine adjuvant in several mouse tumor 

models [113, 124].Indeed, compared with other TLR agonists, DC stimulated with poly(I:C) 

displayed the strongest activity in stimulating proinflammatory responses and the 

production of tumor-specific CD8(+) T cells in several mouse tumor models [125] 

Interestingly, the combination of TLR3 with TLR7 ligands increased the capacity of mouse 

DC to establish an in vivo anti-tumoral response [126]. 

5. Conclusions and prospectives 

Since the first description of TLR in mouse, the members of this family of receptors have 

been linked to the activation of the innate immunity (Medzhitov et al., 1997). It was 
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therefore natural to study the adjuvancy capabilities of TLR ligands for vaccines, including 

anti-tumor vaccines. However, the ongoing recognition of the multiple levels of action of 

TLR on immune and non-immune cells indicates that a better understanding of the result of 

these combined activities will be required to anticipate how TLR agonist might interfere 

with cancer progression.  

Regarding TLR3 agonists, evidences coming not only from in vitro experiments and from 

preclinical mouse models, but also from clinical data strongly suggest that they could be 

useful in cancer. In particular, the discovery that TLR3 behaves as a death receptor 

selectively in cancer cells makes it similar to TRAIL receptors that are currently targeted in 

phase II clinical trials. However, answering a few key questions summarized in table1 will 

be required in order to determine whether and how TLR3 may become a successful target in 

cancer. 

 

1. Which are the molecular mechanisms that underlie the sensitivity vs. the resistance of 

normal and cancer cells to TLR3-triggered apoptosis? 

Answer to this question should help to identify a priori tumors that would benefit from TLR3 

agonist treatment 

2. What is the net effect of the pro-apoptotic activity on cancer cells and the 

immunostimulatory effect of TLR3 ligand on tumor progression? 

This important question has not been addressed yet as, in contrast with human tumors, mouse 

tumor appears to be rather resistant to TLR3-triggerd apoptosis 

3. Could TLR3 agonist synergize which (chemotherapeutic) drugs and allow increasing 

their efficacy while limiting their toxicity? 

This question must also be addressed in a syngeneic tumor model that associates a tumor sensitive 

to TLR3-triggered apoptosis and a fully functional immune system 

Table 1. Unsolved questions related to tlr3 and cancer 
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