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1. Introduction

The process of selecting objects, activities, people, projects, resources, etc. is one of the activi‐
ties that is frequently realized by human beings with some objective, and based on one or
more criteria: economical, space, emotional, political, etc. For example, as a daily experience
people should select what means of transportation and routes to utilize to arrive at a deter‐
mined destination according to the price, duration of the trip, etc. In these cases, one must
select the best subset of elements based on a large set of possibilities, the best in some sense,
and in many cases there is an interest in the selected elements not appearing amongst them‐
selves, if not it is better that they have different characteristics so that they can represent the
existing diversity in the collection of original possibilities. Of course at this level people
make these decisions intuitively, but commonsense, generally, is not a good advisor with
problems that require optimized decision-making, and simple procedures that apparently
offer effective solutions lead to bad decisions, thus this can be avoided by applying mathe‐
matical models that can guarantee obtainable effective solutions. In other human activities
the selection of this subset has economic implications that involve a selection of a more di‐
verse subset, a crucial decision, and difficult to obtain, which requires a correct process of
optimization guided by a methodical form.

In the Operations Research literature, the maximum diversity problem (MDP) can be formu‐
lated by the following manner: If V ={1,  2,  ⋯ ,  n} is the original set, and M  is the selected
subset, M ⊂V , the search for optimizing the objective is as follows:

Max f 1(M )=div(M ) (1)
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In the equation (1) the objective function div(M ) represents the measurement that has been
made of the diversity in the subset selected. There are some existing models to achieve this
goal, as well as a number of practical applications, as reported in [1, 2, 3, 4, 5]; in particular,
we target the Max-Mean dispersion model in which the average distance between the select‐
ed elements is maximized, this way not only is there a search for the maximization of diver‐
sity, if not also the equitable selected set, also, the number of elements selected are as well a
decision variable, as mentioned in [6].

Traditionally the MDP has permitted the resolution of concrete problems of great interest,
for example: the localization of mutually competitive logistic facilities, for illustration see
[3], composition of the panels of judges, [7], location of dangerous facilities, [1], new drugs
design [8], formulation of immigration policies and admissions [9].

In the past, a great part of the public’s interest in diversity was centered around themes such
as justice and representation. On the other hand, lately there has been a growing interest in
the exploitation of the benefits of diversity. Recently, in [6], it a potential case of the applica‐
tion of the selection of efficient work teams is mentioned. In practice, there are many exam‐
ples when the diversity in a group enhances the group’s ability to solve problems, and thus,
leads to more efficient teams, firms, schools. For this reason, efforts have begun on behalf of
the investigators to identify how to take advantage of the diversity in human organizations,
beginning with the role played by the diversity in groups of people, for example in [10],
Page et al. introduces a general work plan showing a model of the functionality of the prob‐
lem solving done by diverse groups. In this scenario, it is determined that the experts in
solving problems possess different forms of presenting the problem and their own algo‐
rithms that they utilize to find their solutions. This focus can be used to establish a relative
result in the composition of an efficient team within a company. In the study it is deter‐
mined that in the selection of a team to solve problems based in a population of intelligent
agents, a team of selected agents at random surpasses a team composed by the best suited
agents. This result is based on the intuition that when an initial group of problem solvers
becomes larger, the agents of a greater capability will arrive to a similar conclusion, getting
stuck in local optimum, and its greater individual capacity is more than uncompensated by
the lack of diversity.

This chapter is organized in the following manner, beginning with the Section 2 study of
concepts relating to diversity, and how it can be measured. Later on, in Section 4 we are in‐
troduced to the classic Maximum Diversity Problem, with differing variants, and the new
problem Max-Mean, with which we attempted to resolve the first objective described by the
equation (1), also revised are the formulations of the mathematical programming for these
problems, and its properties are explored. In Section 5 an algorithm is developed based on
GRASP with path relinking in which the local search is developed mainly with the method‐
ology based on Variable neighborhood search, in Section 4 there is a documented extensive
computerized experimentation.
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2. Distances, similarities, and diversity

2.1. Definitions

Similarities are understood to be a resemblance between people and things. Although it is
common to accept that diversity is an opposite concept of similarities, both terms perform
within different structures, since similarities are a local function for each pair of elements. In
contrast, diversity is a characteristic associated to a set of elements, which is calculated with
the function of the dissimilarities within all the possible pairings. Where dissimilarities are
the exact opposite of the similarities.

To be even more specific, to measure the diversity in M , div(M ) , it is required to first have a
clear definition of the connection, distance, or dissimilarity between each pair i,  j∈M . The
estimation of this distance depends on the concrete problem that is being analyzed, in par‐
ticular in complex systems like social groups a fundamental operation is the assessment of
the similarities between each individual pair. Many measurements of the similarities that
are proposed in the literature, in many cases show similarities that are assessed as a distance
in some space with adequate characteristics, generally in a metric space, as for example the
Euclidian distance. In the majority of applications each element is supposed to able to be
represented by a collection of attributes, and defining xik  as the value of the attribute k of the
element i, then, for example, utilizing the Euclidian distance:

dij = ∑
k

(xik - x jk )2

Under this model, d , satisfies the axioms of a metric, although the empirical observation of
attractions and differences between individuals forces abandoning these axioms, since they
obligate an unnecessary rigid system with properties that can not adapt adequately the
frame of work of this investigation: the measurements of similarities

In the literature, one can find the different measurements of similarities that can be applied
to groups of people. For example, in [11] it is established that “the measurements of similari‐
ties of the cosine is a popular measurement of the similarities”. On the other hand, in [10] it
is established that the measurement of dissimilarities to treat the problem of the relation be‐
tween the diversity and the productivity of groups of people can be established to solve
problems. These measurements are developed in section 1.2. In [6] a similar measurement is
utilized to solve a real case.

2.2. Similarity measurements

Given two individuals i,  j with the characteristics xi = (xi1,  xi2,  …,  xip),
x j = (x j1,  x j2,  …,  x jp) is defined by the measurement of similarities of the Cosine like:

dij =
∑
k =1

p
xik x jk

∑
k =1

p
xik

2 ∑
k =1

p
x jk

2
(2)
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On the other hand, in [10] the authors explain the problem with how diversity presents a
group can increase the efficiency to solve problems, in particular in its investigation that au‐
thors use the following measurement of dissimilarities:

dij =
∑
l=1

p
δ(xil , x jl )

p
(3)

Where:

δ(xil , x jl)= { -1 si xil = x jl

|xil - x jl| si xil ≠ x jl

This measurement will take a negative value (in the case of similarities) and positives (in the
case of dissimilarities). In general terms, we are referring to a dij as the dissimilarities or the
distance between i and j.

2.3. Equity, diversity, and dispersion

The growing interest in the treatment of diversity also has originated in an effort to study
the management of fairness, that is to say that all the practices and processes utilized in the
organizations to guarantee a just and fair treatment of individuals and institutions. Speaking
in general terms, the fair treatment is that which has or has exhibited fairness, being terms
that are synonyms: just, objective, or impartial. Many authors, like French, in [12] the argu‐
ment is that equality has to do with justice, for example the distribution of resources or of
installations or public service infrastructures, and in the same manner the achievement of
equality in diversity has been identified within as a problem of selection and distribution.
Synthesized, one can say that the equality represents an argument concerning the willing‐
ness for justice, understanding this as a complicated pattern of decisions, actions, and results
in which each element engages as a member of the subset given.

The other sub problem that should be resolved is how to measure diversity. Given a set
V ={1,  2,  ⋯ ,  n},  and  a  measure  of  dissimilarity  dij  defined  between  every  pair  of  ele‐
ments of V ,  and a subset M ⊂V ,  different forms have been established as their measure
of diversity.

2.4. The measure of dispersion of the sum

With this calculated measurement of diversity and a subset as the sum of the dissimilarities
between all the pairs of their elements; this is to say, the diversity of a subset M  is calculated
with the equation (4):

div(M )= ∑
i< j,i, j∈M

dij (4)
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2.5. The measurement of dispersion of the minimum distance

In this case of the diversity of a subset given the establishment of how the minimum of
these types of dissimilarities between the pairs of elements of the set; this is to say, like in
equation (5).

div(M )= min
i< j,i, j∈M

dij (5)

This type of measurement can be useful with contexts that can make very close undesirable
elements, and thereby having a minimum distance that is great is important.

2.6. The measurement of the average dispersion

For a subset M , the average diversity is calculated by the expression of the equation (6)

div(M )=
∑

i< j ,i , j∈M
dij

|M |
(6)

Notice that this measurement of diversity is intimately associated with the measurement of
the dispersion of the sum, that constitutes the numerator of the equation (6). In the literature
lately some references have appeared in which the diversity is measured in this manner, for
example in [13], in the context of systems Case-based reasoning, CBR, the authors defined
the diversity of the subset of some cases, like the average dissimilarity between all the pairs
of cases considered. So much so that in [6] diversity of a subset is defined by the equation (6)
within the context of the models of the dispersion equation.

3. The maximum diversity problem

Once determined how to resolve the sub problem of estimating the existence of diversity in
a set, the following is establishing the problem of optimizing what to look for the deter‐
mined subset with maximum diversity. Such problem is named in the literature as The Max‐
imum Diversity Problem.

The most studied model probably is the Problem in which it maximizes the sum of the dis‐
tances or dissimilarities between the elements selected, this is to say the maximum measure
of diversity of the sum established in the equation (4). In the literature there is also the prob‐
lem also known with other denominations, as the Max-Sum problem [14], the Maximum
Dispersion problem [15], Maximum Edge Weight Clique problem, [16], the Maximum edge-
weighted subgraph problem, [18], or the Dense k-subgraph problem, [19].

Recently another model has been proposed in the context of equitative dispersion models
[20], this model is denominated as the Maximum Mean Dispersion Problem (Max-Mean),
that is the problem of optimization that consists in maximizing the equation (6), and one of
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the principal characteristics, that makes is different than the rest of the models of diversity,
being that the number of elements selected also is a decision variable.

3.1. Formulations & mathematical programming models

Given a set V ={1,  2,  ⋯ ,  n}, and the dissimilarity relation dij, the problem is selecting a

subset M ⊂V , of cardinality m <n, of maximum diversity:

max
M⊂V

f 1(M )=div(M ) (7)

The manner in which diversity is measured in the equation (7) permits constructing the for‐
mulations of the different maximum diversity problems.

3.2. The Max-Sum problem

The Max-Sum problem consists in selecting the subset that has the maximum diversity,
measuring the agreement of the equation (4):

max
M⊂V , |M |=m

∑
i< j,i, j∈M

dij

Introducing the binary variables: xi = {1 if element i is selected
0 otherwise ;1≤ i ≤n

Therefore, this problem can be formulated as a problem of quadratic binary programming:

max   ∑
i=1

n-1
∑

j=i+1

n
dij xi x j (8)

s.t .   ∑
i=1

n
xi =m (9)

xi∈ {0,1};  1≤ i ≤n (10)

3.3. The Max-Mean problem

This problem can be described as:

max
M⊂V , |M |≥2

∑
i< j ,i , j∈M

dij

|M |

Generically speaking, this problem deals with the maximization of the average diversity. A
formulation of the mathematical programming with the binary variables is then:
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max
∑
i=1

n-1
∑

j=i+1

n
dij xi x j

∑
i=1

n
xi

(11)

s.t .   ∑
i=1

n
xi ≥2 (12)

xi∈ {0,1},    1≤ i ≤n (13)

In this problem the objective function (11) is the average of the sum of the distances between
the selected elements, the constraint (12) indicates that at least two elements should be se‐
lected. Just as presented in [20], this is a fractional binary optimization problem, but can be
linearized utilizing new binary variables, this way the problem is formulated for the equa‐
tions (14) to (19):

max   ∑
i=1

n-1
∑

j=i+1

n
dijzij (14)

s.t .     y - zi ≤1 - xi;   zi ≤ y;   z i ≤ xi;   zi ≥0;  1≤ i ≤n (15)

y - zij ≤2 - xi - x j;  zij ≤ y;   zij ≤ xi;  zij ≤ x j;  zij ≥0;  1≤ i < j ≤n (16)

∑
i=1

n
xi ≥2 (17)

∑
i=1

n
zi =1 (18)

xi∈ {0,1};  1≤ i ≤n (19)

Notice that the Max-Mean problem cannot be resolved applying a solution method for any
of the other problems, unless applied repeatedly for all the possible values of
m =|M |;m =2,  3,  …,  n. Surprisingly, as seen in Section 4, to find the solution of the Max-
Mean problem with exact methods through resolving (n - 1) Max-Sum problems requires
much less time that resolves directly the formulation (14)-(19).

3.4. Computational complexity

This is known as the Max-Sum problem it is strongly NP-hard, as demonstrated in [9]. Re‐
cently, it has also been demonstrated in [20] that the Max-Mean problem is strongly NP-
hard if the measurements of dissimilarities take a positive value and negative. Here the
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property 3 is demonstrated, this then indicates that if dij satisfying the properties of a metric,
then the diversity div(M ) for any M ⊂V  is always less than div(M ∪ {k }) for any k∉M , then,
a solution with m <n elements cannot be optimal in the Max-Mean problem, from there the
optimum of this case is selecting all the elements.

Property 1 [12]

The Max-Sum Problem is Strongly NP-hard.

Property 2 [6]:

If the dissimilarity coefficients dij does not have restrictions in the sign, then the Max-Mean
problem is strongly NP-hard.

Property 3:

The Max-Mean problem has a trivial solution M =V , if the dissimilarity measure is a metric.

Proof:

The Max-Mean problem consists in selecting a subset M  such that div(M ) is maximized.
Demonstrating that given the instance in which the dissimilarities are not negative, symmet‐
rical, and satisfy the triangular inequality, the solution to the Max-Mean problem is selecting
all the elements, that is to say: M =V .

For all i,  j∈M  and k∉M  the triangular inequality establishes that dij ≤dik + d jk

Adding over all the possible pairs of elements in M :

∑
i, j∈M

i< j

dij ≤ ∑
i, j∈M

i< j

(dik + d jk )

But the right side of the last expression is equivalent to (|M | - 1) times ∑
i∈M

dik ,

If representing with m =|M |, then:

∑
i, j∈M

i< j

dij ≤ ∑
i, j∈M

i< j

(dik + d jk )=(m - 1) ∑
i∈M

dik <m ∑
i∈M

dik

Divided by m on has:

1
m ∑

i, j∈M
i< j

dij < ∑
i∈M

dik

Adding the term ∑
i, j∈M

i< j

dij on both sides of the last inequality:

m + 1
m ∑

i, j∈M
i< j

dij < ∑
i, j∈M

i< j

dij + ∑
i∈M

dik = ∑
i, j∈M ∪{k}

i< j

dij

Finally dividing for (m + 1) :
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div(M )= 1
m ∑

i, j∈M
i< j

dij < 1
m + 1 ∑

i, j∈M ∪{k }
i< j

dij =div(M ∪ {k })

4. An efficient method to solve the Max-Mean problem

4.1. Exact solution for the MIP formulation

It is evident that an optimal solution can be obtained for the Max-Mean problem in an indi‐
rect manner if resolving the Max-Sum model for all the possible values of m; meaning, for
m =2,  3,  …,  n, and then dividing the remaining solutions for the corresponding value of
m. Then, the best value of these (n - 1) values is the optimal Max-Mean model. Therefore, if
ZMax-Sum(m)

*  is the optimal value of the objective function of the Max-Sum problem with m

selected elements, and ZMax-Mean
*  is the optimal value of the Max-Mean problem, then:

ZMax-Mean
* = max

m∈{2,…,n}
{ ZMax -Sum(m)

*

m
}

This research takes into account two new types of test instances:

• Type I: This set contains 60 matrices of sizes: n =20,   25,  30,  35,  150 and 500 with ran‐
dom numbers in - 1,1  generated from a uniform distribution.

• Type II: There are also 60 symmetrical matrices, with n =20,   25,  30,  35,  150 and  500,
but with coefficients that generate with random numbers with a uniform distribution in
-1, - 0.5 ∪ 0.5,1 .

These test instances are found as available in the web site of the project OPTSICOM, [21].

Figure 1 shows the result of the resolution of the Max-Mean problem in an indirect way, for
the test instances of type I and type II, of size n =30, solving in an exact manner in each ex‐
ample 29 Max-Sum problems, each one of the cuadratic binary formulation (8)-(10). In this
investigation, the Max-Sum problems are solved by the method of dynamic search using
Cplex 12.4.0, the professional solver for mixed integer linear programming problems. Prog‐
ress in computer technology and in design of MIP efficient algorithms and their implemen‐
tation in Cplex 12.4.0 together with mathematical advance lead in some cases to satisfactory
solution times. Unfortunately the MIP formulation described above cannot be solved in rea‐
sonable times for medium or large problems.

Also, Figure 1 shows that the Max-Mean value of the Max-Sum solution increases as m in‐
creases from 2 to certain value, and then this value decreases in the rest of the range. We
have observed the same pattern (approximately a concave function) in all the examples test‐
ed with positive and negative distances randomly generated. We will consider this pattern
to design an efficient GRASP algorithm.
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Figure 1. Evolution of the Optimal Values of the Max-Sum Problem divided for m value

Table 1 shows, that for each method and for each size of a problem, the average value of the
objective function (Value) in the optimal solution, the average number of elements that end
up being selected in the optimal solution (m), and the average time in seconds (CPU ), ND
signifies that the value is not available because the solution was not reached in 5 hours.
Cplex 12.4.0 only permitted solving small problems in moderate times. In particular in the
linear formulation (14)-(19) can only be resolved in test instances of n <30, and for n =30 the
solution could not be obtained in a 5 hour process. Experiments with Cplex corroborate the
difficulties that commercial branch-and-bound codes encounter when approaching the Max-
Sum and Max-Mean problem with this manner.

TYPE I TYPE II

n Max-Mean Max-Sum (n-1) times Max-Mean Max-Sum (n-1) times

20 CPU (s) 50.334 14.662 66.714 19.164

Value 1.443 1.443 1.898 1.898

m 7.400 7.400 7.500 7.500

25 CPU (s) 694.606 41.826 1995.100 59.581

Value 1.732 1.732 2.207 2.207

m 9.800 9.800 9.600 9.600

30 CPU (s) > 5 horas 102.303 > 5 horas 182.176

Value ND 1.875 ND 2.383

m ND 10.700 ND 10.800

Table 1. Max-Mean Problem Solutions obtained with Cplex 12.4.0
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Surprisingly, the Max-Sum model applied (n - 1) times permits resolving instances of a
greater size in less time, and one could obtain the solution for n =30 in 102.30 seconds on
average, and for n =35 in 719.51 seconds in the type I problems, in the type II problems this
requires more time. Yet, in instances of size n =50 in 5 hours cannot obtain the optimum sol‐
ution for this strategy.

It can be concluded that if one desires to resolve the Max-Mean problem in an exact manner
it is preferable to use the strategy to solve (n - 1) times the Max-Sum model since the it con‐
sistently worked in much less time in all the experiments. This could be due to the fact that
the relaxation continues in the Max-Sum problem providing better levels than the relaxation
provided by the continued Max-Mean problem.

Given that the problems of the maximum diversity are NP-hard, it is clear that is required to
make a heuristic design to resolve problems of large and medium size. In [6] a algorithm is
developed based in GRASP that exploits the characteristics of the Max-Mean problem, and
that is hybridized with other successful techniques of intensification, like Path Relinking
(PR), and Variable Neighborhood Search, (VNS). This algorithm has resulted as an efficient
solution to the medium and large problems.

4.2. Solving the Max-Mean problem

In this section, we describe a heuristic developing in [6] to solve the Max-Mean problem.
This heuristic consists of a phase of construction GRASP, with a local search phase based on
the Variable Neighborhood Search methodology subsequently it is improved with incorpo‐
ration of a phase of post processing, based on Path Relinking.

4.3. GRASP construction phase

From the results shown in Figure 1, we can design a new constructive method in which we
add elements to the partial solution under construction as long as the Max-Mean value im‐
proves, and when this value starts to decrease, we stop the construction. In this way, the
method selects by itself the value of m, which seems adequate to this problem.

In place of a typical GRASP construction for diversity in which, first, each candidate element
is evaluated by a greedy function to construct the Restricted Candidate List (RCL) and then
an element is selected at random from RCL we utilizing an alternative design, in accordance
with the proposed in recent studies [22] in which we first apply the randomization and then
the greediness can obtain improved outcomes. In particular, in our constructive method for
the Max-mean problem, we first randomly choose candidates and then evaluate each candi‐
date according to the greedy function, selecting the best candidate, permitting better results.

More so specifically, given a partial solution Mk  with k  selected elements, the list of can‐
didates  CL  is  formed  by  the  (n - k)  unselected  elements.  The  list  of  restricted  candi‐
dates,  RCL ,  contains  a  fraction  α(0<α <1)  of  the  elements  of  CL  selected  randomly,
where α  where is a parameter that should be selected adequately, generally by computa‐
tional experiments.
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Then, for each element i∈RCL , the method computes its contribution, eval(i), if it is added
to Mk  to obtain Mk ∪ {i}:

eval(i)=div(Mk ∪ {i}) - div(Mk )

Where div(∙ ) is the mean diversity defined in the equation (6).

Afterwards, the method selects the best candidate i * in RCL  if this improves the actual par‐
tial solution; this is to say, if eval(i *)>0, and add it to the partial solution, Mk +1 =Mk ∪ {i *};
otherwise, if eval(i *)≤0, the method stops.

Figure 2 show the pseudo-code of this phase of construction of the method that one calls
heuristic GRASP.

 

1. Select an element 
⋆ at random in � = �1, 2,… , ��. 

2. Make �� = 	 �
⋆�, � = 1 and 
������ = 1. 

While ( 
������ = 1 ) 
3. Compute �� = �1, 2, … , �� ∖�� 
4. Construct ��� with 	|��| elements randomly selected in �� 
5. Compute  ��
��
� = ����� ∪ �
�� − �����

�∀
 ∈ ��� 

6. Select the element 
⋆in ��� with maximum ��
� value 

If (��
��
⋆� > 0) 
7. ���� = ��⋃�
⋆� 

8. � = � + 1 

Else 
9. 
������ = 0 

Figure 2. GRASP construction phase

4.4. Local search in GRASP

The GRASP construction usually does not obtain a local optimum and it is customary in
GRASP to apply a local search method to the solution constructed. As shown in [6], previ‐
ous local search methods for diversity problems limit themselves to exchange a selected
with an unselected element, keeping constant the number m of selected elements. Since we
do not have this size constraint in the Max-Mean model and we admit solutions with any
value of m, we can consider an extended neighborhood based on the Variable Neighbor‐
hood Descent (VND) methodology.

We consider the combination of three neighborhoods in our local search procedure:

• N1: Remove an element from the current solution, thus reducing the number of selected
elements by one unit.
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• N2: Exchange a selected element with an unselected one, keeping constant the number of
selected elements.

• N3: Add an unselected element to the set of selected elements, thus increasing its size by
one unit.

The order of exploration of the neighborhoods is given to try, in the range of possibility, di‐
minishing the number of selected elements, increasing its diversity as well, which happens
when a better solution is obtained in N1. If this is not possible, one can conserve the cardin‐
ality of the selected set with the obligation of increasing diversity, just like what happens
when exploring the neighborhood N2. Finally, by exploring N3, one is willing to increase the
cardinality of the set selected if increasing diversity.

More specifically: Given a solution, Mm, the local search first tries to obtain a solution in

N1  to improve it.  If  it  succeeds, and finds Mm-1
'  with dm(M m-1

' )>dm(Mm),  then we apply

the move and consider Mm-1
'  as the current solution. Otherwise, the method resorts to N2

and searches for the first exchange that improves Mm.  If it succeeds, and finds Mm
'  with

dm(M m
' )>dm(Mm),  then we apply the move and consider Mm

'  as the current solution. In
any case, regardless that we found the improved solution in N1 or in N2, in the next iter‐
ation the method starts scanning N1 to improve the current solution. If neither N1 nor N2

is able to contain a solution better than the current solution, we finally resort to N3. If the

method succeeds,  finding  Mm+1
'  with  dm(M m+1

' )>dm(Mm),  then  we  apply  the  move  and

consider Mm+1
'  as the current solution (and come back to N1 in the next iteration). Other‐

wise, since none of the neighborhoods contain a solution better that the current one, the
method stops.

To accelerate the search in these neighborhoods, one would not make the exploration in a
sequential manner over the elements of a specific neighborhood, if not one would evaluate
the potential contribution to the partial solution of the following manner: Given a solution
Mm, one calculates the contribution of each element selected i, just like the potential contri‐
bution of each element unselected i like:

ds(i, Mm)= ∑
j∈Mm

dij

Thus, when exploring N1 one searches for the elements selected in the given order by ds,
where the element with the smallest value is tested first. Similarly, when exploring N2 prov‐
ing the selected elements in the same order but the elements unselected in the inverse order,
this is to say, first considering the elements not selected with a grand potential contribution
to the partial solution.

Finally, when exploring N3 the elements not selected, that are considered to be added in the
actual solution, they are explored in the same manner than in N2, in which the element with
the largest contribution is considered first. Figure 3 outlines the pseudo-code of this phase.
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1. Select an element ⋆ at random in . 
2. Make 1

⋆ ,  and . 

While (  ) 

3. Compute  
4. Construct  with | | elements randomly selected in 

5. Compute  ∪  
6. Select the element ⋆in  with maximum  value 

If ( ⋆ ) 

7. ⋃ ⋆  
8.  

Else 

9.  

Figure 3. Local search in GRASP

4.5. GRASP with path relinking

The Path Relinking algorithm was described for the first time in the framework of tabu
search method, it operates on a Elite Set of solutions (ES), constructed with the application
of a previous method. Here we apply GRASP to build ES  considering both quality and di‐
versity. Initially ES  is empty, and we apply GRASP for b =|ES| iterations and populate it
with the solutions obtained (ordering the solutions in ES  from the best x 1 to the worst x b).
Then, in the following GRASP iterations, we test whether the generated solution x ', qualify
or not to enter ES . Specifically, if x ' is better than x 1, it enters in the set. Moreover, if it is
better than x b and it is sufficiently different from the other solutions in the set
(d (x ', ES )≥dth ), it also enters ES . To keep the size of ES  constant and equal to b, when we
add a solution to this set, we remove another one. To maintain the quality and the diversity,
we remove the closest solution to x ' in ES  among those worse than it in value.

Given two solutions, x ,y , interpreted as binary vectors with n variables, where variable xi

takes the value 1 if element i is selected, 0 otherwise, the distance d (x, y) can be computed

as d (x, y)=∑
i=1

n
|xi - yi| and the distance between a solution x ' and the set ES ,   d (x ', ES ), can

be computed as the sum of the distances between x ' and all the elements in ES .

The path relinking procedure PR(x, y) starts with the first solution x, called the initiating
solution, and gradually transforms it into the final one y called the guiding solution. At each
iteration we consider to remove an elements in x not present in y, or to add an element in y
not present in x. The method selects the best one among these candidates, creating the first
intermediate solution, x(1). Then, we consider to remove an element in x(1) not present in y,
or to add an element in y not present in x(1). The best of these candidates is the second in‐
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termediate solution x(2). In this way we generate a path of intermediate solutions until we
reach y. The output of the PR algorithm is the best solution, different from x and y, found in
the path. We submit this best solution to the improvement method. Figure 4 shows a pseu‐
do-code of the entire GRASP with Path Relinking algorithm in which we can see that we ap‐
ply both PR(x, y) and PR(y, x) to all the pairs x,  y in the elite set ES .

 1. Set GlobalIter equal to the number of global iterations. 
2. Apply the GRASP method (construction plus improvement) 
 for b=|ES| iterations to populate ES={ x

1
, x

2
, …, x

b
 }. 

3. iter=b+1. 
While( iter≤GlobalIter ) 

 4. Apply the construction phase of GRASP  x. 

 5. Apply the local search phase of GRASP to x x'. 

 If ( f(x') >f(x
1
)  or  (f(x') >f(x

b
) and d(x',ES)  dth ) ) 

 6. Let x
k
 be the closest solution to x' in ES with f(x')>f(x

k
). 

 7. Add x' to ES and remove x
k
. 

 8. Update the order in ES (from the best x
1
 to the worst x

b
). 

9. Let x
best

= x
1
. 

For(i=1 to b-1 and j=i+1 to b) 
 10. Apply PR(x

i
,x

j
) and PR(x

j
,x

i
), let x be the best solution found 

 11. Apply the local search phase of GRASP to x x'. 
 If(f(x') >f(x

best
)) 

  12. x
best

= x'. 
13. Return x

best
. 

 

Figure 4. GRASP with Path Relinking

4.6. Comparison with existing methods

We also propose a new adaptation of existing methods for several models of maximum di‐
versity problem.

Prokopyev et al. in [20] introduced several models to deal with the equitable dispersion
problem and the maximum diversity problem. The authors proposed a GRASP with local
search for the Max-MinSum variant in which for each selected element (in M ), they compute
the sum of the distances to the other selected elements (also in M ) and then calculate the
minimum of these values. The objective of the Max-MinSum model is to maximize this mini‐
mum sum of distances. We can adapt the method above, originally proposed for the Max-
MinSum, to the Max Mean model. We call this adapted method GRASP1.

Also, Duarte and Martí in [26] proposed different heuristics for the Max-Sum model. In par‐
ticular the authors adapted the GRASP methodology to maximize the sum of the distances
among the selected elements. We also adapt this algorithm to solve the Max-Mean Model,
and we call the entire method (constructive phase + local search) GRASP2.

Adaptation details of these algorithms can be seen in [6]

In the final experiment we target the 20 largest instances in our data set (n=500). Table 3
shows the average results on each type of instances of GRASP1, GRASP2 and our two meth‐
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ods, GRASP and GRASP with Path Relinking described in this Section. Results in Table 3 are
in line with the results obtained in the previous experiments. They confirm that GRASP con‐
sistently obtains better results than GRASP1 and GRASP2. As shown in the last column of
Table 3, Path Relinking is able to improve the results of GRASP in all the instances.

5. Numeric experiments with test instances

This section contains the results of a large number of numerical experiments that is made to
evaluate and calibrate the GRASP algorithm, which was implemented in Mathematica V.71,
the experiments are processed in an Intel Core 2 Laptop, 1.4 GHz and 2GB de RAM. The
parameters of the algorithms were calibrated through extensive computational experiments.

5.1. GRASP heuristic performance on small problems

In this section a comparison is made of the performance of the heuristic GRASP and the ex‐
act optimal reported for small problems. The results are shown in Table 2.

Small instances of size n =30 were used, the largest are for those that can be resolved with Cplex
12.4.0 in an exact manner in reasonable times. Since the optimal is known, a measurement of
the precision of the methods is the difference in relative percentage with respect to the opti‐
mum (GAP). Table 2 shows the average of the objective function (Value), the average number
of elements selected (m), the times that the optimum was reached (# of optimal times), the rela‐
tive difference with the optimal (GAP) and the average time in seconds (CPU Time).

GRASP constructive Cplex 12.4.0

Type I Value 1.87351 1.874955

m 10.8 10.7

# optimal times 9 10

GAP 0.084% 0%

CPU Time 0.35444 102.303

Type II Value 2.377163 2.383

m 10.3 10.8

# optimal times 6 10

GAP 0.397% 0%

CPU Time 0.3444 182.176

Table 2. Performance of the constructive phase in small problems

1 Mathematica is a computational software program used in scientific, engineering, and mathematical fields and other
areas of technical computing. It is developed by Wolfram Research.
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Only applying the constructive phase of GRASP one can reach the exact optimum of the
problems 90% of the times, for the test instances of type I, and the 80% of the times in the
test instances of type II, and in a reduced amount of time (less than a second), also in instan‐
ces in which the optimum is not found, the GAP is very small.

5.2. Solution to large problems

Being that is no longer possible to compare the optimal solution of these problems, in place
of GAP it is reported that a percentage of deviation in respect to the best solutions found in
the experiments, the represented value in the tables like deviation, and that it is equal to:

Deviation =  best solution - current solution
best solution ×100%

GRASP GRASP+PR GRASP1 GRASP2

Type I Value 7.71370 7.7977 6.6796 7.0163

m 139.4 145.2 154.4 157.6

# Best 0 10 0 0

Deviation 1.07% 0.00% 14.31% 10.01%

CPU (sec.) 717.3 688.1 1414.5 950.9

Type II Vaue 10.2957 10.437 88.98 92.68

m 143.2 144.4 186.1 170.4

# Best 0 10 0 0

Deviation 1.53% 0.00% 14.74% 11.18%

CPU (sec.) 662.422 679.641 804.8 708.3

Table 3. Comparison of the obtained results with GRASP+PR in large instances

Table 3 shows that the Path Relinking phase permitted improvements to the results of the
heuristic GRASP, GRASP1 (based in [20]) and GRASP2 (based in [26]) in all of the test in‐
stances of size n =500 and for the two types of examples considered

5.3. Search profile in Variable Neighborhood Search (VNS) methodology by GRASP

Our local search in the heuristic GRASP utilizes three types of neighborhoods, generated ac‐
cording to the methodology VNS, these neighborhoods are represented by: N1 (remove an
element from the solution), N2 (exchange a selected element with an unselected one), and N3

(add an unselected element to the solution). This way an interesting study is measured by
the contribution of each type of neighborhood to the quality of the final solution.

Figure 6 depicts a bar chart with the average number of times, in the 20 instances of size
n =150 used in our preliminary experimentation, that each neighborhood is able to improve
the current solution. We can see that, although N2 improves the solutions in a larger number
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of cases, N1 and N3 are also able to improve them and therefore contribute to obtain the final
solution.
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Figure 5. Average number of improvements of each GRASP neighborhood

Curiously, if one calculates the was average contribution to the improvement of the function
of the objective that provides the exploration in each one of the types of neighborhoods, one
can observe that the neighborhoods of type N1 and N3 provide greatest contribution on aver‐
age compared with the visit to the neighborhood N2, as shown in Figure 6.

5.4. Solution of large problems using GRASP with Path Relinking

In this section the experiments made are described with the 20 test instances of size n =500.
Table 3 shows the summary of the results obtained in the large instances when applying the
algorithms proposed, the values correspond to the achieved averages with each one of the
test instances of this size.

 

Type I 

Por N2 Por N3 Por N1 

Type II 

Figure 6. Contribution to improving the objective function value for each neighborhood
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Figure 7. Search profile of GRASP and GRASP+PR

5.5. Search profile

Finally, to complete the analysis of the comparison of the efficiency of the algorithms that
are designed, graphs were made of the profile of search of the algorithms; this is to say,
since these heuristics were improving the value of the objective function of the time of exe‐
cution. In Figure 7 one can observe the amplified details of its profile for a search in the
neighborhood of the best values found. The figure clearly shows the GRASP achieves good
solutions quickly. The execution of GRASP+PR, the phase of relinking of trajectories is exe‐
cuted after the elite set, ES , has been populated, which occurs after approximately 450 sec‐
onds, on average. Then the phase of path relinking properly said, by applying the procedure
to each pair of solutions of the elite set, the evolution of the best solution found show that
this phase permits obtaining the best solutions quickly, surpassing the GRASP (without PR),
that after a certain moment does no achieve improvements in the solutions in the same pro‐
portion that GRASP+PR, and therefore is seen surpassing due to this. Similar profiles are ob‐
served for Type II instances

6. A case of application for the Max-Mean problem

6.1. Teams that are more diverse are more efficient for problem solving than those less
diverse

This way, in daily activities of organizations, companies, schools, sport teams, etc. it has
been observed through evidence that diversity has an important role on the ability for
groups of people to solve problems. Lately, literature investigations have shown formally
that this empirical phenomenon is true, proportioning a theoretic justification for this fact,
for example in [10]. A consequence of this is that, under certain circumstances, the groups of
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people that have conformed in a diverse manner can surpass the productivity of the groups
conformed by the people individually more capable to resolve these problems; meaning, in
a certain way diversity triumphant over the ability.

From a practical point of view, this result implies that, for example, a company that wants to
conform a team should not look for simply a selection of individuals with a greater qualifi‐
cation for it, probably the most efficient selection would be to choose a diverse group. In re‐
ality the ideal would be that the groups of work be conformed by people with great
qualifications and diversity; yet, these two objectives tend to be opposing one another since
the diversity of the team formed by the people more qualified tends to be smaller, as dem‐
onstrated in [24].

The idea in the background is that we have a population of capable people to realize any
task; these people have different levels of ability or of productivity for resolve it, and if one
must select the work teams of this population for realizing a task, one can consider two pos‐
sible groups: in the first only individuals are chosen with high qualifications, and in the sec‐
ond “diverse” individuals are chosen in some sense It turns out that the first finish in some
way arriving to the same solution, creating a more difficult and confusing work for each
other, on the other hand the second group the diversity created more perspectives and thus
more opportunity of avoiding a halt on the search for a solution of the problems, generating
in some way the right environment to increase the individual productivity of each one, and
therefore of all groups. From a formal point of view what happens in the first group, under
certain hypothesis, the people that are highly qualified tend to convert into similar points of
view and ways to solve problems from which the set of optimal locations that the group can
reach is reduced. Although the second group of diverse members originates a set of optimal
locations more widely, and thus has more opportunities to improve.

6.2. Diversity in identity and functional diversity, perspectives and heuristics

In terms of a population, understood as “diversity in identity”, or simply “diversity,” to the
differences en its demographic characteristics, cultural, ethnics, academic formation, and
work experience. On the other hand, “formal diversity” is known as the differences in how
these people focus and treat problem solving. An important fact is that these two types of
diversity are correlated, since it has been identified experimentally a strong correlation be‐
tween two types of diversity, just as demonstrated in [25]. Given the connection, it can be
deduced that diverse groups in identity are functionally diverse.

In the literature, the focus was employed on a person to resolve a problem is a representa‐
tion or an encoding of the problem in its internal language, and it can be known as “perspec‐
tive.” Formally, a perspective P  is a mapping of the set of solutions of a problem into the
internal language of the person resolving a problem.

On the other hand, the way in which people attempt to resolve a problem, or how they
look for solutions are known as “heuristic.” Formally, a heuristic is a mapping H  of the
encoding of the solutions in an internal language of the person that will solve the prob‐
lem into the solutions set. This way, given a particular solution, the subset generated by
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the mapping H  is the set of the other solutions that the person considers. In this manner,
the ability  to  resolve the problem on behalf  of  a  person is  represented by its  couple of
perspective-heuristic (P , H ). Two people can differ in one of these components or in both;
meaning, they can have different perspectives or different heuristics, or differ on both. A
solution would be the local optimum for a person if and only if when the person encodes
the problem and applies the heuristic, neither of the other solutions that the person con‐
siders has the abilities, and thus will have a few optimal locales, causing the group to be‐
come stuck with one of the solutions.

6.3. How to select the most productive work team

From an intuitive point of view, the conclusion that diverse groups in identity can surpass
groups that are not diverse (homogeneous) due to its grand functional diversity based on
the affirmation, well reception, that if the agents inside of the groups have equal individual
ability to solve problems, a functional diverse group surpasses a homogeneous group. In
[24] it has demonstrated that groups with functional diversity tend to surpass the best indi‐
vidual agents being that the agents in the group have the same ability. This still leaves open
an important question: Can a functionally diverse group, whose members have less individ‐
ual ability, have a superior performance than the group of people that have more abilities
individually? In [10] finally resolves in a affirmative manner this question, making a mathe‐
matical demonstration to this fact. Even though certain doubts still surge in a natural man‐
ner in respect to: How many members should this group have in such a way that the
average diversity within the group be at its maximum?, and, can one detect which is the
group more functionally diverse?

This way, if considering the actual situation in which an Institution desires to hire people to
solve a problem. To realize a good selection the Institution usually gives a test to the appli‐
cants, around 500, to estimate their abilities individually to solve a problem. Supposing that
all the applicants are individually capable to solve them, then they have the formation and
experience necessary, but have different levels of ability. It is doubtful if the Institution
should hire:

i. The person with the highest score obtained on the test;

ii. The 10 people with the highest scores;

iii. 10 people selected randomly from the group of applicants;

iv. The 10 people most diverse in identity of the group of applicants;

v. The group of people most diverse on average of the group of applicants.

Ignoring the possible problems of the communication within the groups, the existing litera‐
ture suggests that (ii) is better than (i), [25],since most people will be looking in a wider
space, having then more opportunities to obtain better solutions, in place of the action of the
person graded best that will stay stuck in one of the optimal locations. Recently in [10] it has
been demonstrated formally that (iii) is better than (ii).
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In this manner, the institution fails based on the group of people with the highest scores,
meaning the most prepared individually, go on to form the best work team, and thus the
company should hire (ii), since it is demonstrated as under certain hypothesis that (iii) is
a better decision, as seen in [10]. The authors have come to determine that a team of peo‐
ple  selected randomly have more functional  diversity and under certain conditions sur‐
pass the performance of (ii).  since under the set of  conditions identified by the authors,
the functional diversity of a group of the people that are individually capable to resolve
the problem necessarily becomes smaller, which in the end, the advantage of having best
abilities  individually  is  seen  as  more  than  compensated  by  the  greater  diversity  of  the
randomly selected group.

Figure 8 shows a scheme of the problem of selecting a team, and the options considered.
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Figure 8. As the institution should hire?

Notice that the authors in the proof do not even use the equipment with the maximum di‐
versity, if not a randomly selected group, and even then are able to demonstrate that it is
better, thanks to the greater diversity inherent in the random group next to the group with
the most abilities individually. Here we prove in the corollary of the theorem 2, that if select‐
ing the group with more diversity on average, this is to say hire the group formed according
to (iv), this would result more productive than hiring than that formed randomly (iii), and,
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by transitivity, better than the group formed by the best scores (ii ) and lastly better than
simply choosing the best scored (i).

On the other hand, the literature says little or nothing at all about (v), since classically in the
problems of diversity have considered the number of elements chosen as a given value, yet
in the practice applications it is not clear how to choose the number of elements to be select‐
ed, and the best option would be to leave the process itself of optimization the one that dem‐
onstrates its value. This way, the focus of our analysis is centered on the dispute between
the importance of the abilities of the individuals of each person in the group, their functional
diversity (trapped by the diversity of identity), and the size of the ideal group.

A conclusion to all this is that the diversity in the organizations should be encouraged,
which implies new policies, organizational forms, and styles of administration. In the con‐
text of solving a problem, the value of a person depends on their ability to improve the col‐
lective decision, since the contribution of this person depends in great measure to the
perspectives and heuristics of the other people that make up the teamwork. The diversity in
the focus of the solution of the problem in respect to the other people is an important predic‐
tor of its value, and in the end can be more relevant than its individual ability to solve the
problem on its own. This was, to estimate the potential contribution of a person in team‐
work, it is more important to make an emphasis in measuring how this person thinks differ‐
ently, before estimating the magnitude of the ability of the person from aptitude tests or
intelligence tests.

Although one has to be more conscious of some aspects that have not been considered and
that can have influence in the performance of a team of people. For illustration, the groups
with diversity in identity can often have more conflicts, more problems of communication,
less mutual respect and less trust amongst the members of a homogeneous groups, which
can create a diminishment of performance in diverse groups. In (16) it is mentioned that the
people with similar perspectives but with diverse heuristics can communicate with one an‐
other without any problem, but people with diverse perspectives can have problems when
comprehending the solutions identified by the other members of the group, in this sense the
best of the organizations would be to find people with similar perspectives but guarantee a
diversity of heuristics, in this manner, the organizations can exploit better the benefits of the
diversity while minimizing the costs of the lack of communication.

6.4. Basics hypothesis and relationship between ability and diversity

In this section it is stated in theorem 1, demonstrated in [10], that explains the logic behind
the fact that a team of people chosen at random, from a database of applicants that are capa‐
ble to solve problems, it is better than the team formed by the people more individually ca‐
pable, from there a result is established, that is immediate, being that the team of people
with the most diversity surpasses the team formed by the people with the most abilities for
solving problems.
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To establish a theoretic result, consider the population from where the team will be selected,
this is to say the applicants, represented with con Φ with to satisfy the following suppositions

• The applicants are trained to solve the problem. Given the initial solution, the applicants
can find a better solution, even if it is only a little better;

• The problem is difficult, none of the applicants can find the optimal solution always;

• The applicants are diverse, and therefore for any potential solution that is not the optimal,
at least one applicant can find the best solution;

• The best applicant is the only one.

If we consider a team of applicants chosen randomly from Φ to according to some distribu‐
tion, the theorem establishes what, with probability 1, sample sizes N1 and N  exist, N1 < N ,
just like in the collective performance of the team of the N1 applicants chosen at random
surpasses the collective performance of the N1 best applicants.

To formulate the theorem 1 more precisely, consider X  the solution set of the problem, a
function that gives the value of each solution V : X → 0,1 , supposing as well that V it has
the only maximum x *, and that V (x *)=1. Each applicant ϕ beings from the initial solution x
and uses the search rule to find the maximum, but is not always found, if not generally gets
stuck in a local optimum, if ϕ(x) is the local optimum when the applicant ϕ starts his search
in x. This way ϕ(X ) represents the local optimal set for the applicant ϕ.

Each applicant is characterized by the pair (ϕ, ν), ), and an estimation of the performance as
the value expected of the search by treating the solving of the problem, represented by
E (V ;ϕ, ν) ; this is to say that,

E (V ;ϕ, ν)= ∑
x∈X

V (ϕ(x))ν(x)

The hypothesis should be satisfies by the applicants ϕ, with which the theorem is demon‐
strated through the following:

HYPOTHESIS 1 (Consistency):

i. ∀ x∈X :V (ϕ(x))≥V (x)

ii. ∀ x∈X :ϕ(ϕ(x))=ϕ(x)

HYPOTHESIS 2 (Difficulty):

∀ϕ∈Φ, ∃ x∈X :ϕ(x)≠ x

HYPOTHESIS 3 (Diversity):

∀ x∈X ∖ {x *}, ∃ϕ∈Φ:ϕ(x)≠ x

HYPOTHESIS 4 (Uniqueness):

arg max {E(V ;ϕ, ν) :ϕ∈Φ} is unique
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Hypothesis 1 indicates that given the initial solution the people always try to find better sol‐
utions, but never select the worst solution, and get stuck in the optimal locale. Hypothesis 2
implies that no one, individually, can reach the optimum always from any point. In hypoth‐
esis 3, it is established in a simple manner that the essence of diversity, when a person is
stuck in an local optimum always has someone that can find the best due to a different fo‐
cus. Hypothesis 4 establishes that within the set of applicants considering that a better
unique performance exists. With these hypotheses, the theorem 1 is proved in [10].

THEOREM 1: Being Φ a set of people that satisfy the hypothesis 1–4. And being μ his prob‐
ability distribution. Then, with probability 1, positive integers N  y N1, N > N1 , just like the
performance of the set of N1 people selected at random surpasses the performance of the set
of the N1 individually more capable, taken from the group of N  people independently chos‐
en according to μ.

The theorem shows that a randomly selected group works better than a group formed for
the better, is an immediate extender of the results as presented in the following corollary,
which is demonstrated here, in which it is established more directly in relation between the
diversity and ability.

COROLLARY: If Φ is a set of people that satisfy the hypothesis of the theorem 1, then, with
probability 1, positive integers N  and N1, N > N1 exist and that which the performance of
the set of the group of N1 people that maximize {div(M ),  M ⊂Φ,  |M |= N1} exceeds the
overall performance of the N1 people individually more capable, taken of the group of N
people independently chosen according to μ.

Proof:

The proof is immediate, since the theorem is based that the diversity of the set of people ran‐
domly selected is more diverse than the set of people with the most individual abilities. This
way, if selecting the group of people most diverse, helps this surpass the performance of the
group of people selected randomly, due to the major diversity of the first, and for theorem 1,
this last group surpasses the performance of the group formed by the people with more abil‐
ities individually. It continues as transitivity the result that is shown in the corollary.

6.5. Resolution of a case study

Finally, we apply the method solving a real instance. In particular we apply them to obtain a
diverse assembly of professors from a set of n=586 in the ESPOL University at Guayaquil
(Ecuador). For each professor, we record 7 attributes (tenure position, gender, academic de‐
gree, research level, background, salary level, and department), and the similarity measure
between each pair of them is computed with the modified difference measure described in
the equation 3. The solution obtained with our GRASP+PR method in 127.1 seconds has 90
professors and a similarity value of 1.11. Table 4 it is shown that the results detailed and
each one of the 10 trials.
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TRIAL
GRASP+PR GRASP

CPU time Value m CPU time Value m

1 127.094 1.11542 101 116.631 1.09397 90

2 125.081 1.11393 100 113.7384 1.09487 96

3 120.028 1.10484 96 111.7161 1.07699 86

4 115.622 1.10311 92 113.4575 1.09058 88

5 114.616 1.10251 94 119.4957 1.09844 101

6 139.309 1.10811 96 126.6417 1.08316 95

7 123.162 1.12293 100 128.5092 1.03239 86

8 134.082 1.12600 100 119.378 1.05797 92

9 125.688 1.12033 101 109.6741 1.07982 97

10 134.566 1.11090 97 101.3805 1.05701 107

MEAN 125.9248 1.11281 97.7 116.06222 1.07652 93.8

Table 4. Average results about the 10 successive runs

7. Conclusions

The main result of this paper provides conditions under which, a diverse group of people
will outperform a group of the best. Our result provides insights into the trade-off between
diversity and ability. An ideal work team would contain high-ability problem solvers who
are diverse.

According to our approach, the problem of designing the most efficient work team is equiv‐
alent to the maximum diversity problem, wich is a computationally difficult, In particular
we study the solution of the Max-Mean model that arises in the context of equitable disper‐
sion problems. It has served us well as test case for a few new search strategies that we are
proposing. In particular, we tested a GRASP constructive algorithm based on a non-stand‐
ard combination of greediness and randomization, a local search strategy based on the vari‐
able neighborhood descent methodology, which includes three different neighborhoods,
and a path relinking post-processing.

We performed extensive computational experiments to first study the effect of changes in
critical search elements and then to compare the efficiency of our proposal with previous
solution procedures.

The principles of the proposed equity measure can be applied to solve the problem of select‐
ing efficient work teams. Therefore, more research is necessary in this area, especially to
solve the subproblem to measure diversity. The results from a comparative study carried
out with the other algorithms favor the procedure that we proposed, also is able to solve
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large instances. The focus of our future research will be on the development of multi-objec‐
tive optimization that attempts to balance efficiency or ability and diversity, namely a study
on the selection of the best and most diverse, which gives a flexible and interactive way for
decision makers to make the tradeoff between ability and diversity.
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