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1. Introduction 

Inulin is a generic term applied to heterogeneous blends of fructo-oligosaccharides [1] 

which are reserve carbohydrate sources present in many plant foods such as bananas, 

onions, garlic, leeks, artichokes and chicory, which represents the main commercial source. 

This polysaccharide has a wide range of both, nutritional and technological applications. 

Nutritionally, inulin is regarded as a soluble fiber which promotes the growth of intestinal 

bacteria, acting as a prebiotic. Also, is a non-digestible carbohydrate with minimal impact on 

blood sugar and unlike fructose, it is not insulemic and does not raise triglycerides being 

generally considered suitable for diabetics and potentially helpful in managing blood sugar-

related illnesses [2-4]. Among the technological benefits, inulin is used as fat and sugar 

replacement, low caloric bulking agent, texturing and water-binding agent [5,6]. One 

general property of the saccharides is the stabilization of proteins by their incorporation into 

carbohydrate solutions before freeze-drying being this a known preservation procedure [7-

10]. The previous incorporation of saccharide promotes the formation of amorphous, glassy 

systems, inhibits crystallization and influences the kinetics of deteriorative reactions upon 

storage by which its structured integrity is maintained [8,9,11,12]. To act successfully as a 

protectant, the saccharides should have a high glass transition temperature (Tg), a poor 

hygroscopicity, a low crystallization rate, containing no reducing groups. When freeze-

drying is envisaged as a method of drying, a relatively high T´g of the freeze concentrated 

fraction is preferable. Previous studies demonstrated that inulin meets these requirements 

being excellent protector of therapeutical proteins and viruses over the drying and storage 

processes [13,14].  

The protein preserved by freeze-drying simplifies aseptic handling and enhances stability of 

protein products, with limited shelf lives in solution, by obtaining a dry powder without 

excessive heating. However, during the freeze-drying process the protein may lose its 
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activity and must be protected from conformational changes or denaturation [11,15]. The 

stabilization of proteins conferred by saccharides during freeze- drying has been explained 

by several mechanisms. First, replacing the hydrogen bonding between water and protein 

stabilizes the protein during drying processes, and second, the formation of a glass matrix 

where the protein is encapsulated avoiding its unfolding and thus preserving its 

conformation during freeze-drying [8,12,16-18]. Therefore, through the correct selection of 

the saccharide it is possible to improve the stability of proteins through their encapsulation 

in a glassy matrix, where molecular mobility is quite limited so that the rates of diffusion-

controlled reactions, like protein unfolding or protein aggregation, are reduced [16,19,20].  

Information about the energy of a protein can be obtained by means of thermal denaturation 

studies, allowing the characterization of their behavior during freeze-drying cycle. 

Differential scanning calorimetry (DSC) is one of the most useful methods for assessing 

protein thermal behavior and to obtain thermodynamic parameters of folding-unfolding 

transitions [21]. 

During the freeze-drying of a protein solution with or without saccharides to protect the 

structure, the primary drying is the most time consuming stage of the process. It should be 

carry out at the maximum allowable temperature usually associated to the glass transition 

temperature of the maximally freeze concentrate solution (T´g). Below this temperature a 

glassy state that behaves as an amorphous solid is obtained. If the temperature of the frozen 

system rises above the T´g, the material becomes less viscous and freeze-drying may cause 

the loss of the porous structure and the product collapse [20,22,23]. In the freeze-dried 

sample, water is removed and the solute concentration in the matrix increases, obtaining a 

material with an amorphous structure that exhibits a glass-rubber transition at a specific 

temperature which is named as the glass transition temperature (Tg) [24-28]. It is noteworthy 

that amorphous materials are stable in the glassy state below Tg, when the temperature is 

higher the viscosity decreases and thus the rate of chemical reactions increases and 

crystallization events occur, increasing the rate of deterioration during storage [22,25,27-29]. 

Both transitions T´g and Tg are important parameters in the development of the freeze-

drying cycle because not only ensures the stability and quality of the product, but also allow 

to improve the efficiency of the manufacturing process [20,22,28,30]. 

A diagram of phases for the water-saccharide system is shown in Figure 1. The curve of the 

freezing temperature separates the zones corresponding to the liquid and the solid (ice) 

solution phases. In fact, this procedure is aimed at obtaining a glassy system at room 

temperature as indicated in D. To get to this state, the freeze-dried process indicated by the 

curve A-B-C-D-E is carried out. The curve for the glass transition temperature (Tg) is reached 

when the solution is overcooled (B-C) until the T´g in point C, where the concentration of the 

vitrification agent (saccharide) is given by C´g. Then the water is eliminated and the solute 

concentration increases (C-D-E), obtaining a solid with an amorphous structure that exhibits 

a glass transition temperature (Tg) [22,28].  

Therefore, the determination of the freeze-drying cycle is important because of physical 

changes that occur in the solution during the process, its study can be applied to improve 

processability, quality, and stability of the product during storage [29].  
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Figure 1. Phases diagram of the water–saccharide system. The curve A-B-C-D-E indicated the freeze-

dried process. (Tf = freezing temperature; Tg= glass transition temperature; T´g= glass transition 

temperature of the overcooling solution; C´g = saccharide concentration) 

Although many authors reported the use of saccharides as cryoprotectants of proteins and 

inulin as a good protector agent of some compounds, the present study is an attempt to 

evaluate inulin as cryoprotector of food proteins such as bovine plasma proteins, taking 

profit of the nutritional and technological benefit of the polysaccharide. Also there is a 

limited amount of data on glass transition temperatures for multicomponent mixtures and 

on the comparison of experimental and predicted values for such mixtures [28]. Then, the 

purposes of this study were i) to investigate the transition temperatures and the thermal 

denaturation of bovine plasma proteins stabilized with inulin in a glassy matrix in 

comparison  to the effect of a monosaccharide (glucose) and a disaccharide (sucrose) at 

different concentrations using DSC, ii) to compare the quality, performance and storage 

conditions of these products.  

The glass transition temperatures of the maximally concentrated frozen solutions (T´g) were 

analyzed and compared to the experimental results by applying the predictive equations of 

Miller/Fox and Gordon/Taylor extended for multi-component systems. The glass transition 

(Tg) of the freeze dried multi-component mixtures, the onset crystallization temperature (Tc) 

of the solute at temperatures above Tg, in the freeze dried samples were determined. 

Furthermore, the kinetics of the denaturation and the thermal denaturation (Td) of the 

freeze-dried samples, at different DSC scan rates, protein concentrations and pH, were 

analyzed and the thermodynamic compatibility of the different matrix components were 

determined. The enthalpy of change involved in the denaturation reactions of proteins (H) 

was also determined. A kinetic model that describes bovine plasma proteins denaturation 

was proposed.  

2. Materials and methods 

2.1. Raw materials 

The inulin used as cryoprotectant is mainly constituted by linear chains of fructose, with a 

glucose terminal unit, and has a molecular weight of 2400 g/mol. The commercial product 
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was provided by Orafti Chile S.A. and was obtained from chicory. The other saccharides 

employed to compare their performance were: i) a monosaccharide, glucose (Parafarn, 

Argentine), with a purity of 99.99% and ii) a disaccharide, commercial sucrose (Ledesma 

S.A., Argentine).  

The protein used in the study was spray dried bovine plasma (Yerubá S.A. Argentine). The 

molecular weights of the proteins were in the range of 15.000 to 80.000 Da. The composition 

was 76±5% proteins, <0.1% fat, 10% ash, 4% water, 1% low molecular weight compounds. 

2.2. Preparation of Protein/carbohydrate samples: Concentration of bovine 

plasma proteins through ultrafiltration and freeze-drying treatments  

The protein concentrate was obtained by means of a membrane process, which allowed 

protein concentration, eliminating insoluble macroscopic components, reducing the saline 

content [18]. The steps of the process were: i) the bovine plasma was dissolved in de-ionized 

water to a concentration of 3% w/v using a mixer at a low speed to avoid the formation of 

vortex and to minimize the appearance of foam; ii) the solution was passed through a 

porous support (Viledon FO 2431D, Germany) to remove macroscopic aggregates and 

reduce the saline content; iii) the feed solution (3 L) was thermostatized  in a water bath and 

impelled with a centrifugal pump, first through a frontal flow stainless steel filter, with a 

pore size of 60 m (Gora, Argentine) (this procedure of microfiltration (MF) reduces the 

amount of bacteria and spores and acts as cold pasteurization, moreover this stage protects 

the ultrafiltration (UF) membrane from fouling); and finally, iv) the UF was performed 

using Pellicon cassette module (Millipore, Bedford, MA, USA), containing modified 

polyethersulfone membranes with a molecular weight cut-off (MWCO) of 10 kDa, with a 

membrane area of 0.5 m2. The concentration of proteins by UF was carried out by 

continuously removing the permeate stream until the desired concentration of 4% (w/v), 

was achieved. The experimental runs were performed at a transmembrane pressure (P) of 

1.5 bar, flow rate of (2.9  0.05) L/min and a temperature of 10 °C. Additionally a 

discontinuous diafiltration (DD) process was applied to removal salts and other 

contaminant of low molecular weight. For this operation the starting solution was the UF 

concentrate, which was diluted to the initial volume (3 L) with de-ionized water in a single 

state and ultrafiltered to the desired concentration range.  

The UF membrane undergoes a fouling process during protein permeation so a cleaning 

protocol may be applied. It was performed by applying a "Cleaning in Place" (CIP) 

procedure according to the manufacturer's instructions. At the end of each run, a cycle of 

water/ alkali (NaOH, pH=12.5 ± 0.5)/ water wash was applied to the membrane at (40  2) °C 

and at a transmembrane pressure of 1 bar. Furthermore, a cleaning step using NaClO 

(commercial grade) 300 ppm was carried out at the same temperature and pressure to 

ensure sanitation and cleaning. Measurements of normalized water permeability were 

performed in order to verify recovery of flow through the membrane which ensures the 

recuperation of membrane permeability.  

The bovine plasma protein (BPP) concentrate obtained by UF (concentration: 4 % w/v) was 

fractioned:  A fraction as witness sample was reserved and the protective agent (glucose, 
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sucrose, inulin) was added to the rest, in concentrations of 5%, 10% and 15% (w/v). A part of 

these solutions was reserved for DSC analysis to determine T’g and the others were placed 

on stainless steel trays, frozen in a freezer at -40 C and freeze-dried using a lyophilizer 

(Rificor S.A., Argentine) at 1 bar for 48 h. The samples temperature was controlled by a 

temperature sensor. The denatured protein content was determined before and after the 

freeze-drying. 

2.3. Differential Scanning Calorimetry (DSC) measurements  

Determination of T´g in the protein solutions 

The solutions containing plasma proteins–saccharides mixture were analyzed to determine 

T´g at different pH values and saccharide concentrations by DSC with a Q100DTA 

Instrument (USA). The pH was adjusted using 0.1 N of NaOH and HCl. Protein concentrate 

solutions (average composition: saccharide 5% p/v - protein 4% p/v; saccharide 10% p/v - 

protein 4% p/v; saccharide 15% p/v - protein 4% p/v), (10 ± 2 mg) were weighed into 

aluminum DSC pans, hermetically sealed, and then loaded onto the DSC instrument at 

room temperature, using an empty pan as a reference. Samples Solutions were: (a) 

equilibrated at 20 °C and held for 1 min; (b) cooled at 2 °C/min until -80 °C for glucose,  -60 

°C for sucrose and -40 °C for inulin and held for 30 min; (c) warmed up to the annealing 

temperature (-50, -40 and -20 °C, for glucose, sucrose and inulin, respectively) by employing 

an annealing time of 30 min at heating rate of 2 °C/min [31]; (e) recooled at the same 

temperature of step (b) and held for 30 min; (f) warmed up to 0 °C at heating rate of 2 

°C/min. The effectiveness of the procedure was verified corroborating the absence of ice 

devitrification in thermograms, that is to say the nonexistence of an exothermic peak 

previous to the ice melting.  

Determination of Tg, Tc and Td of proteins in the freeze–dried solids 

Heat induced conformational changes on freeze-dried bovine plasma protein concentrate 

(BPP concentrate) in the amorphous carbohydrate matrix. The freeze-dried solids were 

analyzed to determine Tg, Tc and Td at different pH values and saccharide concentrations by 

DSC with a Q100DTA Instrument (USA). The pH was adjusted using 0.1 N of NaOH and 

HCl. Protein concentrates (average composition: freeze-dried with saccharide 5% (p/v) = 

saccharide 35% p/p - protein 55% p/p; freeze-dried with saccharide 10% (p/v) = saccharide 

64% p/p - protein 28% p/p; freeze-dried with saccharide 15% (p/v) = saccharide 79 % p/p - 

protein 14% p/p), (12.5 ± 2.5 mg) were weighed into aluminum DSC pans, hermetically 

sealed, and then loaded onto the DSC instrument at room temperature, using an empty pan 

as a reference.  

Freeze–dried solids were equilibrated at 0 °C, held for 1 min and then warmed up to 200 °C 

at heating rate of 2 °C/min. To check the irreversibility of the reaction of heat-induced 

conformational changes, the samples after the end of the first heating stage described before, 

were re-scanned. For this, the protein-saccharide samples were cooled to 20 °C and 

stabilized during 5 min, and then warmed up to 200°C. Samples of freeze dried bovine 

plasma protein concentrate (BPP concentrates) in the amorphous carbohydrate matrix at pH 
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8, 6 and 4, at different heating rates of 2 and 5 °C/min in the temperature range 20–200 °C 

were analyzed. The pH was adjusted using 0.1 N of NaOH and HCl. Measurements were 

carried out on three separate samples (replicates). The following parameters were calculated 

at least in triplicate: Td, at maximum heat flow, and H, the enthalpy change involved in the 

overall heat-induced reactions within the protein molecules, that was determined by 

integrating the area beneath the enthalpy peak and above a straight baseline drawn in 

between the beginning and the end of the transition temperature range [32-34]; the T´g and 

Tg were determined from the midpoint of the transition of the baseline shift on the 

amorphous sample. 

In the freeze dried samples, at temperatures above Tg, the onset crystallization temperature 

(Tc) of the added solute was determined from the intersection of the baseline and the tangent 

of the exothermic peak. The enthalpy change involved in the overall heat-induced reactions 

within the protein molecules, Hc, was determined by integrating the area beneath the 

exothermic peak and above a straight baseline drawn between the beginning and end of the 

transition temperature range [22,32,33]. 

2.4. Determination of native protein content 

The native protein content is a measure of protein functionality preservation. It was 

determined after isoelectric precipitation of denatured/aggregated protein [18,35]. 

Dispersions of protein concentrate at 1% (w/v) were adjusted to pH value inferior of the pI 

of plasma proteins ( 4.8) using 0.1 N of NaOH and HCl. An aliquot of the solution was 

centrifuged in a refrigerated ultracentrifuge (Beckman J2-HS) at 20,000 rpm 30 min at 5 ºC. 

Protein concentration in the supernatants was diluted in a dissociating buffer (EDTA 50 

mM, urea 8 M, pH= 10) and determined by molecular absorptiometry at 280 nm. The results 

were reported as percentage of the total protein concentration [36]. The percentage of native 

protein content of suspensions at pH 4.8 was obtained as the ratio between soluble protein 

(SP) and total protein (TP) contents after aggregation of denatured protein (Eq. 1). 

 %  x 100
SP

NP
TP

 
  
 

 (1) 

2.5. Scanning electron microscopy  

The microstructure of freeze-dried plasma concentrates with and without saccharides was 

analyzed by scanning electron microscopy (SEM) using an LEO1450VP equipment (Zeiss, 

Germany). Powder samples were mounted on double-sided carbon adhesive tape on 

aluminum stubs and gold-coated and processed in a standard sputter. The micrographs 

were obtained in high vacuum at 10 KeV. 

2.6. Statistical analysis 

The experimental data were statistically analyzed by the Tukey-Kramer multiple 

comparison test, in the cases where 2 or more comparisons were considered, assuming that 
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a P<0.05 was statistically significant [37]. Statistical GraphPad InStat software (1998) was 

used.  

3. Theoretical considerations 

3.1. Equations for T´g prediction 

The Miller/Fox equation can be used for the determination of T´g dependence with the 

composition in a multi-component system, assuming constant density of the solutions, 

independent of temperature [28,38,39]. For a ternary mixture (protein-saccharide-water), it 

can be written as:  

 
     

31 2

1 1 2 2 3 3

1
 

/ / /g t g t t g t t g t

mm m

T m T m T m T     
    (2) 

where Tg, glass transition temperature; m, mass; , density; the subscripts t, 1, 2, 3 mean: 

total and each pure component, respectively.  

The Gordon and Taylor equation [40] predicts the plasticizing effect of water on the Tg for a 

multicomponent system. The equation has been used among others, for systems treated as 

binary mixtures, determining experimentally the glass transition of the respective solid 

[41,42]. Instead we proposed a system considering each individual component: bovine 

protein concentrate, saccharide and water, with each corresponding property [43]:  

  
wkkww

TwkTkwTw
T

3

2

21

3g3

2

2g21g1

g 


  (3) 

where w1, w2, w3, are the weight fraction of each component defined as (mi /mt), and k is an 

empirical constant proportional to the plasticizing effect of water. This parameter was 

calculated to fit experimental data from a nonlinear optimization procedure (Gauss Newton 

procedure) using the software Excel 2003 (Microsoft).  

Eqs. (2) and (3) were used for the determination of T´g  of the frozen solutions. 

3.2. Theory of protein unfolding 

Unfolding of protein is suggested to involve at least two steps according to Lumry and 

Eyring model (1954). The first step is a reversible unfolding of the native protein (N). This is 

followed by an irreversible change of the denatured protein (D) into a final irreversible state 

(I) [44,45].  

 
1 2

1

k k

k
N D I



   (4) 

A special case was when k2k-1, where most of the D molecules will be converted to I as an 

alternative to refolding back to the native state. In this case, the denaturation process can be 

regarded as one-step process following first-order kinetics [44-46], (Eq.5). 
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k

N I  (5) 

where the first-order rate constant k can be identified with k1 of Eq. (4). The total absorbed 

heat now equals the enthalpy change from N to I; it was generally assumed that the 

enthalpy change from D to I was negligible compared to that from N to D [44].  

Experimentally, the irreversibility of unfolding was verified in a rescan. For an irreversible 

process, in the DSC rescanned thermograms no transition could be observed.  

4. Results and discussion  

4.1. Effect of saccharides on glass transition of the freeze concentrated matrix  

As was previously mentioned, to avoid collapse of the products during the freeze-dried 

process, a temperature below the glass transition temperature of the frozen concentrated 

solutions, must be attained. Inulin as protein protective agent was comparatively studied, 

employing mono and disaccharides. The thermograms of Figure 2 show the transition 

temperatures of the frozen solutions of bovine plasma with inulin compared to the other 

saccharides, obtained in a single scan.  

The result indicated that at each saccharide concentration, T´g was higher for inulin (Table 

1), suggesting that it has a greater cryostabilizing effect on bovine plasma proteins than the 

other saccharides, improving product stability. It was also observed that T´g increased with 

the molecular weight of the cryoprotectant that is: inulin > sucrose > glucose. The same 

tendency was reported previously by means of the evaluation of protein shelf life time [18]. 

By the other hand, it was reported that inulin exhibit better stabilizing properties than 

sucrose and trehalose in the prevention of the nonPEGlated lipoplexes aggregation [14]. 

Many studies concluded that transition temperatures increased with the saccharides 

molecular weight [22,23,27].For example T´g of freeze–dried surimi depended strongly on 

the type and content of sugar and at each sugar level the T´g was trehalose > sucrose > 

glucose > sorbitol [47].  

Thermograms of bovine plasma solutions revealed the existence of two glass transitions (T´g1 

and T´g2) for glucose and sucrose as protective agents, evidenced as deviations in the base 

line (indicated by arrows in Figure 1). Similar results were found by Telis and Sobral [48] 

who worked with freeze–dried tomato. This may be because the presence of phases formed 

by different proportions of saccharide, water, and proteins present in the frozen solution 

[47-49]. Also it was observed that when the saccharide concentration increased, T´g1 and T´g2 

increased and decreased respectively (Table 1). However a constant average value was 

maintained between both T´g values for each sugar, being -51.2 ± 0.8 and -41.1 ± 0.1 for 

glucose and sucrose, respectively. Similar results were found in [47] on freeze–dried surimi 

product with trehalose. For inulin only one T´g was found, which increased with the increase 

of saccharide concentration. From these results and considering that the water acts as 

plasticizer, i.e. decreases drastically T´g of food polymers [26], it can be concluded that the 

conditions of the freeze-drying process, are linked directly to T´g of the frozen solution. 
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Therefore, it is important to note that the higher value of T´g observed in frozen solutions 

with inulin, allowed higher freezing temperatures during processing reducing production 

costs. 

 

Figure 2. DSC thermograms for freeze bovine plasma protein-saccharide solutions. Down-arrows 

indicate T´g. Scan rate = 2°C/min ; pH = 8. 

 

Saccharide Concentration (%, w/v) T´g1 (°C) T´g2 (°C) Tg (°C) 

Glucose 

5 -62.50 ± 0.58a -39.24 ± 0.75a 16.31 ± 0.38a 

10 -61.06 ± 0.45a,b -39.91 ± 0.83a 41.52 ± 0.29b 

15 -59.82 ± 0.68b -44.96 ± 0.49b 60.31 ± 0.48c 

Sucrose 

5 -51.48 ± 1.05c -31.15 ± 0.40c 48.01 ± 0.56d 

10 -50.12 ± 1.03c,d -31.86 ± 0.60c 52.48 ± 0.52e 

15 -48.42 ± 0.98d -33.72 ± 0.45d 64.28 ± 0.46f 

Inulin 

5 -26.96 ± 0.68e - 48.85 ± 0.35d 

10 -23.67 ± 0.55f - 66.18 ± 0.69g 

15 -22.40 ± 0.45f - 69.25 ± 0.45h 

Table 1. Effect of type and concentration of cryoprotectant on glass transition temperature (T´g) and 

lyoprotectant on glass transition temperature (Tg) of freeze bovine plasma proteins solutions (heating 

rate: 2 °C/min). Values represents the means ± standard deviation; n = 3. Values followed by different 

letters in the same column are significantly different from each other (P < 0.05). 
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The effect of water as a plasticizer of the mixture protein-saccharide was predicted by the 

Miller/Fox and Gordon–Taylor equations, the results, were compared with experimental 

values (Table 1). The data of T´g of all pure components required for the Eq. (1) are listed in 

Table 2.  

The densities of bovine plasma proteins, glucose, sucrose and inulin (at room temperature) 

were determined with a digital densimeter, and the results were: 0.4 ± 0.08 g/cm3, 0.6 ± 0.05 

g/cm3, 0.8 ± 0.04 g/cm3 and 0.3 ± 0.05 g/cm3, respectively.  

From literature the Tg of the water is -135 °C [41] and the T´g of plasma protein is -11 ± 2 °C 

[22]. The Tg value of bovine plasma protein for Eq. (3), was 65 ± 3 °C. Entering this data into 

Eqs. (2) and (4), the predicted values of T´g were obtained, which are listed in Table 3. The 

results showed that the glass transition property evaluated from the proposed models was 

in agreement with the experimental data with an average error of 4.86% for the Miller/ Fox 

equation and 0.09% for Gordon/Taylor equation. The value of k from the Gordon/Taylor 

equation is defined as the resistance to a T´g decrease induced by the plasticizing effect of 

water [26,41,47]. The order found for k value of the saccharides was: inulin > sucrose > 

glucose. Although the highest value of k is for inulin, this saccharide has the highest Tg 

value, allowing a greater value T´g and therefore generating a lower cost during processing, 

preventing also the collapse of the product at temperatures relatively higher during the 

freeze-drying.  

 

Saccharide 
T´g (°C) 

5 % (w/v) 10% (w/v) 15 % (w/v) 

Glucose -85 -79 -72 

Sucrose -59 -53 -46 

Inulin -17 -15 -13 

Table 2. Data from references used in the calculation of T´g by Miller/Fox and Gordon/Taylor modified 

equation [18]. 

 

 
Glucose %(w/v) Sucrose %(w/v) Inulin %(w/v) 

5 10 15 5 10 15 5 10 15 

* (g cm-3) 1.039 1.042 1.059 1.033 1.041 1.056 1.032 1.039 1.049 

Tg´ (°C) 

(Miller/Fox) 
-63.99 -60.46 -56.1 -54.07 -51.24 -47.04 -30.43 -23.64 -19.51 

Difference (%) 2.32 0.99 6.63 4.79 2.18 2.95 11.40 0.12 14.8 

Tg´ (°C) (Gordon/ 

Taylor modified) 
-62.69 -61.26 -60.03 -51.38 -50.58 -48.47 -26.70 -24.23 -22.11 

Difference (%) 0.30 0.33 0.35 0.19 0.91 0.10 0.97 2.31 1.31 

k 3.5 4.1 4.5 

Table 3. Glass transition parameters for the multicomponent system: plasma bovine proteins-

saccharides-water. *: solution density (T=19.8°C) 
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4.2. Effect of saccharides on glass transition of the freeze-dried samples 

The storage temperature of frozen or freeze-dried foods should be below the glass transition 

temperature as previously established [22,27,42,50]. Figure 3 shows the thermograms of the 

freeze-dried samples containing inulin compared with glucose and sucrose at different 

concentrations. The existence of these transitions evidenced the glassy state of the freeze–

dried plasma protein/saccharides mixtures. Besides, Table 1 shows that Tg of the sample 

increases with increasing saccharide concentration. Similar results were found in the 

references [28,30]. This effect can be explained considering that sugar forms hydrogen–

bridge bonds with proteins reducing the available volume for the interaction with water 

molecules, so water become less effective as plasticizer with an increase in saccharide 

content [51]. Also was observed that Tg of the freeze-dried samples increased with 

increasing of the molecular weight of the cryoprotectant. Processes of devitrification and 

hence product spoilage can occur if the temperature of storage is higher than the Tg of the 

sample. Therefore, the higher Tg value of inulin provides greater stability at higher 

temperatures, reducing the storage costs. 

 

 

Figure 3. DSC thermograms for freeze–dried bovine plasma protein–saccharide mixtures. Down-

arrows indicate Tg. Heating rate: 2°C min-1; pH=8 
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4.3. Effect of saccharides on crystallization temperature of the freeze-dried 

samples 

It is important to determine the crystallization temperature (Tc) of the freeze-dried samples 

since crystallization causes the most drastic changes on physical properties of food polymers 

and affects considerably food stability. The glass transition is often followed by 

crystallization of the solutes where the molecular mobility increases and the sample 

crystallizes increasing the rate of food spoilage [27,28,30].  

Fig 4 shows the crystallization temperature (Tc) obtained from the intersection of the baseline 

and the tangent of the exothermic peak, and the crystallization enthalpy (Hc) estimated as the 

area under the peak for the different protective agents at different concentrations. The 

crystallization temperature of freeze-dried samples was found to depend on the molecular 

weight and the saccharide concentration [27,30]. Therefore, the results showed that the 

presence of inulin at the same concentration than the other saccharides further increases the Tc 

value of freeze–dried solutions. Mixtures containing a saccharide concentration of 10 % (w/v) 

show an increase of Hc, indicating a higher amorphous content. This behavior can be 

explained considering that a suitable proportion of saccharide and protein in the mixture 

allows a better interaction among these components [51,52,43]. 

 

Figure 4. DSC thermogram for freeze-dried bovine plasma protein with the protective agents at 

different concentrations. The exothermic event indicates Tc. Heating rate: 2°C min-1; pH=8. 
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4.4. Thermal denaturation of BPP in a matrix of saccharide 

4.4.1. Effect of saccharide type and concentration  

The thermal stability of BPP in a matrix of inulin compared with other saccharides was 

investigated using DSC. Table 4 shows the values of Td obtained for BPP concentrate 

without protective agents and in different matrixes of glucose, sucrose and inulin at 

different concentrations. The value of Td for BPP concentrate (88.19 ± 1.87 °C), was 

obtained from thermograms without protective agent and was similar to that reported in 

reference [53], for blood plasma. Comparing this value with the protein sample immersed 

in a matrix of saccharide, it was observed an increase in the value of Td in all the cases, 

indicating a higher thermal resistance due to the stabilizing effect of saccharides. A 

similar behavior was observed in the DSC study of whey protein concentrates with the 

addition of honey [54]. Evaluating among the saccharides at the same concentration, it can 

be concluded that the higher the molecular weight of the carbohydrate, the higher was the 

Td, thus inulin > sucrose > glucose. This behavior was in agreement with that reported in 

[55], in multi-block copolymers. With respect to the range of saccharide concentrations 

studied, optimum concentration was 10% (w/v), as it is shown in Table 4, in terms of the 

values of Td and H. 

 

Saccharide Concentration (%, w/v) Td (°C) H (J g-1) 

Glucose 

5 

110.07  1.22a 0.84  0.32a 

Sucrose 132.78  2.12b 5.08  0.98b,c 

Inulin 143.81  0.89c 2.97  0.55a,d,c 

Glucose 

10 

107.27  0.85a,d 12.26  0.92e 

Sucrose 144.95  2.34c 22.40  1.23 

Inulin 156.21  1.12e 12.22  1.43e 

Glucose 

15 

104.91  0.89d 3.77  0.98d,f 

Sucrose 126.66  1.54f 7.01  1.22b 

Inulin 132.57  1.34b 5.78  0.76b,f,c 

Table 4. Effect of saccharide concentration on the denaturation temperature of freeze dried BPP 

concentrate. Heating rate: 2°C min-1. pH=8. Values followed by different letters in the same column are 

significantly different from each other (P < 0.05). 

The functional structure of a protein in solution is determined by electrostatic forces, hydrogen 

bonds, Van der Waals interactions and hydrophobic interactions. All these interactions are 

influenced by water, becoming essential for the functional unfolding of most of the proteins. 

As water is eliminated during freeze-drying, peptide-peptide interactions prevail causing an 

alteration in the secondary, tertiary or quaternary structure of the protein, i.e. a conformational 

change of it. However, the presence of sugar displaces and supplants water forming hydrogen 

bonds with the dry protein which maintains its structured integrity into the glass matrix. In the 

case that the formation of the glass structure did not occur, the sugar would be excluded and it 

would not be available for the formation of hydrogen bonds to protect the dry protein from its 

unfolding or loss of conformation [13,14].  
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The protective effect of saccharides depends on its concentration, since as the concentration 

increases there are more possibilities of forming hydrogen bonds with the protein [11,18]. 

However, when concentrations were higher than 10 % (w/v), a lower protection was 

obtained. This result can be explained taking into account that at high concentrations, the 

saccharide starts to crystallize during freeze-drying, being prevented the formation of 

hydrogen bonds with the dry protein [12]. This behavior was confirmed by determination of 

the native proteins in the protein-saccharide matrixes employing eq. (1). The results are 

presented in Figure 5, which shows that there is a maximum at a concentration of 10% (w/v) 

for the different saccharides analyzed, indicating higher protein protection and stability. 

 

Figure 5. Native protein percentage of freeze dried BPP concentrate with different protective agents at 

different concentrations.  

4.4.2. Effect of pH 

To determine the application of these formulations is important to know the variation of Td 

as a function of pH due to the wide range of environmental conditions existing in food. 

Table 5 shows the Td values of BPP concentrate in a glassy matrix of saccharides at different 

pH values.  

 

Saccharide pH Td (°C) H (J g-1) 

Glucose 

8 

107.27  0.85a 12.26  0.82a 

Sucrose 144.95  1.34b 22.40  0.97b 

Inulin 156.21  1.12c 12.22  0.55a 

Glucose 

6 

102.94  1.33d 34.74  0.92c 

Sucrose 134.56  2.16e 43.15  1.23d 

Inulin 152.98  1.52c,f 42.95  1.45d 

Glucose 

4 

101.74  1.27d 9.58  0.98a,e 

Sucrose 107.67  1.56a 9.32  0.72e 

Inulin 151.84  1.89f 9.35  0.96e 

Table 5. Effect of pH and addition of saccharides on the denaturation temperature of BPP concentrate. 

Heating rate: 2°C/min. Values represents the means ± standard deviation; n = 3. Values followed by 

different letters in the same column are significantly different from each other (P< 0.05). 



 
Calorimetric Study of Inulin as Cryo- and Lyoprotector of Bovine Plasma Proteins 211 

With increasing alkalinity of the medium there is an increase in the values of Td for each 

saccharide (pH 8), indicating that BPP concentrate was more stable at higher pH. Similar 

results were found in previous works in porcine blood plasma proteins and whey protein 

concentrate [34,54]. Comparing between different saccharides at the same concentration, it 

can be seen that inulin presents a higher Td in all the pH range. The maximum H values 

were observed at pH 6 indicating a higher amount of native protein. Similar H values at 

pH = 6 were reported by Dàvila in reference [34]. The lowest values of Td and H were 

found at pH 4, this may be to the proximity with the isoelectric point of proteins (pI: 4.8-5.8), 

thus decreasing the electrical net charge and facilitating aggregation reactions.  

4.4.3. Effect of scanning rate  

The protein-saccharide mixtures were studied at different scanning rates (2 °C/min and 5 

°C/min). As an example Figure 6 shows the transition temperature and enthalpy for sucrose 

at 10 % (w/v).  

 

Figure 6. Effect of DSC heating rate on Td values of freeze-dried BBP with sucrose 10%(w/v).  

It was found for all the saccharides that Td and H are scanning rate dependent. Td values 

increased 5  2 °C in all the samples with increasing scanning rate, similar behavior was 

reported in references [56-58]. Furthermore, the H decreased ( 10%) with increasing 

scanning rate that was in agreement with the results reported in references [21,59]. Thus, the 

system was scanning rate dependent and so the thermal denaturation process was under 

kinetic control [33,44]. 

4.4.4. Study of Irreversibility of the Thermal Denaturation of BPP 

The irreversibility of BPP denaturation was investigated by a multiple reheating experiment, 

according to the method proposed by by Idakieva and Michnik [45,60]. From the initial DSC 

scan, we have determined the values of the transition temperatures at 107°C, 145 °C and 156 

°C for glucose, sucrose and inulin at 10% w/v, respectively (Table 5). DSC tests were carried 

out as successive scans, where the heating was carried out up to different final 

temperatures, with a cooling up to 20°C between scans (Figure 7).  
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For glucose, sucrose and inulin, the first heating was carried out up to 75°C, and 85°C 

(temperatures below the Td for all the saccharides), respectively; no thermal effect was 

observed in the thermal denaturation peak during the reheating experiment. However, if the 

rescanning was stopped over their transition temperatures, the endothermic peak of Td 

disappeared completely. Therefore, the endothermic peak of Td disappeared completely 

upon rescanning the sample at temperatures above Td; furthermore, as was previously 

described, the thermograms were scanning-rate dependent, suggesting both results that it 

was an irreversible event [61]. Similar behavior was also found for whey protein in an 

amorphous carbohydrate matrix [49], porcine blood plasma proteins [34] and BSA [33]. 

Irreversible denaturation of bovine plasma proteins might be due to processes such as 

aggregation, where hydrophobic interactions occur, and exposed thiol groups can form 

disulfide bonds, which result in an irreversible behavior [33]. Considering the Arrhenius 

law and the treatment developed in reference [43], the determination of the activation 

energy can be achieved from the experimental data. The obtained values were: 10443 J mol-1, 

for BPP without protective agent; 27216 J mol-1, 32058 J mol-1 and 42099 J mol-1 for BPP with 

glucose, sucrose and inulin, respectively, all of them at 10% (w/v). The results showed that  

 

Figure 7. DSC thermograms of freeze dried BPP concentrate with saccharide at 10 % (w/v). DSC scans 

(2), (3), (4) represent thermograms from repeated heating and subsequent cooling. Scan (1) is a full scan 

to 120 °C (glucose), 155°C (sucrose) and 158 °C (inulin).  
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with the addition of protective agents the activation energy increased; besides with 

increasing molecular weight, the activation energy also increased. Therefore, the addition of 

saccharides, especially of inulin caused a decrease in the rate of degradation reactions, 

obtaining a higher stabilization upon storage [8,14,18]. 

4.4.5. Study of the blends morphology through SEM  

Figure 8 sowed the SEM micrographs of blends of protein-saccharides.  

 

 

 

Figure 8. Scanning electron micrographs of the freeze-dried product with different saccharides, with a 

magnification of 200X for glucose and sucrose, 300X for inulin. 

It was observed phases homogeneously distributed, indicating miscibility of the component 

in the matrix. The shapes were uniform, which was an attribute, linked with 

thermodynamic compatibility [62]. Based on the data previously obtained, comparing the 

transitions of the blends with respect to the value of the individual components, showed an 
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increase in the value Td. This increase in the Td values can be attributed to greater miscibility 

of the components of the mixtures, confirming what was observed in the micrographs [61]. 

Therefore, these results are in agreement with the concept of miscibility, which is based on 

the variation of the thermal behavior with respect to the individual materials [63]. 

5. Conclusions 

The thermodynamic properties of the solution and the freeze–dried bovine plasma proteins–

saccharides mixtures were investigated in this study. The DSC thermograms demonstrated 

that the bovine plasma proteins– inulin mixtures have the highest glass transition 

temperature for the protein solution and also the highest glass transition and denaturation 

temperature for the freeze–dried powder, optimizing the freeze–drying process and also 

stabilizing and protecting the proteins during storage in conditions below the collapse 

temperature of the material. Thermograms revealed the existence of two glass transitions in 

solutions (T´g1 and T´g2) for glucose and sucrose. With increasing saccharide content, the T´g1 

and T´g2 of the samples increased and decreased, respectively. For inulin only one T´g was 

found, which increased with saccharide concentration. Also was found that T´g, Tg and Tc 

depended on the molecular weight of saccharides, increasing with the increasing of 

molecular weight, being inulin > sucrose > glucose. The proposed model allowed the 

prediction of transition temperature in a multicomponent mixture which is useful to design 

a freeze–drying cycle and storage stability of plasma protein concentrates. The addition of 

saccharides allowed the increase of the protein denaturation temperature and enthalpy, 

with an optimal saccharide concentration of 10% (w/v) and a pH range between 6 and 8. 

This change in the thermal properties shows a greater compatibility of the blends with 10% 

(w/v) saccharide, because this concentration causes the greatest changes in the values of Td 

when compared with individual values of BPP. The results were corroborated by the SEM 

micrographs, showing homogeneously distributed phases, and denoting the highest 

miscibility between them. The temperature of thermal denaturation was scan rate 

dependent, and no thermal transition was detected in the re-scan experiments so it was 

concluded that the protein unfolding was irreversible and was adequately interpreted by 

the theoretical model employed. 

Therefore, the results showed highest values of Tg and Td in the freeze–dried samples of inulin 

proven that this compound is a better protein protective agent during storage than mono and 

disaccharides such as glucose and sucrose. In this way prevent the unfolding of bovine plasma 

proteins submitted to higher temperatures. Furthermore, the higher T´g of frozen solutions of 

bovine proteins with inulin allows higher freezer temperatures during freeze–drying, reducing 

costs in a food elaboration. The finding about the inulin cryoprotant role of food proteins is 

relevant considering that it is a soluble fiber, categorized as a prebiotic, and being a valuable 

alternative as a functional ingredient for food formulation [64,65]. 

The findings regarding the protective effect of inulin on bovine plasma proteins, suggest 

that may be interesting the study of the behavior of formulated foods elaborated with the 

analyzed matrices (protein-saccharide-water) exposed to treatments such as cooling and 

freeze-drying. 



 
Calorimetric Study of Inulin as Cryo- and Lyoprotector of Bovine Plasma Proteins 215 

Author details 

Laura T. Rodriguez Furlán, Antonio Pérez Padilla and Mercedes E. Campderrós* 

Research Institute of Chemical Technology (INTEQUI –CONICET-CCT San Luis), Faculty of 

Chemistry, Biochemistry and Pharmacy, UNSL, San Luis, Argentine 

Javier Lecot and Noemi E. Zaritzky 

Research and Development in Food Cryotechnology Centre (CIDCA- CONICET- CCT La Plata), 

Argentine 

Noemi E. Zaritzky 

Faculty of Engineering, UNLP, La Plata, Bs As, Argentine 

6. References 

[1] Niness K R (1999) Inulin and Oligofructose: What Are They? J. nutr. 129 (7): 1402-1406. 

[2] Abrams S, Griffin I, Hawthorne K, Liang L, Gunn S, Darlington G, Ellis K A (2005) 

Combination of Prebiotic Short- and Long-chain Inulin-type Fructans Enhances 

Calcium Absorption and Bone Mineralization in Young Adolescents. Am. j. clin. nutr. 

82: 471-476.  

[3] Hempel S, Jacob A, Rohm H (2007) Influence of Inulin Modification and Flour Type on 

the Sensory Quality of Prebiotic Wafer Crackers. Eur. food res. technol. 224: 335-341. 

[4] Nazzaro F, Fratianni F, Coppola R, Sada A, Pierangelo O (2009) Fermentative Ability of 

Alginate-prebiotic Encapsulated Lactobacillus Acidophilus and Survival under 

Simulated Gastrointestinal Conditions. J. funct. food 1(3): 319-323. 

[5] Kip P, Meyer D, Jellema R H (2006) Inulins Improve Sensory and Textural Properties of 

Low-Fat Yoghurts. Int. dairy j. 16: 1098–1103. 

[6] Ronkart S N, Paquot M, Fougnies C, Deroanne C, Blecker C S (2009) Effect of Water 

Uptake on Amorphous Inulin Properties. Food hydrocolloid 23: 922–927. 

[7] Baeza R I, Pilosof A M R (2002) Calorimetric Studies of Thermal Denaturation of b-

Lactoglobulin in the Presence of Polysaccharides. Lebensm.-wiss. technol. 35: 393–399. 

[8] Buera P, Schebor C, Elizalde B (2005) Effects of Carbohydrate Crystallization on 

Stability of Dehydrated Foods and Ingredient Formulations. J. food eng. 67: 157-165. 

[9] Claude J, Ubbink J (2006) Thermal Degradation of Carbohydrate Polymers in 

Amorphous States: A Physical Study Including Colorimetry. Food chem. 96: 402-410.  

[10] Santivarangkna C, Higl B, Foerst P (2008) Protection Mechanisms of Sugars During 

Different Stages of Preparation Process of Dried Lactic Acid Starter Cultures. Food 

microbiol. 25: 429-441.  

[11] Allison S D, Chang B, Randolph T W, Carpenter J F (1999) Hydrogen Bonding Between 

Sugar and Protein is Responsible for Inhibition of Dehydration-Induced Protein 

Unfolding. Biochem. biophys. 365: 289-298.  

[12] Carpenter J F, Crowe L M, Crowe J H (1987) Stabilization of Phosphofructokinase with 

Sugars during Freeze-drying: Characterization of Enhanced Protection in the Presence 

of Divalent Cations. Biochim. biophys. acta 923(1): 109-115. 

                                                                 
* Corresponding Author 



Applications of Calorimetry in a Wide Context –  
Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry 216 

[13] Hinrichs W L J, Prinsen M G, Frijlink H W (2001) Inulin Glasses for the Stabilization of 

Therapeutic Proteins. Int. j. pharmaceut. 215: 163–174. 

[14] Hinrichs W L J, Sanders N N, De Smedt S C, Demeester J, Frijlink H W (2005) Inulin is a 

Promising Cryo- and Lyoprotectant for PEGylated Lipoplexes. J. control. release 103: 

465-479.  

[15] Rey Cabinet L, d'Etudes L, Switzerland J C (2004) Freeze Drying/lyophilization of 

Pharmaceutical and Biological Products. Maryland, U.S.A: Center for Biologics 

Evaluation and Research Food and Drug Administration. 

[16] Liao Y H, Brown M B, Martin G P (2004) Investigation of the Stabilization of Freeze–

dried Lysozyme and the Physical Properties of the Formulations. Eur j. pharm. 

Biopharm. 58: 15–24. 

[17] Minson E I, Fennema O, Amundson C H (2006) Efficacy of Various Carbohydrates as 

Cryoprotectants for Casein in Skim Milk. J. food sci. 46(5): 1597-1602.  

[18] Rodriguez Furlán L T, Pérez Padilla A, Campderrós M (2010) Inulin Like Lyoprotectant 

of Bovine Plasma Proteins Concentrated by Ultrafiltration. Food res. int. 43: 788-796.  

[19] Costantino H R, Curley J G, Wu S, Hsu C C (1998) Water Sorption Behavior of 

Lyophilized Protein–sugar Systems and Implications for Solid-state Interactions. Int. j. 

pharm. 166: 211–221. 

[20] Passot S, Fonseca F, Alarcon-Lorca M, Rolland D, Marin M (2005) Physical 

Characterization of Formulations for the Development of Two Stable Freeze–dried 

Proteins During Both Dried and Liquid Storage. Eur. j. pharm. biopharm. 60: 335–348. 

[21] Guzzi R, Sportelli L, Sato K, Cannistraro S, Dennison C (2008) Thermal Unfolding 

Studies of a Phytocyanin. Biochim. biophys. acta 1784: 1997-2003.  

[22] Chen T, Oakley D M (1995) Thermal Analysis of Proteins of Pharmaceutical Interest. 

Thermochim. acta 248: 229–244. 

[23] Schenz T W (1995) Glass Transitions and Product Stability–an Overview. Food 

hydrocolloid 9(4): 307–315. 

[24] Ahmed J, Prabhu S T, Raghavan G S V, Ngadi M. (2007) Physico-chemical, Rheological, 

Calorimetric and Dielectric Behavior of Selected Indian Honey. J. food eng. 79: 1207-1213.  

[25] Gallegos Infante J A, Ochoa Martínez L A, Ortiz Corral C (2005) Glass Transition 

Temperature Behavior of a Model Blend of Carbohydrates. Cien. Tecnolog. Alimen. 5: 

6–10. 

[26] Noel T R, Parker R, Ring S G, Tatham A S (1995) The Glass-transition Behaviour of 

Wheat Gluten Proteins. Int j. boil. macromol. 17 (2): 81–85. 

[27] Roos Y (1995) Characterization of Food Polymers using State Diagrams. J. food eng. 24: 

339–360. 

[28] Shah B N, Schall C A (2006) Measurement and Modeling of the Glass Transition 

Temperatures of Multi-component Solutions. Thermochim. acta 443: 78– 86. 

[29] Katkov I I, Levine F (2004) Prediction of the Glass Transition Temperature of Water 

Solutions: Comparison of Different Models. Cryobiology 49: 62–82. 

[30] Tattini Jr V, Parra D F, Polakiewicz B, Pitombo R N M (2005) Effect of Lyophilization on 

the Structure and Phase Changes of PEGylated-bovine Serum Albumin. Int. j. pharm. 

304: 124–134. 



 
Calorimetric Study of Inulin as Cryo- and Lyoprotector of Bovine Plasma Proteins 217 

[31] Sunooj K V, Radhakrishna K, George J, Bawa A S (2009) Factors Influencing the 

Calorimetric Determination of Glass Transition Temperature in Foods: a Case Study 

Using Chicken and Mutton. J. food eng. 91: 347–352. 

[32] Akköse A, Aktas N (2008) Determination of Glass Transition Temperature of Beef and 

Effects of Various Cryoprotective Agents on Some Chemical Changes. Meat sci. 80: 875–

878. 

[33] Cao X, Li J, Yang X, Duan Y, Liu Y, Wang C (2008) Nonisothermal Kinetic Analysis of 

the Effect of Protein Concentration on BSA Aggregation at High Concentration by DSC. 

Thermochim. acta 467: 99-106.  

[34] Dàvila E, Parés D, Cuvelier G, Relkin P (2007) Heat-induced Gelation of Porcine Blood 

Plasma Proteins as Affected by pH. Meat Sci. 76: 216-225.  

[35] de Wit J N (1990) Thermal Stability and Functionality of Whey Proteins. J. dairy Sci. 73: 

3602-3612. 

[36] Giroux H J, Britten M (2004) Heat Treatment of Whey Proteins in the Presence of 

Anionic Surfactants. Food hydrocolloid 18: 685- 692.  

[37] SAS USER GUIDE: Statistic. Versión (1989). SAS Inst. Inc., Cary, NC, USA.  

[38] Fox T G (1956) Influence of Diluent and Copolymer Composition on the Glass 

Temperature of a Polymer System. B. am. phys. soc. 2(1): 123. 

[39] Miller D P, de Pablo J J, Corti H (1997) Thermophysical Properties of Trehalose and its 

Concentrated Aqueous Solutions. Pharm res-dord 14(5): 578–590. 

[40] Gordon M, Taylor J S (1952) Ideal Copolymers and the Second-order Transitions of 

Synthetic Rubbers. I. Non-crystalline Copolymers. J. appl. chem. 2: 493–500. 

[41] Georget D M R, Smith A C, Waldron K W (1999) Thermal Transitions in Freeze– dried 

Carrot and its Cell Wall Components. Thermochim. acta 332: 203–210. 

[42] Maitani Y, Aso Y, Yamada A, Yoshioka S (2008) Effect of Sugars on Storage Stability of 

Lyophilized Liposome/DNA Complexes with High Transfection Efficiency. Int. j. 

pharm. 356: 69–75. 

[43] Rodriguez Furlán L T, Lecot J, Pérez Padilla A, Campderrós M, Zaritzky N (2011) Effect 

of Saccharides on Glass Transition Temperatures of Frozen and Freeze-dried Bovine 

Plasma Protein. J. food eng. 106: 74-79. 

[44] Creveld L D, Meijberg W, Berendsen H J C, Pepermans H A M (2001) DSC Studies of 

Fusarium Solani Pisi Cutinase: Consequences for Stability in the Presence of 

Surfactants. Biophys. Chem. 92: 65-75.  

[45] Idakieva K, Parvanova K, Todinova S (2005) Differential Scanning Calorimetry of the 

Irreversible Denaturation of Rapana Thomasiana (Marine Snail, Gastropod) 

Hemocyanin. Biochim. biophys. acta 1748: 50-56.  

[46] Ramprakash J, Doseeva V, Galkin A, Krajewski W, Muthukumar L, Pullalarevu S, 

Demirkan E, Herzberg O, Moult J, Schwarz, F P (2008) Comparison of the Chemical and 

Thermal Denaturation of Proteins by a Two-state Transition Model. Anal. biochem. 374: 

221-230.  

[47] Ohkuma C, Kawaib K, Viriyarattanasaka C, Mahawanichc T, Tantratianc S, Takaia R, 

Suzuki T (2008) Glass Transition Properties of Frozen and Freeze–dried Surimi 

Products: Effects of Sugar and Moisture on the Glass Transition. Food hydrocolloid 22: 

255–262. 



Applications of Calorimetry in a Wide Context –  
Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry 218 

[48] Telis V R N, Sobral P J A (2002) Glass Transitions for Freeze–dried and Air–dried 

Tomato. Food res. int. 35: 435–443. 

[49] Sun W Q, Davidson P, Chan H S O (1998) Protein Stability in the Amorphous 

Carbohydrate Matrix: Relevance to Anhydrobiosis. Biochim. biophys. acta 1425: 245-

254.  

[50] Salman A D, Hounslow M J, Seville J P K (2006) Granulation. In: Sal, A. (Ed.), 

Handbook of Powder Technology, vol. 11. España: Elsevier. 

[51] Gabbott P (2008) Principles and Applications of Thermal Analysis. Blackwell 

Publishing. Chapter 9. 

[52] Dilworth S E, Buckton G, Gaisford S, Ramos R (2004) Approaches to Determine the 

Enthalpy of Crystallization, and Amorphous Content, of Lactose from Isothermal 

Calorimetric Data. Int. j. pharm. 284: 83–94. 

[53] [53] Relkin P (1996) Thermal Unfolding of β-Lactoglobulin, α-Lactalbumin and Bovine 

Serum Albumin. A Thermodynamic Approach. Crit. rev. food sci. 36 (6): 565–601. 

[54] Yamul D K, Lupano C E (2003) Properties of Gels from Whey Protein Concentrate and 

Honey at Different pHs. Food res. int. 36: 25-33.  

[55] Penco M, Sartore L, Bignotti F, D'Antone S, Di Landro L. (2000) Thermal Properties of a 

New Class of Block Copolymers Based on Segments of Poly(D,L-lacticglycolic Acid) 

and Poly(e-caprolactone). Eur. polym. j. 36: 901-908. 

[56] Kavitha M, Bobbili K B, Swamy M J (2010) Differential Scanning Calorimetric and 

Spectroscopic Studies on the Unfolding of Momordica Charantia Lectin. Similar Modes 

of Thermal and Chemical Denaturation. Biochimie 92: 58-64.  

[57] Schubring R (1999) DSC Studies on Deep Frozen Fishery Products. Thermochim. acta 

337: 89-95.  

[58] Zamorano L S, Pina D G, Gavilanes F, Roig M G, Yu Sakharov I, Jadan A P, van 

Huystee, R B, Villar E, Shnyrov V L (2004) Two-state Irreversible Thermal Denaturation 

of Anionic Peanut (Arachis Hypogaea L.) Peroxidase. Thermochim. acta 417: 67-73.  

[59] Vermeer A W P, Norde W (2000) The Thermal Stability of Immunoglobulin: Unfolding 

and Aggregation of a Multi-Domain Protein. Biophys. j. 78: 394-404.  

[60] Michnik A, Drzazga Z, Kluczewska A, Michalik K (2005) Differential Scanning 

Microcalorimetry Study of the Thermal Denaturation of Haemoglobin. Biophys. chem. 

118: 93-101.  

[61] Rodriguez Furlán L T, Lecot J, Pérez Padilla A, Campderrós M E, Zaritzky N (2012) 

Stabilizing Effect of Saccharides on Bovine Plasma Protein: A Calorimetric Study”. Meat 

sci. In press. 

[62] Gallego K, López B L, Gartner C (2006) Estudio de Mezclas de Polímeros Reciclados 

para el Mejoramiento de sus Propiedades. Rev. Fac. Ing. 37: 59-70.  

[63] Mousavioun P, Doherty W O S, George G (2010) Thermal Stability and Miscibility of 

Poly(hydroxybutyrate) and Soda Lignin Blends. Ind. crop. prod. 32(3): 656-661. 

[64] Rodriguez Furlán L T, Pérez Padilla A, Campderrós M E (2010) Functional and Physical 

Properties of Bovine Plasma Proteins as a Function of Processing and pH, Application 

in a Food Formulation. Adv. j. food sci. tech. 2(5): 256-267.  

[65] Rodriguez Furlán L T, Rinaldoni A N, Padilla A P, Campderrós M E (2011) Assessment 

of Functional Properties of Bovine Plasma Proteins Compared with other Proteins 

Concentrates, Application in a Hamburger Formulation. Am. j. food tech. 6 (9): 717-729.  


