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1. Introduction

Insects are one of the biggest animal populations with a very successful evolutive history,
once they can be found chiefly in all possible environments all over the world, and the num‐
ber of species and individuals. Their success can be attributed to several important evolu‐
tionary aspects like wings, malleable exoskeleton, high reproductive potential, habits
diversification, desiccation-resistant eggs and metamorphosis, just to name a few. Some spe‐
cies are especially valuable for humans due to their ability in providing several important
goods, such as honey, dyes, lac and silk. On the other hand, many insects are vectors of
many diseases, and many others damages crop plantations or wood structures, causing seri‐
ous health and economic issues.

Among all identified insects, over 500,000 species feed on green leaves. About 75% of them
have a restrict diet, eating only a limited range of species, sometimes being even specie spe‐
cific [1]. This kind of insect brings major concern to the agriculture. Their high selectivity im‐
plies in a closer insect attack on crops. It is estimated that about 10,000 insect species are
plagues and, compromising the food production, either in the field or after the harvest [2]. It
was estimated that somewhere around 14-25% of total agriculture production is lost to pests
yet [3].

Agriculture is one of the main pillars of human population increase over the last millenni‐
ums, providing mankind with several important commodities such as food, fuel, healthcare
and wood. This huge production should feed 7 billion people, and also generate several in‐
puts for many industrial processes and commercial applications. In order to combat the nu‐
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merous losses that are caused by insects on agriculture, several chemicals have been used to
kill them or inhibit their reproduction and feeding habits. Those classes of compounds are
collectivity known as insecticides. These molecules are able to interfere in the insect metabo‐
lism. They alter is in such a way that the plague cannot feeds on the crop or the harvest or
even reproduce anymore. The use of insecticides is described since ancient times, with docu‐
ments providing evidences as far as in the 16th century BC. The Ebers Papyrus, wrote by the
Egyptians, reports several chemical and organic substances used against overcome fleas,
gnats and biting flies among others [4]. Nowadays, the insecticides are widely employed
around the world. Several known substances are extremely effective in controlling or even
wiping out almost all important agricultural plagues. This multi-billion-dollar has an esti‐
mated production of 2 million metric tons of hundreds of chemical and biological different
products, with a budget of a US$35 billion dollars worldwide [5].

Insecticides are used in different ways, based on the physical-chemical characteristics of the
each chemical substance, the area that needs to be covered and the target. Typical applica‐
tion of insecticides in crops is made by spraying a solution, emulsion or colloidal suspension
containing the active chemical compound, which is made by a vehicle which may be a hand
pump, a tractor or even a plane. This mixture is prepared using a liquid as a carrier, usually
water, to ensure a homogenous distribution. Other methods for applying insecticides are
through foggers or granule baits embedded with the active compound, among others that
are less used. However, due to several degradation processes, such as leaching or destruc‐
tion by light, temperature, microorganism or even water (hydrolysis), only a small amount
of these chemical products reaches the target site. In this case, the applied concentrations of
these compounds have been much higher than the required. On the other hand, the concen‐
tration that reaches its target might be lower than the minimum effective one. In general, de‐
pending of the weather and method of application, the amount of applied agrochemicals, as
much as 90%, may not reach the target and so do not produce the desired biological re‐
sponse. For this reason, repeated application of pesticides become hence necessary to effi‐
cient control of target plagues, which increase the cost and might cause undesirable and
serious consequences to the ecosystems, affecting human health [6]. Due to the lack of selec‐
tivity, their unrestrained use can also lead to the elimination of the natural enemies, what
implies in the fast growth of plague population. Moreover, it often makes the insects resist‐
ant to the pesticides.

Another important point that needs attention is the formulation for the application of the in‐
secticide on the crops. There are several different classes of compounds, which sometimes
do not match with a simple dilution in water and must be prepared by other means such as
powders, emulsions or suspensions. Some kinds of formulations must be handled with
more precaution, since it can severely contaminate workers on the field with small airborne
solid particles that can be inhaled [7].

The advances in science and technology in the last decades were made in several areas of
insecticide usage. It includes either the development of more effective and non-persistent
pesticides and new ways of application, which includes controlled release formulations
(CRFs). The endeavors are direct towards the successful application of those compounds on
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crops and their efficacy and availability improvement and reduction of environmental con‐
tamination and workers exposure [8]. In that line, new types of formulation were devel‐
oped. One of the most promising is the use of micro and nanotechnology to promote a more
efficient assembly of the active compound in a matrix.

2. Application of insecticides nanoformulations

2.1. Nanoemulsions

Casanova et al. [9] evaluated the production of a nicotine carboxylate nanoemulsion using a
series of fatty acids (C10 – C18) and surfactant. The oil-in-water nanoemulsion showed a
monomodal distribution of size, with mean particle sizes of 100nm. The bioactivity of the
insecticide formulations was evaluated against adults of Drosophila melanogaster by assessing
the lethal time 50 (LT50). They observed that the encapsulation efficiency decreased with in‐
creasing size of the fatty acids tested. The bioactivity followed the same trend, with better
bioactivity when the chain length decreased. This would be readily attributed to the higher
amount of active compound inside the nanoemulsion. For the smallest fatty acid emulsion
used, the capric acid (C10) one, the greatest encapsulation efficiency was observed, but it
had the lowest bioactivity. The results were explained in terms of lesser bioavailability of the
insecticide in its active form due to increased stability of the organic salt formed between the
insecticide and the fatty acid. This experiment highlights the necessity of developing differ‐
ent kinds of possible assembles between the active compounds and matrix, and extensively
studying the interactions in nanoscale formulations, where sometimes nontrivial effects
might be unexpectedly observed.

Wang et al.[10] developed an assemble of oil-in-water nanoemulsion (O/W) with 30 nm
droplets by careful control of experiment conditions, using the neutral surfactant poly(oxy‐
ethylene) lauryl ether and methyl decanoate to encapsulate highly insoluble β-cypermeth‐
rin. The dissolution of the insecticide was enhanced. The stability tests were performed by
spraying nanoemulsion in a glass slide and observing under polarizing light microscopy.
They showed no apparent precipitate in nanoemulsions samples. These results were differ‐
ent from the ones obtained using a commercial β-cypermethrin formulation, with apparent
signs of solid residues after 24 hours. This enhanced stability may be used to decrease the
concentration of insecticides in commercial spray applications, without losing efficiency.

2.2. Classical micro and nanoparticles

Allan et al. [11] published the first report on a controlled release system of an insecticide
through a polymeric encapsulation. Even so, at first the encapsulated systems were not so
effective. Problems associated with controlled release and particle stability hindered their
practical field application for some decades. In one of the first successful works in the field
of pesticides encapsulation, Greene et al. [12] used poly (n-alkyl acrylates) (Intelimer®) to
produce temperature-sensitive microcapsules of the organophosphate insecticide diazinon..
The active chemical was controlled release by increasing the ambient temperature above
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30ºC, which is the melting temperature of the polymer,. Experiments were performed with
Banded cucumber beetle Diabrotica balteata and Western corn rootworm Diabrotica virgifera
as target insects at 20ºC and 32ºC, under and above the polymer melting point respectively.
Mortality was compared to commercial granular formulation. At lower temperatures, the
commercial formulation showed the best mortality. At higher temperatures the activity of
the encapsulated formulation was better, showing about 90% of mortality for over 8 weeks.
The commercial formulation had indeed lost some of its activity, presumably due to heat
degradation.

Latheef et al. [13] tested several different polymers such as poly (methyl methacrylate)
(PMMA), ethyl cellulose, poly(α-methylstyrene) and cellulose acetate butyrate to produce
microcapsules of the insecticide sulprofos. Ethyl cellulose formulations were the only ones
that had shown good results against eggs and larvae of the tobacco budworm Heliothis vires‐
cens in cotton plants. The results were comparable to the ones obtained with the use of an
emulsifable-concentrate (EC) commercial formulation of sulprofos.

In other to develop commercial formulation containing microencapsulated cyfluthrin, Ar‐
thur[14] evaluated its use against the rice weevil Sitophilus oryzae in stored wheat, for a peri‐
od of 8 months. Survival of beetles was statistically correlated with the concentration of the
pyrethroid insecticide in the formulation. The average survival rate was only 12% when
4ppm was used, with constant activity throughout the entire experiment. This evidenced the
controlled release of the substance over a long period of time.

In the work carried out by Quaglia et al. [15], a hydrophobic waxy prepared through a mix‐
ture of di- and triglycerides of PEG esters was used to construct microspheres containing the
insecticide carbaryl. Microparticles was obtained with particle size ranging from 16 to 20µm.
Controllable release dynamics depended on the amount of gelucire used, Studies of release
profiles from the encapsulated formulation showed a lower vertical mobility of the insecti‐
cide when compared to a commercial nonencapsulated formation. This suggested that the
controlled release profile of the microcapsules may be useful to avoid or minimize ground‐
water contamination.

Cao et al. [16] produced diffusion-controlled microcapsules with diameter ranging from 2 to
20µm with encapsulated acetamiprid, an alkaline and high temperature-sensitive insecti‐
cide, using tapioca starch as matrix with urea and sodium borate as additives. The particle
showed increased degradation resistance by heat for 60 days, and UV radiation over 48h,
with no more than 3% of degradation. This represents less than one tenth when compared to
the UV degradation of commercial emulsifable concentrate. Even in those conditions, it was
also able to promote controlled liberation of the active compound for up to 10 weeks de‐
pending on the formulation used.

In another work with acetamiprid, Takei et al. [17]produced microparticles with diameter of
30-150µm using poly-lactide (PLA) as the polymeric matrix. Initial results showed that mi‐
crospheres containing only PLA did not have a good release kinetic of the active chemical
compound from its interior. It is presumably due to their tight structure and high hydropho‐
bicity, which hinders water diffusion and therefore limits the insecticide liberation. The in‐
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clusion of poly(ε-caprolactone) (PCL) into the matrix in 50-80% weight were analyzed, with
formation of microspheres of PLA/PCL blend with 20-120µm of the diameter, showing up to
88,5% of insecticide release in aqueous media over a 48h period.

In contrast to conventional desire to produce compounds with extended residual activity,
quick-release microcapsules are demanded in certain areas of agriculture. However, some‐
times it is also necessary a quick liberation of the active compound from the matrix after the
application. The strong backbone might pose as a problem to effectively deliver. Studies per‐
formed by Tsuda et al. [18,19] have shown that is possible to assemble “self-bursting” micro‐
capsules that retain its form in water suspension, but easily burst after solvent evaporation.
They used the interfacial polymerization method to assemble spherical polyurethane micro‐
capsules containing the insecticide pyriprofixen, obtaining particles with mean diameter of
23µm. The entrapment ratio was 99% for all formulations tested, greatly improving the solu‐
bility of the pesticide in water. According to the results, there is a correlation between the
wall thickness of the microcapsules and the self-bursting phenomenon. Tuning this property
a controlled released can be achieved.

The effectiveness of encapsulated formulations, it is not restricted to extend the residual activi‐
ty of insecticides, but should also include the overcoming of problems associated with accu‐
mulation of recalcitrant organic pollutants that remains in ecosystems in amounts above the
Maximum Residual Level (MRL). Therefore, it can be harmful to the environment and to peo‐
ple who might consume the treated crops. For instance, Guan et al. [20] encapsulated imidaclo‐
prid, a chloro-nicotinyl systemic and broad spectrum insecticide in a mixed sodium alginate/
chitosan microparticle through self-assembly layer-by-layer (LbL) methodology. The capsules
showed a mean diameter of 7µm. Particles were impregnated with a photocatalyst made of
SDS/TiO2/Ag, and the photocatalytic property and the insecticidal activity of the microcap‐
sule was evaluated. Prolonged residual activity of the encapsulated formulation was ob‐
served. The toxicity was higher in the Martianus dermestoides adult stage compared to the one of
pure insecticide. In a field test with soybean [21], the nano-imidacloprid formulation prevent‐
ed the accumulation of the pesticide on the soybean leaves and soil. The results showed pro‐
nounced  degradation  over  25  days  of  trials  when  compared  to  commercial  concentrate
formulations, even though the initial concentration of both formulations was equivalent. In
this way, regardless the initial effectiveness of the insecticide, safer levels of agrochemicals can
be obtained in less time, improving the safety of insecticide application.

2.3. Entomopathogenic microorganisms encapsulated

Besides the chemical compounds, the micro- and nanotechnology have also been developed
and applied to microorganisms that need special protection or to improve their solubility in
aqueous phase. For instance, Ramírez-Lepe et al. [22] developed an aluminium-carboxyme‐
thylcellulose microcapsule with photoprotective agents for holding a Bacillus thuringiensis
serovar israelensis (B.t.i.) spore-toxin complex named δ-endotoxin. The protein produced by
this gram-positive bacterium during sporulation is extremely toxic to larval stage of some
mosquitoes and flies which are vectors for important tropical diseases such as malaria and
dengue. The encapsulated formulation was tested for its UV irradiation protective efficiency
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in laboratory conditions. While the protein in its natural form had lost all of its activity after
24 hours of exposure, encapsulated formulations showed up to 88% of larvae mortality.

In their turn, Tamez-Guerra et al. [23] also tested the encapsulation of the spore-toxin of Ba‐
cillus thuringiensis Berliner, evaluating over 80 formulations of spray-dried microcapsules
made of lignin and corn flour with and without photoprotective agents. The best formula‐
tions showed improved insecticidal activity in laboratory tests against neonates of European
corn borer Ostrinia nubilalis when compared to nonencapsulated or commercial formula‐
tions of the same endotoxin. In a field test, the microcapsules showed increased residual in‐
secticide activity in cabbage after 7 days against neonates of the cabbage looper Trichoplusia
ni when compared to commercial formulations.

Very promising results have been obtained by the Agricultural Research Service of the US‐
DA regarding the encapsulation of biopesticides made of species-specific nucleopolyhedro‐
viruses (NPV) isolated from several insects, including celery looper Anagrapha falcifera
(Tamez-Guerra et al., 2000 [24-26]), alfalfa looper Autographa californica [27], codling moth
Cydia pomonella [28] and fall armyworm Spodoptera frugiperda [29]. In these works, formula‐
tions were developed using different mixtures of corn flour and lignin, through spray-dry‐
ing technique to encapsulate the viruses. All results obtained in laboratory and field tests
performed have shown improvements in insecticidal activity, resistance to environmental
conditions, like rain and UV light exposure, and a prolonged residual activity against pests
in field studies. Samples were kept in storage for up to 12 months and maintained their in‐
secticidal activity.

2.4. Novel micro and nanoparticles for bioinseticides

Conventional protocols for encapsulation usually run under relatively high temperatures,
which might be inadequate for preserving plant-derived essential oils integrity. Processes
which use high pressure instead of temperature can be an alternative for encapsulating
these sensible extracts. Varona et al. [30,31] developed new methods to produce stable parti‐
cles of lavandin (Lavandula hybrida) essential oil, using polyethylene glycol 9000 (PEG9000)
or n-octenyl succinic (OSA) modified starches as the shell material. The methods for prepar‐
ing the microcapsules were based on PEG precipitation from a mixture of molten polymer
and essential oil in supercritical CO2, and PGSS-drying an oil-in-water emulsion of the es‐
sential oil with OSA starch. The difference between these processes is the presence of water
on the latter, which needs to be removed by carefully tuning the equipment conditions to
promote water evaporation. Microcapsules produced by these methods show a mean parti‐
cle size of 10-500µm for PGSS, and 1-100µm for PGSS-drying. One important observation by
scanning electron microscopy (SEM) images is that the experimental conditions can influ‐
ence the shape of the microparticles. While PEG particles were only spherical (the best shape
for controlled release mechanism), in PGSS-drying needle-like structures are formed,, de‐
pending on the pre-expansion temperatures of the mixtures, The last one, probably does not
hold the active ingredient, presenting some limitations to this specific method without fur‐
ther improvements. Release kinetics were evaluated over a 20-day period. The amount of oil

Insecticides - Development of Safer and More Effective Technologies528



released was proportional to the initial oil concentration on particles, with less than 20% of
liberation for low oil concentrations, and about 60% liberation for high oil concentration.

Yang et al. [32] assembled polyethylene glycol (PEG) nanoparticles loaded with garlic essen‐
tial oil using a melt-dispersion method, reaching over 80% of encapsulation efficiency, with
round shaped nanoparticles of lower 240nm of average diameter. The encapsulated formu‐
lations had their insecticidal activity evaluated against adult red flour beetle Tribolium casta‐
neum. While the control experiment done with free garlic oil showed only 11% of efficiency
over a five month period, the encapsulated formulation efficiency remained over 80% after
five months. This was attributed to the slow and controlled release of the essential oil, and
thus could be used as an effective pest control to stored products.

The basic structure of the polymer chitosan was used by Lao et al. [33] to build the amphi‐
philic-modified N-(octadecanol-1-glycidyl ether)-O-sulfate chitosan (NOSCS). Octadecanol
glycidyl ether and sulfate were the hydrophobic and the hydrophilic groups sources respec‐
tively. They successfully entrap the herbal insecticide rotenone in the polymer. This chemi‐
cal compound has been allowed for application in organic crop production due to its natural
origin, short persistence in the environment, safety to non-target organisms and low resist‐
ance development. The encapsulation was necessary to defeat the problems of chemical sta‐
bility of the substance to environmental effects and also to improve the solubility of this
pesticide in water, which is usually quite low (2.0x10-6g.L-1). Using the reverse micelle meth‐
od, the authors have assembled nanometric micelles with 167.7-214.0 nm of diameter, with
values of critical micellar concentration (CMC) of those chitosan derivatives ranging from
3.55×10−3 to 5.50×10−3 g.L-1. Although the entrapment efficiency was not very high, they also
improved the aqueous solubility of the chemical compound in 13,000 fold, up to 0.026g.L-1,
favoring a controlled release of the substance in aqueous media. The complete controlled re‐
lease took more than 230 hours, almost 10 times more when compared to the chemical com‐
pound without nanoencapsulation.

Chitosan derivatives were prepared [34]. They synthesized 6-O-carboxymethylated chitosan
with anchorage of ricinoleic acid at the N-linkage, which further improve its solubility at neu‐
tral water (pH = 7.0), to encapsulate the herbal insecticide azadirachtin. Nanoparticles of
200-500nm were obtained by water dispersion with more than 50% of loading efficiency and
tested for their stability in outdoor as controlled release systems. Results were compared
against simple azadirachtin water dispersion and modified dispersion containing ricinoleic
acid and azadirachtin. In 5 days of sun exposure, all content of control samples were lost, while
the encapsulated formulation had a nearly constant residual concentration detected through‐
out the 12 days of the experiment, indicating that the nanoparticles produced were effective at
controlling the degradation rate and the release mechanism of the botanical insecticide.

Extracts of Neem were prepared contend high concentration of azadirachtin being nanoen‐
capsulated by Forim et al. [35]. Through the use of poly-(ε-caprolactone) polymer, they pre‐
pared nanocapsules and nanospheres with average diameter of 150.0 and 250.0nm,
respectively. The morphological analysis revealed spherical nanoparticles (Figure 1). The
azadirachtin was used as reference. The nanoformulations showed high entrapment efficien‐
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cy (> 95%) for this compound and a UV stability at least of 30 times more when compared
with commercial products.

Figure 1. Scanning electron microscopy images of nanoparticles containing extracts of Neem.

2.5. Commercial products

The interesting results obtained in academic researches over the last few decades have been
closely followed by several companies. Nevertheless, R&D in nano-based agrochemicals is led
mainly by world’s largest agroscience companies, further enhancing their market share and
consolidating the market structure based on oligopoly that have been seen in late 20th century
and early 21th century, when the 10 biggest companies hold around 80% of market [36].

Some companies over the last decade, such as Syngenta, Bayer, Monsanto, Sumitomo, BASF,
and Dow Agrosciences have already deposited several different patents comprising a wide
range of protocols for production and application of encapsulated formulations, which can be
used to produce nanoinsecticides [37-46]. Despite the hard work and heavy investment, no
commercial nano-insecticide formulation has been extensively commercialized up to 2012.

Along with those big industries, several other companies, as well as individual researches
have been actively depositing patents in the area, thus promoting even more the research
and investments in this new field of applied technology. However, as strongly reinforced
throughout the world by dozens of organizations such as the ETC Group, the impact of
nanotechnology is still unclear, and care should be taken to assure that its use will not bring
more problems than solutions [47].

3. Developing new nanopesticides

Many attempts have been made to manage plague insects, for example, using biological
control, which is very time consuming. Controlled release systems dawn in this scenario as a
very attractive alternative in this battle field.

Controlled release formulations (CRFs) associate the active compound with inert materials.
The last ones are responsible for protecting and managing the rate of compound release into
the target site in a defined period of time. The main purpose of controlled release systems is
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ruling the (bio) availability of the active compound after the application [48]. They find the
greatest applicabilities in two major agricultural fields: nutrition and protection. In the first
one, CRFs are employed in the delivery of fertilizers [49-51]. In the second one, CRFs are
mostly used to target plague insects in a sustainable way [52,53], but they can also be ap‐
plied to block the growth of weeds [54]. Tomioka et al., 2010. Controlled release formula‐
tions become especially interesting in cases of antagonist activity of biocides, what can
naturally leads to a lower in effectiveness of one or both compounds. In this case the formu‐
lation should be “programmed” to release each one at different times [55,56]. Furthermore,
still talking about protection, the application of CRFs in wood surfaces, like furniture or
floor covering, helps to prevent the deterioration. Van Voris et al. [57] patented a formula‐
tion in which an insecticide is continually released in a minimum level for a long period of
time and is absorbed by the wood. It thus creates a “chemical barrier”, blocking the insect
attacks.

Most of those controlled release biocides applications were and still are successfully made
due to the advances in nanotechnology area.

Micro- and nanomaterials-based formulations are known for some decades. The first micro‐
capsule-based formulation became commercially available in the 1970s [58]. Nanocapsules
have been widely used in medicinal area as drug carrier in treatment of diverse diseases
[59], from tropical ones [60] up to cancer [61].

Microencapsulation has been used as a versatile tool for hydrophobic pesticides, enhancing
their dispersion in aqueous media and allowing a controlled release of the active compound.
The use of nanotechnology is a recent approach, and has been a growing subject on several
different areas of the science, with an overwhelming perspective. In general, materials that
are assembled in nanometric scales (<1000nm) have distinct and almost always better char‐
acteristics when compared to the same material built in a conventional manner [62]. One
nanometer is a billionth of a meter (1nm = 109m). In general, the chemical properties of mate‐
rials in nanometric scale may be controlled to promote an efficient assemble of a structure
which could present several advantages, such as the possibility to better interaction and
mode of action at a target site of the plant or in a desired pest due to its tunable controlled
release system and larger superficial area, acting as an artificial immune system for plants
[34,63]. As smart delivery systems, they confer more selectivity, without hindering in the bi‐
oactive compounds towards the target pathogen [65]. Other advantages of the use of nano‐
particle insecticides are the possibility of preparing formulations which contain insoluble
compounds that can be more readily dispersed in solution. It reduces the problems associat‐
ed with drifting and leaching, due to its solid nature, and leads to a more effective interac‐
tion with the target insect. These features enable the use of smaller amount of active
compound per area, as long as the formulation may provide an optimal concentration deliv‐
ery for the target insecticide for longer times. Since there is no need for re-applications, they
also decrease the costs), reduce the irritation of the human mucous-membrane, the phyto‐
toxicity, and the environmental damage to other untargeted organisms and even the crops
themselves [65,66]. In a few words, nanotechnology can be applied in several ways in order
to enhance efficacy of insecticides in crops.
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3.1. Biopolymers

When a commercial formulation for a practical field application is desired, it is very impor‐
tant to employ materials that are compatible with the proposed applications: environment-
friendly, readily biodegradable, not generating toxic degradation by-products and low-cost.
The use of several biopolymers, i.e., polymers that are produced by natural sources, which
at the same time have good physical and chemical properties and still present mild biode‐
gradation conditions, are an interesting approach to avoid the use of petrochemical deriva‐
tives that might be another source of environmental contamination. The common polymers
(synthetic and natural ones) used in CRFs for insecticides application are listed in Table 1.

3.2. The nanoparticles used in biocides controlled release formulations

The most popular shape of nanomaterials (Figure 2) that have been using in CRFs for bio‐
cides delivery are:

a. Nanospheres: aggregate in which the active compound is homogeneously distributed
into the polymeric matrix;

b. Nanocapsules: aggregate in which the active compound is concentrated near the center
core, lined by the matrix polymer;

c. Nanogels: hydrophilic (generally cross-linked) polymers which can absorb high vol‐
umes of water

d. Micelles: aggregate formed in aqueous solutions by molecules containing hydrophilic
and hydrophobic moieties.

Figure 2. Morphological representation of different nanoparticles.
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Polymer Active compound Nanomaterial Ref.

Lignin-polyethylene glycol-ethylcellulose Imidacloprid Capsule [67]

Polyethylene glycol Β-Cyfluthrin Capsule [68]

Chitosan Etofenprox Capsule [69]

Polyethylene
Piperonyl Butoxide And

Deltamethrin
Capsule [70]

Polyethylene glycol Garlic Essential Oil Capsule [32]

Poly(acrylic
acid)-b-poly(butyl acrylate)

Polyvinyl alcohol
Polyvinylpyrrolidone

Bifenthrin Capsule [71]

Acrylic acid-Bu acrylate Itraconazole Capsule [72]

Carboxymethylcellulose Carbaryl Capsule [73]

Alginate-glutaraldehyde Neen Seed Oil Capsule [74]

Alginate-bentonite Imidacloprid or Cyromazine Clay [75]

Polyamide Pheromones Fiber [76]

Starch-based polyethylene Endosulfan Film [77]

Methyl methacrylate
and methacrylic acid with and without 2-hydroxy

ethyl methacrylate crosslinkage
Cypermethrin Gel [78]

Lignin Aldicarb Gel [79]

Lignin Imidacloprid Or Cyromazine Granules [75]

N-(octadecanol-1-glycidyl ether)-O-sulfate chitosan-
octadecanol glycidyl ether

Rotenone Micelle [33]

Polyethyleneglycol-dimethyl esters Carbofuran Micelle [80]

Carboxymethyl chitosan-ricinoleic acid Azadirachtin Particlea [34]

Chitosan-poly(lactide) Imidacloprid Particlea [81]

polyvinylchloride Chlorpyrifos Particlea [82]

Cashew gum Moringa Oleifera Extract Particlea [83]

Chitosan-angico gum Lippia Sidoides Essentioan Oil Particlea [84]

Polyvinylpyrrolidone Triclosan Particlea [85]

Anionic surfactants (sodium linear alkyl benzene
sulfonate, naphthalene sulfonate condensate

sodium salt and sodium dodecyl sulfate)
Novaluron Powder [86]

Vinylethylene and vinylacetate Pheromones Resin [87]

Glyceryl ester of fatty acids Carbaryl Spheres [15]

Poly(ε-caprolactone) Active Ingredientsb Spheres [88]

Poly(methyl methacrylate)-poly(ethylene glycol)
Polyvinylpyrrolidone

Carbofuran Suspension [89]

a The authors do not mention which active compounds they encapsulated in the nanospheres; b The authors do not
mention if the particles are spheres or capsules

Table 1. Several examples of polymers often used in the nanoparticle production.
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Dendrimers, nanoclays, nanopowders and nanofibers are other possible formulations which
might be used during nano or microparticle production[75, 76, 86, 90]. On the other hand,
nanotubes are mostly applied in plants improvement. The polymeric nanoparticles and gels
are by far the mostly used for insecticides application, because they have an extra advantage
of being biodegradable.

3.3. Methods for preparation of nanomaterials based controlled-release formulations for
biocides application

According to Wilkins [48], the methods for CRF preparation can be separated in chemical or
physical ones (Figures 3 and 4, respectively).

The chemical methods are based on a chemical bond (usually a covalent one) formed be‐
tween the active compound and the coating matrix, such as a polymer. This bound can be
placed in two different sites: in the main polymeric chain or in a side chain. In the first one,
the new “macromolecule” is also called a pro-biocide, because the compound will get its
properties in fact when it is released. In the second one, the insecticide molecule can bind
initially to the side-chain of one monomer and then the polymerization reaction takes place
or the polymerization occurs first and only after that, the biocide binds to the side chain.
There is still a third way, based on the intermolecular interactions. In this case, the biocide is
“immobilized” in the net produced by the cross-linkages in the polymer.

Figure 3. Chemical methods for CRF preparation

The physical methods can also be split in two distinct categories. In the first, a mixture of
biocide and polymer is made. As the last has a higher energy density, it moves to a more
external layer, forming a kind of monolithic structure. In the other one, the polymeric chain
forms a “membrane” isolating the bioactive compound from the external environment. This
is the method which will produce the nanocapsules themselves.
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Figure 4. Physical methods for CRF preparation

Although there are some different kinds of nanomaterials that can be used in CR formula‐
tions, the micro- and nanocapsules are by far the most widely used for controlled release of
biocides. For this reason, the techniques described here will be restricted to micro and nano‐
encapsulation process.

3.4. Micro and nanoencapsulation techniques

The first formulation containing polymeric-based nanocarriers for controlled release of bio‐
cides dates from the early 1970’s [11,92]. Recently, John et al. [93] reviewed the most com‐
monly techniques used to prepare micro- and nanocapsules containing microorganisms (for
this kind of application, see section 2.3). However, the techniques they commented can be
also utilized to prepare nanocapsules for insecticides application in general. Shahidi and
Han [94] and Wilkins [48] classified them as physicochemical, chemical or physical process-
based. Some are described below.

3.4.1. The physicochemical-based techniques

a. Emulsion: This technique is used to produce a system of two immiscible liquid phases (wa‐
ter and oil), where one (the dispersed phase) is dispersed into the other (continuous phase)
in a controlled way (usually in a dropwise one). The bioactive compound (usually water-
soluble) and the polymer are solubilized each one in a phase (water or oil). One of the solu‐
tions is gradually dripped into the other under vigorous stirring. After the homogenization,
the emulsion is formed. If the oil is the dispersed phase, the emulsion is classified as O/W
(oil/water). If it is water, the emulsion is called W/O (water/oil) [95].The emulsion itself also
represents a crucial step for some other more complexes preparation ones.

b. Coacervation: This process is based on the reduction of polymer’s solubility. According
to Wilkins[48] the encapsulation goes through a separation of phases and can be simple
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or complex. In a simple coacervation, the addition of an external agent, like a salt or wa‐
ter-miscible solvent, to an aqueous solution containing a hydrophilic polymer-insecti‐
cide complex causes its precipitation. Complex coacervation involves opposite charges
and electrostatic attraction. A solution containing different ionizable polymers is sub‐
mitted to a pH change. The polymers turn positively or negatively charged. The electro‐
static attractive forces between the opposite charges become much stronger than the
particle-solvent intermolecular ones, leading to the copolymer precipitation.

c. Emulsion-solvent evaporation: According to Iwata and McGinity [96] this technique com‐
prises two or three steps. In the first one, an O/W (or W/O) emulsification must be ini‐
tially formed. The polymer is usually solubilized in the dispersed phase. If the emulsion
has only two components like this one, it is called a single emulsion. For this type, the
whole process has only two steps and the first one ends here. However, there is also
other type, called double emulsion, represented as W/O/W’, where the emulsion al‐
ready prepared in the first step is dispersed into an organic solvent, like acetonitrile. In
this case, the aqueous solution containing the active compound is dripped in an oil
phase (usually a vegetable oil), under stirring. This emulsion is then dispersed, under
stirring, in an organic solvent solution containing the polymer. The last step, common
for single and double emulsion, is the evaporation of the solvent, what can be per‐
formed at room temperature or under reduced pressure. After solvent removal, the par‐
ticles are ready for use.

d. Emulsion crystallization/ solidification: According to the procedure published by Iqbal et
al. [97], an emulsion is initially prepared as already described in this section. The only
difference remains in the temperature in which it is made. The authors prepared the
emulsion at 60oC. The next step is crucial for technique success. The warm emulsion is
pumped through a capillary partially immersed in a coolant liquid (temperature: 10oC).
At the capillary exit, the emulsion forms spherical drips which move to raise the cooling
liquid’s surface. The drop is cooled down during the course, solidifying and forming
the particles which are collected at the top.

e. Diffusion-controlled emulsion: In this process, a monomer rich phase is laid over the aque‐
ous solution containing the insecticide, under a smooth stir. The monomers then diffuse
into the aqueous fase, “trapping” the bioactive molecules in a micellar structure [98].

f. Liposome entrapment: Some protocols to prepare liposomes are described by Mozafari et
al. [99]. The standard one is resumed here.

In the first step, an organic solution (chloroform or methanol ones) containing hydrophobic
molecules such phospholipids and cholesterol is prepared. The solvent then is evaporated
forming a thin film. Next, an aqueous solution containing the bioactive compound is spread
over this film. Some mechanical or thermal perturbation like ultrasound or heating is ap‐
plied to the system to promote the formation of single or double layer sheet. The sheet will
detach from the support, closing itself, forming the liposomes. During this closing process,
the sheet traps the biocides molecules.
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3.4.2. The chemical techniques

a. Interfacial polymerization: As the name says, this technique is based in a polymerization
reaction which occurs in an interface of two immiscible liquids. According to Wilkins
[48], polymerization can occur through an addition or condensation reaction. In the
mostly addition-governed process, the polymerization starts in the oil phase, where the
monomers and insecticide are dispersed. However, the reaction only takes place when
it is catalyzed by free radicals, which are dissolved in the aqueous phase. In condensa‐
tion-governed process (the most suitable route for biocides nanoencapsulation), the re‐
active monomers are dissolved each one in a different phase. As the dispersed phase is
dripped into the continuous phase, the reaction occurs in the droplet interface, produc‐
ing the polymer. When a solvent with a low boiling temperature is used as the oil phase
(either in dispersed or continuous one) and contains the monomers dissolved, the proc‐
ess is a little different. After the dripping, the system is heated. The solvent thus evapo‐
rates, leaving the particules that, due to the water insolubility, precipitates. This
particular technique variation can also be called interfacial polymer deposition [100].

b. Molecular inclusion: This technique is used to increase the solubility of water-insoluble
compounds in aqueous solution. Macromolecules like cyclodextrins [101] have an inner
hydrophobic face and an outer hydrophilic face. An oil phase containing the biocide is
dripped, under continuous stirring, into the aqueous macromolecule solution. During
the dripping, the macromolecule “traps” the insecticide molecules via intermolecular
interactions.

3.4.3. The physical techniques

a. Extrusion: The bioactive compound is mixed with hydrocolloids and then, the colloid is
squeezed out under pressure. The pressure during the process should be adjusted ac‐
cording to the viscosity of colloids.

b. Spray drying: This technique is based in solvent evaporation at high temperatures. The
spray drying process has already been described in details by Ré [102]. The following text
is only a brief resume. Initially, the active compound and the polymeric matrix are solubi‐
lized in their respective solvents, which should not be miscible. Then, they are mixed un‐
der vigorous stirring to form an emulsion (or dispersion whether one of the components is
in the solid state). The emulsion undergoes an atomization to produce droplets. In the next
step, the droplets are submitted to a hot air flow that forces the solvent (generally water)
evaporation, leaving only a dry powder. The greatest advantage of this technique is that it
can be easily scaled up for a large scale nanocapsules production.

c. Freeze drying: This technique is also known as liophilization. It is the opposite of the
spray drying, because it uses a low temperature system. A suspension or emulsion is
prepared to enable the polymer-insecticide formation. For emulsions, an additional step
is required before the execution of the technique: the removal of the oil or organic sol‐
vent under reduced pressure. For both (emulsion and suspension), the aqueous phase is
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frozen and submitted to a low pressure system. When the pressure is drastically re‐
duced, the water sublimes (goes from solid to vapor state), leaving only the particles.

3.5. Mechanism of biocide release

In the paper published by Kratz et al. [103] the text begins with the statement: “Nanoparti‐
cles only start working after they are placed in a desired location”. In other words, an effi‐
cient CR formulation must remain inactive until the active compound is released.

The way how an inert material, such the nanopolymers, controlss the amount and rate a
chemical is released is object of study since the late 1960’s [104] and early 1970’s [105].

How the release of the bioactive compound occurs depends basically on the chemical nature
of the formulation. In various polymeric nanomaterials, the controlled release proceeds via
diffusion. It does not matter if the bioactive compound is dissolved (micro- or nanospheres)
or if it is encapsulated (micro or nanocapsules). The process does not depend on the chemi‐
cal structure of the formulation constituents [11] neither on the intermolecular interactions.
The rate control is made based on the interactions between the carrier and the biocide. The
stronger the interaction will be slower the release rate. In the 1990’s, the release dynamics
was investigated via the use of 14C-labelled molecules of herbicides [106,107]. Qi et al. [107]
studied the dynamic of controlled release for herbicides. They used 14C-labelled molecules of
benthiocarb and butachlor and observed that the release is made by a diffusive process.
Some years later and without any radiolabeled molecules, Fernandez-Perez et al. [108]
found the same results. They prepared a granule-based CRF constituted by lignin and imi‐
dacloprid. They measured the amount of compound released in water under a dynamic
flow condition during a defined period of time. The data fitted a diffusion curve based on
the model proposed by Ritger and Papas [109,110]. Since then, other similar studies have
been published [111-114].

Some other polymeric nanomatrixes, especially those formed by a carboxylic acid and a met‐
allic cation, can be disassembled when in contact with water, releasing the bioactive com‐
pound [92]. The release rates depend on the physicochemical characteristic of both
molecules. The more hydrophobic the polymer slower will be the bioactive compound re‐
lease. The same applies to the last one: the higher water-solubility, faster it will be released.
The formulation itself also affects directly the release rate. In water-based one, the rate con‐
trol tends to disappear, due to the matrix (or support) degradation. If the particles are solu‐
bilized in an organic solvent, like acetone, the formulation becomes sticky and the release
rate slows down. A granule-based formulation sounds more efficient. It can be applied di‐
rect to the soil and the bioactive compound will be released according to the soil moisturize
(water content), leading to a long lasting control.

In other formulations, the bioactive compound is covalently bound to the polymeric matrix
[115]. To the release takes place, a chemical interaction must be broken. It usually occurs via a
hydrolysis reaction, what affects many polymer-insecticide bounds in a chain reaction. The re‐
lease control depends on the strength of those chemical bounds, the chemical properties of
both molecules and on the size and structure of the macromolecule formed [11]. The higher the

Insecticides - Development of Safer and More Effective Technologies538



biocompound solubility in water, faster the reaction occurs. Concerning the chemical proper‐
ties of the polymer, Allan et al. [11] studied the differences in the release kinetics when 2-meth‐
yl-4-chlorophenoxy acetic is chemically bound to polyvinylalcohol (a water-soluble polymer)
or when it is bound to cellulose or lignin (water-insoluble polymers). In the first situation, the
level of the applied herbicide tends to go down, because the equilibrium

Polymer − insecticide ⇌ Polymer  +  Insecticide

will always exist. I the last situation, as the “free polymer” is water–insoluble, the equilibri‐
um moves towards the right side and the level of the applied herbicide tends to go up (Fig‐
ure 5).

Figure 5. Trend in active compound’s application rate (Adapted from [11]).

Whatever the mode of liberation, it should be kept in mind that controlled release formula‐
tions have a limited maximum amount for the release of the biocide[116]. This means that the
total amount of released product may not be necessarily equal to the amount of chemicals in‐
corporated to the formulation neither to the amount of free applied product[117]. This is the
reason why the concentration of the active compound in a CRF is usually higher than in a con‐
ventional one. However it does not contradict what was said earlier about advantageous re‐
duced amount if biocide applied, since the number of applications should be smaller.

Studies recently published suggested that the encapsulation of biocides reduces their toxici‐
ty [117,118]. However, many issues regarding the toxicity of the nanomaterial themselves to‐
wards the environmental and even the worker’s health remains unclear [119].

4. Conclusion

The increasing worldwide demand for foods requires modern techniques of agricultural
production minimizing losses in the crops, transportation and storage. Among the main
causes of agricultural losses there are the plague insects. Insecticides are an important con‐
trol tool. However, some collateral effects may be credited to their indiscriminate use such
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as environmental contamination, human poisoning, reduction in the number of natural ene‐
mies, insecticide resistance by plague insects, etc.

In this scenario, nano- and microparticles have been reaching a prominent position. Formu‐
lations containing insecticides have been prepared in colloidal suspensions or powder, in
nano or micro scale, where they present several advantages such as increasing stability of
the active organic compound (UV, thermal, hydrolysis, etc.), foliar settling, reduction in fo‐
liar leaching, systemic action, synergism, specificity, etc. As consequence, the amount of in‐
secticide necessary (dosage), the number of applications, human exposure to insecticides
and environmental impact are reduced. The nano- and microformulations have been em‐
ployed not only for synthetic insecticides but also in alternative products to control plague
insects such as natural products (herbal extracts) and entomopathogenic microorganisms.

In order to prepare nano- and microformulations, several chemical and physical techniques
have been developed. In general, they should be prepared by using polymeric materials
which are biocompatible and biodegradable. This practice has the aim to avoid the emer‐
gence of new environmental and toxicological problems. The biopolymers are produced by
microorganisms, synthesis or even petroleum derivate products. In common, when exposed
to the environment they are easily destroyed by UV radiation and/or microorganism en‐
zymes generating CO2 and H2O as final product. The degradation processes of biopolymers
may lead, or not, to the release mechanisms of active organic compounds of a nano- or mi‐
croparticles. Processes such as swelling, hydrolysis, diffusion, erosion, etc., must be manipu‐
lated in a controlled way in order to obtain the desired characteristics of application and
biological activity for the formulated products.

As a result of the application of these new nano- and micro- technologies, which have been
quickly developed due to new sensitive analytical technologies of characterization, new
ways to control plague insects are emerging, thinking not only in lethal action on the target
insect, but also in all ecosystems, which include fishes, natural enemies, vegetation, microor‐
ganisms, animals, the man himself, etc.
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