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Evolutionary Optimisation of Mechanical  

Structures or Systems 
 

 

Marcelin Jean-Luc 

 

1. Introduction: the need for an integrated optimal design process 

The research of the best compromise between economic, mechanical and tech-

nological imperatives has always been the primary objective of the mechanical 

engineer. The methods used to achieve these excellence objectives have evol-

ved considerably over the last few years. The author's experience in optimisa-

tion began in 1983. At this time, the design stage would come first, then the 

calculation and finally optimisation afterwards. In practice, and during expe-

rience of shape optimisation of mechanical structures, between 1985 and 1990, 

many extreme cases were encountered. In these cases, the question of optimi-

sation wasn't posed until damage had occurred in service; the author’s indus-

trial partners realized, often too late, that their designing left quite a bit to be 

desired. They would then call for the author’s help in using optimisation pro-

grams to supply them with an improved shape. These shapes were reached 

despite technological limitations being very severe at this stage; so severe, in 

fact, that engineers were powerless to resolve the problem. Innumerable pro-

blems such as this were dealt with. Figure 1 exemplifies this very well. In this 

case, the very localized optimisation of the rear bearing of a hydraulic hammer 

is presented (the type of which had been sold in most parts of the world). The 

bearing in question would break after relatively few cycles of operation. The 

automatic optimisation of the shape of this product would, simply by a small 

modification of shape (which would be difficult to predict other than by calcu-

lation (increased radius, decreased width), considerably improved the mecha-

nical durability of the bearing: the over-stress being reduced by 50%, the objec-

tive being the minimisation of the maximum value of the Von Mises equivalent 

stress along the mobile contour, whilst taking into account the technological 

constraints of the industrial partners. 

Such an approach to designing has become unthinkable these days. The eco-

nomic competitivity has increased, the design and manufacture delays have 

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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been reduced and therefore the numerous overlaps that this approach involves 

have become prohibitive. In short, optimisation can no longer be separated 

from the act of designing. It is now admitted that in an integrated design ap-

proach, optimisation has to begin from the design stage taking into considera-

tion the constraints both of specification and those induced by different mate-

rials. Optimisation is therefore made easier because constraints or limitations 

can be more easily varied, in accord with all those involved with the project. 

Examples will be found in (Clozel, 1991), (Guillot et al., 1989), (Hernot et al., 

1995). This was not the case in the preceding example, where the optimisation 

did not take place until after being put into service, and which became an ex-

tremely constrained problem. 

In this chapter, it will be shown that the integration of optimisation from the 

design phase is, according to the author, possibly thanks to the new optimisa-

tion techniques. A certain number of optimisation methods are popular at the 

moment, which are known as probabilistic or stochastic. For example, the si-

mulated annealing method or genetic algorithms, whose principle advantages 

are assured convergence without using derivatives and eventual functions 

with discrete and non-derivable variables, even though determinist methods 

of optimisation (called gradient methods) necessitate a calculation resistant to 

these sensitivities. 

 

 

Constraint: the bearing should not 

penetrate into the casing  

during deformation 

Hydraulic 

hammer's 

rear bearing

CASING

r'=1.95

r= 

1.5

initial shape

final shape

 

Figure 1. Optimisation of the shape of a hydraulic hammer's rear bearing 
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Genetic algorithms rely on the natural laws of selection which allow a living 

organism to adapt to a given environment. From these principles, it seems sen-

sible to apply genetic algorithms to the optimisation of mechanical structures. 

As will be shown in precise examples, genetic algorithms will allow, from the 

beginning of the design process, adaption of the mechanical object to it's envi-

ronment and to the specifications. It will be seen, especially on the example of 

a stiffened plate (part 3.3), how a product responding to the specifications of 

stiffness, weight, etc..., can be obtained directly.  

After a presentation of the methods and tools used (in part 2), this chapter fo-

cuses on applications entering into the field of mechanical technology and the 

analysis of mechanical systems and processes (part 3). It will be seen in the 

conclusion (part 4), that the difficulties are more important in the case of an in-

tegrated, optimal design process of mechanical systems, because of the com-

plexity of the problems. Nevertheless, it will be seen in this conclusion that in-

tegrated optimisation and even alternatives to A.I. (artificial intelligence) 

techniques can effectively be considered, for precise problems of mechanical 

technology, such as the optimisation of gears (part 3.1) or the construction of a 

mechanism (part 3.2). The conclusion supplies possible solutions for the pro-

blem in its entirety. 
 

2. The methods used: optimisation tools adapted to mechanical 
technology 

In addition to what has already been mentioned, the author's experience began 

with the shape optimisation of mechanical structures (2-D and symmetrical), 

although this was in the context of traditional design. See (Trompette & Marce-

lin, 1987), (Marcelin & Trompette, 1986), (Marcelin & Trompette, 1988), (Steffen 

& Marcelin, 1988).  

Mathematical optimisation programs were quite difficult to use and not suffi-

ciently versatile to be adapted quickly to new cases. In the opinion of the au-

thor, the optimal integrated design could not be achieved with normal ma-

thematical programming techniques, which require a formulation heavily 

adapted to each particular problem. It will be shown in this book, that stochas-

tic techniques are ideally suited to integrated optimisation and to mechanical 

technology problems. 

Note that the essential characteristics of the problems are as follows: 
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- the design variables are often a mixture of discrete and continuous values; 

- they are often highly constrained by strict technological constraints. 

The problem is to maximise a function of n variables. The principle of genetic 

algorithms is to make a population of individuals evolve according to a replica 

of Darwinian theories. The starting point is a population of individuals chosen 

randomly and coded by binary numbers (as an example) called chromosomes. 

From this point, the algorithm generates, more or less randomly, new popula-

tions formed from individuals, increasingly more adapted to a given, well-

defined environment. Selections and reproductions are made from the best 

performing parents of the population from which they come. They are stochas-

tic or deterministic. The creation of these offspring is done by the application 

of genetic operators (mutation, crossing). It is always stochastic. The new re-

placement population is created by the selection of the best performing indivi-

duals, among either the offspring or the parents of the offspring. The replace-

ment is either stochastic or deterministic. In the books (Goldberg, 1989), (Koza, 

1992), (Michalewicz, 1996), (Rumelhart & McClelland, 1986), additional infor-

mation can be found along with a demonstration of the convergence of the me-

thod. 

The essential advantage of these methods is that they operate simultaneously 

on a test space of the solutions. The genetic method differs from the simulated 

annealing method by the operators which are used to force the evolution of the 

test population. In all cases, the convergence is always assured towards an ex-

treme. This extreme is not necessarily the absolute extreme, but has more 

chance of being so, than if a traditional gradient method is used. This is shown 

in (Goldberg, 1989). In effect, a stochastic method explores a larger solution 

space. In addition, another essential advantage of these methods lies in the 

small number of assumptions that are required for the objective function. 

2.1 Genetic algorithms 

The genetic algorithms used are optimisation algorithms and make up part of 

the stochastic methods. They were first used in 1975. As their name implies, 

these algorithms seek the optimal solutions to a given problem by simulating 

the evolution and adaption of living organisms. 

"The individual most able to adapt to a well defined environment has the grea-

test chance of continuing to survive and transmitting it's qualities to new indi-

viduals." 
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When Charles Darwin claimed his theory of the "Survival of the Fittest", a new 

century of understanding nature and life began. Over millions of years, life on 

earth has been in a process of optimal adaption to current environments. A na-

tural selection between different individuals has maintained a changing of 

their genetics, that way the fittest ones, in the sense being best adapted, have 

survived and transferred their genetic codes to their descendants by a rando-

mised information exchange. On the other hand, the worst adapted ones have 

died off. 

This process is a process of optimisation. The natural selection is like a search 

algorithm for finding the best solution of living in a particular, natural envi-

ronment. Certainly, the system of nature can not easily be transferred to tech-

nical systems. But we can have a look at, how the main rules of selection in na-

ture are processed. And we can try to abstract and implement these for solving 

problems of optimisation with the help of computers. David Goldberg (Gold-

berg, 1989) described, based on John Holland's work (Holland, 1975), two im-

portant subjects: 

 

- explanation of the adaptative processes of life and other natural systems, 

- design of artificial systems which behave similarly like natural systems 

concerning their important mechanisms. 

As biological systems obtain such a robustness, efficiency and flexibility, the 

basic rules of their mechanisms have been very interesting for artificial sys-

tems of engineering, computer or business applications. A genetic algorithm, 

now shortly called G.A., is a stochastic search method with the aim to scan 

randomly through these areas of the search space where the biggest chance of 

success seems to be provided. Today, G.As are proved theoretically and empi-

rically for searches in complex spaces. They are simple for computer imple-

mentation but very powerful and effective. And there are no fundamental res-

trictions or limitations about the search space like continuity, existence of 

derivatives, unimodality, and so on.  

The process of optimisation is a performance towards an optimum. This means 

that there is, on the one hand, the process of improvement and, on the other 

hand, the reaching of the optimum. Mostly, not only destination of the maxi-

mum is important, as supported by many conventional methods, but also a 

comparison of being or behaving better relatively to others, like the G.A. do 

this.  The following points are figuring out the differences between G.As and 

other methods: 
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- as G.As work with a special coding of the parameter set, they can use par-

ticular similarities of this coding in a very general way. Conventional 

methods use the parameters themselves, and often they are restricted by a 

lot of limitations (continuity, unimodality, ...), 

- most algorithms seek point-by-point to find the peaks in the search space. 

G.As do this in a quasi paralell way with a population of many strings, 

- G.As have no use of any auxiliary functions like the derivatives. They use 

only a so-called payoff information of the objective function, 

- G.As work with probabilistic transition rules, not with deterministic rules. 

But this stochastic effect leads to an improvment in searching, not to a 

random search. 

Conventional search methods are not very robust, but often specially designed 

for particular problems, they are mostly succesful in many applications. Even 

sometimes, their performance can be better than these of G.As. But neverthe-

less, already simple G.As have their own advantages. To apply this process to 

optimisation, the starting point is a group of solutions to the posed problem. 

This group is called the initial population, and is chosen randomly from the 

valid domain. Each individual solution is called a chromosome, which carries 

information relevant to evaluate the cost function of each chromosome. This 

information is encoded in symbols (usually natural numbers) of which each 

symbol is a gene. It is known that each chromosome has the same number of 

genes. The greater the size of the population, the higher the effectiveness of the 

search, as the solution space will be explored in a wider manner. It is always 

limited, however, by the time needed for calculation and the capacity of the 

operating system. Once the initial population is generated, the algorithm be-

gins to create a new population, equal in size to the initial population, in the 

case of a simple G.A.. The individuals of the new population will be developed 

from those of the preceding population, after having been subjected to a num-

ber of operators. In this way, each population generates a new one. The algo-

rithm stops after a given number of generations, or by fixing other relevant 

function-cost criteria. In living organisms, the genetic operators are applied to 

the chromosomes of the parents; by analogy, the operators used in genetic al-

gorithms are applied to the different codings of the individuals of a genera-

tion. In general, the genes can take binary values (0 or 1) to represent the state 

of a given piece of information. In particular cases, a gene can take a certain 

number of fixed values. 

Genetic algorithms make up a large family of algorithms, each one different 
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from the other by their degree of simulation of different phenomena, related to 

the adaption to natural systems. 

By limiting to the application of a simple G.A., the three operators which are 

going to be used will be: 

 

- reproduction 

- crossing 

- mutation 

The main idea of these operators comes from the observation of the interaction 

in natural surroundings. The problem is always translated into terms of maxi-

mising the objective function. The greater the objective function value of an 

individual relative to other individuals of the same population, the greater its 

chances of selection. The selection is carried out randomly, respecting the 

weighting of each individual. 

Psel i = 
fi

Σpop f  

The selection operation is applied as many times as are necessary to complete 

the population. 

Once the selection is finished, the individuals are paired, and a crossing opera-

tor is applied to each. The probability of crossing is Pc, which is fixed before-

hand. This operator consists of choosing a random position for the two chro-

mosomes, cutting them at that position and changing the two parts beyond 

that position. 

 

 

Initial pair

1 1 0 1 1 0 1

0 1 1 0 0 0 1

1 1 0 1

0 1 1 0 0 0 1

1 0 1

1 1 0 1 0 0 1

0 1 1 0 1 0 1

Final pair

 
 

Figure 2. Crossing diagram 
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Reproduction and crossing are operators which transmit the good qualities of 

one generation to another. Important information, however, might not be re-

presented by the chromosomes of the mother generation, or those carrying it 

might be destroyed accidentally by the transmission operators. Mutation 

consists of changing the values of a certain number of genes chosen randomly 

from those carried by the whole population. The probability Pm of applying 

mutation to a gene is fixed beforehand. If a gene is chosen to undergo a muta-

tion, the new value is chosen randomly from among all the possible values 

which it could take. 

 
1 1 0 0 1 1 1

1 0 0 0 1 1 0  
 

Figure 3. Mutation diagram 
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Figure 4. Diagramatic representation of the simple G.A. 
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The operators mentioned apply themselves to a generation to create another, 

respecting the sequences already stated. Figure 4 gives an overview of the ac-

tions of the three operators on a generation. The genes can take three values: 0, 

1 or 2. 

2.2 The simulated annealing method 

The simulated annealing method, as the name implies, is based upon the me-

tallurgical process of the same name. This "random search" method of minimi-

sation is characterized by accepting the increases of the objective function with 

a given probability. This allows it to get out of the troughs (unlike determinis-

tic methods) and therefore to escape from local minima. In the metallurgical 

process of annealing, if a metallic body is heated to it's melting point and then 

slowly cooled to ambient temperature, then the global energy of the metal will 

eventually pass through an absolute minimum. The basic algorithm is the "me-

tropolis" algorithm, which is the standard of random research methods. Here 

is a reminder of this very simple algorithm: 

 

Step 1: choose initial value of X0, evaluate F(X0), for k=0 

Step 2:  at the k+1 iteration, create a vector X, from Xk; if 

         F(X)<F(Xk) then Xk+1=X, else Xk+1=Xk. 

Step 3:  if the finishing criteria have not been met, then let  

 k=k+1 and go to step 2. If the criteria have been met then finish. 
 

Several theorems of convergence to a global minimum were established for 

these methods. Difficulties in escaping from local minima remained however, 

which is why, of course, simulated annealing is needed. 

The metallurgical process of annealing is applied to the optimisation problem. 

The objective function, F, is equivalent to an energy term. A temperature func-

tion, T(k), is introduced, whose purpose is to allow acceptance of the growth, 

by using the probability: p = exp(-DELTA(F)/T(k)). The principles and details 

were given in (Bonnemoy & Hamma, 1991). We shall see an application of this 

method in part 3.2. 

2.3 Neural networks 

The operation of artificial neural networks, as their name suggests, takes inspi-

ration from that of biological neural networks. A large part of their vocabulary 
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is therefore been borrowed to describe them. In the author’s opinion, this is as 

far as the similarities go. Detail of the theory, which will be summarized later, 

can be found in (Jodouin, 1994). The use of neural networks for the simulation 

or modelisation will be done in two stages: one phase which is called apprenti-

ceship, using finite elements calculations for example in mechanics of structu-

res, followed by a calculation or generalisation phase. In the present case, neu-

ral networks should be able to estimate an objective function or a cost function 

of entry or design variables. It should be noted here that the entry variables 

will be the binary digits of the chromosomes when using a G.A. or the real va-

lues of the design variables when using the simulated annealing method. To 

describe a neural network, it is sufficient to know the neuron model and the 

arrangement of the connections between the neurons. 

 

 

 

Summation Activation 

function

Yn,i Xn,i

W(n;i,0)W(n;i,1)

W(n;i,j)

 
 

Figure 5. The elementary neuron 

 

A neuron is modeled by two operators (figure 5). Firstly, a summing operator 

which develops a potential Yn,i, equal to the balanced sum of the cell entries 

(it is this which will be translated by the optimisation of balanced weights in 

the apprenticeship phase). Secondly, an operator which calculates the state of 

the exit value Xn,i = f(Yn,i) of the neuron as a function of its potential (f is cal-

led the neuron function, it can be either linear or non-linear). The entries are 

the exit values of the same layer or of another layer, or eventually the exterior 

entries themselves. 

In the case of the optimisation procedure and binary coding for the chromo-

somes of the G.A., the exterior entries will be 0s or 1s, which will correspond to 

the chromosome digits. The function, f, can take different forms depending on 
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the type of network (figure 6). The most up to date models of connection net-

works are defined in figure 7. A complex network can be split into many layers 

and in this sequence of layers, a direction of information transfer can be defi-

ned. Furthermore, in the interior of one layer or between two layers, the 

connections can be partial or total. 

 

 

 
 

Figure 6. Some neural functions 

 

The apprenticeship phase consists of optimising or adapting, by an apprenti-

ceship rule, modifying the weights at each link. An apprenticeship sample is 

used to do this, that is, solutions which will be previously determined by finite 

element analysis for example in mechanics of structures. The principle crite-

rion is to have a minimal error for the evaluation of the function. Local adap-

tion rules (for which the weight optimisation is based on the states of the neu-

rons connected to corresponding links) are distinguished from other rules 

which are much more difficult to put into use. Among the rules which are cal-

led local, and for which details can be found in (Jodouin, 1994), the best known 

are those which are called supervised or non-supervised, and the iterative ru-

les. Among the non-local rules, are two of the most frequently used. Firstly, 

there is the Widrow-Hoff rule. This applies in particular to completely inter-

connected two layer networks. This was generalized in multi-layer networks 

by the retropropogation algorithm, to the error gradient. The error at the exit 

of each neuron being expressed as a function of the error calculated for the fol-

lowing layer by a simple differential calculation. Secondly, the Hopfield model 
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for the adaption rule is based on the minimisation of total energy of the net-

work, which is the sum of the elemental energies which characterize a neuron. 

Each neuron is updated in a randomly drawn series. 

 

 

Local connections Direct connections

 Recurrent connections Total connections between two layers  
 

Figure 7. Some models of network connections 

 

To summarize, a neural network works in two phases. In the first place, the 

apprenticeship phase, during which the adaption function is active. This al-

lows the weight values to be optimised from a set of entry values (the design 

or conception variables) and from exit values (the objective function(s) or cost 

function) called the apprenticeship set. In the second place, the calculation or 

generation mode, during which the values of the weights are fixed. This allows 

the calculation by the neural network of the exit values as a function of the en-

try values. 

The application of neural networks to modelisation, especially for the simula-

tion of the calculations for the mechanical structures, seems promising from 

the results obtained. See (Berke & Hajela, 1992), (Szewczyk & Hajela, 1994) and 

(Hajela & Szewczyk, 1994). The continuation to modelisation seems natural as 

the action of modeling a process or a behavior, necessitates the knowledge of 

the principle characteristics of the process or behavior. The network knows 

how to extract these characteristics and can therefore be memorised easily. On 

the other hand, this ability to model exploits the adaption qualities of net-

works, allowing them to improve as they are exploited. In this work, effective 
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neural networks were used, at the current level of knowledge, and for which 

apprenticeship and generalisation/calculation algorithms are described in (Jo-

douin, 1994). This neural network, quite easily programmed, is a three layer 

network with a sigmoid neural function (figures 6 and 8) called MLP (multi-

layer perceptron). The MLP has been used in most of our applications. 

 

 

Entry layer   Hidden layers  Exit layer  
 

Figure 8. Neural networks used 

 

3. Integrated optimal design of particular mechanical systems and 
process 

3.1 Optimisation of gears 

Gears are very complicated components. A large number of dominating fac-

tors vary in every case: radius of curvature, unitary loading, pressure, slip 

speeds, etc.... The design variables are huge in certain cases and take very dis-

crete values (such as the module, the choice of materials). Often several objec-

tives work in competition: balancing the energy transmission in bending and 

under pressure, optimisation of masses, balancing the slips, to  mention but a 

few. The idea consists of automatically dimensionning a right-sided cylindrical 

gear or helical gear, so as to find a good compromise between a minimum 

weight, dynamic performance (energy transmission) and geometric criteria 

such as balancing the slips. This optimisation problem is very difficult to re-
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solve by hand and often leads to compromised solutions that are not entirely 

satisfactory, so therefore the idea of an automatic optimisation technique is 

most desirable for this complex problem. In (Daidie, 1993), the authors of the 

paper propose a classic optimisation technique for gears. Nevertheless, these 

mathematical optimisation methods depend on the understanding of objective 

function gradients and are difficult to adapt to gears for three principle rea-

sons: 
 

a) initiall, certain design variables are continuous while others are discrete, 

b) the derived programming is quite delicate because the optimising func-

tions often depend implicitly on the design variables,  

c) finall, the major flaw is that these methods become blocked at a local ex-

treme (often the only way to pursue the program is to rerun the calcula-

tion with a new starting point). Thus all specialists know, the optimisa-

tion of gears is acknowledged to have numerous solutions and often it 

is better to adapt them to given situations. This therefore leads to the 

use of a genetic algorithm in order to solve the problem. Note that in 

(Mekhilef & Dupinet, 1993) the researchers use a method of simulated 

annealing (part 2.2) to solve the problem, and with some success. The 

problem of gear optimisation is illustrated in figure 9. 

 
 

a

n1

n2

Z1 ? x1 ? mn0 ?

x2 ?   materials ?

b ?

 
 

Figure 9. Definition of optimising gearing 
 

There are two main difficulties with this problem. First of all, it is a matter of 

coding the solution in the form of a chromosome that will be simple and effi-

cient; then there is the matter of finding a good compromise in function of dif-

ferent objectives between the different criteria (weight, power differential, ba-

lancing slips).  
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The coded parameters are restrained so the field of study is not too large and 

so therefore the chromosome is not too long. So in this way we have not consi-

dered all the design parameters in gearing, but only six main parameters: k , z1 

, x1 , x2 , mn0, and the material; other parameters such as the helix angle for 

example are fixed during the course of the optimisation. So in which case, this 

choice can be modified without any problems (figure 9).  

When considering the choice of the objective function, we are using a multi-

objective technique where the objective function will infact be a balanced sum 

of the different functions that we want to obtain, such as for example the mi-

nimum weight and minimum difference between slips. In which case we must 

weight certain objectives in respect to others; the effective choice can easily be 

reset, in the case of the same script of the different objectives (the shape under 

which they appear is at the discretion of the researcher in the domaine of op-

timisation). Above all though, the difficulty consisted of choosing the weigh-

ting of the coefficients in respect to their influence (that are of a different na-

ture). This can only be done resulting from numeric experiments, where the 

goal was to find the best compromise possible between the different objectives. 

In the first place, the coding of the variables that we have used in the genetic 

algorithm is as follows: each of the values: k, z1, x1, x2, mn0 and materials are 

written into a binary numeration system. So, six chains are obtained C1, C2, 

C3, C4, C5, C6, with lengths of  4, 6, 6, 7, 4, 3 respectively. 

An example of a genetic identity card (chromosome) for a gearing system is 

given here. 

Genetic identity coding (chromosome) for gearing: 

 

1001 110101 101100 1010100 1001 010 

  C1    C2        C3         C4          C5    C6 

 

C1 :   size coefficient of tooth ‘k’, 

C2 :  number of teeth ‘Z1’, 

C3 :   coefficient ‘x1’,                           

C4 :   coefficient ‘x2’, 

C5 :   real shape module ‘mn0’, 

C6 :   material chosen from a library of 8 different types. 

 

This coding is limited to a chromosome of a total of thirty genes long which ar-

range end to end (where the order is not important) the relative information of 
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the gearing. This coding restrains the admissible domaine of design itself. 

There are only 24 = 16 possible width ‘k’ coefficients; only 26 = 64 possibilities 

for the number of teeth ‘z1’ (that can vary between 12 and 75 for example); x1 

and x2 only vary between -0.5 and 0.5 with two significant numbers; for mn0 

there are 16 normalised numbers possible; finally, the material for the pinion 

and gearwheel is the same, and there are eight possible choices from the libra-

ry of materials. For example the code 001 corresponds to 30CND8, the code 

110 to 16NC6, and so on. It therefore follows, that it is possible to modify the 

structure or the length of the chromosome without too much difficulty. 

In the second place, ‘multi-objective’ functions in the case of gearing are rather 

complicated. We propose that by the following we can modify at will, in func-

tion of the results of diverse numerical experiments. The idea is to build the 

function as if it were the sum of the weighted representative terms, by the 

coefficients that we can vary when we wish, more or less according to the im-

portance of such and such a criteria. The function that we have used for the 

tests that follow, is illustrated below: 

 

F=1010  -  
I1

Rap
( b
bmax

) (
d1

d1max
)
2
-I2 gs1-gs2

 
 

-I3 
Rap

Ptrans
  Prup - c.Ptrans +Ppres-c.Ptrans   

 

I1, I2 and I3: weighting coefficients ,                     

gs1, gs2:  maximum absolute slips, 

Rap:  ratio of quality against price of material , 

b:   width of material,  

d1:   primitive diameter of pinion.  

 

The presence of the term 1010 is due to the fact that the G.A. maximises the 

functions. To calculate the functions at a minimum, it is possible to look for the 

maximum of the opposing function plus a very large term. The second term af-

fected by coefficient I1 is a term relating to the minimisation of gear size with 

relation to a given maximum size. This term is penalized in terms of quali-

ty/price of a material. The third term affected  by coefficient I2 expresses the 

equalizing of the absolute slip (very important in reducing wear). Finally, the 

fourth term, affected by coefficient I3, is a term expressing the search for ba-

lance between the transmissible powers under pressure and under flexion, and 
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also respecting the safety factor with relation to power transmitted. It is possi-

ble to add other criteria to this multi-objective function, e.g. a term expressing 

maximisation of driving relation or a term ensuring imposed distances bet-

ween axes are respected. After several numeric tests on a basic example, the 

values of weighting coefficients below were chosen for the following test case: 

I1=0.2, I2=0.1 and I3=10. This test concerns a helicoidal gear used in a fixed axis 

gearbox. The parameters of the G.A. are: population size=200 and number of 

generations=100. The results are compared to a reference solution, optimised 

using other methods. 

The given factors are: 

 

Ptrans=400KW 

Nmax(input)=1485 tr/min 

transmission relationship u=6 

developing circle of teeth �=8°33' 

Quality factor Q=6 

Life H=200000 hours 

functionning with negligible shock. 

 

The following is the best solution of the last generation: 

  Geometrical analysis : 

 
 mn0 Z1 x1 x2 k Material 

reference solution 5 26 0.44 -0.4     32 16NC6 

genetic algorithm 6 23 0.10 0.09 13 16NC6 

 

 reference solution  genetic algorithm 

width b (mm)         160 78 

d1 ( mm ) 131.4 139.9 

volume bd12 2.7E6 1.5E6 

gs1 0.24 0.48 

gs2 0.33 0.30 

ee 1.63 1.85 

Pflex ( kW ) 1100   760 

Ppres ( kW ) 1000 740 

 

The objectives have been achieved: a correct balance between absolute slips 

gs1 and gs2 and powers with a sufficient saftey factor. It is also notable that the 



 Manufacturing the Future: Concepts, Technologies & Visions 486

volume of the gear in the genetic solution is clearly less than the volume of the 

reference solution. 

Numberous other tests of this nature have been conducted and the optimisa-

tion objectives are always successfully met. For all these tests the material sys-

tematically selected (from a list of available materials) is the highest perfor-

ming, that is 16NC6. In reality, amongst the final solutions, there are other 

perfectly acceptable solutions using less high perfomance steels, but we have 

chosen the best one each time. 

3.2 Optimisation of mechanisms 

We are going to show that the evolutionary methods can also be very efficient 

for problems of optimisation of mechanisms. Computer Aided Design (CAD) 

of mechanisms has already been approached in a number of different ways in 

different papers. There are systems of assistance in mechanism design (Guillot 

et al., 1989), (Clozel, 1991); certain articles have tried techniques of artificial in-

telligence (Hernot et al., 1995). Others have attacked the difficult problem of 

aided choice of mechanism topology taking into account kinematic criteria, 

cost reducing criteria, and ease of design (Sardain, 1994). The present part 

concentrates on the problem of optimisation of mechanisms under the follo-

wing restricting hypothesis: we remain within the scope of fixed topologies 

and we consider mechanisms which are isostatic or slightly hyperstatic. The 

principal objective is to minimise the force transmitted in each liason; the de-

sign variables are the relative positions of the different liasons in respect to 

each other; furthermore certain technological limitations on overall size, or the 

exclusion of certain areas of the layout or space for the predifined liasons must 

be respected. It is in fact a question of a first approach destined to show that it 

is possible to optimise mechanisms using methods of optimisation completely 

random (trial and error) and automatic, without calling on techniques of artifi-

cial intelligence (A.I.). The alternatives proposed in place of A.I. are interesting 

because probabilistic methods allow, at once, a rigorous and robust selection of 

ideal technological solutions which are compatible with the existing technolo-

gical limitations. Subsequently, it will then be possible to attempt more com-

plex problems, like the optimisation of mechanism topologies; problems for 

which stochastic methods are particularly suitable since they are perfectly sui-

ted to problems with discret variables. We will show, by means of examples, 

that when put into action the procedure allows optimisation of mechanisms 

with a definite efficiency. 
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Now to study a mechanism (representing a mixer) which creates a transforma-

tion of movement which is represented by figure 10. It is composed of 3 solids 

S1, S2, S3, and a fixed housing S0. S1 is an entry shaft with uniform rotation. It 

is connected to the housing by means of a horizontal axis pivotal liason (fixed 

rolling element bearing). It is connected to S2 by means of a free floating rol-

ling element bearing on a horizontal axis. S2 is connected to the exit shaft S3 by 

means of a ball and socket joint (in effect a basic fixed rolling element bearing 

on a vertical axis); the fact that S2 and S3 are linked by a ball and socket joint 

renders the system isostatic. S3 whom is linked to the mixer blades is connec-

ted to the housing with a free floating rolling element bearing about a vertical 

axis. It is assumed that only parts 1 and 3 recieve external forces applied to the 

mechanism. The objective is once more to minimise the inter efforts unknowns 

inside the system with a goal of finding the dimensions which have the least 

cost. In order to be able to calculate the forces transmitted in the different lia-

sons, and for the purposes of this calculation only, it is assumed that all the 

components of the external forces applied to parts 1 and 3 are 10kN and all the 

components of moments applied to 1 and 3 are 1kNm. This being, a standard 

program of static analysis of mechanisms allows to calculate, for a given confi-

guration of the mechanism, the torques transmitted in the different liasons. For 

the purpose of this test, the objective function is taken as minimising the qua-

dratic sum of all the components of forces and of moments of every liason (for 

this function to be homogenous, the moments are divided by an equal refe-

rence length, 100mm). If analysing only 1 or 2 particular liasons it is possible to 

limit the objective to only the components in question.  

With regards to design variables allowing to define the relative positions of 

liasons with respect to one and other, it is possible to identify 5 which are in-

dependent. These variables, marked X1 to X5 are the following: 

X1= 1 (see figure 10), X2= R = O1O2, X3= z(O4), X4= angle A1, X5= angle A2 

With regards to limitations on the design variables the following factors are 

used: the horizontal dimension, L, is fixed at a value of L= 200mm (figure 10); 

this limitation gives us a relationship allowing to calculate the distance bet-

ween O2 and the centre of the ball and socket joint in terms of L, X1, X2, X4, 

and X5. 

Otherwise, the design variables are limited in the following manner: 

 

0<X1<100, 0<X2<50, -100<X3<0, 0<X4<90°, 0<X5<45° 
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Figure 10. Optimisation of mechanism 

 

For this test we must make an initial optimisation using a G.A., to roughly 

work out the problem, the more precise optimisation using simulated annea-

ling methods, starting from an initial solution given by the G.A.. So that the 

optimisation by the G.A. will be effective and as it is only used for the first ap-

proximation, we volountarily limit the coding of the five design variables to a 

binary chromosome of 10 digits in total. The structure of this binary chromo-

some is as follows: 

 
- the first 2 digits allow the coding of variable X1, the 

following 2 digits the coding of X2, and so on; 

- the 2x5 digits are then put side by side to form a chromosome of 10      

digits; 
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The coding is crude but it is after an initial passage that it is possible to im-

prove using a more precise coding. In the present case the decoding will be 

done in the following manner: 
 

variable X1:   00 --> 20, 01 --> 50, 10 --> 75, 11 --> 100 

variable X2:   00 --> 20, 01 --> 30, 10 --> 40, 11 --> 50 

variable X3:   00 --> -50, 01 --> -60, 10 --> - 80, 11 --> - 100 

variable X4:   00 --> 0°, 01 --> 20°,10 --> 50°, 11 --> 90° 

variable X5:   00 --> 0°, 01 --> 10°,10 --> 25°, 11 --> 40° 
 

It can be seen that the limitations of the problem, in particular on the design 

variables are integrated in the coding. It is not as necessary to penalise an ob-

jective function that will be of type a - F (a being a very large constant) because 

the G.A. maximises the functions. For a population of 30 individuals and 50 

generations, the G.A. quickly comes to the following solution: 
 

X1=100; X2=50; X3=-50; X4=20°; X5=0° 

 

which corresponds to the chromosome 111000100, and a value of 1.1013E8 for 

F. This represents a gain of 30% in comparison to an average solution, for 

example: 
 

X1=20; X2=20; X3=-100; X4=90°; X5=40°; 
chromosome=0000111111; 

 

F=1.318E8; 

We now bring in optimisation by simulated annealing, starting from the inital 

solution: 
 

X1=100; X2=50; X3=-50; X4=20°; X5=0°; F=1.013E8; 
 

The improvement is hardly noticable, the solution proposed is:  
 

X1=100; X2=50; X3=-26; X4=5°; X5=2°; F=1.0105E8; 

giving a gain of only 0.3%. 
 

We note that the tendency of solutions is to take X1 as large as possible and 

angles A1 and A2 small, as far as the technology will allow. With regards to 

components of forces and moments, results for the final solution and some 

force characteristics are given in the table below. Values for the average solu-

tion (chromosome 0000111111) are given in brackets.  
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for liason 01:  Y01 = 200. DaN (753.), M01 = 4974. mmDaN (8467.) 

for liason 12: Y12 = 1. DaN (6.5), M12 = 5025. mmDaN (18467.) 

                        N12 = 5028. mmDaN (120522.) 

for liason 23: Y23 = 1. DaN (6.5) 

for liason 03: Y03 = 0.1 DaN (553.), L03 = 13386. mmDaN (89601.) 

                       M03 = 6. mmDaN (8467.) 

One notes a very important reduction of the values of forces and moments. 

The programming and the implementation of the two methods is simple and 

does not pose any particular problems given their remarkable effectiveness, 

and it is this that is their appeal. It is sufficient to call upon the program as 

many times as is necessary (for the G.A. and the last test done 30x50=1500 ti-

mes), after having first done the decoding of the proposed chromosome follo-

wing the rules given earlier. 

With regards to simulated annealing, the number of calls made upon the pro-

gram is over 100000 because there are 5 design variables. The size of this num-

ber is the principle disadvantage of this method. 

3.3 Optimisation of stiffened plates and shells 

To be able to anticipate and to optimise from the design phase, the dimensions 

and the number of stiffeners or ribs in mechanical structures, is probably one 

of the greatest problems for mechanical engineers; its resolution from the ini-

tial conception makes it possible to eliminate a great deal of ultimate problems 

and adjustments. 

In the following section, the example of hull supports are treated simply as 

beams. The plates and hulls are treated such that they are thin so that the 

thickness dimension is much smaller than the other two dimensions. Since the 

ratio of toughness against weight is very important as well as good behaviou-

ral characteristics, these examples can be put to many different uses but are 

mainly used in industry and civil engineering applications: food tins, car bo-

dywork, planes, ships, liquid and gas tanks, bridges, cooling structures, spatial 

vessels, petrol tankers, and so on.  

The problems studied in this part will be limited to the bending of plates. The 

plates possess a higher stiffness concerning coplanar strains that are the dis-

placements in the mean plane of the plate and rotations perpendicular to this 

plane. This said, the stiffness in relation to the perpendicular displacement to 

the plane of the plate and in relation to the rotations about parallel axes to the 
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plane of the plate, is a great deal weaker. This part treats the stiffening of plate 

structures with the addition of beam supports. Essentially, the aim is to opti-

mise the positioning of the supports with the objective being the yield (per-

pendicular displacement to mean plane of the sheet); this procedure can bring 

about interesting improvements in a structure behaviour. 

One uses a genetic algorithm to optimise the position of a series of supports of 

equal lengths precisely on a plate in bending. The plate studied in this example 

had dimensions of  2.4 m long by 1.5 m wide. The plate was completely em-

bedded along one of it’s width and was made of steel of elastic modulus E = 

2.1 104 DaN/mm2 and Poisson’s ratio 0.3. It was 2 mm thick (figure 11). The 

supports were made from the same material as the plate and were completely 

integrated. They have a drop height of 8 mm and a width of 5 mm . 
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Figure 11. Numeration of the plate supports  
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Figure 12. Cross-section of the plate and support  
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The plate is held horizontal by being embedded along one of it’s width. At the 

opposite end, two identical forces of 144 DaN are applied vertically. In this 

example, the overall mass of the structure is not taken into account. 

So, our objective here is to reduce the maximum bending of the plate while op-

timising the positioning of a number of stiffeners. The maximum bending is 

the greatest vertical displacement of the plate. The element distribution repre-

sented on figure 11 shows that there are 525 possible positions for the stiffe-

ners, each 100 mm long. Such a large domain of research requires a huge calcu-

lation time, so in order to reduce this, the number of possible positions is 

reduced and regrouped such that a support is made of three aligned consecu-

tively to a length of 300 mm. This process means that there are only 63 possible 

positions (as shown in figure 11). 

A traditional coding technique in a genetic algorithm with such an example 

consists of building a chromosome with 63 genes, with each one taking a bina-

ry number (0 or 1) and decoded as follows: 
 

if a gene of position ‘i’ carries binary number 1, stiffener n°1 exists but in the 

opposite case it doesn’t exist. If the genetic algorithm is run with such a co-

ding it will obviously head towards a chromosome where all the genes carry 

a binary number 1, because the stiffer the plate is, the smaller the displace-

ment will be. Nonetheless, the aim is to limit the number of stiffeners distri-

buted on the plate and in this study it is limited to 14. 
 

One coding technique consists of traditional coding and a system that disposes 

of any chromosome with any more than 14 stiffeners to multiply their functio-

nal values by a number less than unity and function the number of overabun-

dant stiffeners. 

This technique though, risks filling the population by ultimately rejected indi-

viduals and therefore cost functional values will be uselessly calculated. In our 

study, another type of coding has been used that builds chromosomes that are 

of equal length to the total number of stiffeners hoped for, and only containing 

the number of positions of the different stiffeners that must exist in the confi-

guration. This works so that the chromosomes built are 14 genes long with 

each gene taking an integer between 1 and 63 inclusive. 

So with this coding technique we have individuals with one or several genes 

carrying the same value which can be interpreted and then decoded in several 

different ways following the desired design. If there are ‘n’ genes carrying the 

same value ‘m’, we can consider for example that at position ‘m’, we have: 
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- just one stiffener 5 mm wide and drop height  8 mm , 

- one stiffener having a drop height of 8 mm and width n5 mm , 

- one stiffener having a width of 5 mm and drop height n8 mm ,  

- effectively ‘n’ identical stiffeners of width 5 mm and drop height 8 

          mm . 
 

Here we have adopted the fourth possibility. It is important to note that the 

individuals obtained by permutation of the positions of a chromosome have 

the same distribution configuration, so the same cost functional value and the-

refore the program considers them as being the same individual. 

Summary: the objective is to minimise the maximum yield (localisation can va-

ry in some cases), the problem was uniquely constrained by a maximum num-

ber of stiffeners arranged on the plate. 
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Figure 13. Maximum yield values for each population against revolutions  

3.3.1 Without neural networks    

On figure 13, we find the converging results obtained by the genetic algorithm 

for the plate, settled at 50 generations, the number of individuals per popula-

tion is 50, Pc = 0.6 and Pm = 0.03 (Pc and Pm are probabilities of crossover and 
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mutation respectively). The curve represents the maximum value of yield for 

each population function to the number of generations: this curve is the mean 

of the result of 9 runs of the program with the same parameters. The maxi-

mum yield of the unstrengthened plate with the limiting conditions already 

mentioned, including the loading , is -4.6702 mm. 

The optimum solution found by the genetic algorithm is represented graphi-

cally on figure 14. The corresponding cost function value is  f max = -1.8243 

mm.  

 

 

 

:  One stiffener

:  Two stiffeners  
 

Figure 14. Optimum position of stiffeners  
 

3.3.2 With neural networks 

Initiating a neural network with 100 chromosomes, we arrive at a relatively ef-

fective neural network, since the total errors made are no greater than 7 % as 

shown by the examples below with, in the following order, the chromosome, 

the maximum yield evaluated by the neural network and the percentage error 

with respect to calculations from the finite elements. These errors are tolerated 

by the genetic algorithm (so much so that they are always of the same sign). 

The genetic algorithm re-runs on the same solutions as previously, but around 

twenty times quicker. 
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 3   12   12   27    29    31    34    36    39    40    50    51    54    57   -3.093    0.08% 

 3    4     5    19    19    21    22    30    31    34    53    54    55    59   -3.980    0.15% 

 2    3     5    17    24    42    43    47    47    48    51    56    59    60   -3.557    0.6% 

 1  13   14    21    32    38    39    44    49    53    55    56    62    63   -3.995    0.7% 

 1  13   14    16    18    19    23    25    29    39    42    45    52    55   -4.019    0.17% 

 2    7     9    10    12    19    34    34    34    40    43    44    53    59   -3.499   6.3% 

 8   12   14    15    17    24    24    35    37    41    52    56    57   58   -3.635   5.8% 

12  31   32   36     40    42    44    44    50    50    50    55    59    61  -2.996    6.5% 

 4    7      9    11    18    18    25    29    32    35    39    42    51    51  -4.015    6.34% 

 7    8    12    27    28    38    39    46    49    50    51    54    54   54   -3.439   6.9% 

 

4. General conclusions and synthesis 

4.1 Conclusions on neural networks 

 

In the course of our numeric experimentation on neural networks they have 

seemed to present some limitations. These limitations are not to do with data 

processing: currently, thanks to the improvements in computers it is possible 

to use neural networks of a significant size (more than 1000 neurons and 1000 

weights). It is more the absence of an established theoretical knowledge of the 

functioning of the networks that renders their use delicate. Various problems 

have needed to be dealt with, such as the necessity to study the feasibility of 

every application before the numerable numeric experiments, the uncertain si-

zing of a network, or the absence of theory for anticipatory calculation of er-

rors. For the modelling of mechanical structures it is reasonable to wonder if 

the use of a simple method derived from the Rayleigh-Ritz method (well 

known for vibrations) would not be more suitable for the problems considered 

here. This idea can be illustrated using a well known example in statics.  

Suppose that one wanted to optimise, for example, the number and situation 

of stiffeners on a given plate. One can begin, as with the neural networks, to 

evaluate by finite element methods, a number of representative solutions. In a 

neuromimetic strategy these solutions act as the "learning". In a Rayleigh-Ritz 

type strategy the solutions are used to find the stiffness corresponding to a 
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new configuration of stiffeners without having to re-do the finite element cal-

culations. The new solution is searched in the form of a weighted sum of test 

solutions previously calculated. To find the weighting coefficients, or weights 

(as with neural networks), mechanics offers a reliable theory: the weights are 

obtained by minimising the total potential energy of the plate in question. It is 

also possible to take the minimisation of the error, or of the residue on the 

equilibrium equation as criteria. This strategy has been developed in (Marce-

lin, 2001). The method then appears to be more a Galerkin weighted residue 

method. One noted a certain similarity between these strategies and the neural 

networks, the difference being that mechanics offers a rigorous error criteria. 

In their favour neural networks have the advantage of having a better capabili-

ty to adapt. Moreover there is nothing to stop us operating a neural network 

using the error crieria of mechanics to optimise and control the weights. It is 

proposed to test these strategies in the near future. Part of this work has been 

given over to neural networks which present a number of intrinsic qualities. 

These qualities may eventually make the networks superior to conventional 

mechanical methods discussed earlier. The first quality which comes to mind 

is parallelism. The networks are made up of elementary units who can calcu-

late simultaneously (one of the reasons for the superiority of the brain). They 

are also very capable of adapting. Finally, they can resolve the imprecise, reco-

gnize the vague, and so, prove to be highly robust. The new strategy presented 

here consisted of calculating the objective values of the initial population of the 

G.A. by finite element methods and, after, doing the learning stage of a neural 

network which takes over the calculation of the objective functions of follo-

wing populations. This strategy has also been developed in (Marcelin, 1999). 

The neural network generally used in mechanics and that been used here is the 

Multi-Layered Perceptron (MLP); the learning of this network is effectuated 

while minimising the error at the exit of the network (this error being defined 

as the square of the difference between the desired value and the value given 

by the MLP). This strategy has proved very effective since the error given by 

the MLP has no influence over the convergence of the G.A..  

 

Nevertheless the MLP has presented a number of difficulties:       

 

- determining the necessary number of layers and neurones; 

- difficulties due to optimisation of network parameters by means of gra 

dient analysis (starting points, focusing on local maximums,...). 
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4.2 Evolutionary optimisation: an alternative to A.I. techniques ? 

The stochastic methods are based on the natural laws of evolution and of 

adaption of space which allow living organisms to adapt to a given environ-

ment. As is shown in literature, more and more abundant, on the subject, it 

seemed astute and "natural" of the numberous authors to apply these laws of 

evolution, that is to say adapt, to artificial stuctures. The principal advantages 

of these methods are an assured convergence without the use of differentia-

tion, and for the eventual functions with discrete variables. The major in-

convenience however is the number of calculations, but this may be relieved, 

as we have seen, by the use of neural networks.  

The problem posed is to adapt mechanical structures to their technological en-

vironment. To optimise these mechanical structures, it is not often obvious to 

use the deterministic methods of classical optimisation, methods of gradient. 

These methods require a reliable calculation of sensitivity, which can be diffi-

cult for certain problems. Furthermore, in mechanical technology, the pro-

blems are essentially with discrete variables (since optimal components are 

normally selected from catalogues), and until now authors have tended more 

towards the use of artificial intelligence (A.I.) to find solutions to these pro-

blems. Nevertheless, in certain applications, such as optimisation of gears (part 

3.1), stochastic methods of optimisation are quite well suited. The CAD of me-

chanical systems has already been discussed in a number of manners, often 

calling on techniques of A.I. The facility to implement the stochastic methods, 

as their versitility and adaptability suggest, at least for the examples conside-

red here, can be used as an alternative to classical techniques of A.I.. It is this 

we have tried to demonstrate in this work by means of numerous examples: 

optimisation of gears; optimisation of mechanisms; optimisation of topology of 

stiffeners on plates.  
 

4.3 Towards an optimal integrated design for mechanical systems 

As was shown in part 3, it is possible to tend towards an optimal integrated 

design for mechanical structures. Currently the implementation of an optimal 

integrated design for mechanical systems, that is to say, taking into account a 

maximum of information from the beginning (know-how, ability, optimisation 

constraints), proves difficult due to the fact that the necessary specialist soft-

ware, in most cases, functions independently from other programs. This can be 

illustrated by the example of a gear box.  A program of mechanical analysis is 
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used initially to ensure a sound structure from the start, afterwards, specialist 

software is used for calculations of gears, bearings, shafts, ....The same applies 

for finite element calculations to control the shape and strength of certain 

components. Currently, even if each stage of the problem is presented in terms 

of optimisation as is seen in part 3.1 (dealing with gears), the problems remain, 

most of the time, bound to a specific order. Research in integrated design is 

orientated towards the use of common databases at different stages of the de-

sign. The goal of this work is to propose a fundamentally different approach, 

allowing at once, an optimisation which is both global and almost automatic. It 

should be made clear that given here is the point of view of a mathematician. 

The principle of the proposed method is to use a neural network as a global 

calculation program and to couple this network with stochastic methods of op-

timisation. Bearing in mind that the new strategy proposed consists of three 

stages: first, defining the parameters of the mechanism taking stock of all de-

sign variables, as well as assesment of desired objectives and technological li-

mitations; secondly, the "learning" of the neural network with the goal of ha-

ving a "mega-program" of analysis and calculation (perfectly adapted to the 

task in hand), including a knowledge of all the programmes which will be 

used in the design process; finally, use of this "mega-program" for totally au-

tomatic optimisation, without the need for human intervention, thanks to sto-

chastic methods; the method used here is that of G.A.. The expected result is a 

play of optimal design variables. This strategy has been developed in (Marce-

lin, 1998). 
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