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1. Introduction 

A spectrum of cellular activities including proliferation, differentiation and metabolism are 

controlled by growth factors and hormones. The effects of many growth factors are 

mediated and achieved via transmembrane receptor tyrosine kinases [1,2]. Following ligand 

binding, the intrinsic catalytic activity of the growth factor receptor tyrosine kinases (RTKs) 

is augmented. The autophosphorylated RTKs then transmit signals through their ability to 

recruit and/or phosphorylate intracellular substrates. Thus, identification and 

characterization of proteins that associate with and/or become tyrosyl phosphorylated by 

RTKs become critical to delineate RTKs-mediated signaling pathways. A variety of 

methodologies have been developed and applied to search for substrates of tyrosine kinases 

including RTKs [3-8]. Here, we focus on EGFR pathway substrate no. 8 (Eps8), a putative 

target of epidermal growth factor (EGF) receptor (EGFR), and discuss its biological function 

as well as its implication in human cancers. Given Eps8-elicited effects contribute to 

neoplasm, its potential as a therapeutic target for cancer treatment is anticipated. 

1.1. The identification of Eps8 

To dissect EGFR-mediated signaling, Di Fiore’s laboratory took advantage of immuno-

affinity purification of an entire set of proteins phosphorylated in EGF-treated EGFR-

overexpressing cells, followed by generation of antisera against the purified protein pool. 

With these antisera, bacterial expression libraries were immunologically screened. Several 

murine cDNAs (eps clones) representing genes encoding substrates for EGFR were obtained 

[7,8]. One of them was designated eps8 [9,10]. The human eps8 locus was mapped to 

chromosome 12p12-p13 via fluorescence in situ hybridization (FISH) [11] and confirmed by 

a computer search of a genomic DNA database utilizing human EPS8 cDNA sequence 

(GeneBank accession number U12535) [12]. Similarly, the murine Eps8 genomic DNA 
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sequences are defined on chromosome 6G1 [12]. The computer analysis also revealed three 

genes (designated as Eps8R1, Eps8R2, and Eps8 R3) that are highly homologous to both 

human and murine eps8 [12]. Due to space limitation, studies on these Eps8Rs will not be 

described in this review.   

Proteins with molecular weights of 97 kDa and 68 kDa were recognized by Eps8 antibodies 

and referred to as the two Eps8 isoforms (p97Eps8 and p68Eps8) [12,13].  The exact nature (an 

alternatively spliced or a proteolytic product) of p68Eps8 was still elusive and remained to be 

established. By contrast, p97Eps8 has been well characterized and is the only isoform detected 

in human cancer cells so far and hereinafter is called Eps8. 

Eps8 contains 821 amino acids and exhibits several features of interest: a split pleckstrin 

homology (PH) domain, a putative nuclear targeting sequence, an Src homology 3 (SH3) 

domain, several proline-rich regions, and a degenerated SH2 (dSH2) domain at the N-

terminus (amino acids 55-96) (Figure 1). The proline-rich Eps8 has been demonstrated to 

interact with the SH3 domain of Src [13] and the SH3 of Eps8 was reported to associate with 

Shb [14], Shc [15], RN-tre [16], and Abi1 (also known as E3b1) [17]. The SH3 domain of Eps8 

binds to a consensus sequence of proline-X-X-aspartate-tyrosine (PXXDY) instead of the 

canonical X-proline-X-X-proline (XPXXP) consensus, implicating the existence of a novel 

family of SH3-containing proteins [18]. Furthermore, two Eps8 proteins were demonstrated 

to form an interwound dimer with their SH3 domains being located at the interface [19]. In 

addition to the aforementioned Eps8-interacting proteins, Eps8 was also shown to bind 

directly to EGFR [20], Sos1 [21], and IRSp53 [22,23].  

 

Figure 1. Structural organization of Eps8.  The N-terminal split PH domain (PH*) is important for Eps8 

membrane recruitment. Regions in Eps8 responsible for association with Eps8 binding partners are 

indicated. Green boxes indicate proline-rich regions; gray box indicates the potential nuclear 

localization signal. dSH2 indicates the position of a degenerated SH2. 

Strikingly, Eps8 is an actin capper whose barbed-end capping activity resides in its C-

terminal effector domain and is regulated by protein-protein interaction with Abi1 [24,25].  
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In addition to lamellipodia [26], Eps8 also localizes to other actin-rich structures such as 

PIP2-enriched vesicles, phagocytic cups and comet tails behind intracellular pathogens [25]. 

Two Abi1-containing complexes were reported to have multiple roles in regulating dynamic 

actin turnover [27]. One contains Nap1, Sra (PIR125), Hspc and WAVE, the other contains 

Eps8, Sos1, and the p85 subunit of PI3K.  While the former may activate the Arp2/3 complex, 

the latter may regulate Rac activation and enable Eps8 to cap actin filament barbed ends. Of 

note, Eps8 turns out to be a novel capping protein capable of side-binding and bundling 

actin filaments [28]. The C-terminal Eps8 region (aa648-aa821) encompasses five helices (H1-

H5). The N-terminal amphipathic helix (H1) is largely responsible for Eps8 capping activity, 

while a compact, globular domain composed of H2-H5 is critical for filament bundling. 

Thus, Eps8, as a bifunctional actin remodeller, regulates actin-based mobility and 

endomembrane cellular trafficking through its capping activity, whereas it contributes to 

proper structural organization of gut microvilli via its mediated actin filament bundling 

[28]. 

1.2. Eps8 is an oncoprotein 

Known as the first identified oncoprotein, the tyrosine kinase activity of Rous sarcoma virus 

(RSV)-encoded v-Src is essential for its mediated transformation. Under its influence, a 

spectrum of proteins has their phosphotyrosine content increased and are viewed as 

putative v-Src substrates [3,29]. Intriguingly, some of them including Eps8 turn out to be the 

substrates for EGFR as well [13]. Elevated expression and tyrosyl phosphorylation of Eps8 

are observed in v-Src transformed cells [13]. Overexpression of Eps8 confers the ability of 

fibroblasts to form foci in culture and to grow tumors in mice [30]. Consistent with its 

oncogenic potential [30], Eps8 attenuation retards cellular growth of fibroblasts expressing 

v-Src [31].   

Like SH2 and SH3, PH is a common motif shared by signaling molecules, which mediates 

protein-protein and protein-lipid interactions. Mounting evidence indicates that via PH-

mediated binding to either phospholipids [32,33] or membrane-associated proteins [34,35], 

the association between PH-containing molecules and plasma membrane is accelerated. The 

prominent examples are Akt/PKB that possesses a compact PH and PLC that retains a split 

PH. Like PLC, Eps8 contains a split PH (Figure 1), which does not weaken its linkage to the 

cell membrane. Remarkably, an intact split PH is indispensable for Eps8 membrane 

targeting as well as its mediated oncogenesis. In contrast, Eps8 with truncated PH fails to be 

recruited to plasma membrane and confers transforming ability [30].   

To confirm the involvement of Eps8 in the development of cancer, the correlation between its 

expression and cell proliferation of various human cancer cell lines were examined [36]. In 

human colon cancers, there is a positive correlation between Eps8 expression and mitogenesis, 

implicating the importance of Eps8 in colon cancer formation. Indeed, Eps8 attenuation in high 

Eps8 expressing cells (i.e. SW620 and WiDr) reduces cellular growth [36]. In contrast, 

ectopically expressed Eps8 in low Eps8 expressing cells (i.e. SW480) or Eps8-attenuated SW620 

promotes proliferation. In addition, relative to controls, there is a significant (>50%) 
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suppression of anchorage-independent growth in eps8 siRNA-expressing SW620, and 

reintroduction of Eps8 rescues these defects. Concurrently, attenuation (or overexpression) of 

Eps8 significantly reduces (or promotes) the growth of tumors inoculated into nude mice [36]. 

In addition to fibroblasts and colon cancer cells, Eps8 also plays a pivotal role in cervical cancer 

formation. This can be supported by reduced proliferation and tumorigenesis in Eps8-

attenuated SiHa and HeLa cells cultured in dishes or inoculated in mice [37]. 

1.3. Eps8-interacting proteins 

As an adaptor, Eps8 intreracts with a variety of signaling proteins such as EGFR, Src, Abi1, 

RN-tre, Shb, and IRSp53 to exert its biological functions. The detail and implication of the 

interaction between Eps8 and each of its above-mentioned partners are described below.  

1.3.1. EGFR 

Via serial deletion mutants of Eps8 and EGFR, Castagnino et al. [20] determined the minimal 

region of Eps8 (aa298-aa362) and EGFR (juxtamembrane region, aa648-aa688) is required for 

Eps8-EGFR interaction. Obviously, this interaction is not via classical pTyr-SH2 or proline-rich 

region-SH3 binding manner. Interestingly, the EGFR-binding region in Eps8 is rich in basic 

amino acids while multiple glutamic acid residues are found in the juxtamembrane region of 

EGFR. Although overexpression of Eps8 enhances EGF-mediated mitogenesis, the underlying 

mechanisms are not yet resolved. Nevertheless, the intimately correlated transforming ability 

of EGFR mutants and the level of tyrosyl phosphorylated Eps8 suggested the importance of 

tyrosyl phosphorylation of Eps8 in cellular transformation [38].  

1.3.2. Src 

Oncogenic Src not only enhances Eps8 expression but also its tyrosyl phosphorylation [13]. 

In GST-pull down experiments, fusion proteins with Src SH3, but not SH2 domain directly 

interact with Eps8, presumably via its proline-rich sequences. Through in vitro Src kinase 

reactions, Eps8 was further confirmed to be directly phosphorylated by Src. Notably, simply 

augmenting Eps8 expression in murine C3H10T1/2 fibroblasts can not elevate its tyrosyl 

phosphorylation and promote cell proliferation despite these cells being tumorigenic. Given 

Eps8 attenuation reduced cell growth in v-Src transformed cells [31], Src-mediated Eps8 

phosphorylation might be important for cell proliferation. To date, the residues on Eps8 

mediated by Src are still elusive. Whether Eps8 retains the same receptor (i.e. EGFR)- and 

nonreceptor (i.e. Src)-mediated sites becomes an interesting issue. 

1.3.3. Abi1 

ABI1 (also known as E3b1) was identified as an Eps8-binding protein by screening a human 

embryonic fibroblast (M426) cDNA expression library with Eps8 SH3 [17]. It contains a 

proline-rich sequence at its C-terminus followed by an SH3 domain. The PXXDY consensus 

is identified at aa389-aa393 [17]. In addition to Eps8, it also interacts with Abl tyrosine 
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kinase and is a human homologue of previously identified murine Abl-interactor 1 (Abi1) 

[39]. Both Abi1 and Abl contain SH3 and proline-rich sequences. These two proteins 

associate through the SH3 domain of Abi1 and the proline-rich region of Abl [17,39]. 

Overexpression of Abi1 decreased cell proliferation in NIH3T3-based EGFR overexpressors 

[17] while overexpression of the murine Abi1 suppressed v-Abl transforming activity [39]. 

Abi1/Eps8 associate with Sos1 and enable the latter protein to act as a guanine nucleotide 

exchange factor (GEF) of Rac to facilitate membrane ruffling in response to the activation of 

Ras and PI-3 kinase [21,40]. Strikingly, PI3K was also present in this multi-protein complex 

containing Abi1/Eps8/Sos1 to activate Rac [41]. It is noteworthy that alternatively spliced 

Abi1 fused with MLL has been identified in a human acute myeloid leukemia patient, 

suggesting the role of Abi1 in leukemogenesis [42]. 

1.3.4. RN-tre 

RN-tre (Related to the N-terminal of tre) was originally identified by utilizing Eps8 SH3 as a 

probe to fish out its binding protein(s) in a bacterial cDNA expression library generated 

from NIH3T3 cells [16]. RN-tre shares a homology domain (TrH) with tre oncoprotein at its 

N-terminus and contains an extended proline-rich sequence at the C-terminus. The PXXDY 

consensus is present at aa725-aa729 (GeneBank database, accession number D13644; [16]). 

Overexpression of full-length RN-tre in NIH3T3 cells did not cause cell transformation [16]. 

However, NIH3T3 cells transfected with a plasmid encoding RN-tre C-terminal truncated 

mutant (lacking aa463-aa828) exhibited growth advantage in both soft agar and in low 

serum (1%) cultured medium [16]. The TrH domain in RN-tre possesses a Rab5 GTPase-

activating protein (GAP) activity [43]. RN-tre overexpression suppressed EGF 

internalization via its Rab5 GAP activity [43]. Interactions with Grb2 [44] and/or Eps8 [43] 

are required for RN-tre inhibiting EGF receptor endocytosis. The association between RN-

tre and Eps8 inhibits the ability of Eps8 to complex with Abi1 and Sos1 and attenuates EGF-

mediated Rac activation [43].  

1.3.5. Shb 

Shb is an adaptor protein containing amino-terminal proline-rich sequences and a C-terminal 

SH2 domain [45]. Unlike Abi1 and RN-tre, there is no PXXDY consensus found in Shb 

sequences. Shb interacts with Eps8 SH3 domain and phosphorylated PDGF-receptor and FGF 

receptor-1 (via Shb SH2 domain) [14]. Although the role of Eps8-Shb interaction in cancer 

biology was not defined yet, overexpression of Shb reduced Eps8 expression [46] and induced 

apoptosis of NIH3T3 cells cultured in low serum [47]. Markedly, while Shb overexpression 

reduced tumor growth of PC3 prostate cancer cells [48], Shb attenuation sensitized SVR 

endothelial tumor cells to apoptotic agents such as cisplatin and staurosorine [49]. 

1.3.6. IRSp53 

IRSp53 (Insulin/IGF-1 Receptor tyrosine kinase Substrate of 53 kDa; [50]) was also 

designated as brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) [51,52]. 
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Its interaction with Eps8 was originally observed from a GST-IRSp53 SH3 pull-down 

experiment [22] and confirmed by a yeast two-hybrid screening utilizing N-terminal Eps8 

sequences as a bait to search for Eps8 binding partners [23]. IRSp53 contains an N-terminal 

I-BAR (inverse-Bin-Amphiphysin-Rev) domain, followed by a CRIB, an SH3, a WW-binding 

sequence (WWB), and a PDZ (post synaptic density 95, disc large, zonula occludens-1) 

domain. The I-BAR domain might form dimers and induce membrane curvature depending 

on the shape of I-BAR dimer (reviewed in [53,54]). In addition to the originally identified 53-

kDa protein IRSp53S (designated IRSp53 from now on); three other IRSp53 isoforms 

(designated IRSp58M, IRSp53T, and IRSp53L) were identified in human cells.  In contrast, 

only three murine homologues (i.e. mIRSp53S, mIRSp58M, and mIRSp53T) were detected 

[55]. Interaction between IRSp53 SH3 domain and Eps8 N-terminal proline-rich sequences 

(aa207-aa221) activates Rac and results in cell motility and invasion of cancer cells [22]. 

Interestingly, in addition to the SH3 domain, PPPDY (aa468-aa471; GeneBank accession 

number NP_001138360) within the IRSp53 C-terminal WWB domain also participates in the 

association with Eps8 SH3 [23]. The interplay between Eps8 and IRSp53 is important for Src-

mediated STAT3 activation that leads to cell proliferation in cancer cells [23].   

1.4. Eps8-mediated signal transduction 

Mechanistic studies reveal that serum-induced ERK activation is involved in Eps8-mediated 

transformation since coexpression of dominant negative MEK1 blocks its induced 

oncogenesis. Consistent with the PH domain of Eps8 being critical for its oncogenic 

potential and membrane targeting, PH-truncated Eps8 is unable to trigger ERK activation in 

response to serum. These data corroborate the importance of the PH domain of Eps8 for its 

membrane association, ERK activation and its ability to transform cells [30].  

Src becomes activated when its SH3 and/or SH2 are occupied. Given Eps8 interacts with Src 

SH3 in vitro [13] and the Src SH3-binding region of Eps8 resides in its multiple proline-rich 

containing sequences, Eps8 is thereby speculated to increase Src enzymatic activity. In 

agreement with the mechanism underlying Src activation, Eps8 does elevate Src activity. 

This can be verified by diminished Eps8, which reduces Src activation as reflected by 

decreased Src Pi-Y416, which can be restored by ectopically expressed Eps8 [36]. 

Remarkably, Eps8 also regulates the activity and the expression level of FAK. While 

activation of FAK can be achieved by Src-mediated phosphorylation [56], its elevated 

expression relies on Akt/mTOR/STAT3 Pi-S727 pathway, which also modulates cyclin D1 

expression [36]. 

Expressing small interfering RNA of eps8 in HeLa and SiHa cells impedes G1-phase 

progression. In addition to cyclin D1, attenuated Eps8 also reduces expression of cyclins D3 

and E, elevates accumulation of p53 and p21Waf1/Cip1, and inhibits hyperphosphorylation of 

Rb. Reintroduced siRNA-resistant eps8 into Eps8-attenuated HeLa and SiHa cells reverses 

the described alteration, indicating that the effect of Eps8 on the mentioned cell cycle 

modulators is specific. Eps8 facilitates p53 degradation and decreased levels of Eps8 block 

this process and cause p53 accumulation. Studies of the turnover rate of p53 reveal that Eps8 
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attenuation significantly increases the half-life of p53 in HeLa cells from ~12 min to ~40 min 

[37]. It is noteworthy that via accelerated degradation of p53 as well as increased activation 

of Src and Akt, Eps8 enables cervical cancer cells to be resistant to chemotherapeutic agents. 

With a genome-wide screen, matrix metalloproteinase 9 (MMP9) along with the forkhead 

transcription factor FOXM1 and a cohort of its target genes encoding the cell cycle mediators 

and the chemokine ligands (i.e. CXCL5 and CXCL12) are upregulated by Eps8 through a 

PI3K/Akt-dependent mechanism [57]. Through degradation of extracellular matrix 

components as well as processing of cytokine and growth factors, Eps8-elicited MMP9 plays a 

critical role in the migratory and invasive phenotype of squamous cell carcinoma (SCC) [58]. 

It is well established that Eps8 forms a complex with Sos1 and Abi1 to transmit signals to Rac 

from receptor tyrosine kinases [21,26,40] and PI3K [41]. By its N-terminal region, Abi1 is 

recruited to the tips of filopodia and lamellipodia in motile cells [59], and associates to WAVE-

1 [60], the actin regulatory protein, further supporting its importance in actin remodeling. 

Notably, Eps8 also interacts with RN-tre (a specific Rab5 GAP) to modulate Rab5 activity, 

inhibit receptor internalization and prolong receptor signaling at the cell membrane [43]. 

IRSp53 is an adaptor protein that plays an important role in actin cytoskeleton 

reorganization.  By pull-down assays, Eps8 is demonstrated as an IRSp53-binding protein. 

Through its N-terminal proline-rich sequence, Eps8 directly associates with the SH3 domain 

of IRSp53. This Eps8/IRSp53 complex reinforces the formation of a trimolecular Rac-GEF 

complex (i.e. Eps8/Abi1/Sos1) to synergistically activate Rac and contribute to cell motility 

[22]. Through an independent yeast two-hybrid screening, IRSp53 was identified as an Eps8-

interacting protein. In addition, its C-terminal SH3/WWB-containing domain (aa376-aa521) 

was essential and sufficient for Eps8 association [23]. Strikingly, Eps8 modulates IRSp53 

expression in cells transformed with v-Src and attenuation of IRSp53 results in reduced cell 

proliferation in culture and reduced tumor formation in mice, which can be partly rescued 

by ectopically expressed IRSp53. Src drives the formation of Eps8/IRSp53 complex, which 

leads to activation of Akt, ERK, STAT3 and enhancement of cyclin D1. This signaling event 

not only occurs in v-Src transformed cells but also in EGF-stimulated cells. Notably, 

Eps8/IRSp53 is important in both cell proliferation and cell mobility [23]. 

2. Prospective study of Eps8 as an anti-cancer drug targeting protein 

As a signaling intermediate, Eps8 has been demonstrated to be critical in proliferation and 

control of actin dynamics that lead to increased mitogenesis and motility of various tumor 

cells (see below). Now, we will not only summarize the published reports regarding the role 

of Eps8 in human tumors, but also discuss its potential to become a novel tumor marker as 

well as a therapeutic target for cancer treatment. 

2.1. Aberrant overexpression of Eps8 in human cancer 

Eps8 overexpression confers the ability of murine fibroblasts to form foci in culture and to 

grow tumors in mice [30]. Its oncogenic potential invites the speculation that Eps8 might be 
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involved and contribute to development of human cancers. Indeed, following is the 

published reports concerning the role of Eps8 in various human tumors. 

2.1.1. Breast cancer 

Accumulated evidence indicates that gene amplification contributes to activation of 

oncogenes, and is often associated with tumor progression, acquired drug resistance and 

poor prognosis [61]. By an integration of serial analysis of gene expression with cDNA array 

comparative genomic hybridization, Yao et al. [62] aimed to identify and characterize 

amplicons and their targets in both in situ and invasive breast carcinomas. Their 

characterization of the 12p13-p12 amplicon identified four putative oncogenes including 

Eps8. Compared with a panel of normal mammary epithelial cells, Eps8 was confirmed to be 

overexpressed in breast tumors with 12p13 amplification by quantitative RT-PCR as well as 

fluorescence in situ hybridization.   

2.1.2. Pancreatic cancer 

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive maliganacy and 

characterized by early invasion and metastasis [63]. In pancreatic ductal cells, Eps8 

colocalizes to the tips of F-actin filaments, filopodia, and the leading edge of cells.  Its 

knockdown alters actin-based cytoskeletal structures and cell shape, impairs cell-cell 

junctions and protrusion formation. 

Studies of the expression of Eps8 in cell lines derived from various tumor stages 

demonstrate that the levels of Eps8 are higher in cell lines derived from metastases and 

ascites as compared to those from primary tumors [64]. These results suggest that Eps8 

plays a critical role in the metastatic potential of PDAC.  

2.1.3. Thyroid cancer 

Papillary thyroid carcinoma (PTC) is a common thyroid maligancy whose biological 

behavior varies widely. By studying the expression profiles of eight matched pairs of PTC 

and normal throid tissues, Eps8 was identified as one of the overexpressed genes in PTC 

[65]. Notably, Griffith et al. [66] performed a meta-review of thyroid cancer biomarkers from 

a large number of published studies, identified twelve candidate diagnostic biomarkers, 

including Eps8. Unfortunately, no follow-up study, even at the RNA level, has confirmed 

Eps8 upregulation in thyroid lesions. Thus, inclusion of Eps8 as a diagnostic marker for 

thyroid cancer requires further investigation.  

2.1.4. Oral cancer 

Oral squamous cell carcinoma (OSCC) is a common maligancy. Its local invasion and 

regional lymph node metastases usually cause early death. Using expression microarrays, 

the eps8 gene was identified as being overexpressed in OSCC cell lines compared with 

normal oral keratinocytes. Despite attenuation of Eps8 in VB6, BICR56, and CA1 OSCC cells 
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does not inhibit cell proliferation, but it does impair the cell spreading and migration 

toward fibronectin. Not surprisingly, Eps8 was upregulated in a subset of OSCCs where it 

correlated significantly with lymph node metastasis. Knockdown of Eps8 suppressed V6-, 

and 51-integrin-dependent Rac1 activation and inhibited tumor cell invasion in an 

organotypic model of OSCC [67].  

2.1.5. Ovarian cancer 

Among gynecologic cancers, ovarian cancer has the greatest motality rate due to its 

metastasis [68]. Not relying on the vasculature for metastasis as seen in solid tumors, 

ovarian maligancy is confined within the abdominal cavity and extends to adjacent organs 

and/or disseminate throughout the peritoneal cavity [69]. Lysophosphatidic acid (LPA), a 

growth factor-like phospholipid, retains migration-stimulating potential and is present at 

high levels in ascites of ovarian cancer patients. LPA-mediated cell motility is confirmed to 

play an important role in ovarian cancer metastasis, and the integrity of Sos1/Eps8/Abi1 

tricomplex is essential for LPA-induced Rac activation, cell migration and metastatic 

colonization. Strikingly, only coexpression of the three members of the tricomplex correlates 

with advanced stages and shorter survival of ovarian cancer patients [70]. For ovarian 

cancer metastasis, these findings not only indicate the tricomplex is a reliable marker, but 

also suggest targeting the tricomplex can be developed as a therapeutic approach.  

2.1.6. Colorectal cancer 

Colorectal cancer (CRC) is the most common gastrointestinal cancer and one of the leading 

causes of cancer mortality worldwide. Preferentially increased Eps8 in the advanced stage of 

human CRC specimens is detected. Intriguingly, simultaneous up-regulation of Eps8, Src 

and FAK in CRC is observed and these three proteins are positively correlated as indicated 

by Spearman rank correlation. This is in agreement with Eps8 modulating the expression of 

FAK via mTOR/STAT3 pathway [35].  

2.1.7. Cervical cancer 

Cervical carcinoma evolves slowly from intraepithelial neoplasia to invasive carcinoma and 

is the second most common malignancy among women [68]. Through clinicopathologic 

examination and immunohistochemical staining, an intimate correlation between Eps8 

abundance and the aggressiveness (local lymph node metastasis or parametrium invasion) 

of early-stage cervical cancer is established. Concurrently, Eps8 expression inversely 

correlates with the survival rate of cervical cancer patients [36].  

2.1.8. Esophageal cancer 

A thorough analysis of both esophageal squamous cell carcinoma and esophageal 

adenocarcinoma revealed 4-6 fold increase in expression of Eps8 in esophageal cancers 

compared to adjacent normal tissues. Notably, unlike colon cancer, higher Eps8 expression 
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in tumors as compared to their nearby normal tissue was independent of grade of 

esophageal cancer [72].   

2.1.9. Pituitary tumor 

Comprising some of the most common intracranial neoplasms, pituitary tumors can either 

be detected clinically (i.e. acromegaly and amenorrhea) or become clinically silent such as 

those of the gonadotrope lineage [73]. By DNA microarrays, eps8 is identified as an 

overexpressed transcript (5.9-fold) in pituitary tumors compared with normal controls. Xu et 

al. [74] demonstrated that overexpression of Eps8 in gonadotrope pituitary cells results in 

activation of ERK and Akt, which provide proliferative stimulation and antiapoptotic 

protection respectively. Remarkably, the above mentioned signaling components are 

upregulated in human pituitary tumor tissues suggesting a functional significance of Eps8 

in human pituitary tumorigenesis. 

2.2. The potential of Eps8 attenuation in cancer treatment  

Accumulated evidence revealed the significance of Eps8 in tumor development and 

metastasis. According to the elucidated mechanisms underlying Eps8-mediated 

transformation, suppressed expression of Eps8 as well as disruption of the Eps8-containing 

signaling complex become two promising strategies to inhibit tumorigenesis. 

2.2.1. Suppressing expression of Eps8 

Considering Eps8 is an oncoprotein whose overexpression is closely linked to tumor 

formation, suppressing its expression might provide a means to treat and eradicate tumors. 

Strategies published to decrease Eps8 expression are described below. 

2.2.1.1. Histone deacetylase inhibitors  

Epigenetic modulation of gene expression is implicated in cancer development. Emerging 

evidences indicate the acetylation status of histones controls the acess of transcription 

factors to DNA and influences gene expression. Histone acetylation and deacetylation are 

mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) 

respectively. HDAC inhibitors are well documented to promote differentiation, growth 

arrest and apoptosis of cancer cells with minimal effects on normal tissues. Notably, HDAC 

inhibitors not only decompact histone/DNA complex, but also influence acetylation status 

and function of nonhistone proteins [75]. A number of HDAC inhibitors have entered 

preclinical and early clinical studies. Although these compounds were chosen for their 

ability to inhibit histone deacetylation, they still had widely varying potency and HDAC 

isoenzyme specificity as well as different effects on acetylation of nonhistone proteins. To 

date, the prominent targets of HDAC inhibitors include HDACs, p21WAF1/CIP1, p53, death 

receptor proteins (i.e. TNF-, Fas and TRAIL receptors), HIF-1, and VEGFR [75].  

Trichostatin A (TSA), an antifungal agent, is a HDAC inhibitor. The reversal of v-Src-

mediated transformation by TSA is attributable to its suppression of Eps8 expression. RT-
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PCR and Northern analyses reveal the significant decrease of eps8 transcripts in TSA-treated 

v-Src-expressing cells relative to control cells [31]. Similar reduction of Eps8 is also obtained 

when butyrate, another well known HDAC inhibitor is applied (unpublished result). These 

data indicate Eps8 can be added to the growing list of HDAC inhibitor targets and its 

downregulation contributes to the antineoplastic effects of HDAC inhibitors.   

2.2.1.2. Mithramycin 

Mithramycin (MIT, also known as mithracin, aureolic acid and plicamycin), a polyketide 

produced by various soil bacteria of the genus streptomyces, is an inhibitor that blocks the 

binding of the Sp-family transcription factors to the GC box [76]. To date, expression of 

several proto-oncoproteins such as Met, Myb, Myc, Ras and Src can be suppressed by MIT. 

Interestingly, in several cancer cell lines, MIT also reduces the protein and mRNA levels of 

Eps8 in dose- and time-dependent manners [77]. Considering the mechanistic action exerted 

by MIT, the promoter composition and the transcriptional regulation of eps8 gene warrant 

further investigation.  

2.2.1.3. Small interference RNA or short hairpin RNA methodology 

Expressing either small interference RNA (siRNA) [31,36,37] or short hairpin RNA (shRNA) 

of eps8 [58] in tumor cells efficiently inhibits the expression of Eps8. Decreased levels of Eps8 

alters the behavior of cancer cells such as (1) suppressed v-Src-mediated transformation in 

fibroblasts [31], (2) reduced colonocyte proliferation and motility in colon cancer cells [36], 

(3) retarded cell cycle and decreased chemoresistance in cervical cancer cells [37], (4) 

impaired tumorigenicity of HNSCC cells in xenograft assays [58]. Hence, using siRNA (or 

shRNA) methodology to suppress Eps8 expression in tumor cells might block their 

progression, invasion and increase their chemosensitivity to anti-cancer drugs. 

2.2.2. Disruption of the formation of Eps8-containing complexes 

Eps8 exerts its effects through the formation of various complexes. The well-studied ones 

are Sos1/Eps8/Abi1 and Eps8/IRSp53. Formation of both complexes results in Rac activation 

and promotes cell proliferation and cell motility. 

2.2.2.1. Disruption of Sos1/Eps8/Abi1 complex formation 

Sos1/Eps8/Abi1 tricomplex is well established to mediate Rac activation and whose integrity 

is required for LPA-stimulated cell motility and metastatic colonization in ovarian cancer 

cells. Given coexpression of Sos1, Eps8 and Abi1, but not any one alone, correlates with 

advanced stages as well as shorter survival of ovarian cancer patients [70], silencing any 

member of Sos1/Eps8/Abi1 tricomplex and/or targeting this tricomplex can be developed as 

a therapeutic approach for tumor metastasis.     

2.2.2.2. Disruption of Eps8/IRSp53 complex formation  

Eps8/IRSp53 complex, occurs at the leading edge of motile cells, augments Sos1/Eps8/Abi1 

trimolecular complex formation, and synergistically activates Rac. Inhibiting its formation 
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reduces the mobility and invasiveness of fibrosarcoma cells [22]. Strikingly, elevated activity of 

Akt, ERK, STAT3, and augmented expression of cyclin D1 are also dictated by Eps8/IRSp53 

that can be reduced by SU6656, an inhibitor of Src family kinases [23]. Of note, through 

activation of Src, EGF induces the formation of Eps8/IRSp53 and activation of STAT3 in HeLa 

cells [23]. Since the association between Eps8 and IRSp53 is Src-dependent and might be a 

physiological event in relaying EGF signaling, strategies that interrupt the interaction between 

Eps8 and IRSp53 can be developed and applied for cancer treatment. Specifically designed 

peptides, naturally occurring or artificially synthesized chemicals that block the association 

between Eps8 and IRSp53 might fulfill the purpose and become novel cancer therapeutics. 

3. Concluding remarks 

Considering a spectrum of proteins bind to Eps8 and play important roles in cell proliferation 

and migration (Figure 2), Eps8 upregulation is thus expected to cause human carcinogenesis. 

Indeed, aberrant overexpression of Eps8 is closely linked to many types of human cancer. 

Although Eps8-mediated signal transduction is gradually being resolved, several important 

questions still remain unanswered. For instance, tyrosyl phosphorylation of Eps8 mediated by 

either Src or EGFR is not addressed yet. Where are these tyrosine residues located? How does 

their phosphorylation contribute to abnormal cell proliferation and motility in cancer cells? In 

addition, Eps8 possesses a nuclear localization signal (Figure 1). However, to date there are no 

reports regarding the role of nuclear Eps8 and how the nuclear localization of Eps8 is 

regulated? Tremendous work needs to be done before these questions get answers. 

 

Figure 2. The signals transmitted by Eps8. Active EGFR and Src phosphorylate Eps8 and induce Eps8-

IRSp53 interaction that facilitates Src-mediated STAT3 Pi-Y705 and dimerization, resulting in the 

increased transcription of Cyclin D1 and FAK and in cell cycle progression. By binding to RN-tre, Eps8 

reduces Rab5 activity and hinders EGFR endocytosis. In addition to its actin-capping activity, Eps8 

interacts with proteins listed in the square box, activates Rac, promotes membrane actin polymerization, 

and increases motility. Nu: nucleus. 
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