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1. Introduction 

Viruses constitute important pathogens that can infect animals, including humans and 
plants. Despite their great diversity, viruses share as a common feature the dependence on 
host cell factors to complete their replicative cycle. Among the cellular factors required by 
viruses, lipids play an important role on viral infections [1-4]. The involvement of lipids in 
the infectious cycle is shared by enveloped viruses (those viruses whose infectious particle is 
wrapped by one or more lipid membranes) and non-enveloped viruses [1-4]. Apart from 
taking advantage on cellular lipids that are usually located inside cells, viruses induce 
global metabolic changes on infected cells, leading to the rearrangement of the lipid 
metabolism to facilitate viral multiplication [1,5-11]. In some cases, these alterations produce 
the reorganization of intracellular membranes of the host cell, building the adequate 
microenvironment for viral replication [12,13]. All these findings highlight the intimate 
connections between viruses and lipid metabolism. Along this line, modulation of cellular 
lipid metabolism to interfere with virus multiplication is currently raising as a feasible 
antiviral approach [6,14].  

2. A lipid perspective of the virus life cycle 

Inherent to their condition of obligate intracellular parasites, viruses have to invade a cell 
to complete their replicative cycle. During this step, viruses express their own proteins and 
also co-opt host cell factors for multiplication, including lipids [15]. A schematic view of a 
virus replication cycle is shown in Figure 1. Initial steps of viral infection include the 
attachment of the virus particle to a specific receptor located on the cell surface, in some 
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cases a specific lipid (section 2.1.1). The viral genome has to entry into the host cell to reach 
the replication sites. Different lipids, located either on plasma and/or endosomal 
membranes, can contribute to these processes by enabling receptor clustering, virus 
internalization, or membrane fusion (sections 2.1.2 and 2.1.3). Replication of viral genome 
can take place associated to cellular membranes or other lipid structures, like lipid 
droplets, forming structures termed replication complexes (section 2.2). Newly synthesized 
viral genomes are enclosed inside de novo synthesized viral particles, a process in which 
several lipids can play, again, an important role (section 2.3), especially in the case of 
viruses containing a lipid envelope as an integral component of their infectious particle. 
Then, viral particles maturate to render infectious particles that are released from host cell 
to initiate a new infection cycle. 

 

 
Figure 1. Schematic view of a virus replication cycle. For a detailed description of the different roles of 
lipids during virus infection see the text. 

2.1. Lipids and viral entry 

The viral entry into a host cell to start their replicative cycle involves the attachment of the 
virus particle to a specific receptor(s) located on the cell surface, prior to the introduction of 
the viral genome within the host cell. The latter can take place by internalization of the 
whole viral particle, constituting a sort of minute Trojan horse [16], or by direct penetration 
of viral genome from plasma membrane. During these processes, a variety of specific lipids 
play multiple roles, which may vary between viruses (Table 1). 
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Virus Lipid Function Refs. 

VSV phosphatidylserine Cellular receptor [17] 
 LBPA Cofactor for membrane fusion [18,19] 
SV40 GM1 Cellular receptor [20] 
 cholesterol Lipid raft-caveola mediated endocytosis [21] 
DENV LBPA Cofactor for membrane fusion [22] 
VACV phosphatidylserine Induction of viral internalization [23] 

Abbreviations used in this Table: DENV, dengue virus; LBPA, lysobisphosphatidic acid; SV40, simian virus 40; VACV, 
vaccinia virus; VSV, vesicular stomatitis virus. 

Table 1. Examples of lipids required for viral entry 

2.1.1. Lipids and viral attachment 

The first event of virus infection comprises the recognition of the target cell, which generally 
occurs through the interaction between the virus and a specific receptor on the cell surface. 
Receptors exploited by viruses include different macromolecules like proteins, 
carbohydrates and lipids. An increasing number of viruses is known to attach to lipid-
containing molecules. For instance, members of the Polyomaviridae family use gangliosides, 
being the binding highly specific [24]. The simian virus 40 (SV40) employs exclusively the 
ganglioside GM1, whereas the mouse polyomavirus can use GD1a and GT1b, and BK virus 
can utilize GD1b and GT1b [25-28]. Other important human pathogens, such as influenza 
virus (Orthomyxoviridae) and Human immunodeficiency virus, HIV (Retroviridae), can also 
bind to different gangliosides [29,30]. 

Another example of a virus whose receptor is supposed to be a lipid is the rhabdovirus 
vesicular stomatitis virus (VSV), which seems to gain cell entry through interaction with 
negatively charged phospholipids, like phosphatidylserine [17]. VSV particles interact very 
strongly with membranes containing phosphatidylserine through viral glycoprotein G [31], 
and although it is not actually clear whether phosphatidylserine is the viral receptor [32], a 
direct interaction between the G protein and this lipid could take place in the membrane 
[31].  

On the other hand, some members of the Flaviviridae family -hepatitis C virus (HCV), GB 
virus C/hepatitis G virus and bovine viral diarrhea virus (BVDV)-, use the low-density 
lipoprotein receptor (LDL-R) [33], which is a cholesterol receptor. An interesting case is 
hepatitis C virus (HCV) that requires the interaction with the low-density lipoprotein 
receptor (LDL-R) and with glycosaminoglycans to entry into the cell [8]. The component of 
the virion that interacts with LDL-R likely is a cell-derived lipoprotein, i. e. a viral-
lipoprotein (section 2.3.1). 

2.1.2. Lipids and viral internalization 

Cells use a broad spectrum of mechanisms to internalize substances from their environment. 
Endocytosis is a general term for the internalization of particles, solutes, fluids, and 
membrane components by invagination of the plasma membrane and internalization of the 
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resulting membrane vesicles [24,34-36]. The plasma membrane does not present a 
continuous or homogeneous composition. It contains lipid microdomains termed lipid rafts 
[37], characterized by their high content of cholesterol, glycosphinglolipids, 
glycophosphatidylinositol (GPI), anchored proteins like the GPI-anchored, myristoylated 
and palmytoylated proteins, as well as transmembrane proteins [38]. Lipid rafts have been 
associated with various endocytic mechanisms to internalize these membrane regions [39-
42], being the formation of cave-shaped invaginations, termed caveolae, the predominant 
mechanism [24,34]. Lipid rafts have been related to the entry of a number of viruses, for 
example the coronavirus severe acute respiratory syndrome (SARS), murine leukemia virus, 
herpes simplex virus, Japanese encephalitis virus, SV40, and echovirus 1 [34,43-48]. In 
addition, some viruses require cholesterol-enriched microdomains in the viral membrane for 
efficient virus entry, for example influenza virus A, human herpes virus 6, and Canine 
distemper virus [49-51]. On the other hand, some viruses that enter into the cells using 
mechanisms independent of lipid rafts require cholesterol for an efficient internalization. 
This is the case of foot-and-mouth disease virus (FMDV) and human rhinovirus type 2, 
whose entry into cells, by clathrin-mediated endocytosis, requires the presence of plasma 
membrane cholesterol [52,53].  In other viruses such as HIV-1, a requirement of cholesterol 
for viral entry has been documented [47] and related to the clustering of viral receptors, thus 
enabling viral internalization [54]. This role of cholesterol and lipid-rafts has also been 
documented for coxsackievirus B3 (CVB3) infection [55]. 

The plasma membrane also exhibits clusters of other lipids like phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2) [56], which is a minor lipid of the inner leaflet of the plasma 
membrane with an important role in the clathrin-mediated endocytosis [57-60]. Even when 
the number of viruses that use clathrin-mediated endocytosis to entry into the cells is wide 
[61], the importance of this lipid in viral entry has not been analyzed in depth yet. However, 
it has been reported that PI(4,5)P2 production by a specific lipid kinase is crucial for HIV-1 
entry in permissive lymphocytes [62]. Likewise, foot-and-mouth disease virus (FMDV) and 
VSV require the presence of this phospholipid in the plasma membrane for internalization 
(Vázquez-Calvo et al., submitted). 

As commented before, specific lipids located in the viral particles can also play a role on viral 
entry of enveloped viruses [8], including 'those located in' lipid rafts [49-51]. Vaccinia virus 
provides another example of the relationships between lipids located on the viral particle and 
viral entry. In this case, the presence of exposed phosphatidylserine in the viral envelope is 
critical to induce blebs on cellular membrane that promote virus internalization [23]. 

2.1.3. Lipids and viral genome delivery 

Viruses have to release their genome from the particle to enable proper expression of 
viral proteins and genome replication within host cell. In the case of enveloped viruses, 
fusion between viral envelope and cellular membranes is a generalized strategy to 
facilitate these events. This process is assisted by viral proteins termed fusion proteins, 
and results in lipid mixing between the viral envelope and the target cellular membrane 
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[63-66]. Viral fusion occurs either with the plasma membrane for pH-independent 
viruses, or, in the case of viruses entering through receptor-mediated endocytosis, with 
membranes of endocytic organelles in which particles are internalized. There is evidence 
showing that both groups of viruses use fusion proteins that, via hydrophobic segments, 
interact with membrane lipids, leading to conformational changes that make them able 
for fusion [63-66]. Compelling evidence indicates that specific lipids can influence the 
compartment of virus uncoating and viral genome delivery into the cytosol [22,67,68]. A 
number of enveloped viruses take advantage of the low pH inside endosomes to 
promote endosome fusion, permitting viral genome release [69]. Thus, utilization of 
specific lipids allows the virus to ensure membrane fusion at the proper cellular 
compartment. For instance, DENV takes advantage of the anionic late endosome-specific 
lipid bis(monoacylglycero)phosphate (BMP), also named lysobisphosphatidic acid 
(LBPA), to promote virus fusion with the late endosomal membrane [22]. A relevant role 
of LBPA in promoting membrane fusion and lipid mixing has also been shown in VSV 
infection [70]. Initially, VSV envelope fuses with intraluminal vesicles inside 
multivesicular bodies, which later fuse with external membrane of the multivesicular 
body, allowing the release of viral nucleocapsid to the cytosol [18,19]. However, fusion of 
other viruses, such as influenza virus, does not rely on these lipids [70]. Cholesterol, a 
major and vital constituent of eukaryotic cellular membranes, has been implicated in 
promoting lipid transfer and fusion pore expansion in the virus-cell membrane fusion 
mediated by the haemagglutinin of influenza virus [68]. The presence of cholesterol on 
the target membrane also promotes West Nile virus (WNV) membrane fusion activity 
[71], and both cholesterol and sphingolipids, but not lipid-rafts, are required for 
alphavirus fusion [67]. 

Regarding the entry of non-enveloped viruses, it is generally believed that the 
mechanism(s) involved does not include membrane fusion activity. Nevertheless, recent 
data obtained from biochemical and structural studies indicate that the overall 
mechanisms of entry of certain non-enveloped viruses are similar to those of enveloped 
ones, and that capsid proteins can function in these activities in a manner similar to that 
of the membrane viral proteins [72]. For instance, the outer capsid protein VP5 of the 
non-enveloped rotaviruses and orbiviruses, shares secondary structural features with 
fusion proteins of enveloped viruses [73], like the capacity to associate with lipid rafts in 
cellular membranes [72]. These findings indicate that VP5 may be responsible for 
membrane penetration [74]. Post-translational modifications of viral proteins, i.e. 
myristoylation of capsid protein VP4 in poliovirus (PV) and VP2 of polyomavirus, have 
been related to the ability of these proteins to induce pores on cellular membranes for 
genome release [75,76]. 

2.2. Lipids and viral multiplication 

Following entry into the host cell, viruses have to produce accurate self-copies to generate 
new infectious viral particles. To this end, viruses use to recruit cellular factors, including 
lipids and enzymes involved in their metabolism.  
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2.2.1. Cellular membranes and viral replication complex assembly 

Viruses co-opt host cell factors to develop the most adequate environment for their 
replication, a feature that is especially highlighted by the viral replication complex found 
assembled inside cells infected with positive strand RNA viruses [2,15,77]. Viruses 
belonging to this group share as a common feature a viral genome consisting of one or more 
RNA molecules of positive polarity that mimic the characteristics of cellular messenger 
RNA (mRNA) to be translated into viral proteins. Positive strand RNA viruses comprise 
several viral families that include important animal (including human) and plant pathogens 
such as Picornaviridae (i.e. PV, FMDV), Flaviviridae (i.e. DENV, WNV, HCV), Caliciviridae (i.e. 
Nowalk virus), Coronaviridae (i.e. SARS coronavirus), or Togaviridae (i.e. rubella virus). 
Replication of positive-strand RNA viruses is tightly associated to intracellular lipid 
membranes derived from different organelles: endoplasmic reticulum, Golgi complex, 
mitochondria, chloroplasts, peroxisomes, vacuoles, endosomes, or lysosomes [2]. Besides 
membranes derived from cellular organelles, these viruses can also usurp cytoplasmic lipid 
droplets for their replication [78,79]. In this way, viral replication results in the induction of 
marked alterations of the intracellular architecture mainly characterized by the remodelling of 
cellular membranes. These alterations include intracellular membrane proliferation and 
changes on shape and size of membranous structures. Consequently, viral replication 
originates a variety of structures that may rely on different mechanisms for their generation 
[12,15]. Examples of these structures (Figure 2) include the formation of convoluted 
membranes and vesicle packets as a result of flavivirus replication [80-82], the development of 
heterogeneous vesicular structures that conform the membranous web found in HCV-infected 
cells [83], or the proliferation of vesicular structures (including double membrane vesicles) in 
cells infected by enteroviruses (a genus within the Picornaviridae family) like PV [84,85].  

Morphological changes on membrane shape induced by viral infections are accompanied by 
an enrichment in the viral and cellular components, including specific proteins and lipids [1-
3,12]. Despite the diversity of the membrane alterations induced, these changes provide the 
physical scaffold for viral replication, thus offering the most suitable platform for viral 
replication complex assembly, and hence increasing the local concentration of specific 
cellular and viral factors necessary for replication [1,12]. In addition, membrane remodelling 
can also improve viral multiplication by hiding viral components from the innate immune 
system [1,12,86]. In flaviviruses (DENV and WNV) the evasion of interferon response has 
been shown to depend on the expression of hydrophobic viral proteins involved in 
membrane rearrangements [87-89]; in particular, the cholesterol content of these membranes 
is important to down regulate the interferon-stimulated antiviral signalling response to 
infection [90]. Related to this, antiviral interferon response also involves down regulation of 
sterol biosynthesis [91]. Likewise, lipid droplets, which can constitute platforms for viral 
replication, also play important roles on the coordination of immune responses [92]. 

All these changes in the membrane morphology and composition result in the formation of 
customized cellular microenvironments that support viral replication and can be actually 
considered novel virus-induced organelles [93-95]. Regarding the lipid composition of these 
structures, great progresses have been recently made (see below) that have uncovered the  
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Figure 2. Distinct alterations on intracellular membrane architecture induced by the infection of 
positive strand RNA viruses. A) Induction of convoluted membranes and vesicle packets in flavivirus 
infected cells. Image corresponds to Vero cells infected with WNV, fixed and processed for transmission 
electron microscopy at 24 h post-infection. B) Proliferation of vesicular structures in enterovirus-
infected cells. Porcine cells (IBRS-2) were infected with the enterovirus swine vesicular disease virus 
(SVDV), fixed, and processed for transmission electron microscopy at 7 h post-infection. For technical 
details related to virus infection and sample preparation see references [81,84]. 

dependence on different cellular lipids for replication complex organization, although their 
roles and importance vary between viruses.  

2.2.2. Cellular lipids involved in viral replication complex assembly 

To render the specific lipid microenvironment adequate for multiplication, viruses co-opt 
cellular machinery for their replication, including host factors involved in different aspects 
of lipid metabolism, i.e. sterol biosynthesis, fatty acid metabolism and synthesis of specific 
phosphoinositides [15]. For instance, a marked alteration of cellular metabolism and an 
increase in fatty acid biosynthetic pathway have been described upon human 
cytomegalovirus (HCMV), DENV or HCV infection [1,5,6,11]. The association of viral 
multiplication with modulation of host cell factors involved in lipid metabolism is not an 
exclusive feature of animal viruses, thus, replication and recombination of the plant 
pathogens tombusviruses has been revealed to rely on host genes involved in lipid 
metabolism [96-99]. Representative examples of cellular factors related to lipid metabolism 
and associated to viral replication are summarized in Table 2. 

Several studies have highlighted the role of the cholesterol and the cholesterol biosynthetic 
pathway in the replication of viruses, including important human pathogens belonging to 
the Flaviviridae family -WNV [90], DENV [110], and HCV [8,111-113]- and to the Caliciviridae 
-Nowalk virus [114]-families. In addition, the cholesterol biosynthetic pathway has also been  
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Virus Host factor Function Refs. 

BMV Ole1 Fatty acid desaturation [100,101] 
DENV FASN Fatty acid synthesis [102] 
DCV SREBP Fatty acid synthesis [103] 
WNV 3-HMG-CoA reductase Cholesterol synthesis [90] 
TBSV Erg25, SMO1, SMO2 Sterol synthesis [104] 
 INO2 Regulation of phospholipid synthesis [105] 
HCV PI4KIIIα Synthesis of PI4P [106,107] 
PV, CVB3, AiV PI4KIIIβ Synthesis of PI4P [93,108,109] 

Abbreviations used in this Table: AiV, Aichi virus; BMV: brome mosaic virus, CVB3, coxsackievirus B3; DCV, 
Droshophila C virus; DENV, Dengue virus; Erg25, ergosterol enzyme 25; FASN, fatty acid synthase; HCV, Hepatitis C 
virus; 3-HMG-CoA reductase, 3-hydroxy-methyglutaryl-CoA reductase; INO2, inositol-1-phosphate synthase 2; Ole1, 
Delta(9) fatty acid desaturase; PI4KIIIα and β, phosphatidylinositol 4-kinase class III α and β; PI4P, 
phosphatidylinositol 4-phosphate;  PV, poliovirus; SMO1 and 2, sterol4α-methyl-oxidase 1 and 2;  SREBP, sterol 
regulatory element binding protein; TBSV, tomato bushy stunt virus; WNV, West Nile virus. 

Table 2. Examples of host cell genes associated to lipid metabolism and involved in viral replication 

associated to the infection of animal pathogens like African swine fever virus [115]. On the 
other hand, sterols have been involved in the replication of plant pathogens, for example 
tomato bushy stunt virus (TBSV) [104]. Due to the high diversity of viruses that exploit the 
cholesterol biosynthetic pathway for replication, this could consider a common requirement. 
However, replication of viruses may rely on lipids other than cholesterol, as described for 
the alphanodavirus flock house virus (FHV) [116].  

Another major class of lipids that has been related to viral replication are the fatty acids, 
whose metabolism has been shown to be required for the multiplication of viruses such as 
brome mosaic virus (BMV) [100,101], Droshophila C virus (DCV) [103], CVB3 [117], and PV 
[118]. In some cases, in addition to the dependence of cholesterol (discussed in the previous 
paragraph), viral multiplication is also dependent on fatty acid synthesis. Examples of 
viruses sharing both cholesterol and fatty acid requirements include DENV [102], WNV 
[81,102], and HCV [8,112]. Indeed, during DENV infection, the key enzyme responsible for 
fatty acid synthesis, the fatty acid synthase (FASN), is recruited to the viral replication 
complex by direct interaction with the viral protein NS3, enhancing its activity [102]. 
Dependence of DENV replication on fatty acids is shared by mammalian and mosquito host 
cells [9]. Even more, DENV modulates lipid metabolism through induction of a form of 
autophagy that targets lipid droplet stores, promoting the depletion of cellular triglycerides 
and the release of fatty acids. This results on an increase in β-oxidation and ATP production 
that stimulate viral replication [1,5]. Infection with other viruses (HCV or CVB3) also relies 
on fatty acids and results in an increase on FASN expression [117,119], a phenomenon that 
does not occur upon DENV or WNV infection [81,102].  

Besides cholesterol and fatty acids, specific phospholipids can also play a key role in viral 
replication. For instance, replication of TBSV and FHV is dependent on phospholipid 
biosynthesis [105]. Replication of FHV was initially associated to glycerophospholipids, 
being independent of cholesterol or sphingomyelin (a membrane phospholipid that is not 
derived from glycerol) [116]. However, recent advances on the biology of FHV indicate that 
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its replication is based on the outer mitochondrial membrane and is dependent on the 
anionic phospholipid cardiolipin, which is almost exclusive of these membranes [120]. In 
this regard, more than 20 years ago, phospholipids were already associated to the 
replication of PV, a member of the Picornaviridae family [121]. More recently, this 
relationship has been confirmed after the identification of a specific phospholipid, the 
phosphatidylinositol 4 phosphate (PI4P), as a key component of PV replication complexes 
[93]. Requirement of PI4P is shared by other members of the Picornaviridae family - CVB3, 
Aichi virus (AiV), bovine kubovirus, and human rhinovirus 14 [93,108,109,122]- and also by 
viruses from other families, i.e. HCV [93,106,107,123-126]. All these viruses can specifically 
recruit different isoforms of the enzyme that drives the formation of PI4P from 
phosphatidylinositol, the phosphatidylinositol 4-kinase class III (PI4KIII) α or β, to their 
replication complexes. For instance, HCV recruits the lipid kinase PI4KIIIα by direct 
interaction with viral protein NS5A [125,127], while in picornaviruses, the recruitment of 
PI4KIIIβ can be mediated by the interaction of viral protein 3A with a third cellular partner 
associated to the viral replication complex, ABC3D (acyl-coenzyme A binding domain 
containing 3) [108] or other proteins implicated in the secretory pathway [93]. The 
dependence on either PI4KIIIα or β isoforms varies between viruses. Replication of 
picornaviruses is specifically associated to PI4P synthesized by PI4KIIIβ [93,108,109,122], 
while replication of HCV has been mainly associated to the function of PI4KIIIα [106,107], 
and in a lower extent to PI4KIIIβ [93,126]. In any case, PI4P is not universally required 
among viruses, since the replication of the flaviviruses (WNV and DENV), and the 
pestivirus bovine viral diarrhea virus (all members of the Flaviviridae family, like HCV) has 
been shown to be independent of PI4P [81,106,125]. 

2.2.3. Lipid functions associated to viral genome replication 

The presence of specific lipids in the viral replication complex can accomplish with several 
missions. For instance, post-translational modification of viral proteins by lipids is 
associated to viral replication functions [128,129]. Table 3 displays representative examples 
of lipid functions during viral replication.  
 

Virus Lipid Function Refs. 

BMV fatty acids Increase in membrane plasticity and fluidity [100,101] 
DENV fatty acids Energy production to support viral replication [5] 
PV PI4P Anchor of viral replicase to replication complex [93] 
FHV cardiolipin Anchor of viral replicase to replication complex [120] 
HCV sphingomyelin Activation of RNA polymerase activity [130] 
WNV cholesterol Innate immune evasion [90] 

Abbreviations used in this table: BMV, brome mosaic virus; HCV, hepatitis C virus; DENV, Dengue virus; FHV, flock 
house virus; PI4P, phosphatidylinositol 4-phosphate; PV, poliovirus; WNV, West Nile virus. 

Table 3. Examples of lipid roles during viral replication 

Lipids can contribute to viral replication by acting as scaffolding molecules to anchor viral 
proteins. In PV, location of specific phospholipids (PI4P) to the viral replication sites 
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mediates direct recruitment of the RNA dependent RNA polymerase (the enzyme that 
replicates the viral genome), which specifically interacts with this lipid [93]. The RNA 
polymerase of FHV also interacts with a specific phospholipid, the cardiolipin located on the 
outer mitochondrial membrane, where its replication takes place [120]. In addition to these 
examples, different events related to the replication of viral genomes are also influenced by 
specific phospholipids [131,132]. The activation of HCV replication due to a direct binding 
of sphingomyelin to HCV RNA polymerase has also been documented [130]. 

Proper topology of viral replication complexes usually depends on the induction of a 
membrane curvature, which may require the presence of specific proteins [133]. Membrane 
curvature can also be induced by modification of its lipid structure, either through changes 
in the polar head group or in the acyl chain composition [2,134]. Thus, during BMV 
infection, the function of an allele of delta9 fatty acid desaturase, an enzyme that introduces 
double bond in unsaturated fatty acids, has been associated to viral replication complex 
assembly to increase membrane fluidity and plasticity [100,101]. The accumulation of cone-
shaped lipids, such as lysophospholipids, which contain single acyl chain per phospholipid 
molecule, and of special lipids like cholesterol or cardiolipin, has been associated with 
alterations on the membrane curvature and plasticity that can contribute to replication 
complex assembly [1,2,135].  

As commented before, the membrane rearrangements resulting from replication complex 
assembly can also contribute to evade the cellular immune response by hiding viral 
components from pathogen sensors of the innate immune machinery. Thus, WNV-induced 
redistribution of cellular cholesterol contributes to down regulate the interferon-stimulated 
antiviral signalling response to infection [90]. 

Finally, the reorganization of cellular lipid metabolism during infection can also contribute 
to the generation of ATP in order to provide energy to support robust viral replication [1,5]. 

2.3. Lipids and viral morphogenesis 

Most enveloped-viruses acquire their lipid membrane by budding through a cellular 
membrane that can be provided by different sources. For instance, flaviviruses (i.e. DENV or 
WNV) bud into the endoplasmic reticulum for acquisition of their envelope [80,82], while 
VSV (Figure 3), influenza, or HIV acquire their envelope by budding from plasma 
membrane [136-139]. In other cases, different cellular organelles can contribute with distinct 
membranes to virus envelopment, is reported for herpersvirus and poxvirus [140-142]. 
Viruses can take advantage of specific parts of the membrane for their assembly. Cholesterol 
and lipid raft microdomains play an important role on the assembly of a variety of viruses 
[136-138,143]. In HIV, the presence of PI(4,5)P2 on the membrane is also necessary for 
assembly and budding of viral particles, and the viral protein Gag localizes to assembly sites 
via the interaction with this lipid [144]. The synthesis of fatty acids has also been associated 
to the envelopment of viruses [6].  

Other cellular lipid structures play a role on the assembly of a number of viruses. Thus, of 
intracellular lipid droplets have been associated with the assembly and morphogenesis 
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Figure 3. Virus budding through the plasma membrane. Images correspond to BHK-21 cells infected 
with the rhabdovirus VSV, fixed, and processed for transmission electron microscopy at 7 h post-
infection. For technical details related to virus infection and sample preparation see [145]. 

of DENV and HCV [78,79,146]. Assembly of HCV particles occurs on the surface of lipid 
droplets and, as mentioned earlier, it is related to the very low density lipoprotein (VLDL) 
pathway, a phenomenon that leads to the formation of unique lipo-viro-particles [4,147]. 
The lipoprotein component associated to HCV particles is essential for their infectivity [148], 
since one of its functions is to interact with LDL-R, thus contributing to viral attachment 
(section 2.1.1). 

Lipids incorporated to viral proteins due to post-translational modifications are also 
involved in crucial steps of enveloped virus assembly [149,150]. Regarding morphogenesis 
of non-enveloped viruses, myristoylation of VP4 protein of PV and FMDV has been shown 
necessary for proper capsid assembly [151,152]. 

2.3.1. Lipid composition of enveloped viruses  

Differences on the lipid composition of the viral membranes may reflect their different 
origin. Despite that the lipid content of enveloped viruses has been studied for decades [153-
155], quantitative analyses of viral lipidomes (the entire content of lipids) at the individual 
molecular species level have not been possible until recently, by means of the improvement 
of mass spectrometry [3,139]. Following this approach, several studies have extended the 
knowledge on viral lipid composition. Nevertheless, drawbacks associated to the 
purification of cellular membranes, in particular the plasma membrane, still complicate the 
analysis of lipid sorting during viral budding [3]. 

As commented above, viral membranes can be originated from varied cellular sources 
(section 2.3). The lipid composition of both Semliki Forest virus (SFV) and VSV is 
indistinguishable and only displays slight differences with that of the plasma membrane 
[139]. Being SFV and VSV from different viral families (Togaviridae and Rhabdoviridae, 
respectively), these viruses constitute an example of little selection of the lipids included in 
their envelopes. Since the composition of the viral envelopes of both viruses is similar to that 
of the plasma membrane, the small differences observed between plasma membrane and 
these viral envelopes could be explained by the enrichment in specific lipids to facilitate the 
membrane curvature required for viral budding [139].  

In the case of retroviruses (i.e. HIV and murine leukaemia virus), the overall lipid 
composition of viral envelopes resembles that of detergent-resistant membrane 
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microdomains [156,157]. An enrichment in PI(4,5)P2 has also been documented in HIV 
envelope, which is compatible with the dependence on the interaction between the viral 
protein Gag and this lipid to promote HIV budding from plasma membrane [157]. Another 
virus that buds from membrane rafts is influenza virus [138]. The lipidome of this virus has 
been analyzed for viruses budding from the apical membrane of polarized cells [158]. This 
study revealed that that the apical cellular membrane was enriched in sphingolipids and 
cholesterol, whereas glycerophospholipids were reduced, and storage lipids were depleted 
compared with the whole-cell membranes. These results are consistent with an 
accumulation of lipid rafts at the membranes where the virus buds. In addition, the virus 
membrane exhibited a further enrichment of sphingolipids and cholesterol when compared 
with the donor membrane at the expense of phosphatidylcholines [158].  

In other cases, major differences in lipid content between viral envelopes and host cell 
membranes have been found. An interesting example is the envelope of HCMV, which 
contains more phosphatidylethanolamines and less phosphatidylserines than the host cell 
membranes, resembling the synaptic vesicle lipidome [159]. Another virus with marked 
differences with cellular membranes is HCV, whose particles show a unique lipid 
composition in comparison with all other viruses analyzed to date. In addition, the lipid 
content of the HCV envelope is also different from that of the cells in which it was produced 
(cholesteryl esters comprise almost half of the total HCV lipids), resembling the composition 
of VLDL and LDL [160]. This finding is compatible with the association of HCV assembly 
with the VLDL pathway that leads to the formation of lipo-viro-particles [4,147]. 

3. Targeting lipid metabolism, a novel antiviral strategy  

Specific lipids are essential for multiple steps of the viral replication cycle and, therefore, 
different strategies can be used to interfere with virus infection. As a first approach to inhibit 
enveloped virus multiplication, the functions of lipids incorporated into the viral particle 
can be targeted by chemical compounds or even by antibodies [161]. This is the case of 
broad-spectrum antivirals, − some of them already licensed for human use, such as arbidol 
[162-164] −, or inhibitors of membrane fusion [3]. Impairment of viral fusion can be achieved 
also by targeting viral machinery involved in this process, a strategy currently assayed for 
HIV treatment [165]. 

An alternative, non-excluding lipid-targeted strategy to prevent viral multiplication is based 
on inhibitors of enzymes that catalyse lipid metabolic fluxes upregulated by viral infections 
[6]. Examples of compounds that act at distinct points of lipid metabolism and with reported 
antiviral activity in vitro are given in Table 4. Targeting lipid metabolism as an antiviral 
strategy raises important concerns. On one hand, alteration of such important metabolic 
pathway for cellular homeostasis may resemble a non-specific strategy, which could result 
in deleterious effects for the host. However, it should be also considered that currently 
antiviral compounds also target other major metabolic pathways, i.e. that of nucleic acids 
metabolism [166-169]. On the other hand, targeting host factors to avoid viral replication 
could also carry advantages. Drugs that target host factors seem to be less susceptible to the 
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development of viral resistance than strategies focused on viral proteins. Another advantage 
of this approach is that compounds targeting a specific group of lipids can successfully 
inhibit replication of different unrelated viruses (Table 4), thus constituting candidates for 
broad-spectrum antiviral drugs. These facts make that the use of drugs that impair different 
aspects of lipid metabolism has been proposed as a feasible antiviral approach [1,6,14].  
 

Target lipid Inhibitor Antiviral activity against Refs. 

Cholesterol Statins HIV, HCV, influenza [170-176] 
 U18666A DENV, HCV [113,177] 
Fatty acids TOFA HCMV, Influenza [6] 
 C75 HCMV, DENV, YFV, WNV, Influenza, HCV, CVB3 [6,9,81,102,117,119] 
 Cerulenin DENV, WNV, PV, CVB3 [81,102,117,121] 
 Arachidonate HCV [178] 
 Oleic acid PV [118] 
PI4P Enviroxime-

like 
PV, AiV [108,109] 

 PIK93 PV, CVB3, CVB5 [81,93,109] 
 AL-9 HCV [179] 
Sphingolipids Myriocin Hepatitis B virus, HCV [180-182] 
Multiple Valproic acid VACV, WNV, SFV, SINV, ASFV, VSV, LCMV, 

USUV 
[145] 

Abbreviations used in this table: AiV, Aichi virus; ASFV, African swine fever virus; CVB, coxsackievirus B; C75, trans-
4-carboxy-5-octyl-3-methylene-butyrolactone; DENV, Dengue virus; HCMV, human cytomegalovirus; HCV, hepatitis 
C virus; HIV, human immunodeficiency virus; LCMV, lymphocytic chioriomeningitis virus; PV, poliovirus; SINV, 
Sindbis virus; SFV, Semliki Forest virus; TOFA, 5-tetradecyloxy-2-furoic acid; USUV, Usutu virus; VACV, vaccinia 
virus; VSV, vesicular stomatitis virus; WNV, West Nile virus; YFV, yellow fever virus 

Table 4. Examples of drugs targeting lipid metabolism with reported antiviral activity 

3.1. Targeting cholesterol as an antiviral strategy 

Cholesterol is involved in multiple steps of the viral cycle. Impairment of cholesterol 
biosynthetic pathway by inhibitors of 3-hydroxy-3-methyl-glutaryl-CoaA reductase (3-
HMG-CoA reductase) like statins, commonly used in treatment of cardiovascular disease, 
constitutes a novel antiviral approach [174,175,183]. The clinical success of these inhibitors 
for human disorders also indicates that inhibitors of lipid metabolism can be safe and 
effective for human therapy. An additional effect of the treatment with statins, unrelated to 
the inhibition of 3-HMG-CoA reductase, is the inhibition of the binding of leukocyte 
function-associated antigen-1 (LFA-1) to the intercellular adhesion molecule (ICAM-1) [184], 
thus being immunomodulators and anti-inflammatory agents [185,186]. These properties 
can carry additional advantages for fighting HIV [174-176].  

The infection with the paramyxovirus respiratory syncitial virus (RSV) is dependent on the 
isoprenylation at the carboxy terminus of the cellular protein RhoA by 
geranylgeranyltransferase. Lovastatin, which blocks prenylation pathways in the cell by 
directly inhibiting 3-HMG-CoA reductase, inhibits RSV infection both in cultured cells and 
in mice [183]. Treatment of patients with different statins (i.e. lovastatin, simvastin, or 
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fluvastin) resulted in diverse effects on HCV infection, ranging from an absence of antiviral 
effect to a modest improvement of sustained antiviral response, or a reduction of viremia 
[172,173,187-189]. Beneficial effects derived from treatment with statins of infection with 
diverse influenza strains have also been reported in animal models and human studies 
[170,171], although other studies do not support these conclusions [190]. 

Targeting cholesterol in viral infection can be achieved using drugs other than statins, for 
instance U18666A. This is an intracellular cholesterol transport inhibitor widely used to 
block the intracellular trafficking of cholesterol and mimic Niemann-Pick type C disease, 
which also blocks cholesterol biosynthesis by inhibiting oxidosqualene cyclase and 
desmosterol reductase [191]. Treatment with U18666A inhibits DENV infection in cultured 
cells, and the effect of this compound is additive to the inhibitory effect of C75 (an inhibitor 
of FASN), which shows that both, cholesterol and fatty acids, are required for successful 
DENV replication [177]. U18666A also displays an antiviral effect against HCV infection and 
a synergistic effect has been reported when combined with interferon [113]. 

3.2. Inhibitors of fatty acid biosynthesis as potential antiviral compounds 

The biosynthesis of fatty acids plays an important role for multiplication of a wide variety of 
viruses [6,9,81,102]. Pharmacological inhibition of this metabolic pathway can be achieved 
using 5-tetradecyloxy-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC) 
[192]. Treatment with this compound has been shown to block replication of HCMV and 
influenza A virus [6]. Although the results derived from these experiments performed in 
model cell culture systems need to be further reproduced using animal models, the 
concentrations of TOFA that successfully inhibit HCMV infection in cultured cells are in the 
range of plasma concentrations found in rats treated with this inhibitor [6]. In HCV, 
treatment with TOFA attenuates the enhancement of replication of HCV induced by ethanol 
[193]. 

On the other hand, treatment with trans-4-carboxy-5-octyl-3-methylene-butyrolactone (C75) 
− an inhibitor of FASN, the key enzyme of fatty acid biosynthetic pathway − also resulted in 
inhibition of the replication of both HCMV and influenza A virus [6]. These experiments 
were performed in cultured cells, and the concentrations of the inhibitor tested did not 
induce host cell toxicity or apoptosis [6]. Similar results have been obtained for DENV, 
yellow fever virus (YFV), WNV, and HCV using the FASN inhibitor C75 [9,81,102,119], or 
cerulenin, another FASN inhibitor [81,102,111]. HMCV, influenza A, DENV, YFV, and WNV 
are enveloped viruses. The antiviral effect of either cerulenin or C75 has also been probed 
for the non-enveloped viruses CVB3 and PV [117,121], enlarging the potential antiviral 
spectrum of FASN inhibitors. However, it should be noted that blockage of FASN by C75 
can cause severe anorexia and weight loss in animal models [194]. This makes of C75 a drug 
not aimed for human use, although it has aided to the identification of potential pathways to 
target obesity [195], and is also contributing to the understanding of the relationship 
between biosynthetic fatty acid synthesis and viral multiplication [6,9,81,102,117]. For 
DENV, a direct interaction between the viral protein NS3 and FASN has been reported 
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[102]. Inhibition of this interaction could contribute to the design of antivirals to fight this 
important human disease. 

Infection of HCV is intimately connected to lipid metabolism, including the fatty acid 
biosynthetic pathway [4,8], and its replication can be inhibited by C75 [119]. Indeed, fatty 
acids can either stimulate or inhibit HCV replication, depending on their degree of 
saturation [112]. Arachidonate, a polyunsaturated fatty acid, also inhibits HCV replication 
[112] via the lipid peroxidation induced by reactive oxygen species (ROS) derived from 
HCV replication that converts polyunsaturated fatty acids into reactive carbonyls that 
inactivate proteins [178]. These events can be prevented by treatment with the antioxidant 
vitamin E [178]. As a result of the connections between fatty acids and cholesterol 
biosynthetic pathways, inhibition of fatty acid synthesis can be also related to the reduction 
of the infection of HCV, through inhibition of the geranylgeranylation of cellular factors 
required for HCV replication [112,196]. The use of unsaturated fatty acids has also been 
applied to block myristoylation of HIV Gag protein to prevent virus budding [150]. 

3.3. Phosphlipids as antiviral targets 

Viral replication also relies on phospholipid biosynthesis [105,121]. This makes drugs 
interfering this pathway candidates for antiviral design. Along this line, the antiviral 
properties of valproic acid - a short chain fatty acid commonly used for the treatment of 
epilepsy and bipolar disorder that impairs multiple aspects of phosphoinositide metabolism 
[197-199] - against a broad panel of enveloped viruses have been reported (Table 4) [145].  

Treatment with a chimeric antibody directed against phospahtidylserine can cure arenavirus 
and cytomegalovirus infections in animal models [200]. The mechanism of action of this 
therapy is based on the exposure of phosphatidylserine on the external leaflet of the plasma 
membrane, a preapoptotic event in cells infected by a broad variety of viruses. The safety 
and pharmacokinetics of this antibody have been already evaluated in clinical trials for 
treatment of other human disorders [201]. Another example of the use of anti-
phospholipidantibodies to combat a viral disease is provided by HIV, since different anti-
phospholipid antibodies have shown a broad neutralizing activity against this virus [161]. 

Recent reports have highlighted the role of a specific phospholipid species, PI4P, in the 
replication of enteroviruses (PV, CVB3) and HCV (section 2.2.2). The synthesis of PI4P 
associated to viral replication relies on the function of the cellular enzymes PI4KIIIα and β. 
This makes both lipid kinases potential drug targets for antiviral design. An inhibitor of 
PI4KIIIβ, PIK93 [202], has been shown to impair replication of enteroviruses [81,93,109]. 
Related reports have also uncovered that this enzyme is the cellular target of known 
antiviral compounds against enteroviruses [109]. This is so for some enviroxime-like 
compounds − T-00127-HEV1 and GW5074 [93] −  that integrate a group of antivirals that 
inhibits enterovirus replication, for which mutations conferring drug resistance mapped to 
the same region of the enteroviral protein 3A [109,203-205]. The recruitment of PI4KIIIβ to 
viral replication complexes requires the participation of cellular partners like the Golgi 
adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), as 
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described for AiV [108,122]. In this way, modulation of the interaction between these 
proteins could also constitute a novel antiviral strategy [122].  

In HCV infection the isoform of the enzyme involved in viral replication is mainly PI4KIIIα 
[106,107], although a role of the β isoform in the inhibition of HCV replication due to 
treatment with PIK93 has also been reported [126]. Consistent with these findings, specific 
compounds that successfully inhibit PV replication through blockage of PI4KIIIβ (GW5074 
and T-00127-HEV1) do not affect HCV replication, although other enviroxime-like 
compounds can affect both enteroviral and HCV replication [109]. On the other hand, 4-
anilino quinazolines were first reported to have antiviral activity against HCV, although the 
mechanism was not well defined. However, a recent study has associated the antiviral 
activity of a representative 4-anilino quinazoline (AL-9) with the inhibition of PI4KIIIα 
during HCV infection, which opens new therapeutic approaches [179]. Since the viral 
protein NS5A directly interacts with PI4KIIIα during HCV infection [125,127], modulation 
of this interaction also raises novel possibilities for antiviral research.  

Overall, these examples of drugs targeting different enzymes related to phosphoinositide 
metabolism support this strategy as a feasible approach for antiviral drug discovery. In this 
line, related phosphoinositide kinases constitute an important emerging class of drug targets 
[202]. 

3.4. Sphingolipids as antiviral targets 

Sphingolipids constitute a major component of lipid rafts [37,38], which, as commented 
before, are involved in different steps of viral infection, making sphingolipids potential 
antiviral targets. Along this line, ebolavirus requires the activity of acid sphingomyelinase, 
the enzyme that converts sphingomyelin to phosphocholine and ceramide for infection, and 
depletion of sphingomyelin reduces its infection [206]. A dependence on sphingomyelin for 
HCV replication has also been documented [130]. Inhibition of serine palmitoyltransferase, 
the enzyme that catalyzes the first step on sphingolipid biosynthesis, using myriocin has 
also been assayed against HCV or hepatitis B virus, either alone or in combination with 
interferon [180-182]. However, a certain controversy exists regarding whether the inhibitory 
effect of myriocin on HCV replication is attributable to the specific inhibition of serine 
palmitoyltransferase, since FTY720, a compound that like myriocin is structurally similar to 
sphingosine but does not inhibit serine palmitoyltransferase, also inhibits HCV replication 
[207].  

4. Conclusion 

The analysis of the functions of cellular factors in viral infections has highlighted the role of 
different lipid species in these infections. Viruses can use cellular lipids like bricks to build 
viral particles or to develop viral replication complexes, thus facilitating its multiplication. 
But viruses can also manipulate host cell metabolism towards the production of specific 
lipid species, unveiling an intimate relationship between viruses and host cell lipid 
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metabolism. Indeed, great progresses have been recently made in this area due to the 
identification of specific lipids as key factors for viral multiplication. However, the specific 
function of most of these lipids remains to be determined. A better understanding of the 
interactions between viral infections and lipid metabolism is desirable to asses the roles of 
lipids in viral multiplication. This knowledge could lead to the identification of lipid targets 
and druggable metabolic pathways suitable for antiviral development. Lipid candidates for 
these interventions have already been identified, for instance fatty acids, cholesterol or 
specific phospholipids. Indeed, initial lipid-based antiviral approaches have been already 
started, even at clinical level (i.e. statins). This example has probed that drugs already 
licensed for humans that act at different points of lipid metabolism can constitute potential 
candidates to fight viral diseases. These lipid-targeted antiviral approaches could be 
exclusive or could also be complementary to other antiviral therapies already available. 

As recently remarked, ‘if RNA ruled the last decade and DNA dominated the previous one, 
could the next decade be the one for lipids?’ [208]. The new advances on the knowledge of 
the interplay between viruses and lipids evidence that the answer to this question could be 
‘Yes’ in the case of virology [1].  Hopefully, we are now assisting to the promising birth of a 
novel lipid-based branch of antiviral research focused on this challenging and still poorly 
explored field for drug discovery. 
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