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1. Introduction 

1.1. Apolipoprotein E, inflammation and atherosclerosis 

The inflammatory disease atherosclerosis is characterized by plaque formation in the 

cardiovascular system, which together with thrombosis can lead to obstruction of blood 

vessels, potentially leading to ischemia, stroke, and heart failure (Libby et al., 2009; Chen et 

al., 2010; Drake et al., 2011). Atherosclerosis is triggered and sustained by inflammation 

related cytokines, chemokines, adhesion molecules and by the cellular components of the 

immune system (Ross, 1999; Epstein et al., 2004). Cholesterol, most of it transported as a low 

density lipoprotein (LDL) particle in the bloodstream, supports foam cell formation in 

atherosclerotic plaques. In parallel, cholesterol plays an important role in steroidogenesis 

and bile production (Lacapere and Papadopoulos, 2003), which have been correlated with 

mitochondrial 18 kDa Translocator Protein (TSPO) and apolipoprotein E (apoE) expression 

(Fujimura et al., 2008; Gaemperli et al., 2011). Lipoproteins are lipid transport vehicles that 

ensure the solubility of lipids within aqueous biological environments. Apolipoproteins 

stabilize the surface of lipoproteins, serve as cofactors for enzymatic reactions, and present 

themselves as ligands for lipoprotein receptors. The soluble apolipoprotein gene family, 

which includes apoE, encodes proteins with amphipathic structures that allow them to exist 

at the water-lipid interface (Chan, 1989). ApoE is a polymorphic 229-aa, 34-kDa protein, 

which is present in the cell nucleus and cytosolic compartments (Mahley & Huang, 1999). 

The human gene, located on chromosome 19, encodes three alleles: apoE2 (frequency in the 

human population, 5–10%), apoE3 (60–70%), and apoE4 (15–20%). The isoforms differ only 

at residues 112 and 158 (Cedazo-Minguez & Cowburn, 2001). However, there is only one 

isoform of apoE in mouse and it behaves like human apoE3 (Strittmatter & Bova Hill, 2002). 

It is suggested that apoE deficiency in mice mimics the human apoE4 status, which implies 

reduced apoE3 levels relative to apoE4 levels (Buttini et al., 1999; Sheng et al., 1998).  
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ApoE is synthesized in several areas of the body, including the liver, where it is produced 

by hepatic parenchymal cells, and becomes a component in the surface of circulating 

triglyceride-rich lipoproteins [very low density lipoprotein (VLDL) and chylomicrons, or 

their remnants], and certain high density lipoprotein (HDL) particles (Mahley, 1988). ApoE 

plays a major role in the transport of lipids in the bloodstream, where it participates in the 

delivery and clearance of serum triglycerides, phospholipids, and cholesterol (Mahley, 

1988). ApoE is also synthesized in the spleen, lungs, adrenals, ovaries, kidneys, muscle cells, 

and macrophages (Mahley, 1988). ApoE-containing lipoproteins are bound and internalized 

via receptor-mediated endocytosis by a number of proteins of the LDL receptor (LDLR) and 

LDLR-related protein (LRP) families (Davignon et al., 1998). ApoE is considered to be a 

ligand that binds to 27 clusters of negatively charged cysteine-rich repeats in the 

extracellular domains of all LDLR gene family members. It has been suggested that apoE 

made its entrance on the evolutionary stage long after the receptors to which it binds 

(Beffert et al., 2004). This also indicates that the original primordial functions of the LDLR 

family did not involve interactions with apoE. The original functions of the LDLR family 

may have been on the one hand transporting macromolecules between increasingly 

specialized cells and on the other hand serving as sensors for intercellular communication 

and environmental conditions (Beffert et al., 2003). 

Cholesterol accumulation within atherosclerotic plaque occurs when cholesterol influx into 

the arterial wall (from apoB-containing lipoproteins) exceeds cholesterol efflux. Early in 

atherogenesis circulating monocytes are recruited to the arterial sub-endothelium where 

they differentiate into macrophages, ingest cholesterol, and develop into “foam cells” (Ross, 

1973; 1999; Ross et al., 2001). Initially, monocytes adhere to activated endothelium on which 

up-regulated cell adhesion molecules (CAMs) are displayed, a dynamic process sensitive to 

inflammatory cytokines, shear stress, and oxidative insults (Chia, 1998). Induction of 

vascular cell adhesion molecule-1 (VCAM-1), a member of the immunoglobulin superfamily 

of CAMs, is increasingly described as the key factor in monocyte infiltration (Nakashima et 

al., 1998; Truskey et al., 1999). ApoE-knockout mice (apoE KO) have been extensively used 

to study the relation of hypercholesterolemia and lipoprotein oxidation to atherogenesis 

(Hoen et al., 2003; Yang et al., 2009; Kunitomo et al., 2009). ApoE-deficient mice have 

elevated VCAM-1 in aortic lesions (Nakashima et al., 1998), which enhances monocyte 

recruitment and adhesion (Ramos & Partridge, 2005), while apoE expression in the artery 

wall reduces early foam cell lesion formation (Hasty et al., 1999). These findings imply that 

apoE may influence early inflammatory responses by suppressing endothelial activation 

and CAM expression (Stannard et al., 2001). ApoE helps protect against atherosclerosis, in 

part by mediating hepatic clearance of remnant plasma lipoproteins (Weisgraber et al., 

1994). When apoE is absent or dysfunctional, severe hyperlipidemia and atherosclerosis 

ensue (Kashyap et al., 1995; Linton & Fazio, 1999). ApoE is also abundant in atherosclerotic 

lesions, secreted by resident cholesterol-loaded macrophages (Linton & Fazio, 1999). This 

locally produced apoE is atheroprotective by contributing to reverse cholesterol transport 

and by inhibiting smooth muscle cell proliferation (Mahley et al., 1999; Mahley and Ji, 2006). 

ApoE exerts several functions regarding lipid and cholesterol transport and metabolism:  1) 
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apoE functions as an important carrier protein in the redistribution of lipids among cells (by 

incorporation into HDL (as HDL-E); 2) it plays a prominent role in the transport of 

cholesterol (by incorporating into intestinally synthesized cholymicrons); and 3) it takes part 

metabolism of plasma cholesterol and triglyceride (by interaction with the LDLR and the 

receptor binding of apoE lipoproteins (Krul & Tikkanen, 1988; Quinn et al., 2004; Elliott et 

al., 2007).  

ApoE has an established immune modulatory function in the peripheral immune response 

to bacteria and viruses (Mahley & Rall, 2000). It also modulates inflammatory responses in 

cell culture models in vitro and in in vivo models of brain injury, where an apoE mimetic 

therapeutic peptide has been shown to reduce CNS inflammation (Lynch et al., 2003; 

McAdoo et al., 2005; Aono et al., 2003). Involvement of apoE in injurious and inflammatory 

processes in the brain has attracted intensive attention (Drake et al., 2011; Potter and 

Wisniewski, 2012). In the brain, as well as in the cerebrospinal fluid, non-neuronal cell types, 

most notably astroglia and microglia, are the primary producers of apoE (Boyles et al., 1985; 

Quinn et al., 2004), while neurons preferentially express the receptors for apoE (Beffert et al., 

2003). Regarding pathological conditions, it has been shown that human neuroblastoma cells, 

such as SK-N-SH, express apoE mRNA and apoE protein (Elliott et al., 2007). ApoE expression 

in neurons can be induced during nerve regeneration after injury and in growth and 

development of the CNS (Quinn et al., 2004). Moreover, Harris et al. (2004) showed that 

neuron-generated apoE tends to accumulate intracellularly, whereas astrocyte-generated apoE 

tends to be secreted. ApoE present in neurons is found in the cytoplasm (Han et al., 1994; Xu et 

al., 1996). The appearance of apoE in neurons may be due to neuronal synthesis under 

particular conditions, or by insertion into the cytoplasm of extracellular apoE (Dupont-Wallois 

et al., 1997). As neurons, human fibroblasts express low level of apoE under normal 

conditions, but under specific circumstances, such as apoptosis and nerve injury, they can 

produce increased levels of apoE (Do-Carmo et al., 2002; Quinn et al., 2004).  

1.2. The 18kDa Translocator Protein (TSPO) and apolipoprotein E  

Recent studies by us and others have indicated that the mitochondrial 18kDa Translocator 

Protein (TSPO), also known as peripheral-type benzodiazepine receptor (PBR) is present 

throughout the cardiovascular system and may be involved in cardiovascular disorders 

including atherosclerosis (Veenman and Gavish, 2006). The primary intracellular location of 

the TSPO is the outer mitochondrial membrane. Various studies over the course of the last 3 

decennia have indicated that mitochondrial TSPO, potentially in relation to cardiovascular 

disease, is involved in the regulation of cholesterol transport into mitochondria in relation to 

bile production and steroidogenesis (Krueger and Papadopoulos, 1990; Papadopoulos et al., 

2006). In particular, TSPO regulates cholesterol transport from the outer to the inner 

mitochondrial membrane which is the rate-limiting step in steroid and bile acid 

biosyntheses (Krueger and Papadopoulos, 1990; Lacapère and Papadopoulos, 2003; 

Veenman et al., 2007). Three-dimensional models of the channel formed by the five α-helices 

of the TSPO indicate that it can accommodate a cholesterol molecule in the space delineated 

by the five helices. According to these models, the inner surface of the channel formed by 



 

Lipid Metabolism 94 

the TSPO molecule would present a hydrophilic but uncharged pathway, allowing 

amphiphilic cholesterol molecules to cross the outer mitochondrial membrane 

(Papadopoulos et al., 1997, 2006; Veenman et al., 2007). At cellular levels TSPO is present in 

virtually all of the cells of the cardiovascular system, where they appear to take part in the 

responses to various challenges that an organism and its cardiovascular system face 

(Veenman & Gavish, 2006), including atherosclerosis and accompanying symptoms 

(Onyimba et al., 2011; Bird et al., 2010; Dimitrova-Shumkovska et al., 2010a,b,c, 2012). 

TSPO are located in various components of blood vessels, including endothelial cells where 

TSPO may take part in immunologic and inflammatory responses (Hollingsworth et al., 

1985; Bono et al., 1999; Milner et al., 2004; Veenman & Gavish, 2006). To establish a factual 

correlation between atherogenic challenges and TSPO binding characteristics, we have 

previously assayed TSPO binding characteristics in different tissues of rats fed a high fat 

high cholesterol (HFHC) diet, in comparison to rats fed a normal diet (Dimitrova-

Shumkovska et al., 2010a).  It appeared that enhancement of oxidative stress in the aorta and 

liver due to the atherogenic HFHC diet was accompanied by significant reductions in TSPO 

binding density in these organs. Binding levels of the TSPO specific ligand [3H]PK 11195 in 

heart appeared not to be affected by the HFHC diet in this rat model. 

Previous studies have shown that TSPO as well as apoE can be associated with processes 

such as: cholesterol metabolism, oxidative stress, apoptosis, glial activation, inflammation, 

and immune responses. As a ligand for cell-surface lipoprotein receptors, apoE can prevent 

atherosclerosis by clearing cholesterol-rich lipoproteins from plasma (Mahley and Huang, 

1999). The TSPO protein has also been shown to be present in the plasma membrane of red 

blood cells, as well as in the plasma membrane of neutrofils, where it was shown to 

stimulate NADPH-oxidase activation of these cells. The plasma membrane forms of TSPO 

may be involved in heme metabolism, calcium channel modulation, cell growth, and 

immunomodulation. Furthermore, nucleus expulsion in mature erythrocytes is inhibited by 

excess cellular cholesterol (Fan et al., 2009). However, the involvement of the TSPO in this 

process has not been investigated. A recent study in cell culture showed that TSPO is 

important for the regulation of mitochondrial protoporphyrin IX and heme levels (Zeno et 

al., 2012). Thus, the TSPO appears to take part in various stages of red blood cell formation. 

Furthermore, TSPO takes part in the regulation of gene expression for proteins involved in 

adhesion, which potentially may play a role in platelet aggregation (Bode et al., 2012; 

Veenman et al., 2012). ApoE has also been found to be involved in platelet aggregation, 

while TSPO platelet levels have been found to be increased with various neurological 

disorders, in particular stress related disorders (Veenman and Gavish, 2000, 2006, 2012). It 

has been suggested that platelet aggregation may be affected by nitric oxide (NO) 

generation via apoE, while other studies suggest that NO requires the TSPO to induce 

collapse of the mitochondrial membrane potential (ΔΨm), mitochondrial reactive oxygen 

species (ROS) generation and cell death (Shargorodsky et al., 2012). Thus, the TSPO may 

present one pathway whereby NO does affect platelet aggregation. Furthermore, various 

alteration in TSPO density in the heart as a response to stress have been reported (Gavish et 

al., 1992; Veenman and Gavish, 2006), suggesting one aspect of involvement of TSPO in 
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cardiovascular diseases, including cardiac ischemia. It has also been shown that apoE is 

involved in cardiac ischemia (Mahley, 1988).  

Apparently as a consequence of its role in steroidogenesis, TSPO typically are very 

abundant in steroidogenic tissues (Benavides et al., 1983; De Souza et al., 1985). Steroid 

hormones can affect TSPO levels, while in turn TSPO provides a modulatory function for 

steroid hormone production by regulation of mitochondrial cholesterol transport (Veenman 

et al., 2007). It is known that cholesterol affects TSPO function (Falchi et al., 2007).  

Interestingly, apoE is also well expressed in steroidogenic organs such as adrenal gland, 

ovary, and testis (Blue et al., 1983; Elshourbagy et al., 1985; Law et al., 1997). Nonetheless, 

studies by us suggests that elevated cholesterol levels, such as found in apoE KO mice, do 

not appear to affect TSPO levels in steroidogenic organs (Inbar Roim, M.Sc. Thesis, Technion 

– Israel Institute of Technology, 2008), even though effects in the cardiovascular system can 

be observed (Dimitrova-Shumkovska et al., 2010a). As has been reported, TSPO levels can 

be regulated by steroid hormones, which may be part of an organism’s response to stress 

and injury (Anholt et al., 1985; Weizman et al., 1992; Gavish & Weizman, 1997; Gavish et al., 

1999; Veenman et al., 2007; Mazurika et al., 2009; Veenman and Gavish, 2012). This suggests 

that TSPO levels may be part of a feedback control system for steroid production 

(responding to alterations in steroid levels), rather than be regulated by a feed forward 

signal provided by cholesterol (i.e. TSPO levels in relation to steroidogenesis are not being 

regulated by cholesterol levels in vivo) (Veenman and Gavish, 2012). 

1.2.1. Involvement of TSPO in inflammation 

Various studies have shown the presence of TSPO in all cell types of the immune system, 

thus proposed functional roles of the TSPO included modulation of stress-induced 

immunosuppression and immune cell activity (Lenfant et al., 1985; Ruff et al., 1985; Bessier 

et al., 1992; Marchetti et al., 1996; Bono et al., 1999; Veenman & Gavish, 2006). TSPO are 

present in platelets, lymphocytes, and mononuclear cells, and are also found in the 

endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells of 

the cardiovascular system (Veenman & Gavish, 2006). TSPO in the cardiovascular system 

appears to play roles in several aspects of the immune response, such as phagocytosis and 

the secretion of interleukin-2, interleukin-3, and immunoglobulin A (Veenman & Gavish, 

2006). Mast cells are considered to be important for immune response to pathogens 

(Marshall, 2004) and they have also been implicated in the regulation of thrombosis and 

inflammation and cardiovascular disease processes such as atherosclerosis as well as in 

neoplastic conditions (Wojta et al., 2003). Studies have shown that benzodiazepines’ 

inhibition of serotonin release in mast cells could reduce blood brain barrier permeability, 

influence pain levels, and decrease vascular smooth muscle contractions (Veenman and 

Gavish, 2006). Benzodiazepines have been found to bind to specific receptors constituted by 

the TSPO on macrophages and to modulate in vitro their metabolic oxidative responsiveness 

(Lenfant et al., 1985). TSPO in the cardiovascular system also has been associated with the 

development of atherosclerosis (Camici et al., 2012). It for example has been suggested that 

reductions in TSPO levels may act as a protective mechanisms against the development of 

oxidative stress in aorta and liver (Dimitrova-Shumkovska et al., 2010a, b, c; 2012).  
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Anti-inflammatory properties of TSPO ligands have been demonstrated in various tissues. 

TSPO ligands have been shown to reduce inflammation in animal models of rheumatoid 

arthritis (Waterfield et al., 1999), carrageenan-induced pleurisy (Torres et al., 2000), and 

pulmonary inflammation (Bribes et al., 2003). Taupin et al. (1993) have also demonstrated in 

vivo that the synthetic TSPO ligand Ro5-4864 increases brain IL-1, IL-6 and TNF-α 

production after brain trauma. These cytokines are known to play a role in the inflammatory 

reaction to brain injury (Heumann et al., 1987). Interestingly, one study showed that PK 

11195, but not Ro5-4864, could exert anti-inflammatory actions on mononuclear phagocytes, 

regulating the release of IL-1b (Klegeris et al., 2000). In addition, in vivo studies have shown 

that TSPO ligands can reduce the typical inflammatory response presented by reactive 

microglia and reactive astroglia resulting from brain trauma (Ryu et al., 2005; Veiga et al., 

2005). 

1.3. Animal models and strategies for atherosclerosis study 

Atherosclerotic plaques may appear early in life and might progress into severe, 

symptomatic plaques many decades later, dependent on the coexistence of risk factors such 

as age, genetic background, gender, hypercholesterolemia, hypertension, smoking, diabetes, 

etc. (Ross, 1999; Whitman, 2004). Rupture of lipid-rich coronary plaques can trigger an 

atherothrombotic event and probably is the most important mechanism inducing acute 

coronary syndrome (ACS) (Vilahuer et al., 2011). 

Plaque rupture presents a major factor in ischemic processes associated with atherosclerosis 

(Zhao et al., 2008; Cheng et al., 2009; Gaemerli et al., 2011). Plaque rupture in the human 

condition, including the cardiovascular processes and events leading up to it, presently is 

virtually inaccessible for research. Therefore, animal models have been developed to study 

atherosclerosis, including plaque rupture and thrombus formation, and also how to take 

measures to prevent these from happening. Nonetheless, more sophisticated models need to 

be developed and tested to be able to better mimic the human condition. This is so, as mice 

and rats, for example, do not develop atherosclerosis without genetic manipulation, because 

they have a lipid physiology that is radically different from that in humans, as most of the 

cholesterol is being transported in HDL-like particles (Whitman, 2004; Singh et al., 2009; 

Vilahur et al., 2011). Furthermore, all of the existing animal models, including biological and 

mechanical triggering of atherogenesis, e.g., the Watanabe heritable hyperlipidemic 

(WHHL) rabbit model, the apolipoprotein E (ApoE) mouse model, and the LDL-receptor 

mouse model) suffer the drawback of lacking an end-stage atherosclerosis that would show 

plaque rupture accompanied by platelet and fibrin-rich occlusive thrombus at the rupture 

site (Singh et al., 2009). Another restriction of current models for cardiovascular disorders is 

that most of the studies explore only male mice to avoid effects of estrogens to the extent of 

lesion development and diminishing LDL oxidation (Caligiuri et al., 1999; Yang et al., 2004). 

As cardiovascular disorders also occur in women, it would be valuable to also study female 

animal research subjects. Furthermore, it would give direction to research relating hormonal 

conditions to atherosclerosis. 
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Cholesterol lowering by diet is associated with a reduction in DNA damage, at least in 

animal models (Singh et al., 2009). In general, modification of atherosclerotic risk factors by 

lipid lowering therapies, cessation of smoking, weight loss, and improved glucose control 

reduces circulating markers of inflammation. These and other findings suggest that 

inflammation is a primary process for atherosclerosis (Ziccardi et al., 2002; Rodriguez-

Moran et al., 2003). Although high dietary intake of the anti-oxidant vitamin E and C has 

been associated with reduced risk of cardiovascular disease (CVD), well powered clinical 

trials in atherosclerosis-related CVD have indicated that supplements with vitamin C or 

vitamin E alone do not provide sufficient benefit, in comparison to, for example, statins 

(Kunitomo et al., 2009). Furthermore, specific antioxidants scavenge or metabolize some, but 

not all of the relevant oxidized molecules (Stocker and Keaney, 2004). Stocker and Keaney 

(2005) conclude that whenever a physiological process goes unchecked in case of disease, 

treatment strategies cannot simply rely on scavenging ROS. Nonetheless, drugs that have 

been proven to alter plaque progression have also been shown to alter vascular oxidative 

stress. For example, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA) 

inhibitors (Statins) reduce NAD(P)H oxidase activation and superoxide production in vitro, 

in part because of their capability to inhibit the membrane translocation (and thus activity) 

of the small GTP-binding protein Rac-1, which is a regulatory component of vascular 

NAD(P)H oxidase activation (Costopoulos et al., 2008). In conclusion, it appears that 

beneficial therapeutic treatments to prevent atherosclerosis include lowering of lipid levels 

and also reduction of oxidative stress. However, restricting a treatment to only reduction of 

oxidative stress does not appear to generate sufficient beneficial effects to counteract 

atherosclerosis. 

2. The effects of cholesterol challenges that result in atherogenesis on 

TSPO binding density in aorta and heart 

As apoE deficiency may increase cholesterol levels and induce NO generation, which in turn 

may affect TSPO function, we were interested to study whether TSPO binding 

characteristics may be affected in heart and aorta of apoE-knockout (B6.129P2-apoEtm1 N11) 

mice, in comparison to their C57BL/6 background mice (i.e. wild type, WT). For the present 

study homogenates of whole heart organ and aorta segments (aortic arch and 

descendending aorta) were used. For this approach, it was taken into consideration that 

accumulation of proatherogenic lipid affects all cells types present into vascular wall, and 

the response of the entire tissue to the cholesterol exposure is relevant as an indication of 

vascular defense as a whole (Hoen et al., 2003). All procedures with the animals were in 

accordance with National Institutes of Health (USA) guidelines for the care and use of 

experimental animals (NIH publication No. 85-23, revised 1996), and the experimental 

protocol was reviewed and approved by the local ethics committee. The mice were housed 

in polycarbonate cages in a pathogen – free facility set on a 12h light-dark cycle and given ad 

libitum access to water and standard laboratory feed. Prior to the experimental procedures, 

the rats were fed a commercial standard pellet feed (Filpaso, 52.11, Skopje, Republic of 

Macedonia), named “standard feed” hereafter.  
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At 16 weeks of age, animals were randomized into experimental groups: i) Two control 

groups (WT mice, n = 10) and (apoE KO mice, n = 10), both these control groups received 

standard feed for a additional period of 10 weeks; ii) Two experimental groups receiving the 

same feed for the same 10 weeks but supplemented with 1% cholesterol (1% WT mice, n = 

10) and (1% apoE KO mice, n= 10); and iii) Two experimental groups received the same feed 

for the same 10 weeks but supplemented with 3% cholesterol (3% WT mice, n = 10) and (3% 

apoE KO mice, n = 10). After these 10 weeks, animals were sacrificed by cardiac puncture, 

under ketamine/xylazine anaesthesia, followed by the appropriated storage until 

application or procedures required for assays of TSPO binding characteristics, ROS 

parameters, and histopathology, as described in detail previously (Dimitrova-Shumkovska 

et al., 2010 a, b, c, 2012).  Tissue homogenates of aorta and heart were prepared for our 

various assays. For TSPO binding assays, tissue homogenates were prepared in 50 mM PBS 

on ice with a Kinematika Polytron (Luzerne, Switzerland), as described previously 

(Dimitrova-Shumkovska et al., 2010 a, b, c). To prepare homogenates for assays of oxidative 

stress parameters, we used an Ultrasonic Homogenizer (Cole-Parmer Instrument Co., 

Chicago, IL) as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c). For 

advanced oxidation protein products (AOPPs, Witko-Sarsat et al., 1996), tissue homogenates 

were prepared in 50 mM PBS at + 4 ºC, as described previously (Dimitrova-Shumkovska et 

al., 2010 a, b, c).  For the other assays of oxidative stress (see below), tissue homogenates 

were prepared in 1.12 % KCl at + 4 ºC, as described previously (Dimitrova-Shumkovska et 

al., 2010 a, b, c).  These later parameters of oxidative injury included: lipid peroxidation 

products [TBARs] (Draper and Hadley, 1990); protein carbonylation, PC (Shacter, 2000); 

superoxide dismutase activity (SOD assay kit, RA20408, Fluka, Biochemika, Steinheim, 

Germany), glutathione (GSH assay kit CS0260, Sigma-Aldrich, Steinheim, Germany), 

glutathione reductase (GSSG-Red), GRSA 114K4000, Sigma-Aldrich, Steinheim, Germany], 

Finally, aortas were prepared for anatomical observation and histopathology as described 

previously (Dimitrova-Shumkovska et al., 2010 a, b, c).  

Effects of cholesterol supplements to the apoE KO mice on plaque formation in the aorta are 

shown in Figure 1. No atherosclerotic formation was found in WT mice regardless of diet 

(Figure 1A). Control aortas of apoE KO mice having access to standard feed are 

characterized by the presence of thin fibrous tissue caps i.e. encapsulations of collagen rich 

fibrous tissue without a necrotic core that showed only superficial accumulation of foam 

cells (Figure 1B). Cholesterol diet accelerated atherosclerosis in apoE KO mice, increasing 

the total surface area of plaque formation significantly over the intimal area (Figure 1C) 

compared to apoE mice receiving standard feed. In 1% cholesterol fed apoE KO mice, 

expansion of the necrotic core presenting an important pathogenic process contributing to 

plaque vulnerability was observed in comparison to standard fed apoE mice (Figure 1C). 

After administration of 3% cholesterol diet to apoE KO mice even more advanced lesions 

have developed. Initial xanthoma formation, cartilage tissue, and calcified nodules with an 

underlying fibrocalcific plaque with minimal or absence of necrosis occurred (Figure 1D). 

Furthermore, plaques become more progressive and lesions show luminal stenosis with 

pathologic intimal thickening. These observations are in line with other research data, where 

plague rupture was seen in apoE KO mice especially when exposed to western type diet 
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(Davignon et al., 1999; Johnson et al., 2005). ApoE KO mice can also develop interplaque 

hemorrhage and features of plaque instability that are accelerated by feeding westernized 

diet (Rosenfeld et al., 2000). “Western type diets for mice” typically utilize just one 

ingredient (milk fat or lard) as the primary source of energy from fat. 

 

 

Figure 1. Representative cross-sections of mice aortas. A) No atherosclerotic lesions were found in 

wild-type mice regardless of the diet; B) atherosclerotic plaque (outlined) 

characterized by a thin fibrous tissue cap (elbow black arrow), particularly ssuperficial accumulation of 

foam cells (green arrow) without a necrotic core and encapsulated by collagen rich fibrous tissue in 

apoE KO mice given standard feed; C) accelerated atherosclerosis and deposition of cholesterol crystals 

(black arrow) in the endothelium of the aorta wall in 1% apoE KO; D) advanced lesions are developed 

in 3% apoE mice. Initial xanthoma formation, cartilage tissue (asterix) and calcified nodules (yellow 

arrow) with an underlying fibrocalcific plaque with minimal or absence of necrosis occur (H&E 

staining, microscopic magnification applied x 100).  
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Table 1. Effects of cholesterol (Chol) supplemented diet for 10 weeks, on lipoprotein levels in apoE KO 

mice and their WT counterparts. Unpaired Student t-test was performed. Data are expressed as mean ± 

SD; * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

Changes in the serum levels of total cholesterol, triglycerides and HDL-cholesterol in each 

group are shown in Table 1. Corroborating previous studies (Davignon et al., 1999; Seo et 

al., 2005; Zhao et al., 2008) at 16 weeks of age, even before application of the cholesterol 

enriched diets, apoE KO mice, already displayed approximately 5 times higher levels of 

total cholesterol in comparison with WT mice. At this time point, no significant differences 

in triglycerides (TAG) levels were observed between WT mice and apoE KO mice. However, 

3% diet regimes, caused significant increases in total cholesterol level in apoE KO mice (by 

44%, p < 0.001), compared to standard feed. The enhanced total cholesterol levels, included 

an almost 90% representation of non HDL – cholesterol (calculated from Friedewald 

formula; Friedewald et al., 1972). In contrast, 3% WT mice, showed significantly higher 

cholesterol levels (by 62%, p < 0.01), including an almost 70% representation of HDL-

lipoproteins. Supplement of 3% cholesterol also provoked significantly higher triglycerides 

levels: by 35 % (p < 0.01) in apoE mice and by 36% (p < 0.01) in WT mice. Supplement of 1% 

cholesterol, resulted in slight increases in total cholesterol in apoE mice (by 20%, p < 0.05), 

but did not significantly affect the triglycerides levels. The same type of diet did not affect 

lipoprotein levels in WT mice.  

In the aorta, 3% cholesterol diet supplement, caused significant increases in “steady-state” 

levels of lipid peroxides (TBARs) and oxidized proteins in WT as well as apoE KO mice 

(Table 2). In detail, regarding lipid peroxidation, TBARs production was significantly 

increased by 2 fold in WT and apoE KO mice subjected to 3% cholesterol supplemented diet 

(+100%, p < 0.01 for WT mice, and +125%, p < 0.001 for ApoE KO mice). In parallel, protein 

oxidation products levels (AOPP) were also significantly higher (+135%, p < 0.01 in 3% WT 

mice and +177%, p < 0.001, in 3% apoE KO mice). Protein carbonyls (PC) showed a slight but 

non-significant increase in 3% cholesterol fed WT and apoE KO mice, compared to their 

controls. In contrast to the 3% diet regime, 1% cholesterol supplemented diet did not affect 

ROS parameters in aortic tissue in both WT and apoE KO mice.  

                           Plasma  lipoprotein  levels mg/dL

Strain               Chol                TAG                   HDL

wk C 1% 3% C 1% 3% C 1% 3%

 WT 16   67.7 ± 23.3 88.07 ± 28.0 110.0 ± 27.0**  71.0 ± 18.4  71.5 ± 5.1  97.5 ± 16.2** 33.2 ± 5.1 33.6 ± 10.8    74.7 ± 10.8***

                           Plasma  lipoprotein  levels mg/dL

Strain               Chol                TAG                   HDL

wk C 1% 3% C 1% 3% C 1% 3%

Apo E (-/-) 16 383.7 ± 47.3 457.23 ± 62* 555.4 ± 83.3*** 117.7± 24.5 105.6 ± 11.4 159.4 ± 59.0**   67.0 ± 37.5   66.6 ± 16.3   32.9 ± 11.4**
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Table 2. Effects of cholesterol (Chol) supplemented diet for 10 weeks on aorta oxidative stress 

parameters in apoE KO mice and their WT counterparts. 1-way ANOVA followed by application of the 

Tukey test to assess the significance of specific intergroup differences. Data are expressed as mean ± SD; 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

The capacity of glutathione as an electron donor to regenerate the most important 

antioxidants (vitamin E, glutathione peroxidase (GPx), lipid hydroperoxides), is linked with 

the redox state of the glutathione disulfide – glutathione couple GSSG/2GSH (Schafer and 

Buettner, 2001). This in turn, has a high impact on the overall redox environment in the cell.  

Concerning antioxidant activities in aorta tissue due to 3% cholesterol supplemented feed, 

significantly reduced activity of superoxide dismutase (SOD) was measured in 3% apoE KO 

mice compared to standard feed mice (- 41%, Table 3). The results also suggest a significant 

reverse interaction between glutathione level (GSH) and glutathione peroxidase (GPx) 

activity in aorta tissue. In particular, the analyzed results indicated that the glutathione 

content in aorta of 3% apoE animals was significantly decreased (-32%), with 

simultaneous slight, but significant enhancement achieved in activity of glutathione 

peroxidase (+10%), as compared to standard feed control (p < 0.05). In parallel, 

glutathione content in aorta was also significantly reduced in 3% WT mice for 70% (p < 

0.01), without affecting GPx levels. Feeding the mice diet supplemented with 1% 

cholesterol, resulted in significantly reduced activity in SOD in apoE KO mice (by 33% p < 

0.05) and in WT mice (by 47% p < 0.05). 

To determine TSPO binding characteristics in this paradigm we applied binding assays with 

the TSPO specific ligand [3H] PK 11195. The present study sought to determine whether 

cholesterol supplementation affects TSPO binding characteristics in aorta and heart of apoE 

KO mice in association with parameters for oxidative stress. Binding assays of the heart and  

Variables / Aorta  WT Control 1% Chol 3% Chol

 TBARs nmol/mg 0.16 ± 0.04 (n=8)    0.17 ± 0.06   (n=7)     0.32 ± 0.08**  (n=8)

 AOPP   nmol/mg 37.1 ± 11.3 (n=7)     44.1 ± 19.3    (n=8)    86.8 ± 21.4**  (n=8)

 PC        pmol/mg 45.7 ± 11.0 (n=7)     55.2 ± 22.8   (n=8)     55.3 ± 11.8      (n=8)

Variables / Aorta  Apo E Control 1% Chol 3% Chol

 TBARs nmol/mg 0.24 ± 0.07 (n=8)     0.29 ± 0.11    (n=8)     0.54 ± 0.25***  (n=10)

 AOPP   nmol/mg 22.0 ± 17.1 (n=8)      27.9 ± 7.1      (n=8)    60.5 ± 30.6*** (n=10)

 PC        pmol/mg   46.6 ± 20.3 (n=8)     45.3 ± 11.3     (n=8)     52.1 ± 10.6      (n=12)
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Table 3. Effects of cholesterol (Chol) supplemented diet for 10 weeks on aorta antioxidant parameters 

in apoE KO mice and their WT counterparts. Unpaired Student t-test was performed. Data are 

expressed as mean ± SD; * = p < 0.05, ** = p < 0.01. 

aorta with the TSPO specific ligand [3H]PK 11195 were done to determine potential effects of 

cholesterol supplementation on TSPO binding characteristics, according to methods 

described previously (Dimitrova-Shumkovska et al., 2010 a,b,c). For representative examples, 

see Figure 2. In heart , only in WT mice significant decreases in the Bmax of TSPO (- 42%, p < 

0.001) was determined with [3H]PK 11195 binding as a consequence of both cholesterol 1% and 

3% supplemented diets, compared to control standard fed WT mice. Regarding the apoE KO 

mice, cholesterol supplemented diet did not induce differences in the TSPO binding 

characteristics in the heart (Table 4). Regarding heart tissues, both in the apoE KO groups and 

WT groups, Kd values determined with [3H] PK 11195 binding were in the nM range (0.6 – 1.6 

nM) showing no significant differences between experimental and control groups. 

Regarding the aorta, feeding the mice with standard feed was not accompanied by 

significant differences in the TSPO binding characteristics of the aorta of apoE KO mice 

versus WT mice (Table 4). Interestingly, these mouse aortas showed very TSPO binding 

levels, comparable to those observed in the adrenal of rats (Gavish et al., 1999). To date, the 

adrenal of rats is the tissue with one of highest demonstrated Bmax for TSPO ligand binding 

(Gavish et al., 1999). The 1% cholesterol supplemented diet significantly reduced TSPO 

binding capacity in aorta in both WT and apoE KO mice. In particular, reductions by 49% in 

WT mice and by 32% in apoE KO mice (p < 0.001 and p < 0.01, respectively) compared to 

their standard feed controls were observed (Table 4). The 3% cholesterol diet also provoked 

a reduction in TSPO binding density by 58% in the aorta (p < 0.01), but only in WT mice. In 

the aortas of both groups, apoE KO mice and WT mice, Kd values determined with [3H] PK 

11195 binding were in the nM range (1.5 – 2.6 nM), showing no significant differences 

between the groups.  

Variables / Aorta WT Control 1% Chol 3% Chol

SOD U/mg 4.76 ± 1.5 (n=9) 2.5 ± 0.9*  (n=7)   1.45 ± 0.6**  (n=7)

GSH   nmol/mg 7.8 ± 4.2 (n=9) 8.3 ± 3.7 (n=9)  3.7 ± 0.8** (n=9)

GPx  mU/mg 0.261 ± 0.01 (n=8) 0.273 ± 0.01 (n=8)  0.257 ± 0.03 (n=8)

Variables / Aorta  Apo E Control 1% Chol 3% Chol

SOD U/mg 6.87 ± 1.6 (n=7) 4.6 ± 1.1*    (n=6)     4.05 ± 0.88*  (n=8)

GSH   nmol/mg 6.7 ± 2.9 (n=9) 7.4 ± 2.7 (n=9)  4.5 ± 2.0* (n=9)

GPx   mU/mg 0.242 ± 0.02 (n=9) 0.256 ± 0.01*(n=7)  0.266 ±0.03* (n=7)
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Figure 2. Representative examples of saturation curves (A, C, E, G) and their Scatchard plots (B, D, F, 

H) of [3H]PK 11195 binding to membrane homogenates of aorta, respectively of WT mice (A , B, C, D) 

and apoE KO mice (E, F, G, H). Abbreviations: apoE KO = apolipoprotein deficient mice; WT- wild type 

mice; B: bound; B/F: bound over free.  
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As the effects on TSPO binding density in heart and aorta due to intake of cholesterol 

supplemented diet take place primarily in the WT groups, and especially not in the 3% 

cholesterol diet fed apoE KO mice, these data suggest that decreases of TSPO binding 

density in heart and aorta may serve to counteract processes typically leading to 

cardiovascular damage, including atherosclerosis, as explained in more detail in the 

Discussion. 

 

 
 

 

Table 4. Average Bmax values fmoles / mg protein and Kd values (nM) of [3H]PK 11195 binding to TSPO 

in aorta and heart homogenates of WT (Bb-Control) and apoE KO mice, fed with standard feed, and 

feed supplemented with 1% and 3% cholesterol (Chol). One-way analysis of variance ANOVA was 

used, with Mann-Whitney as the post-hoc, non-parametric test. Data are expressed as mean ± SD; * = p < 

0.05, ** = p < 0.01, *** = p < 0.001 vs. control. 

3. Discussion 

There is strong evidence that accumulation of plasma derived lipoproteins in the arterial 

wall launches specific cell reactions that account for atherosclerosis process: enhanced NO 

production, amplification of the inflammatory response, apoptosis, endothelial function 

impairment, enhanced smooth muscle cell migration and proliferation, and macrophage 

foam cell formation (Steinberg et al., 2002; Whitman, 2004; Zhao et al., 2008; Singh et al., 

2009). Mice lacking apoE have a substantial delay in the metabolism of lipoproteins, 

particularly VLDL, even fed with a regular standard chow feed (Hoen et al., 2003; Kato et 

al., 2009). Lesions in apoE-deficient mouse have many features in common with human 

atherosclerosis, even that the progression can be advantageous in many experimental 

situations (Dansky et al, 1999). At 26 weeks, atherosclerotic lesions are in the early stages of 

development, characterized by lipoprotein accumulation, leukocyte gathering, and foam cell 

formation. This model develops atherosclerotic lesions which progress to occlusion of 

Bb - wild type mice

 Bb - Control    Bb - 1% Chol.  Bb - 3 % Chol.

Tissue B max (fmol/mg) Kd (nmol) n B max (fmol/mg) Kd (nmol) n B max (fmol/mg) Kd (nmol) n

Heart 1740 ± 180 0.65 ± 0.1 5 1005 ± 240** 1.12 ± 0.3 6 1006 ± 140 ** 1.32 ± 0.5 5

Aorta 29 000 ± 9700 2.50 ± 1.2 9 14 900 ± 3370*** 2.31 ± 0.8 6 12 200 ± 2920** 2.62 ± 0.5 5

Apo E KO mice

Apo E - Control Apo E - 1% Chol. Apo E - 3 % Chol.

Tissue B max (fmol/mg) Kd (nmol) n B max (fmol/mg) Kd (nmol) n B max (fmol/mg) Kd (nmol) n

Heart 1590 ± 390 0.92 ± 0.4 5  1260 ± 370 1.57 ± 0.8 7  2 580 ± 1890 1.62 ± 0.9 7

Aorta 24 500 ± 4100 1.9 ± 1.0 9    16 670 ± 3800 ** 1.48 ± 0.5 7 20 800 ± 6850 2.68 ± 1.44 7
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coronary artery by 8th to 11 months after regular feeding (Piedrahita et al., 1992; Whitman, 

2004). Aged (42-54 weeks) apoE KO mice develop intraplaque hemorrhage and plaque 

instability features, accelerated by feeding westernized diets (Seo et al., 2005; Singh et al., 

2009). We found, similar to previous observations, advanced fibrous plaque development 

accompanying prolonged cholesterol feeding (Figure 1C) in apoE mice but not in WT mice. 

Another study by Molnar et al. (2005) showed that although high fat feeding induced 

endothelial cell dysfunction in WT mice, it did not enhance neointimal formation in WT 

mice. Also in WT rats, a high fat, high cholesterol diet does not appear to lead to 

atherosclerosis, although modest morphological alterations in the aortic wall could be 

observed (Dimitrova-Shumkovska et al., 2010a) 

We also checked in blood plasma of apoE KO and WT mice the levels of total cholesterol, 

including triglycerides, high-density lipoprotein and low-density lipoprotein, since it can 

increase the risk of heart disease and atherosclerosis (Steinberg, 2002; Stocker and Keany, 

2004, 2005). Mice naturally have high levels of HDL and low levels of LDL, lacking the 

cholesterol ester transfer protein, an enzyme responsible for trafficking cholesterol from 

HDL to VLDL and LDL. As reported also by others previously, we found clear cut 

differences in abundance of cholesterol related particles between apoE KO mice and WT 

mice (Table 1), (Hoen et al., 2003; Kato et al., 2009). In particular, each group of apoE KO 

mice had five times more plasma cholesterol than their WT counterparts. The apoE KO mice 

also always had higher TAG levels. HDL levels in apoE KO mice supplied with standard 

feed and 1% cholesterol supplemented diet was also twice as high than in WT mice. 

Interestingly, 3% cholesterol supplemented diet resulted in a reversal, meaning that HDL 

levels (i.e. “good” HDL-lipoproteins) in WT mice became twice as high as in apoE KO mice 

(Table 1). The generally low LDL cholesterol levels in WT mice even with cholesterol 

supplemented diet may be due to the capability of WT mice to efficiently suppress the 

percentage of dietary cholesterol absorption by increasing the excretion of gallbladder 

biliary cholesterol concentration (Sehayek et al., 2000).  

We used this model, of apoE KO mice fed with cholesterol supplemented diet that shows 

well developed atherosclerosis, to assess oxidative stress in the aorta in correlation with 

TSPO binding density and atherosclerosis. For this purpose, homogenates of the aorta were 

used for ROS analysis and antioxidant enzymes activities. As accumulation of 

proatherogenic lipid affects all cell types present within the vascular wall, the response of 

the entire tissue vs. isolated cells to the hyperlipidemic conditions is relevant as an 

indication of vascular defense as a whole. The increase in plasma cholesterol levels was 

paralleled by changes in oxidative stress parameters in WT mice and ApoE KO mice, as 

discussed in detail below.  

An indicator of cellular defence capacity against oxidative stress is the presence of reduced 

GSH, which we determined in the aorta homogenates after application of feed with 

cholesterol supplements. As seen in table 3, a reduction of GSH content in was evident 

compared to the corresponding controls, when 3% cholesterol diet was administered to WT 

as well as apoE mice. This shows that cholesterol diet regime indeed constitutes an elevated 

risk factor for ROS formation, due to a reduction in GSH levels in this model. It has been 
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reported that ROS induce vascular cells to express cell adhesion molecules that trigger 

adhesion of leukocytes to the endothelium, which is part of the initiation atherosclerosis 

(Yang et al., 2009). Interestingly, it was also found that TSPO expression correlates positively 

with expression of adhesion molecules (Bode et al., 2012; Veenman et al., 2012). This may 

suggest that the reduction in TSPO levels seen in this study may counteract adhesion of 

leukocytes to the endothelium, and thereby prevent initiation atherosclerosis in particular in 

WT mice.  

In accord with the observations of Hoen et al. (2003) that the mRNA levels of many 

antioxidant enzymes in apoE KO mice are higher (1.5 -5 fold) in the age of 6-15 weeks, 

compared to aged-matched wild type mice, we also saw that SOD activity were higher in 

aorta homogenates of apoE mice than those in age-matched WT mice (Table 3). Their 

hypothesis is that the aorta compensates for the oxidative stress induced by atherogenic 

stimuli, by stimulating the expression of antioxidant enzymes, thereby delaying the process 

of atheroma plaque formation. The latter was supported by Yang et al. (2004, 2009) 

providing evidence that over expression of catalase and superoxide dismutase delayed the 

development of atherosclerosis in apoE KO mice.  

To determine the potential involvement of the TSPO in effects of apoE dysregulation, we 

studied TSPO binding density in heart and aorta of apoE KO mice (B6.129P2-apoEtm1 N11) 

versus their wild type (WT) background mice, with and without inclusion of 1% and 3% 

cholesterol to the diet. TSPO has been detected in heart of normal mice before, and we found 

comparable levels in our control animals (Hashimoto et al., 1989; Weizman et al., 1992; Fares 

et al., 1990; Katz et al., 1994; Dumont et al., 1999). To our knowledge the present study is the 

first study regarding TSPO binding density in the aorta of mice, which are quite high (even 

comparable to TSPO levels in adrenal of rats (Gavish and Fares, 1985; Gavish et al., 1999). 

We found that enhanced cholesterol levels in the diet can result in reduced TSPO binding 

density in the aorta and heart of WT mice, as well as in the aorta of apoE mice (Table 4). The 

present study indicates that there is negative correlation between ROS parameters in heart 

tissue and TSPO binding density in cholesterol fed WT mice. Namely, in the heart of WT 

mice, the “steady state” levels of lipid peroxides (TBARs) showed a 2.5 fold enhancement 

after 3% cholesterol supplemented diet vs. a 1/3 fold enhancement in the group with 1% 

cholesterol supplemented diet. Regarding oxidized proteins in the heart tissues of WT mice 

fed with cholesterol supplements, AOPP and proteins carbonyls showed increases of 40% 

and 35%, respectively, regardless of the cholesterol percentage (data not shown). Such a 

relation between ROS parameters and TSPO binding density is not apparent in apoE mice, 

since in apoE mice little effect is seen on TSPO binding density. 

Also in a previous study, enhanced plasma lipid levels due to HFHC diet supplied to rats, 

enhanced oxidative stress parameters and decreased indicators for antioxidant activity in 

the aorta, which were associated with reduced TSPO density in this organ (Dimitrova-

Shumkovska et al., 2010a). Notably, wild type rats are not prone to develop atherosclerosis 

even when subjected to HFHC diet (Dimitrova-Shumkovska et al., 2010a). We have shown 

that reduction of TSPO expression by genetic manipulation in vitro in cell culture reduces 

mitochondrial ROS generation (Veenman et al., 2008, 2012; Zeno et al., 2009). We have 
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discussed previously that the reduced TSPO levels accompanying atherogenic challenges 

may be a compensatory mechanism to counteract oxidative stress in the aorta and liver 

(Dimitrova-Shumkovska et al., 2010 a, b, c). This would be in effect similar to increased 

levels of SOD observed, which also counteract oxidative stress (see above). Our present 

study suggests that reduced TSPO binding density as observed in WT mice subjected to 

cholesterol supplemented diet may counteract oxidative stress as one mechanism to 

attenuate the development of atherosclerosis. As TSPO binding density is not affected in 

apoE mice subjected to cholesterol supplemented diet mentioned TSPO dependent 

mechanism is not available for apoE KO mice to counteract development of atherosclerosis. 

Presently, it is not known which components of the vascular wall, i.e. mast cells, smooth 

muscular, or dermal vascular endothelial cells, would be important for the potential 

correlation between TSPO expression, oxidative stress, and atherosclerosis (Stoebner et al., 

1999; 2001; Morgan et al., 2004; Veenman and Gavish, 2006; Dimitrova-Shumkovska et al., 

2010 a, b, c).  

It can be assumed from the present study, that oxidative stress parameters do not absolutely 

correlate with the development of atherosclerotic lesions (because supplementation with 1% 

of cholesterol to the diet does not affect oxidative stress), but the absolute levels of 

cholesterol do correlate with atherosclerotic development. Nonetheless, enhancement of 

cholesterol percentage from 1% to 3% in the diet resulted in significant increases in ROS 

parameters of WT and apoE KO mice in comparison to their control groups, and also 

provoked advanced lesion formation in aortic intimae in apoE KO mice fed a 3% cholesterol 

supplemented diet (but not in WT mice). TSPO binding density is reduced due to 

cholesterol intake in particular in WT mice and such changes in TSPO binding density in 

WT mice are in negative correlation with oxidative stress measured in heart and aorta. We 

believe the reductions in TSPO binding density in WT mice are compensatory for oxidative 

stress and atherosclerotic development. Thus, the lack of a significant decrease in TSPO 

binding density in the aorta of 3% cholesterol fed apoE KO mice may actually correlate with 

the enhanced atherosclerosis in this model. The capability of apoE KO mice fed with 1% 

cholesterol to reduce TSPO binding density in the aorta may present a rudimentary anti-

atherosclerosis protective capacity. In conclusion, this study is in accord with previous 

studies suggesting that reductions in arterial TSPO binding density are part of a mechanism 

counteracting the development of atherosclerosis.  A question is how the presence of apoE, 

in combination with enhanced dietary cholesterol levels, can result in suppression of TSPO 

binding density. It is also important to find out how in a mechanistic sense a reduction in 

TSPO levels can contribute to self protection against the development of atherosclerosis. 

Explanation of abbreviations and symbols: ACS, acute coronary syndrome; ANOVA, 

analysis of variance; (AOPPs), advanced oxidation protein products; ApoE-/- KO, 

apolipoprotein E knockout mice; cAMP, adenosine 3,5-cyclic monophosphate; CBR, central-

type benzodiazepine receptor; DBI, Diazepam Binding Inhibitor; CAM, cell adhesion 

molecule; CVD, cardiovascular disease; HDL, high-density lipoprotein; HFHC- high fat high 

cholesterol diet; HMGCoA, 3-hydroxy-3-methylglutaryl coenzyme A reductase; H2O2, 

hydrogen peroxide; Hb, hemoglobin; IL-1, interleukin-1 (IL-2, etc.); kDa, kilodalton; Kd, 
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equilibrium dissociation constant; Km, equilibrium constant related to Michaelis-Menten 

kinetics (similarly, Kd, Ka, Keq, Ks); LDL, low density lipoproteins; mPTP, mitochondrial 

permeability transition pore; MCP-1, monocyte chemoatractant proteins-1; NADP, 

nicotinamide adenine dinucleotide phosphate; NADH, reduced nicotinamide adenine 

dinucleotide; PBR, peripheral-type benzodiazepine receptor; PC protein carbonyls; PK 

11195, 1-(2- chlorophenyl)-N-methyl-N-(1-methyl-prop1)-3 isoquinolinecarboxamide; 

ONOO-, peroxinitrite ; Ro5-4864, (4’- chlorodiazepam); ROS , reactive oxygen species; SOD, 

superoxide dismutase activity; TBARs, thiobarbituric acid reactive substances; TNF, tumor 

necrosis factor; TSPO, 18 kDa translocator protein; VCAM-1, vascular cell adhesion 

molecule; VSMCs, vascular smooth muscle cells. 
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