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1. Introduction 

A polymer science approach in the physico-chemical characterization of food systems has 

been highlighted in the literature as concepts of polymer science have been applied to 

understanding the effect of the glass transition on various food properties. The importance 

of the glass transition with respect to the processing and the stability of foods has long been 

recognized in food processing unit operations such as agglomeration, freezing, dehydration, 

flaking, sheeting, baking, and extrusion (Abbas et al., 2010; Campanella et al., 2002; Rhaman, 

2006; Roos, 2010). However, the concept of the glass transition with respect to the processing 

of pulse seeds has been largely ignored. Successful value-added utilization of pulses, such as 

beans, for human consumption involves whole seed processing. Adequate hydration 

represents a significant requirement for processing of pulse products because only those 

pulse varieties for which water can consistently be absorbed to an acceptable level will be 

used in the processing of whole seed products and pulse based products (An et al., 2010). 

There is agreement in the literature that the seed coat is the structure that is primarily 

responsible for controlling water uptake, thus the seed coat is the principle barrier to water 

uptake (Arechavaleta-Medina & Synder, 1981; DeSouza & Marcos-Filho, 2001; Ma et al., 

2004; Meyer et al., 2007; Ross et al., 2008; Zeng et al., 2005). The permeability of the seed 

coats of pulses have been studied extensively as poor hydration behaviour is commonly 

observed in pulse seeds. Although much research has been devoted to understanding the 

cause for differences in water uptake behaviour of pulse seeds, the approach has either been 

from a food science perspective in terms of characterizing the physical and chemical 

differences between impermeable and permeable seeds or from a botanical perspective 

concerned with defining the differences between the morphology and anatomy of 

permeable and impermeable seeds (Ross et al., 2008). A polymer science approach to 

understanding water uptake is necessary. An innovative explanation of water uptake 

behaviour in pulse seeds can be achieved by merging concepts from food science and 
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polymer science. Key chemical differences in pulse seed coats have been studied with 

respect to their influence on water uptake behavior and the glass transition (Ross et al., 

2010a). The effect of the glass transition temperature of seed coats on water uptake 

behaviour was reported by Ross et al. (2008). The mechanism of water uptake for pulse 

seeds possessing seed coats with a glass transition above ambient conditions was explained 

based on an analogy between a temperature driven glass transition (Tg) and a solvent driven 

glass transition (ag) presented in polymer science literature (Ross et al., 2010b). Alternatively, 

a hypothesis for the mechanism of water uptake in seeds possessing seed coats with a glass 

transition near ambient conditions implicating the time required to reach saturated surface 

concentration upon exposure to solvent was based on work reported in the field of polymer 

science (Ross et al., 2010b). 

“Milling”, by definition, is a process by which materials are reduced from a larger size to a 

smaller size (Wood & Malcolmson, 2011). In the case of pulse processing there are several 

operations that can be characterized in this way, including: 1) dehulling which is defined as 

loosening and removal of the seed coat to produce polished seed (i.e. footballs); 2) splitting 

which is defined as loosening and cleavage of the two cotyledons to produce split seeds (i.e. 

splits); and 3) flour milling or grinding which is defined as reducing whole seed or 

cotyledons to flour (Wood & Malcolmson, 2011). Variation in the ease of “milling” between 

the different pulse species primarily explains the wide variation in methodologies and pre-

treatments that have been developed to optimize yields (Wood & Malcolmson, 2011). 

Dehulling is an important aspect of pulse processing as the dehulling efficiency (yield of 

dehulled seeds) is an important quality characteristic for pulse breeders, processors, and 

exporters as it ultimately dictates whether a dehulling operation is economically feasible 

(Wang et al., 2005; Ross et al., 2010c). The goal of dehulling is to completely remove the hull 

from pulse seeds while minimizing the production of powder, breaks, and in certain pulses-

split seeds (Wang et al., 2005). According to Wood & Malcolmson (2011), the dehulling 

process without splitting is performed on pulses whose cotyledons are very tightly held 

together, such as lentil (Lens culinaris). In this case, a higher ratio of whole dehulled lentil 

seeds to split seeds is desired as whole dehulled lentil seeds are the most valuable fraction 

(Vandenberg & Bruce, 2008). Red lentils account for the majority of world lentil production 

and trade and nearly 90% of red lentils are consumed as cooked split or whole seeds where 

the seed coat has been removed by dehulling. Since most red lentils are dehulled before 

consumption, dehulling efficiency (yield of dehulled seeds) of red lentil is very important 

(Ross et al., 2010c; Vandenberg & Bruce, 2008; Wang, 2005). The rice industry cites breakage 

of rice kernels during milling/dehulling as one of its main problems (Iguaz et al., 2006). A 

large amount of work has been performed in the area of understanding the effect of drying 

temperature on rice milling quality (Cao et al., 2004; Cnossen et al., 2003; Cnossen & 

Siebenmorgen, 2000; Iguaz et al., 2006). The concept of the glass transition has been used to 

explain rice kernel fissure formation during drying and subsequent breakage during milling 

of rice (Siebenmorgen et al., 2004). The effect of drying temperature on the handling quality 

of whole green lentil seeds in terms of seed breakage upon handling has been investigated 

(Tang et al., 1990), however little work has been done on the effect of drying temperature on 
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the milling quality of red lentils. A better understanding of pulse seed breakage and 

splitting could be achieved by studying dehulling from a polymer science approach. 

Therefore, the hypothesis used to explain rice breakage was adopted to explain breakage 

and splitting in red lentils upon dehulling. Overall, this chapter focuses on: 1) the state of 

knowledge of the glass transition temperature in food systems; 2) the importance of pulses 

and how they are processed; 3) the state of knowledge of water uptake in pulse seeds; 4) 

defining the role of the Tg with respect to water uptake in pulse seeds; and 5) defining the 

role of the Tg with respect to dehulling of red lentils.  

2. The state of knowledge of the glass transition temperature in food 

systems 

2.1. Definition of glass transition 

The glass transition theory from polymer science has been studied from a food science 

perspective since the pioneering work of Slade and Levine in the 1980’s as many 

phenomena related to food processing and stability can be systematically explained by the 

concept of glass transition (Abbas et al., 2010; Campanella et al., 2002; Kumagai & 

Kumaga, 2009; Lemeste et al., 2002; Rhaman, 2006; Roos, 2010). A material typically forms 

an amorphous glass if crystallisation is inhibited by steric hindrance and kinetic 

constraints (Norton, 1998). The glass transition is defined as a change in the state of an 

amorphous material from a solid/glassy-like to a liquid/rubbery-like state or vice versa 

(Figure 1) as the change of state (i.e. glass transition) exhibited by amorphous materials is 

a reversible transformation (Roos, 2010). The temperature range at which materials pass 

from a solid/glassy-like and liquid/rubbery-like structure or vice versa is considered the 

glass transition temperature (Tg).  

 

Figure 1. Enthalpy or volume of various states of materials as affected by temperature (Adapted from 

Debenedetti & Stillinger, 2001; Roos, 2010). Tg is glass transition temperature; Tm is melting temperature. 
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2.2. Theories of glass transition 

The glass transition does not exhibit latent heat and no temperature can be defined where 

the both the solid/glassy-like and liquid/rubbery-like states coexist (Roos, 2010). Both the 

solid/glassy and the liquid/rubbery states of amorphous materials, separated by the glass 

transition, are non-equilibrium states. Thus, materials in the glassy state are not completely 

stable and are described as existing in a metastable solid state (Roos, 2010; Slade & Levine 

1991). Rates of changes of amorphous materials are time-dependent and controlled by the 

ability of molecules within the material to respond to changes in their surroundings. 

Therefore, difficulties exist in understanding the properties of the non-equilibrium state of 

amorphous materials as it does not exhibit a characteristic order of molecular arrangement 

(Roos, 2010). Observations of the changes in thermodynamic properties (volume, enthalpy, 

entropy) and the kinetic nature of the glass formation have led to the development of 

several theories to explain the nature of the glass transition (Roos, 2010; Sperling 2006), 

which include: thermodynamic or entropic theories, free-volume theory, and kinetic theory. 

Thermodynamic or entropic theories state that the glass transition is a second order phase 

transition which is based on observed changes in the thermal expansion coefficient and heat 

capacity values that occur over the glass transition (Norton, 1998; Roos, 2010). These theories 

were devised by Gibbs (1956) and Gibbs & DiMarzio (1958) based on the work of Flory 

(1953) and it was suggested the glass transition occurs when the relaxation time of the 

segmental motion of polymer chains approaches that of the experimental time scale (Roos, 

1995). As shown in Figure 1, the enthalpy of a material changes differently with temperature 

in the glassy and rubbery-like states, indicating that the glass transition is associated with a 

change in heat capacity, however, no single temperature in glass transition measurements 

can be identified for the change in heat capacity (Roos, 2010). The thermodynamic approach 

has been criticized as it assumes the system is at equilibrium, yet Gibbs & DiMarzio (1958) did 

note that although observed glass transitions are time-dependent, the real thermodynamic 

change in state occurs at infinitely long times (Roos, 2010). The free volume theory is rooted in 

the idea that if individual molecules are considered to be spheres in the glassy state, the 

unoccupied or free volume is reduced. For molecules to change their location or degree of 

motion, they must be able to move into the free volume (Roos, 2010). Creating a condition, 

such as increasing temperature or increasing moisture content, where the system temperature 

becomes higher than Tg, allows the system to transition from a glassy state into the rubbery 

state. This provides an increase in the free volume, allowing an increase in both rotational and 

translational molecular mobility. The fact that kinetically dependent processes such as 

viscosity or volume expansion (Norton, 1998) determine the free volume of a polymer system 

has led to the development of kinetic theories for explaining the nature of the glass transition. 

The kinetic theory of the glass transition considers the time dependent characteristics of the 

glass transition and time-dependent molecular relaxations that take place over the glass 

transition temperature range (Roos, 1995).  

2.3. Measurement of glass transition 

The glass transition has been typically determined by studying the changes in the thermal 

or rheological properties of a system, either as a function of sample temperature or 
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composition, such as moisture content (Roos, 2010), as material properties including 

modulus, viscosity, volume, thermal expansion, and dielectric properties, exhibit a 

discontinuity around the glass transition. The glass transition associated with changes in 

rheological and dielectric material properties is attributed to mechanical and dielectric α-

relaxations, respectively. Therefore, glass transition and relaxations of amorphous 

materials may be measured with thermal, dielectric, mechanical, and spectroscopic 

techniques. Using thermal methods, such as differential scanning calorimetry (DSC), the 

glass transition appears as a change in enthalpy and volume in the measurement of 

thermodynamic properties such as heat capacity, whereas the appearance of translational 

mobility of molecules around the glass transition results in a frequency-dependent α-

relaxation manifested in changes in mechanical properties or permittivity, which are 

typically measured by mechanical and dielectric techniques, respectively, such as dynamic 

mechanical (thermal) analysis (DMA/DMTA) and dielectric thermal analysis 

(DEA/DETA), respectively. Spectroscopic techniques such as, infra-red and Fourier 

transform infra-red (IR/FTIR), Raman Electron Spin Resonance (ESR) and various NMR 

spectroscopy, have been used to provide information on chemical bonding and molecular 

mobility (Roos, 2010).  

2.4. Effect of glass transition on molecular mobility 

As noted, amorphous food materials are in a non-equilibrium state, which can be greatly 

affected during processing and storage conditions (Abbas et al., 2010; Campanella et al., 

2002; Rhaman, 2006; Roos, 1991; Roos, 2010). The state of an amorphous material depends 

on its composition, temperature, and time. As temperature, relative humidity or moisture 

content increases, amorphous materials transform from the glassy state to the rubbery 

state, which reflects changes in molecular mobility and in mechanical and dielectric 

properties (Roos, 2010; Slade & Levine 1991). The movement of the matrix molecules in a 

system is greatly reduced in the glassy state compared to the rubbery state. Although, 

mobility of small molecules does occur in glassy biomolecular systems via vibration and 

short-range rotational motions (Sperling, 2006), the enhanced stability of food systems in 

the glassy state have been attributed to reduced molecular mobility below Tg (Norton, 

1998). The control of moisture content or water activity and temperature of glassy foods is 

of great importance as the concept of the glass transition helps to explain changes which 

occur during food processing and storage. Typical changes in amorphous food materials 

above the Tg include stickiness, caking, collapse, and crystallization, textural changes such 

as softening and hardening, as well as chemical changes, such as enzymatic reactions and 

oxidation (Abbas et al., 2010; Li, 2010; Roos, 2010,). Furthermore textural changes, which 

are manifested as changes in mechanical properties, occurring over the glass transition, 

are characterized as a function of temperature, moisture content or water activity (Peleg, 

1993; Roos, 2010). A state diagram, which reflects the relationship between Tg and 

moisture content (or water activity) and temperature, is a valuable tool to manipulate 

both Tg and material behavior under various storage and processing conditions (Roos 

1993). Explicitly, a state diagram can be used to explain physical state changes of foods as 

a function of moisture content during water removal processes such as drying, baking, 
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extrusion, evaporation, freezing, or water uptake processes such as agglomeration or 

tempering and flaking (Abbas et al., 2010; Campanella et al., 2002; Roos, 2010). Therefore 

application of the Tg as a processing parameter in the food industry is immense and is of 

relevance to the pulse processing industry. Hydration represents a significant 

requirement for processing of pulse products. Optimization of the dehulling/milling 

quality of pulses requires definition of the relationship between drying conditions and Tg.  

2.5. Effect of water on the glass transition 

As noted, water is a key factor affecting the glass transition. The molecular weight of 

water is significantly lower than most food components, which lowers the local viscosity 

and enhances molecular motion (Ferry, 1980), thereby adding free volume to the system. 

Uptake of water by an amorphous solid system will cause “plasticization” and will result 

in a decrease in the glass transition temperature (Li, 2010). The process of water uptake 

involves two main processes: 1) adsorption, which is the interaction of water with surface 

solids; and 2) absorption, in which water penetrates the bulk solid structure (Li, 2010). 

Van der Waals interactions and chemical adsorption by chemical bonding are the two 

kinds of forces involved in adsorption. Water molecules first adsorb onto the surfaces of 

dry material to form a monolayer, which is subjected to both surface binding and 

diffusional forces. As more water molecules adhere to the surface, a water multilayer forms 

and diffusional forces exceed the binding forces.  As such, water is absorbed into the bulk 

structure by pores and capillary spaces (Barbosa-Canovas, 1996; Li, 2010). The glass 

transition process occurs when water uptake changes from surface adsorption to bulk 

absorption (Li, 2010). Work noting the importance of the glass transition and water uptake 

was reported in Oksanen & Zografi (1990) in which water vapor sorption isotherms of 

poly (vinylpyrrolidone) at various temperatures along with the measurement of Tg as a 

function of water content were analysed. It was suggested that sufficient water uptake 

(moisture content), which was designated by the upward inflection of the isotherm, was 

needed to be attained to cause Tg to be less than the experimental/environmental 

temperature and cause the polymer to transition into a rubbery state. At a higher 

temperature, less water was required to plasticise the sample because of the higher 

molecular mobility due to the higher temperature. This work is in agreement with the 

concept of critical water activity (aw) and moisture content (mc) set forth by Roos (1993) 

who noted that moisture content and aw can be considered as factors depressing Tg to the 

environmental temperature, albeit whatever environment-i.e. processing conditions or 

storage conditions (Roos, 1993), thereby enhancing the molecular mobility of the system. 

Thus, critical aw or mc at which the glass transition occurs is a key parameter in predicting 

the behaviour of amorphous materials. Moreover, there is an analogy between the 

temperature driven glass transition (Tg) and the solvent driven glass transition (ag) in 

polymer science literature (Laschitsch et al. 1999; Leibler & Sekimota 1993; Vrentas & 

Vrentas 1991). At a constant temperature, a sorption curve of a polymeric glass may 

remain relatively flat until a certain solvent concentration is attained, after which the 

sorption curve displays a dramatic increase in solvent uptake (Laschitsch et al., 1999). This 
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remarkable increase in solvent uptake can be considered to have occurred at the glass 

transition solvent activity (ag) and consequently this increase in solvent uptake can be 

attributed to the plasticization of the polymer by the sorbed penetrant (Vrentas & Vrentas 

1991). Explicitly, the free volume of a polymer is affected by temperature in the same way 

as it is affected by the amount of plasticizer (e.g. water) present. This is a key concept in 

developing a hypothesis using the idea of glass transition to explain water uptake in pulse 

seeds and it will be revisited in a following section.  

3. Pulses and pulse products 

3.1. Definition of pulses 

The family Leguminosae consists of more than 18 000 species of plants and members of the 

family are often referred to as legumes or pulses, which are the second most important food 

source in the world after cereals (Tiwari et al., 2011). Pulses are defined as the dry, edible 

seeds of legume plants (Maskus, 2010), notably this definition excludes fresh (i.e. non-dried) 

green beans and green peas which are consumed and considered as vegetables along with a 

few oil-bearing seeds like groundnut (Arachis hypogaea) and soybean (Glycine max) which are 

grown primarily for edible oil extraction (Tiwari et al., 2011). The terms “legumes” and 

“pulses” are used interchangeably because all pulses are considered legumes but not all 

legumes are considered pulses (Tiwari et al., 2011). Geographic region will influence the 

types that of pulses that are grown. In Canada, the most commonly grown pulses include: 

field peas, beans, lentils and chickpeas. However, cowpea (black-eyed pea) is a recognized a 

key pulse crop in the Southern United States while mung bean is commonly used in China 

(Maskus, 2010). The Food Agriculure Organization (FAO) recognizes 11 primary pulses 

(Tiwari et al., 2011), which are presented in Table 1. 

3.2. Pulses: Utilization and processing 

It has long been known that pulse crops are a good source of protein, energy (carbohydrate), 

fibre and mircronutrients (vitamins and minerals) (Black et al., 1998a; 1998b) and interest in 

the utilization of pulses in the developed world is on the increase (Tiwari et al., 2011). 

Factors contributing to this include: their reported nutritional and health benefits, changes 

in consumer preferences, increasing demand for variety/balance, changes in demographics 

(age, racial diversity), rise in the incidence of food allergies and ongoing research on 

production and processing technologies (Boye et al., 2010). In fact, over the past four 

decades, world pulse production has increased by 49% from 40.8 Mt in 1961 to 60.9 Mt in 

2008 (Watts, 2011). In 2008, dry beans accounted for one-third of global pulse production, 

followed by peas at 16% and chickpeas at 14%. Cowpeas, pigeon peas, broad beans (or faba 

bean, horse bean), lentils, vetches and lupins accounted for the remaining third of pro-

duction (Watts, 2011). Despite the increase global pulse production and the general trend 

toward the inclusion of health promoting foods into the diet, pulses are still considered to be 

an underutilized food source in Europe and the USA (Abu-Ghannam & Gowen, 2011). 
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Although, researchers have studied the development of whole seed products and use of 

pulse flours as ingredients in products conventionally formulated with non-pulse flour 

(Abu-Ghannam & Gowen, 2011; Maskus, 2010) and efforts in this area are increasing.  

 

Pulse Class Common Name (Scientific name)

Dry beans Kidney bean, haricot bean, pinto bean, navy bean, black bean (Phaseolus 

vulgaris); Lima bean, butter bean (Phaseolus lunatus); Azuki bean, adzuki bean 

(Vigna anularis); Mung bean, black bean, golden gram, green gram (Vigna 

radiata); Black gram, urad (Vigna mungo); Scarlett runner bean (Phaseolus 

coccineus); Ricebean (Vigna umbellata); Moth bean (Vigna acontifolius); Tepary 

bean (Phaseolus acutifolius) 

Dry broad 

beans 

Horse bean (Vicia faba equina); Broad bean (Vicia faba); Field bean (Vicia faba) 

Dry peas Garden pea (Pisum sativum var. sativum); Protein pea (Pisum sativum var. arvense) 

Chickpea Garbanzo, Bengal gram (Cicer arietinum) 

Dry 

cowpea 

Black-eyed pea, black-eye bean (Vigna unguiculata) 

Pigeon pea Arhar/Toor, cajan pea, Congo bean (Cajanus cajan) 

Lentil Green lentil, red lentil (Lens culinaris) 

Bambara 

groundnut 

Earth pea (Vigna subterranea) 

Vetch Common vetch (Vicia sativa) 

Lupins Lupins (Lupinus spp.) 

Minor 

pulses 

Lablab, hyacinth bean (Lablab purpureus); Jack bean (Canavalia ensiformis); 

Sword bean (Canavalia gladiata); Winged bean (Psophocarpus teragonolobus); 

Velvet bean, cowitch (Mucuna pruriens var. utilis); Yam bean (Pachyrrizus erosus) 

Table 1. Common Pulses (Adapted from Tiwari et al., 2011) 

Some common forms of pulse based foods include: dry pulses (including whole, split, and/or 

dehulled); canned pulses; spouted pulses; fermented legumes, such as wadi and dhokla, 

which are chickpea based fermented products, and although technically not pulses but 

legumes, fermented soy bean products such as natto and chungkookjang which are short term 

fermented products and tauchu, miso, doenjang, and kochujang, which undergo long term 

fermentation. Value added pulse products such as micronized/infra-red heat treated pulses, 

quick-cook dehydrated pulses, extruded pulse products, roasted pulse seeds have been 

developed (Abu-Ghannam & Gowen, 2011; Bellido et al., 2006; Maskus, 2010). Foods 

conventionally prepared with non-pulse flours have been formulated with pulses that have 

been milled into flours such as: pasta, noodles, tortillas, batters, breads, extruded snacks, 

flours, fried snacks, infant food, and other baked goods (Maskus, 2010). However an important 

aspect of all of these pulses products is the necessity for the inclusion of water to the whole 

pulse seed at some point during processing (An et al., 2010; Bellido et al., 2006). Commercial 

processing of dry peas and beans usually involves soaking the seeds overnight (12-16 h) in 

water at ambient temperature to encourage maximum water uptake (Thanos et al., 1998). 
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Although water is a relatively inexpensive ingredient, time and costs associated with 

transporting hydrated seeds (typically canned) are relatively expensive factors. Quick-cook 

dehydrated pulses also require hydrothermal treatment (i.e. cooking in water) (Abu-Ghannam 

& Gowen, 2011). Literature has indicated that tempering (raising the moisture content of the 

seeds by addition of small amounts of water to a predetermined moisture content is required 

pre-treatment step to produce an acceptable micronized whole pulse seed product (Bellido et 

al., 2006). Tempering has also been noted as an essential step in the processing of roasted pulse 

snacks (Abu-Ghannam & Gowen, 2011). Furthermore, tempering of pulse seeds is an essential 

step in the milling and dehulling process as it improves yield of dehulled product material (i.e. 

dehulling efficiency), which is an important quality characteristic for pulse breeders, 

processors, and exporters, as it ultimately dictates whether a dehulling operation is 

economically feasible (Wood & Malcolmson, 2011), Therefore, adequate hydration of whole 

pulse seeds is important to both the scientific and industrial communities for developing 

whole seed products and products formulated with pulse flours.  

4. The state of knowledge of water uptake in pulse seeds 

4.1. Variations in water uptake behavior in pulse seeds  

The water uptake behavior of seeds from the Leguminoseae family, which includes pulse 

seeds, has been studied extensively due to variation in imbibition patterns commonly 

observed in seeds belonging to this family (Ragaswamy et al., 1985; Ross et al., 2008). Seeds 

that demonstrate a long period (i.e. lag) before appreciable water uptake can be considered 

poorly hydrating seeds while seed that demonstrate a rapid uptake in water (i.e. no lag) can 

be considered well hydrating seeds. For example, seeds like peas (yellow, green and 

Marrowfat), navy beans, kidney beans, chickpeas, lentils, and most soybeans have been 

noted to possess rapid water uptake and do not possess a lag period prior to imbibition (An 

et al., 2010; Abu-Ghannam & McKenna, 1997; Hsu, 1983a; Hsu, 1983b; Liu et al., 2005; Meyer 

et al., 2007; Ross et al., 2008; Seyhan-Gurtas et al., 2001). However some pulses like pinto 

beans, black beans, dried green beans, red beans possess a significant lag period prior to the 

initiation of water uptake (Liu et al., 2005; Ross et al., 2008). Figure 2 shows a graph 

representing the water uptake behavior of well and poorly hydrating seeds.  

 

Figure 2. Water uptake behavior of well hydrating and poorly hydrating seeds 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10m
a

s
s
 w

a
te

r/
in

it
ia

l 
m

a
s
s
 

(g
/g

)

Time (h)

Water Uptake
Behavior of Poorly
Hydrating Seed

Water Uptake
Behavior of Well
Hydrating Seed



 
Polymer Science 82 

It should be noted that the terms hard or stone seeds appear in food science and botanical 

literature. Hard or stone seeds are seeds that are impervious to water and remain hard even 

after cooking (Argel & Parton, 1999). From a botanical perspective, hard seeds are defined as 

seeds which will not germinate, of which water imbibition is an integral step, even if 

subjected to conditions ideal for germination (DeSouza & Marcos-Filho, 2001). From a 

biological perspective hardseededness occurs as a long term seed survival mechanism. The 

presence of hard seeds in agricultural seed lots are detrimental as they contribute to uneven 

seedling emergence which may reduce yields and delay harvest. Hardseededness from a 

crop production perspective can be broken via thermal, chemical, and physical treatments 

(Argel and Paton, 1999; DeSouza and Marcos-Filho, 2001). Moreover, hard seededness is 

undesirable for the food processing industry due to its negative effects on product quality 

(Ma et al., 2005). Therefore water uptake in legume seeds is an issue that is important to 

both the scientific and industrial communities and much research has been devoted to 

understanding the cause and ultimate control of hard seededness and shortening the lag 

time of poorly hydrating seeds (Arechavaleta-Medina & Snyder, 1981; Marcbach and Mayer, 

1974; Thanos et al., 1998; Zeng et al., 2005). A key point is that while both poorly hydrating 

seeds and hard/stone seeds exhibit a barrier to water uptake and do not take up water for 

hours, days or even longer-until dormancy is broken in the case of hard seeds, despite this 

long, variable lag before the start of imbibition, once water uptake begins the rate increases 

and the final amount of water absorbed is comparable to that of well hydrating seeds 

(Arechavaleta-Medina & Snyder, 1981). Therefore, the time needed before appreciable water 

uptake upon is a key factor in defining water uptake behavior. The long time required to 

soak pulses/legumes is one of the negative attributes associated with processing 

pulses/legumes. Understanding the cause of lag time is essential for effectively processing 

pulse seeds and ensuring opportunities for development of new pulse products and 

knowledge can be gained from examining the literature studying characteristics of well 

hydrating seeds, poorly hydrating seeds and hard/stone seeds. 

4.2. Factors affecting water uptake  

There is agreement in the literature indicating that the seed coat of a seed is the principle 

factor which determines water uptake behavior (Arechavaleta-Medina and Synder, 1981; 

DeSouza & Marcos-Filho, 2001; King & Ashton 1985; Ma et al., 2004; Meyer et al., 2007; Ross 

et al., 2008; Zeng et al., 2005) in pulses/legumes. With the aim of understanding differences 

in seed permeability, the physical, morphological and chemical characteristics of the seed 

coat of many pulses/legumes seeds has been extensively studied. A review of the literature 

shows that seed permeability, with respect to seed coat structure, has been studied from a 

food science and a plant anatomy perspective (Ross et al., 2008). Work in food science has 

accounted for physical differences for variation in water uptake behavior of seeds while 

work in botany has investigated differences between the morphology and anatomy to 

understand differences in imbibition patterns of seeds. Seed coat thickness has been noted in 

the literature as a factor affecting water uptake. Seeds with thicker seed coats have been 

shown in the literature to have slower water uptake rates (King & Ashton, 1985; Sefa-Dedeh 
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& Stanley, 1979). However it has been shown that certain varieties of cowpeas possessing 

thicker seed coats than other cowpea varieties exhibit faster water uptake than cowpeas 

with thinner seed coats (Sefa-Dedeh & Stanley, 1979). Water uptake behavior cannot solely 

be linked to seed coat thickness. Seed size has also been linked to water uptake behavior 

(Arechavaleta-Medina and Synder, 1981; Hsu et al., 1983a; Seyhan-Gurtas et al., 2001). As 

water uptake is determined via mass uptake such that a smaller seed would exhibit a 

proportionally greater increase in water mass uptake than a larger seed if both were taking 

up water at the same rate. Therefore, a difference in size could account for different water 

uptake rates but it would not offer an explanation for different starting times of water 

uptake (i.e. lag times) (Arechavaleta-Medina & Synder, 1981. Porosity of the seed coat has 

been implicated as a factor affecting water uptake behavior. Soybean seeds with porous 

seeds coats have been noted to be permeable while seeds with non-porous seeds coats are 

typically impermeable (DeSouza & Marcos-Filho, 2001). It is noted that while soybeans are 

not termed pulse seeds due to their high oil content, they are legume seeds and discussion 

of their seed coat properties with respect to water uptake is relevant and applicable to the 

seed coats of pulse seeds. In the discipline of botany the morphology and anatomy of a seed 

coat have been studied with the aim of understanding water uptake in seeds. Two opinions 

regarding the role of the seed coat on water uptake have been noted. One is that the seed 

coat has specialized regions for water loss and uptake such as the hilum, micropyle, lens, 

and raphe (DeSouza & Marcos-Filho, 2001) while the second opinion is that the whole seed 

coat is involved in water exchange (Zeng et al., 2005). Work by Ma et al. (2004) and Zeng et 

al. (2005) stated that the whole seed coat should be regarded as an integrated system 

responsible for water absorbing properties as the palisade layer, which develops from the 

outer epidermis of the seed coat, plays a significant role in water uptake. Moreover, the 

cuticle of the palisade layer has been implicated as the key factor that determines the 

permeability of the soybean seed coat (Ma et al., 2004). Impermeability of seeds has been 

attributed to differences in the seed coat structures such as contracted palisade cells and a 

thick cuticle (Rangaswamy & Nandakumar, 1985).  

Additionally, there are numerous reports in the literature citing chemical differences in the 

seed coats of seeds that imbibe water rapidly and those that exhibit delayed water uptake 

(Arechavaleta-Medina & Snyder, 1981; Marbach & Mayer, 1974; Marbach & Mayer, 1975; 

Rangaswamy et al., 1985; Reyes-Moreno et al., 1994) however, no universal explanation has 

been reported. Phenolics substances may affect water uptake (Marbach & Mayer, 1974; 

Marbach & Mayer, 1975). Wild type pea species with naturally impermeable seed coats 

possessed high phenolic content while cultivated pea species had a low phenolic content 

(Marbach & Mayer, 1974). Phenolics, particularly tannins, have been reported to be 

responsible for reduced water uptake in bean seeds (Sievwright & Shipe, 1986). The seed 

coats of impermeable soybean seeds have been shown to contain high amounts of lignin (a 

complex polphenolic molecule) (DeSouza & Marcos-Filho, 2001). The work of McDougall et 

al. (1996) indicated that soybean genotypes with high lignin content in the seed coat tend to 

have low seed coat permeability, while genotypes with low lignin content tended to have 

high seed coat permeability. However, the work of Mullin and Xu (2001) which studied the 
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composition of soy bean seed coat and water uptake indicated that lignin content did not 

influence seed permeability. Instead, their work demonstrated a relationship between 

hemicellulose, primarily xylan, content and poor water uptake. However, it has been shown 

that pulse seeds with inherently fast water uptake without a lag time contained lower levels 

of total phenolics and of these phenolics, the majority were non-tannin phenolics, while 

pulse seeds with inherently slow water uptake possessing a lag time contained higher total 

phenolics content and of these phenolics, the majority were tannins. (Ross et al., 2010a). 

Furthermore, this work (Ross et al., 2010a) showed that pulse seeds that were processed 

with a simple hydrothermal treatment to improve water uptake experienced a decrease in 

total phenolics content. Future work studying the influence seed coat chemistry on water 

uptake should include: 1) a more specific approach with regards to determination of seed 

coat phenolics, 2) concurrent determination of xylan content, and 3) determination of the 

monomeric phenolic composition of lignin. 

Research in botany and plant science has linked loss of lipids in the seed coat to create 

permeable seeds (Zeng et al., 2005) however, food science research has not focused on relating 

the lipid chemistry of the seed coat and water uptake. As literature from a botanical 

perspective has implicated the cuticle of the palisade layer as the key factor that determines the 

permeability of the seed coat (Ma et al., 2004; Rangaswamy & Nandakumar, 1985; Zeng et al., 

2005), the chemical properties of the cuticle have subsequently been characterized in this 

respect. The cuticular layer of the soybean has been implicated as a key factor in water uptake 

behavior, noting it was the site of the moisture barrier (Arechavaleta-Medina & Snyder, 1981). 

The cuticle is hydrophobic and consists of an insoluble, polymeric and structural component 

and a complex mixture of lipids including cutin, suberin, and waxes with different fatty  

acid compositions. Cutin, an insoluble lipophilic matrix, constitutes the framework of the 

cuticle (Casado & Heredia, 2001). Specifically, cutin is a high molecular weight polyester 

composed of various inter-esterified C16 and C18 hydroxyalkanoic acids. Structural and 

physicochemical studies on cutin have shown that cutin exhibits an amorphous structure. 

Rapidly hydrating seeds have been shown to possess seed coats containing cuticular  

waxes with a plasticized structure and altered hydrophobicity (Egerton-Warburton, 1998). It 

has been documented that well hydrating soybean seeds possessed seed coats with a cuticle  

lacking mid-chain hydroxylated fatty acids while the cuticle layer of seed coats from 

impermeable seeds contained a disproportionately high amount of hydroxylated fatty acids 

(Shao et al., 2007).  

Zeng et al. (2005) hypothesized that the process of creating permeable legume seeds during 

growing conditions includes both physical and chemical changes in the lipids of the cuticle 

layer of seed coat. It was speculated that heat provided from the environment during growing 

conditions likely causes the polymeric structure of the lipids to change through a weakening of 

the hydrophobic interactions, rendering lipids vulnerable to degradations and as such, the 

presence of heat and water likely causes thermal degradation and hydrolysis of the lipids in 

the seed coat to free fatty acids (Zeng et al., 2005). It has been reported that the rate of water 

uptake of whole bean seeds could be increased by subjecting the whole bean seeds to a simple 

hydrothermal treatment while the application of dry heat did not significantly improve water 
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uptake (Ross et al., 2008) which is in agreement with the work of Zeng et al. (2005). Hydrolysis 

of lipids in the seed coat to fatty acids, which requires water, likely contributed to the 

improved water uptake observed in seeds treated hydrothermally compared the hydration 

behavior seen in the unprocessed seeds and seeds subjected to dry heat only. Chemical 

changes in the seed coat as affected by hydrothermal processing in relation to water uptake 

were addressed along with identification of chemical differences between bean varieties with 

different water uptake profiles (i.e. bean varieties with a lag versus bean varieties with no lag). 

Chemical properties of the unprocessed seed coat from navy bean seeds (Galley variety-no 

lag) and pinto bean seeds (AC Ole variety-lag) were examined to explain differences in their 

rates of water uptake. Seeds that readily imbibed water presented lower levels of fatty acids. 

The seed coats of unprocessed pinto beans (AC Ole) exhibited a fatty acid content of 1.39 mg/g 

seed coat while the seed coats from unprocessed navy beans (Galley) presented 0.42 mg/g seed 

coat. Processed AC Ole seed coats displayed fatty acid levels up to 2.9 times lower than the 

unprocessed pinto bean seed coats. This work demonstrated a link between lower lipid 

content with enhanced water permeability. However it should be noted that the fatty acids 

identified and quantified in Ross et al. (2010a) were obtained from hydrolysis of the 

triglycerides present in the seed coat. Thus the amount of identified fatty acids present in the 

seed coat decreased and this was associated with a decrease in total lipids. Thus, although the 

amount of the identified fatty acids derived from the triglyceride lipids present in the seed coat 

decreased, it is possible that the amount of free fatty acids present in the seed coat increased. 

Future work in this area should include quantification of free fatty acids present in seed coats 

from seeds with different water uptake profiles. 

Importantly, it has been stated that permeability of the seed coat may be affected by the 

mechanical properties of the cuticle (Ma et al., 2004; Zeng et al., 2005). The mechanical 

properties of a material are influenced by the polymers that are present in the material (i.e. 

their chemical composition, molecular arrangement, and interaction of the molecules) along 

with temperature and moisture content (Hoseney, 1994). As noted, the glass transition 

temperature (Tg) is a polymer science concept that has been applied to food science research 

for studying the material properties of biopolymers (Brent et al., 1997; Perdon et al., 2000). 

The stability and mechanical properties of a material vary depending on whether the 

material is above or below the Tg (Lin et al., 1991; Roos, 1995). With respect to material 

stability, the phase transition behavior of non-leguminous plant cuticles has been studied in 

relation to water loss as a second order phase transition was noted to occur at a temperature 

that coincided with a remarkable increase in the water permeability behavior of the plant 

cuticles (Casado & Heredia, 2001; Eckl & Gruler, 1980). The seed coat cuticle has been 

described as being functionally analogous to the cuticular layers in other organs of plants, 

such as leaves (Egerton-Warburton, 1998). This seems to imply that the Tg of a seed coat 

might influence water uptake behavior.  

4.3. Relating the glass transition and water uptake behavior 

Except for the work of Ross et al. (2008), to our knowledge, there have been no reports in the 

literature explicitly linking the glass transition behavior of seed coats and water uptake. 
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However, there is a large volume of literature indicating that dormant seeds reside in the 

glassy state (Tolstoguzov, 2000; Williams, 1995) as there is much agreement between the 

glass transition temperatures of seeds as a function of water content and their storage 

stability as a function of storage temperature and water content (Roos, 1995). The two main 

objectives of (Ross et al., 2008) were to measure the Tg of the seed coat of different beans and 

peas and relate Tg with water uptake behavior, and to utilize Tg as a processing parameter 

and subject the seeds to processing conditions above and below the Tg with the aim of 

altering the physico-chemical properties of the seed coat in order to modify the water 

uptake behavior. Adapted from Ross et al. (2008), Table 2 shows that the seed coats of the 

pea (Mozart yellow variety and Stratus green variety) and navy bean (Morden and Galley 

varieties) samples, which are described as well hydrating pulses not exhibiting a lag, have a 

Tg near room temperature (20-34C) and the glass transition temperature range covers a 

relatively narrow 10C range around the Tg. The beans AC Ole (pinto), AC Pintoba (pinto), 

and CDC Jet (black), seeds which as described as poorly hydrating demonstrating a lag, 

exhibit a glass transition temperature relatively higher than room temperature ranging from 

37 to 81C. Figure 3 shows the water uptake behavior of unprocessed/unmodified peas 

(Mozart and Stratus) and beans (Galley, Morden, AC Ole, AC Pintoba, and CDC Jet). The 

consequences of different glass transition temperatures on the water uptake behavior of 

seeds may also be inferred from Figure 3. The pulses with relatively fast water uptake (i.e. 

no lag before substantial water uptake) all have Tg values relatively close to room 

temperature and a narrow Tg range, while the relatively slowly hydrating samples (i.e. an 

appreciable lag before water uptake begins) have Tg values greater than room temperature 

and a broader Tg range. It was noted that the seed coats from samples with relatively faster 

hydration are thinner than the seed coats of the samples with slower hydration (Table 2). 

However, as previously discussed water uptake behavior is not solely linked to seed coat 

thickness. 

 

Figure 3. Water uptake behavior of native/unprocessed whole seed peas and beans  

(From Ross et al., 2008) 
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Pulse 

Seed Coat 

Thickness 

(mm) 

Seed Coat

Moisture Content 

(%) 

Tg Range

(C) 

Tg midpoint 

(C) 

Mozart 

(yellow pea) 
0.11 8.3 19-23 21.4 

Stratus 

(green pea) 
0.11 8.6 33-37 33.3 

AC Pintoba 

(pinto bean) 
0.23 9.7 43-65 45.2=1.1 

AC Ole 

(pinto bean) 
0.18 

9.6 33-66 51.6 

Processed* AC Ole 

(pinto bean): 
9.4 33-47 37.7 

Galley 

(navy bean) 
0.11 9.7 24-48 26.2 

Morden 

(navy bean) 
0.11 9.2 20-30 22.2 

CDC Jet 

(black bean) 
0.19 9.3 22-57 40.2 

*Beans were processed via tempering to 16% moisture content and subjected to cyclic heating (60 °C) and cooling 

Table 2. Moisture content, Tg range and Tg midpoint measurements for the seed coats of selected pulses 

at ambient environment (Adapted from Ross et al., 2008)  

Research studying the water uptake behavior of different lentils, chickpeas and beans 

explicitly indicated that the mechanism responsible for the initial observed lag phase in 

water uptake was temperature sensitive (Seyhan-Gurtas et al., 2001). The effect of 

temperature on lessening the lag time observed in the water uptake of soybeans has also 

been reported (Arechavaleta-Medina & Snyder, 1981). Moreover, a marked second order 

transition has been noted to occur at a temperature that coincides with a remarkable 

increase in the water permeability for non-leguminous plant cuticles (Matas et al. 2004; 

Matas et al. 2005; Schreiber & Schonherr, 1990). The glass transition determines the 

rheological and mechanical properties of the biopolyester cutin and in turn determines mass 

transfer between the environment and plant cell (Matas et al. 2004; Matas et al. 2005). It 

follows that a similar situation may exist regarding the water uptake behavior of seeds. The 

Tg of a seed coat might influence water uptake (Ross et al., 2008).  

4.3.1. Modifying water uptake behavior through processing 

In an attempt to modify the water uptake behavior of the bean samples exhibiting a lag 

prior to water uptake, a variety of processing regimes of cyclic heating (45, 60, and 85 C) 

and cooling to achieve a seed coat temperature of 7°C and static heating (45, 60, 85C) on 

non-tempered and tempered (13, 16, 24% moisture content) seeds has been investigated 

(Ross et al., 2008). It was shown that all of the processing regimes performed on the non-
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tempered beans in their native state did not produce significantly improved water uptake 

behavior compared against the control/unprocessed seeds. AC Ole and AC Pintoba seeds 

that were tempered to 16% moisture content and subjected to a 45, 60, and 85 C cyclic 

heating and cooling treatment exhibited a significant increase in their water uptake behavior 

compared against the control seeds (i.e. reduction in lag time water uptake). CDC Jet seeds 

that were tempered to 16% and subjected to cyclic heating at 85 C and cooling showed 

significantly better water uptake than control seeds. The results seemed to indicate that both 

water and heat are required to induce the changes necessary to improve water uptake (Ross 

et al., 2008). Also, there were no significant differences between the water uptake behavior 

of the 16% tempered AC Ole and the water uptake behavior of the seeds that were heated at 

45, 60, and 85 C. The 16% tempered AC Pintoba seeds subjected to 45 and 60 C cyclic 

heating and cooling showed significantly better water uptake than the 16% tempered seeds 

subjected to 85 C cyclic heating and cooling. This implied that the least aggressive and 

energy intensive treatment at 45 C may be employed to elicit improved water uptake 

behavior. Interestingly, the Tg of the seed coat of AC Ole (51.6 C) was higher than the Tg of 

the seed coat of AC Pintoba (45.2 C). These results seem to indicate that the upper limit of 

the processing temperature which causes improved water uptake behavior may be 

influenced by the Tg of the seed coat. Figure 4 illustrates the improvement that 

hydrothermal heat treatment has on the water uptake behavior of pulse seeds possessing a 

lag (Ross et al., 2008). The effect of a cooling step was also investigated in this work (Ross et 

al., 2008). The 16% tempered AC Ole and AC Pintoba seeds subjected to cyclic heating and 

cooling did not show significantly better water uptake compared against the 16% tempered 

seeds subjected to static heating. A cooling step was not required to cause improved water 

uptake behavior. Although, the presence of small cracks in the seed coat has been attributed 

to improved water uptake in seeds as literature has implicated the expansion and 

contraction experienced by the seed coat during growing conditions as a cause of stress 

gradients which ultimately creates cracks in the seed coat (Ma et al., 2004; Zeng et al., 2005).  
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Figure 4. Water Uptake Behavior of Unprocessed and Whole Seeds (AC Ole, pinto bean) processed at 

60C with various conditions (Adapted from Ross et al., 2008). 
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The glass transition temperature of the seed coat from AC Ole seeds that were tempered at 

16% and subjected to cyclic heating at 60 C and cooling to achieve a seed coat temperature 

of 7 °C was examined to determine whether physico-chemical changes of the seed coat were 

induced via processing and altered its Tg (Ross et al., 2008). The measured Tg for the seed 

coat of the 16% tempered 60 C cyclic heated AC Ole seeds was 37.7  1.45 C and the Tg 

range was 33-47 C (Table 2). The measured Tg for the seed coat of unprocessed Ole was 51.6 

 0.2 C and the Tg range was 33-66 C (Table 2). It appears that the Tg range is less broad for 

the seed coat from the 16% tempered 60 C cyclic heated seeds and the Tg shifted to a lower 

temperature. The moisture content of the seed coat of the 16% tempered 60 C cyclic heated 

AC Ole seeds was 9.4% (Table 2) and the moisture content of the seed coat of the 

unprocessed AC Ole seeds was 9.6% (Table 2) and therefore moisture content was not a 

factor in the decreased Tg observed in the seed coat of the 16% tempered 60 C cyclic heated 

AC Ole seeds. It appears that subjecting seed to water and heat alters the physico-chemical 

properties of the seeds coats (Ross et al., 2008).  

5. Linking the glass transition with water uptake in pulses: a polymer 

science approach 

5.1. Modeling water uptake in pulse/legume seeds  

Water uptake by legume seeds has been discussed extensively in the literature. Many 

attempts have been made to shorten the required soaking time and other efforts have been 

focused on defining and predicting water absorption during soaking as a function of time 

and temperature (Abu-Ghannam & McKenna 1997; Hung et al 1993; Sopade & Obekpa 

1990). Abu-Ghannam & McKenna (1997) applied Peleg’s (1988) two parameter non-

exponential equation to model water absorption during the soaking of red kidney beans of 

both blanched and unblanched beans at 20, 30, 40 and 60C. They indicated that Peleg’s 

(1988) two parameter non-exponential equation described the hydration process of blanched 

beans more adequately than the unblanched beans as the unblanched beans exhibited a 

significant lag before water uptake began.  

Also, there have been attempts to model water uptake and modes of water transfer in 

legumes using the laws of diffusion, however these models typically fail to describe water 

uptake data for pulses exhibiting a lag (Seyhan-Gurtas et al., 2001). Soaking at higher 

temperatures typically reduces/eliminates the lag observed in water uptake data which 

indicates a temperature sensitivity of the mechanism for the lag. Also, the importance of 

temperature on lag time and water uptake behavior of California white beans has been 

documented (Kon, 1979). A mathematical model based on Fick’s diffusion, noting the 

influence of temperature on the concentration-dependent diffusivity of water into soybeans 

has been reported (Hsu 1983a; Hsu, 1983b]. Water uptake by dry beans was successfully 

modelled using diffusion theory along with a seed coat wetting theory (Liu et al., 2005). 

These works from food science literature (Hsu, 1983a; Hsu, 1983b; Liu et al., 2005) were key 

in proposing the effect of variable surface concentration at the seed coat and lag time in 

water uptake of legumes. Polymer science research has implicated (a) the degree of 
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movement of the molecules at the polymer surface, and (b) surface concentration conditions, 

as being important variables affecting solvent/penetrant absorption (Fujita, 1961). Evidence 

has been provided showing that in rubbery polymers (i.e. polymers above their glass 

transition) a saturated surface concentration is attained instantaneously at the polymer 

surface and that many of the non-Fickian anomalies, such as sigmoid absorption curves, 

may be ascribed to the slow establishment of a saturated surface concentration condition at 

the surface of the sample below the glass transition (Richman & Long, 1960). Above the 

glass transition temperature, solvent uptake by a polymer can be modelled with the 

following exponential equation (Kanamaru & Hirata 1969):  

 
( )

1 exp( )
H t

kt
Heq

     (1) 

Where: H(t) is the mass of the penetrant sorbed at a given time (t), Heq is the saturated 

amount of penetrant sorbed at equilibrium, k is the rate constant.  

The water uptake profile generated by Eq. 1 has been shown to effectively model water 

uptake in seeds that do not possess a significant lag time (Meyer et al 2007). Alternatively, 

Nakano (1994a; 1994b) used an empirical equation to model water uptake in wood that 

exhibited sigmoid-type water uptake (i.e. possesses a lag time). The sigmoid-type water 

uptake behavior was attributed to a variable surface concentration during the initiation of 

water uptake and the importance of surface concentration conditions during water uptake 

was noted. The empirical equation used by Nakano (1994; 1994b) is similar in mathematical 

form to the empirical equation used by Peleg (1994a; 1994b) to model the mechanical 

changes in biopolymers at and around their glass transition. Peleg (1994a) indicated that 

many materials at certain conditions (i.e. temperature and moisture content) undergo 

considerable physical changes as a result of passing through the glass transition region. The 

glass transition affects not only mechanical properties of the material but many other 

physical properties especially those governed by internal molecular mobility. Near the glass 

transition, the relationship between the mechanical property and temperature (at constant 

moisture content) or that between the mechanical property and moisture content (at a 

constant temperature) has a characteristic sigmoidal shape. The mathematical form of the 

equation used by Peleg (1994a; 1994b) to provide a description of the mechanical behavior of 

biological materials around their glass transition was borrowed from Fermi’s distribution 

function. The relationship between the mechanical property and temperature (T) at constant 

moisture content described by Peleg (1994a; 1994b) was given by: 

 ( )
( )

1 exp

YsY T
T Tc

a


 

  
 

  (2) 

Also, the relationship between mechanical property and moisture content at a constant 

temperature described by Peleg (1994a; 1994b) was given by: 



 
A Polymer Science Approach to Physico-Chemical Characterization and Processing of Pulse Seeds 91 

 ( )
( )

1 exp

YsY M
M Mc

a


 

  
 

           (3) 

Where: Y(T) and Y(M), in the above equations are the values of any mechanical property at 

the corresponding temperature (T) or moisture content (M). Ys is the value of the mechanical 

property in the glassy or unplasticized state, and Tc and Mc are the characteristic 

temperature or moisture content, respectively. The parameters Tc and Mc occur at the 

inflection point on the curve and it occurs where there is a 50% reduction in the mechanical 

property. The empirical constant a, possesses the same units as the corresponding 

independent variable.  

By tying these concepts together, Peleg’s (1994a; 1994b) model of mechanical changes in 

biomaterials at and around their glass transition, was used to model the water uptake 

behavior of seeds that possess a lag time and an exponential equation of the form given by 

Kanamaru & Hirata (1969) was used to model the water uptake behavior of seeds that do 

not possess a lag time (Ross et al., 2010b).  

5.1.1. Use of Peleg’s mechanical model for characterizing water uptake in seeds exhibiting a 

lag phase 

Figures 3 and 4 display water uptake data for the seeds demonstrating a lag in their water 

uptake profile; the pinto beans (AC Ole) that were in their native (unprocessed) state, and 

those that were processed with cyclic heating (60 C) and cooling in a non-tempered 

(moisture content unaltered) state. This data was used in Peleg’s (1994a; 1994b) equation, 

which describes mechanical changes in biopolymers at and around their glass transition, to 

model the water uptake. In doing so, the original water uptake data was expressed as a 

fraction of potential water sorption in order to present the data in a manner similar to 

Peleg’s (1994b) report in which the data starts at an initially high value and falls as the 

independent variable increases (Ross et al., 2010b). This type of treatment is acceptable 

based on the symmetry of the curves. The equations are given as follows:   

 
( ) 0( )

0

m t m
m tg m


   (4) 

Where: mg(t) is the mass of water sorbed at time (t), m(t) is the mass at time (t), and m0 is the 

original mass at time zero.  
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Where: Fh(t) is the fraction of water sorbed at time (t), Fu(t) is the fraction of potential water 

sorbed at time (t), and mf is the total mass of water sorbed at the equilibrium time point. 

It was proposed that the amount of water sorbed could be considered the dependent 

variable, and soaking time at a constant temperature could be considered the independent 

variable. Their relationship was then described using a modified version of Eqs. 2 or 3. The 

modified version is given in Eq. 7, and it was explicitly noted that the independent variable 

is soaking time whereas the independent variable in Eqs. 2 and 3 is temperature or moisture 

content, respectively (Ross et al., 2010b).  

 ( )
(

1 exp

FsF tuP t tc
a


 

  
 

 (7) 

Where: FuP(t) is the fraction of potential water sorption at time (t), Fs is the magnitude of this 

parameter in the glassy or unplasticized state (i.e. during the lag), tc is the characteristic time 

which occurs at the inflection point on the curve and it occurs where there is a 50% 

reduction in the fraction of the potential water sorption, a is the empirical constant with the 

same units as time.  

Fs=1 in the above equation because the value was taken at t=0 (Ross et al., 2010b). 

Experimental water uptake data provided in Liu et al. (2005) for green beans soaked at 20 

and 50 C was also analysed with Eq. 7 (Ross et al., 2010) as these beans presented a lag in 

water uptake profiles. Figure 5 shows the experimental data and values generated with Eq. 

7 for the native/unprocessed AC Ole pinto beans.  
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Figure 5. Fraction of potential water sorption as affected by soaking time fit into Peleg’s mechanical 

model: Unprocessed AC Ole beans. Symbols indicate data points, line indicates prediction from model. 

(Ross et al., 2010b) 
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5.1.2. Use of an exponential model for characterizing water uptake in seeds exhibiting no 

lag phase  

Figures 3 and 4 also display water uptake data for the seeds that did not demonstrate a lag 

in their water uptake profile; the peas and AC Ole pinto beans tempered to 16% moisture 

content and treated with cyclic heating at 60 C and cooling. This data was analysed with a 

modified version of the exponential equation presented by Kanamaru & Hirata (1969) (i.e. 

Eq. 1). The data generated from the modified version of Eq. 1 were consequently expressed 

in a manner similar to the data obtained from Eq. 7 as the fraction of potential water 

sorption (FuK) at time (t) (Ross et al., 2010b). This type of treatment is acceptable based on the 

symmetry of the curves. The equations were given as follows:   

 

( )
( ) 1            (a)

( ) 1 1 exp( )  (b)

m tg
F tuK meq

F t ktuK

 
  
 
 
     

 (8) 

Where: mg(t) is the mass of the water sorbed at a given time (t), meq is the amount of water 

sorbed at equilibrium or saturation, k is the rate constant.  

Figure 6 shows the experimental data and values generated with Eq. 8b for the beans 

tempered and treated with cyclic heating at 60 °C. Table 3 provides a summary of the 

equations and constants used to model the data for all of the seed types along with the 

duration of lag time noted from respective water uptake curves, for the unprocessed AC Ole 

seeds, untempered processed AC Ole seeds, green beans soaked at 20C and green beans 

soaked at 50C from the work of Lui et al. (2005) and Ross et al. (2010b). The values obtained 

with Peleg’s mechanical model (Eq. 7) for all of the samples exhibiting a lag agree well  

with the experimental data: the R2 values corresponding to Eq. 7 are all greater than 0.993.  
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Figure 6. Fraction of potential water sorption as affected by soaking time fit into Kanamaru & Hirata’s 

sorption model: 16% tempered, 60C cyclic heated and cooled AC Ole beans. Symbols indicate data 

points, line indicates prediction from model. (Ross et al., 2010b) 
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Material Lag Time (h) Equation 
Peleg constants 

R2 
tc A 

AC Ole: Unprocessed 2 7 4.2 0.854 0.993 

AC Ole: Non-tempered, 60C 

heat treatment 
2 7 4 1.049 0.997 

Green Bean: soaking water 

20C (Lui et al., 2005) 
5 7 7.2 1.46 0.997 

Green Bean: soaking water 

50C (Lui et al., 2005) 
0.5 7 1.8 0.429 0.998 

   

Kanamaru & Hirata 

constant  

K

AC Ole: tempered to 

moisture content 16%, 60C 

heat treatment 

na 8b 0.769 0.989 

Pea: Mozart na 8b 0.276 0.992 

Pea: Stratus na 8b 0.302 0.998 

na=not applicable 

Table 3. Parameters used to describe water uptake behaviour (Adapted from Ross et al., 2010b) 

The values generated by the exponential equation (8b) were in good agreement with the 

experimental values of the unprocessed peas and beans tempered and treated with cyclic 

heating at 60 C and cooling. The lowest R2 value corresponding to Eq 8b. is 0.989. 

Therefore, fitting the experimental water uptake data with these equations provided 

evidence that the glass transition temperature of the seed coat is an important factor in the 

mechanism of water uptake in seeds. The seeds that possessed a lag time were well 

represented by Eq. 7, which was based on Peleg’s (1994a; 1994b) model describing changes 

near the glass transition, while seeds that did not possess a lag time were well characterized 

by Eq. 8a, which was based on a model describing water uptake in polymer above the glass 

transition. Using this approach, the implication of the glass transition in the mechanism of 

water uptake in seeds was demonstrated. 

5.2. Hypothesis of the mechanism describing water uptake in pulse seeds 

As the implication of the glass transition in the mechanism of water uptake provided in 

section 5.1 mainly depends upon the experimental data fitting models, a hypothesis for the 

mechanism of water uptake for seeds possessing seed coats with a glass transition above 

ambient soaking conditions has been developed based on an analogy between a 

temperature driven glass transition (Tg) and a solvent driven glass transition (ag) presented 

in polymer science literature (Laschitsch et al. 1999; Leibler & Sekimota 1993; Vrentas & 

Vrentas 1991). At a constant temperature, a sorption curve of a polymer below the glass 

transition remains relatively flat (i.e. possesses a lag period) until a certain solvent 
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concentration is attained, after which the sorption curve displays a steep increase in solvent 

uptake. This steep increase in solvent uptake can be considered to have occurred at the glass 

transition solvent activity (ag) and consequently this increase in solvent uptake can be 

attributed to the plasticization of the polymer by the sorbed penetrant (Li & Lee, 2006; 

Vrentas & Vrentas 1991). For polymers in the glassy state (i.e. below the glass transition), the 

length of time required to reach a saturated surface concentration, a state where water 

uptake is exponential, is affected by solvent content of the polymer and temperature (Fujita, 

1961). If the seed coat of legume seeds has a glass transition below soaking temperature, it 

can be considered a biopolymer in the glassy state, thus the length of time required to reach 

saturated surface concentration would be affected by the temperature of the soaking water. 

Higher soaking temperatures would allow for more molecular movement and therefore 

promote faster attainment of saturated surface conditions, consequently reducing the lag 

time. This result was observed with the green bean data of Lui et al. (2005).  

Furthermore, the thermal behavior of the seed coat of the unprocessed AC Ole bean seed 

was examined with differential scanning calorimetry (Ross et al., 2010b) to further test this 

hypothesis. The seed coat was placed in distilled water under isothermal conditions at 25 C 

with the aim of imitating soaking conditions. The heat flow was measured as a function of 

time and subsequently the rate of heat flow change was examined as a function of soaking 

time. The DSC data showed a sharp change in the amount of energy needed for soaking per 

unit time up to the two hour time point. Around the two hour time point, the change in the 

energy rate slows down and by four hours of soaking the energy rate seems to plateau. This 

result indicated an energy barrier to soaking exists in the first two hours of soaking, which 

does agree with the lag time observed in the water uptake data for the unprocessed AC Ole 

bean seed (Table 3). The gradual energy rate change from two hours to four hours 

corresponds to the concave up portion of the water uptake curve and the four hour time 

point after which the energy rate change becomes constant corresponds with the inflection 

point of the water uptake curve and may correspond to the time required to reach surface 

concentration saturation. The rate of energy change in the seed coats upon soaking is 

affected by the amount of water sorbed by the seed coat at a constant temperature. The time 

point where there is a substantial variation in the rate of energy change corresponds to the 

seed coat adsorbing the necessary amount of water (i.e. solvent) required to cause the seed 

coat to have a glass transition at room temperature. This time point corresponds to the lag 

time. After the seed coat moves through the glass transition temperature, the energy barrier 

to water uptake is lessened. These results are in agreement with the work of Gunnells et al. 

(1994) where it was shown that the glass transition temperature of wood when measured 

with DSC corresponded to the temperature where there was a maximum in the first 

derivative of heat flow (i.e. rate of energy change) after a steep increase.  

The hypothesis for the mechanism of water uptake in seeds possessing seed coats with a 

glass transition near ambient soaking conditions was based on work reported in the field of 

polymer science. Polymers at their glass transition have a small relaxation time which 

allows for a sudden, almost instantaneous, increase to a saturated surface concentration 
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upon exposure to solvent (Fujita, 1961; Richman & Long, 1960) and therefore rapid initial 

solvent uptake is achieved. Thus, seeds that possess seed coats with a glass transition 

temperature near ambient temperature reach a saturated surface concentration rapidly upon 

immersion in water and exhibit exponential water uptake behavior with no significant lag 

time. Consequently, water uptake in seeds that possess seed coats with a glass transition 

temperature near ambient temperature and were successfully modelled with the 

exponential equation provided by Kanamaru & Hirata (1969) used for describing solvent 

uptake by polymers above the glass transition.  

6. A polymer science approach to dehulling of pulses: The role of the 

glass transition 

6.1. Importance of optimizing red lentil dehulling efficiency  

This section provides original experimental evidence determined by the authors which 

supports the role of the glass transition in defining the dehulling quality of red lentils and is 

presented as such. Red lentils account for the majority of world lentil production and trade 

(Agblor, 2006). With the exception of North America and Australia, most lentils are 

consumed in the region of production. Thus, the export market for red lentils is of 

paramount importance to North American and Australian producers. More than 90% of red 

lentils produced are consumed as dehulled split or dehulled whole seeds (Vandenberg & 

Bruce, 2008). Since most red lentils are dehulled before consumption, milling or dehulling 

efficiency of red lentil is very important to consumer acceptability. For this work, dehulling 

efficiency (DE) as indicated by Wood & Malcolmson (2011), was defined as the sum of 

dehulled whole seed (DW) and dehulled split seed (DS) relative to total initial mass of seeds. 

Dehulling efficiency is an important quality characteristic for lentil breeders, processors, and 

exporters as it ultimately dictates whether a dehulling operation is economically feasible 

(Wang, 2005). Upon milling/dehulling, the various fractions are obtained: 1) powder, 2) 

breaks/broken cotyledons, 3) hull, undehulled whole seeds, 4) dehulled split seeds, and 5) 

dehulled whole seeds (Wang, 2005). The goal of milling is to completely dehull the red 

lentils while minimizing the production of powder, breaks and splits. Based on the above 

definition theoretical DE is about 92% (complete hull removal, no undehulled whole seeds, 

no breaks, and no powder), yet millers strive to achieve 85% DE as a DE >80% is necessary 

to achieve an economically viable process (Vandenberg & Bruce, 2008; Wang, 2005). Also a 

higher ratio of whole dehulled seeds to split seeds is desired as whole dehulled seeds are the 

most valuble fraction (Vandenberg & Bruce, 2008).  

The problem that Canadian red lentil producers face is that the Western Canadian climate is 

very different from global competitors. Canadian grown red lentils have a higher moisture 

content compared to non-Canadian grown red lentils, and as a result dehulling is difficult 

(Vandenberg & Bruce, 2008). Red lentils are typically harvested at 16-18% moisture content 

and to ensure safe storage red lentils are dried to 13% moisture content or less (CGC, 2008; 

McVicar, 2006). The use of aeration fans to reduce moisture has been recommended 

(McVicar (2006) yet supplemental heat drying may be necessary and it has also been 
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recommended that air temperatures should not exceed 45 C (Saskatchewan Government, 

2007). The Canadian grain grading system (CGC, 2008) indicates that broken seeds must be 

less than 2% and 3.5% in Canada No. 1 and Canada No. 2 grades, respectively. The effect of 

drying temperature on the handling quality of whole seeds in terms of seed breakage upon 

handling has been investigated (Tang et al., 1990), however little work has been done on the 

effect of drying temperature on the milling quality of red lentils. Alternatively, a large 

amount of work has been performed in the area of understanding the effect of drying 

temperature on rice milling quality (Cao et al., 2004; Cnossen & Siebenmorgen, 2000; 

Cnossen et al., 2003; Iguaz et al., 2006). The rice industry cites breakage of rice kernels 

during milling as one of its main problems (Iguaz et al., 2006). Rice must be dried to 12-13% 

moisture content for safe storage. During drying moisture content gradients are created 

within the rice kernels that induce stresses that can cause the rice kernels to fissure/crack 

(Cao et al., 2004). Fissured/cracked rice kernels usually break during milling which results in 

poor cooking quality and a low value product (Cao et al., 2004). The ultimate goal of the rice 

industry is to maximize head rice yield (HRY), which is defined as the weight in percentage 

of rough rice that remains as head rice (rice kernels are at least ¾ of the original kernel 

length) after milling (Cnossen & Siebenmorgen, 2000). As analogous situation exists in red 

lentil dehulling where upon milling maximizing the whole dehulled seed fraction and 

minimizing broken cotyledons and split seeds is desired.  

The concept of the glass transition (Tg) has been used to explain rice kernel fissure/crack 

formation during drying and subsequent breakage during milling (Siebenmorgen et al., 

2004). At temperatures below Tg, grain seeds exist in a glassy solid state, starch granules are 

compact, water is relatively immobile and diffusion of moisture inside a grain seed is slow 

while at temperatures above Tg, starch exists in a rubbery state, free volume is increased, the 

water associated with starch has greater mobility, and the diffusion of moisture is enhanced 

(Siebenmorgen et al., 2004). During rice drying, the temperature will increase and moisture 

will diffuse from the grain seed and a temperature and moisture content gradient will 

develop from the surface to the center of the grain seed (Cnosssen et al., 2003). The 

temperature gradient disappears rapidly but the moisture content gradient remains to play 

an important role during and after drying. During the equilibrating (sometimes termed 

tempering) stage, following drying, moisture migrates from the center (higher moisture 

region) to the surface of the grain seed (lower moisture region) and consequently the 

moisture content gradient decreases. If the equlibrating air temperature is below the Tg of 

the grain seed, the seed will cool and go through a glass transition and become glassy as the 

grain seed temperature decreases. If a sufficient moisture content gradient exists when the 

tempering/equilibrating environment is one that produces a change of state of the starch 

(transitioning from the rubbery to the glassy state), the different sections of the grain seed 

(surface, midpoint, centre), resulting from the moisture content gradient, pass through the 

Tg at different moisture content values, which is depicted by situation B of Figure 7 (Cnossen 

& Siebenmorgen, 2000; Cnossen et al., 2003). Due to large differences in kernel properties 

between the rubbery and the glassy states, specifically the thermal expansion coefficients 

(Perdon et al., 2000; Cnossen et al., 2003), differential stresses within the grain seed will 

likely cause fissuring/cracking (Siebenmorgen et al., 2004). If the tempering/equilibrating air 
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temperature is above Tg, then the moisture content will equilibrate between the different 

sections of the kernel (surface, midpoint, centre) and the moisture content gradient will 

cease to exist. Upon subsequent exposure to ambient temperature, the kernel will pass 

through the glass transition at a common moisture content, stresses will be minimized and 

therefore fissure/cracking will be minimized. This is illustrated in situation A of Figure 7. 

The hypothesis used to explain rice breakage was adopted to explain breakage and splitting 

in red lentils. The objectives of the research linking the glass transition with dehulling 

quality were to: 1) determine the glass transition temperature of two varieties of red lentils, 

Impact and Redberry as affected by moisture content; and 2) use knowledge of the glass 

transition temperature to examine the effect of drying temperature on dehulling efficiency 

in terms of breakage and the ratio of dehulled whole seeds to dehulled split seeds. 

 

Figure 7. Paths followed by the surface, mid-point between the surface and the center, and the center of 

the seed for an equilibration temperature above or below the glass transition (Tg). (Adapted from 

Cnossen et al., 2003) 

6.2. Experimental work 

6.2.1. Samples 

Two varieties of red lentils in commercial production (CDC Impact and CDC Redberry) 

were chosen for this study. Both lentil varieties (2007 crop) were grown in Saskatchewan 

and transported to the University of Manitoba in polyethylene bags in January 2008. The 

Impact and Redberry varieties were purchased as cleaned seeds and thus were relatively 

free of foreign materials upon arrival and did not require further cleaning prior to use.  

6.2.2. DSC Experiments 

6.2.2.1 DSC Sample preparation 

Seed coats were removed from red lentil cotyledons by dehulling, which is described in 

detail in a following section. The red lentil cotyledon material was ground with a coffee 

grinder (Persona, ON) to reduce particle size and sieved to pass an 825m sieve. Ground 

samples were sub-sampled and placed in four different relative humidity environments to 
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alter the moisture content of the samples. The saturated salt solutions used were lithium 

chloride (LiCl), potassium acetate, (KAc), magnesium nitrate (MgNO3), and sodium chloride 

(NaCl) (Sigma Chemicals, St. Louis, MO) and they produced the following RH 

environments respectively, 11.3, 22.5, 52.9, and 75.3% at 25 C. The samples were allowed to 

sit in the various relative humidity environments until a constant mass was attained. The 

moisture content of the ground samples were determined by drying duplicate samples for 

24 h in a drying oven (Precision Thelco Laboratory Oven, Thermo Fisher Scientific, 

Waltham, MA) set at 130 C.  

6.2.2.2. DSC conditions 

The Tg of the ground red lentil cotyledons were measured with differential scanning 

calorimetry (DSC). A DSC, (DSC7, Perkin Elmer, Norwalk, CT) equipped with a thermal 

analyzer controller (TAC7/DX, Perkin Elmer, Norwalk, CT) and Pyris software v.8 (Perkin 

Elmer, Shelton, CT) were used to obtain the DSC thermograms. Samples were heated 

isothermally at 5 C for 3 minutes prior to temperature ramping. A temperature ramp of 10 

and 30 C/min and a temperature range of 5 to 170 C were employed. The DSC was 

calibrated with indium (melting point =156.6 C and enthalpy = 28 J/g). At least 25 mg of 

ground sample was accurately weighed into sample pans. The sample pans were sealed and 

an empty sample pan was used for the reference. The Tg of each thermogram was 

determined by identifying the transition corresponding to a mid-point in slope change in the 

heat capacity of the sample. Tg measurements were performed in duplicate.  

6.2.3. Drying experiments: Preparation of lentils dried at 40 and 80 ºC 

For the drying experiments, the methods of Ross et al. (2010c) were followed. Briefly, Impact 

and Redberry variety red lentils were subjected to near ambient drying at 40 °C and high 

temperature drying at 80 °C. Since the samples in their native/untreated state had a 

moisture content of 7.4% (Impact) and 9.2% (Redberry), the samples were tempered prior to 

drying to create an initial moisture content (mc) of 13% (wb). The tempered samples were 

left for at least 48 h at room temperature to absorb and evenly distribute moisture 

throughout the individual seeds. These samples were then rewetted to raise the mc to 18% 

(wb) to simulate moisture content at harvest. A starting common moisture content of 13% 

was chosen to ensure a moisture content increase of 5% was imposed on all samples. Five 

hundred grams of lentils were placed in aluminium pans (29.8 x 21.6 x 3.2 cm) creating a 15 

mm thin layer. The 80 C dried samples were placed in a drying oven (Precision Thelco 

Laboratory Oven, Thermo Fisher Scientific, Waltham, MA) set at 80 °C for 2h to lower the 

moisture content of the samples to 11%. The 40 C dried samples were placed in an 

environmental chamber (model IH 400, Yamato, Tokyo, Japan) set at 40 °C for 6.75 h to 

lower the moisture content of the samples to 11%. After drying, the samples were sub-

sampled. A portion of both the 40 and 80 C dried samples were placed in sealable 

polyethylene plastic bags. The bags were sealed and allowed to equilibrate at 25 C for 16 h. 

A portion of both the 40 and 80 C dried samples were placed in air-tight glass jars and 

placed in a drying oven set a 72 C for 1.5 h. After heating at 72 C for 1.5 h, the samples 
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were placed sealable polyethylene plastic bags. The bags were sealed and allowed to 

equilibrate at 25 C for 16 h. After equilibrating at 25 C for 16 h the samples were prepared 

for dehulling.  

6.2.4. Dehulling conditions 

In order to prevent seed size from being a variable in the dehulling tests all seeds were 

passed through a series of sieves (Carter Day International Inc., Minneapolis, MN) with 

round hole openings of 5.56, 4.76, 4.37, 3.97, and 3.37 mm diameter and separated into 

fractions to obtain red lentils with uniform size. For the Redberry seeds that had not been 

treated (i.e. native seed samples), the most abundant fraction (90%) belonged to the size 

range of 4.37 to 5.56 mm. The Impact seeds were smaller and showed more size 

heterogeneity; the most abundant fraction (78%) for the native/untreated samples belonged 

in the size range of 3.97 to 4.76 mm. Seeds fitting in these ranges after pre-milling treatment 

were used in the dehulling evaluation tests. This practice was in accordance with the work 

of Erksine et al. (1991) and Ross et al. (2010c).  

A grain testing mill (TM05C, Satake Engineering Co., Hiroshima, Japan), fitted with a 36 

mesh abrasive wheel was used for the dehulling tests. The dehulling experiments were 

performed using the methods of Ross et al. (2010c) and dehulling variables such as abrasive 

milling speed, milling time and milling moisture content were chosen in accordance with 

the work of Ross et al. (2010c) and Wang (2005) to achieve optimal dehulling efficiency (DE). 

The Impact and Redberry red lentil samples were milled in 30 g batches using an abrasive 

milling speed of 1100 RPM for 40 s. The samples were tempered to 12.9 % moisture content 

prior to milling/dehulling. It should be noted that the moisture level at milling/dehulling 

was independent of the moisture content that the samples were tempered to simulate 

moisture content at harvest. Tempering samples prior to dehulling was considered a 

milling/dehulling pre-treatment. The Impact and Redberry red lentils were moisturized to 

12.9% moisture content by adding the amount of water needed to achieve the desired 

sample moisture content. Tap water was added to the sample using a graduated cylinder, 

and then the plastic bag was sealed and shaken for at least 60 s, ensuring that the lentils 

were evenly coated with water. For up to two hours after the initial addition of moisture, the 

bags were periodically shaken for 60 s at 30 min intervals. The sealed samples were left for 

48 h at room temperature to absorb and evenly distribute moisture throughout the 

individual seeds. Upon completion of the 48 h tempering period the samples were 

milled/dehulled. After dehulling, the milled lentils were screened on a US standard No. 20 

mesh sieve (850 m) to collect the powder. The milled seeds remaining on top of the 850 m 

sieves were separated into whole seeds, split seeds, broken seeds and hulls using the 

following method. The seeds were sent through a husk aspiration unit (S.K. Engineering 

and Allied Works, Bahraich, India) to remove the hulls. The seeds were then separated into 

split and whole fractions by sieving over a No. 4.5 (1.79 x 12.7 mm) slotted sieve (Carter Day 

International Inc., Minneapolis, MN). The split seeds were screened on a US standard No. 8 

sieve (2.36 mm) to separate out the broken seeds. The whole seeds were separated by hand 

into their respective hulled and dehulled classes. It is noted that the split seeds were visually 
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inspected for contaminating attached hull, yet none to negligible amounts were detected. All 

fractions were weighed and then expressed as a proportion of the total original sample 

weight. Dehulling efficiency (DE) was defined as the sum of percent dehulled whole seed 

(DW) and percent dehulled split seed (DS) relative to total initial mass of seeds and was 

calculated as: 

 (%) * 100
M MDW DSDE

MT

 
   
 

   (9) 

Where: MDW is mass of dehulled whole seeds, MDS is the mass of dehulled split seeds, MT is 

the total initial mass of seeds. 

6.2.5. Statistical analysis 

Statistical analysis was conducted using SAS Institute Inc. Software, version 9.1 (SAS 

Institute, 2001). Data were subjected to analysis of variance (ANOVA) with replication using 

the SAS PROC GLM procedure to generate Least square (LS) means. Significance was 

accepted at p ≤ 0.05.  

6.3. The role of the glass transition in defining the dehulling quality of red 

lentils 

6.3.1. Determination of glass transition temperature (Tg) of red lentils 

Table 4 shows the results for the Tg of the ground red lentils samples as a function of 

moisture content. The data presented in Table 4 are the midpoint Tg values. These results 

indicate a clear dependence of Tg and moisture content, as sample moisture content 

increased, the Tg decreased. This is in agreement with the work of Cao et al. (2004) and 

Perdon et al. 2000, which indicated that the second order transition associated with the glass 

transition temperature was correlated with moisture content. It should be noted that there 

was no significant difference between the moisture content of the samples stored in the 

relative humidity environment of the LiCl saturated salt solution and the relative humidity 

environment of the KAc salt solution. This result was unexpected as these saturated salt 

solutions provide different relative humidity environments 11.3 and 22.5% at 25 C, 

respectively. Although sufficient amounts of these salts were added to water to create a 

saturated solution, it could be that one of the containers failed to properly seal. 

Nevertheless, samples with at least three different moisture contents were tested and a clear 

relationship between Tg and moisture content was observed. Table 4 also shows the effect of 

heating rate on measured Tg. Generally, as the heating rate is increased there was an 

observed increase in Tg, which in agreement with the work of Bruning & Samer (1992).  

Table 5 gives coefficients for the linear regression equation relating glass transition 

temperature (Tg) with respect to moisture content of Redberry and Impact red lentils at two 

different heating rates. Using respective correlation coefficients in the equation relating 
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moisture content and Tg, it was determined that Redberry red lentils with a moisture content 

of 11% would possess a Tg of 66 and 69 C with a 10 and 30 C/min heating rate, respectively 

while Impact red lentils with a moisture content of 11% would have a Tg of 65 and 67 C 

with a 10 and 30 C/min heating rate, respectively. This equation is given as: 

 
1 0

Tg MC     (10) 

Where: Tg is the glass transition temperature (°C); MC is % moisture content; β1 is the slope 

of the regression line; β0 is the y-intercept of the regression line. 

 

Relative 

Humidity 

Environment 

Moisture

Content 

(%) 

Heat Rate

(10C/min) 

Tg (C) 

Heat Rate 

(30C/min) 

Tg (C) 

Redberry Impact Redberry Impact 

LiCl 6.1a 75.1a 74.8a 81.3a 79.1a 

KAC 6.5a 71.7a 76.0a 78.9a 79.9a 

MgNO3 10.1b 66.7b 66.7b 74.5b 66.2b 

NaCl 14.0c 62.2c 58.4c 61.3c 60.5c 

Different letters within a column indicate significant differences between the means (n=2) 

Table 4. Effect of Moisture Content and Heating Rate on Tg 

 

Variety 
Heat Rate

(10C/min) 

Heat Rate

(30C/min) 

 
B0 

(C) 
B1 R2 

B0 

(C) 
B1 R2 

Impact 

 
89.24 -2.21 0.988 94.8 -2.54 0.954 

Redberry 82.68 -1.49 0.949 95.8 -2.38 0.956 

MC is % moisture content; β1 is the slope of the regression line; β0 is the y-intercept of the regression line; R2 is 

correlation coefficient 

Table 5. The Linear Relationship Between Glass Transition Temperature and Moisture Content for Red 

Lentils  

The Tg values obtained for the ground red lentil cotyledons were higher than the Tg values 

obtained by Perdon et al. (2000) and Cao et al. (2004) for rice at comparable moisture 

contents. Possible reasons for this result may be due to the fact that ground red lentils were 

used instead of individual grain sections. It is possible that ground samples have different 

heat transfer properties than individual grain sections. Also, a cereal starch (rice) is different 

in composition than a legume starch (lentil). These different starches possess different 

granule organization and different degrees of branching which will affect Tg (Parker & Ring, 

2001). Therefore it is not unreasonable to accept different Tg values at a common moisture 

content for the different starch types. In all, for red lentils, the linear regression equations 

provided in Table 5 can be used to predict Tg from moisture content.  
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6.3.2. Effect of drying & equilibration temperature on dehulling quality 

Table 6 shows the effect of drying temperature and equilibration temperature on the dehulling 

quality of Impact and Redberry red lentils. For the Impact red lentils, drying at a temperature 

above Tg (80 C) and equilibrating at a temperature below Tg (25 C) did result in significantly 

more breaks, more split cotyledons and a significantly higher ratio of split seed to whole 

dehulled seeds than any other condition. Although drying below Tg (40 C) and equilibrating 

below Tg (25 C) did result in significantly less breaks and split cotyledons than drying above 

Tg (80 C) and tempering below Tg (25 C), there were still significantly more breaks and split 

cotyledons observed compared to the reference (non-dried) Impact seeds. The Impact samples 

dried at either 40 or 80 °C and equilibrated above Tg (72 C) resulted in a significant reduction 

in broken and split cotyledons. Within the Impact seeds equilibrated above Tg, the samples 

that were dried at 40 °C possessed significantly less splits compared to the Impact seed 

samples dried at 80 °C upon milling. Also, the ratio of split to dehulled whole seeds and 

dehulling efficiency (DE) of the Impact samples, dried at either 40 or 80 °C and equilibrated 

above Tg (72 C) was not significantly different than the Impact samples that were not 

subjected to any artificial drying. For the Redberry red lentils, drying at either 40 or 80 °C and 

equilibrating at a temperature below Tg (25 C) did result in significantly more split cotyledons 

and a significantly higher ratio of split seed to whole dehulled seeds than the condition of 

drying below or above Tg (40 or 80 °C) and equilibrating above Tg (72 C). Within the 

Redberry seed samples equilibrated above Tg (72 °C) or below Tg (40 °C), the Redberry 

samples that were dried at 40 °C possessed significantly less splits compared to the sampled 

dried at 80 °C upon milling. For the Redberry seeds, there was no observed effect on the 

amount of breaks or dehulling efficiency (DE) at any drying and equilibrating condition. 

Therefore the results observed for Redberry showed that equilibrating above Tg (72 °C) 

resulted in a significant reduction in split cotyledons. Additionally, the ratio of split to 

dehulled whole seeds for the Redberry samples that were equilibrated above Tg (72 °C) was 

not significantly different than the Redberry samples that were not subjected to any artificial 

drying (i.e. the reference samples).  

For both red lentil varieties, in the situation where the samples were dried below Tg (40 °C) 

and equilibrated at a temperature below Tg (25 °C), there should be no change of phase of 

starch and therefore no or limited stress gradient should result as will result as the surface, 

midpoint and center of the grain reach a common moisture content. Breakage and splitting 

upon dehulling should be minimized. Although the results of this work seemed to indicate 

drying below and equilibrating below Tg will negatively impact dehulling quality as 

significantly higher values of split seeds were obtained for this condition compared to values 

observed for samples equilibrated above Tg. Possibly the drying temperature used in these 

experiments were too close to the measured Tg values and possibly overlapped onset Tg 

values. However, seeds dried at the higher temperature condition (80 °C) and equilibrated 

below Tg (25 °C) showed even higher levels of split seeds than those dried at the lower 

temperature condition (40 °C) and equilibrated below Tg (25 °C), which helps to support this 

explanation. Also, research in rice drying has shown that the use of higher drying temperature 

promote rice fissuring and breakage upon milling. When higher drying temperatures are 

employed, the rate of moisture removal increases which promotes the development stress 
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gradients within the seed and thereby promotes fissuring and breakage (Iguaz et al., 2006). 

When the samples are dried below Tg and equilibrated at a temperature above Tg, the starch 

will experience a change of state, yet the surface, midpoint, and center of the seed will reach a 

common moisture content above Tg and stress gradients will also be minimized. This situation 

would also lead to less breakage and splitting upon dehulling, which as observed in this work. 

When the samples are dried above Tg and equilibrated at a temperature above Tg, the starch 

will be in the rubbery state and the seed will reach a common moisture content above Tg and 

stress gradients will also be minimized. This situation would also lead to less breakage and 

splitting upon dehulling, which was observed in this work. However, samples dried above Tg 

(80 °C) and equilibrated above Tg (72 °C) presented more splits than corresponding samples 

dried below Tg (25 °C) and equilibrated above Tg (72°C). 
 

Samples 

Drying 

Temp 

(ºC) 

Equilib

Temp 

(C) 

MC 

(%) 

Powder

(%) 

Breaks

(%) 

Hull

(%) 

UDW

(%) 

DW 

(%) 

DS 

(%) 

DE 

(%) 

DS:DW 

Ratio 

Impact 40 25 11.1 1.58a 0.73a 8.0s 12.1a 22.2a 55.1a 77.1a 2.5a 

Impact 80 25 11.2 1.47a 1.26b 7.6a 10.0a 15.5b 61.2b 76.7a 3.9b 

Impact 40 72 11.2 1.75a 0.75a 7.3a 3.4b 63.1c 23.5c 86.6b 0.37c 

Impact 80 72 11.2 1.60a 0.90a 7.2a 4.6b 53.0d 32.5d 85.5b 0.62c 

Impact: 

Reference Na na 
7.4 

“as is”
1.94a 0c 7.4a 2.7b 63.4c 23.5c 86.9b 0.37c 

Redberry 40 25 11.3 1.89a 0.23a 8.6a 3.4a 50.1a 35.0a 85.2a 0.7a 

Redberry 80 25 11.2 1.92a 0.18a 8.6a 2.95a 42.1b 42.8b 84.9a 1.1b 

Redberry 40 72 11.2 1.62a 0.27a 9.2b 1.15a 77.7c 10.8c 88.5a 0.14cd 

Redberry 80 72 11.1 1.90a 0.22a 8.3a 0.73a 71.1d 17.3d 88.4a 0.24c 

Redberry: 

Reference Na na 
9.2 

“as is”
2.06a 0b 8.2a 0b 59.1e 28.5e 87.6a 0.49ac 

MC= moisture content; Powder=powder yielded from dehulling; Breaks=broken seed yielded from dehulling; 

Hull=hull yielded upon dehulling; UDW=Undehulled whole seeds yielded from dehulling; DW=Dehulled whole seeds 

yielded from dehulling; DS=dehulled split seeds yielded from dehuling; DE=Dehulling Efficiency; na=not applicable 

Different letters within a column and variety indicate significant differences between the means (n=2) 

Table 6. Effect of Drying Temperature and Equilibration Temperature on Dehulling Quality 
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In summary of this experimental work, moisture content has a significant effect on the thermal 

properties of Redberry and Impact variety red lentils. The glass transition temperature, Tg, 

increased with decreasing moisture content. Single broad transitions were observed from the 

DSC thermograms of Redberry and Impact variety red lentils at different moisture contents. 

The linear equations calculated to predict Tg from moisture content proved useful in 

understanding the mechanism of red lentil breakage and splitting from drying and milling. 

With knowledge of the Tg, the experimental procedure tested the Tg drying hypothesis by 

drying and equilibrating the red lentils at temperatures above and below their Tg. Results for 

both varieties of red lentils showed that equilibration of the dried lentils at temperatures above 

Tg caused a decrease in splitting, implying that stress gradients were minimized using this 

treatment. Also, equilibrating dried samples at a temperature above Tg caused a remarkable 

increase in the ratio of dehulled whole lentils to split lentils. The Impact variety red lentils also 

showed significantly less breaks and a higher dehulling efficiency when equilibrated above Tg 

for either drying condition. Therefore, the results that were obtained in this work are 

supported by the rice drying hypothesis put forth by Cnossen & Siebenmorgen (2000) and 

indicated that the splitting of cotyledons upon dehulling was more affected by drying 

temperature and equilibration temperature than breakage.  

7. Conclusion 

To the best of the authors’ knowledge, no other work has explicitly linked the glass transition 

of the seed coat with water uptake behaviour. Implication of the glass transition of the seed 

coat as a key factor influencing water uptake is important as delayed water uptake behavior 

has served as the main impediment to the processing of legumes and the creation of value 

added whole seed legume products. A detailed chemical analysis of components in the seed 

coat affecting the glass transition temperature is required in future work as it would allow for 

focussed breeding efforts to reduce the chemical components that cause high seed coat glass 

transition temperatures thereby improving the processability of some legume seeds. The 

concept of the glass transition has been used to explain rice kernel fissure formation during 

drying and subsequent breakage during milling of rice. The hypothesis used to explain rice 

breakage was adopted to explain breakage and splitting in red lentils upon dehulling. Red 

lentil varieties, Impact and Redberry, showed an increase in the amount of split seeds when 

dried above or below Tg and equilibrated below Tg. The red lentils that were dried above or 

below Tg and equilibrated at temperatures above Tg showed a significant decrease in splitting. 

The Impact variety also showed significant decrease in seed breakage and increased dehulling 

efficiency. Furthermore, equilibrating dried samples above Tg caused a remarkable increase in 

the ratio of dehulled whole seeds to split seeds. Future work must include investigating: a 

minimum equilibration temperature, a minimum equilibration time, a maximum moisture 

content removal per drying step, a very gentle drying condition (21 °C at 50% RH) and the 

effects on dehulling quality. However, the work at present does implicate the Tg as having an 

effect on breakage and splitting of red lentils. Overall, the challenges in pulse processing can 

be addressed by a following a polymer science approach.  
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