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1. Introduction

The unsteady flow of a fluid in cylindrical pipes of uniform circular cross-section has appli‐
cations in medicine, chemical and petroleum industries [3,4,5]. For viscoelastic fluids, the
unsteady axial decay problem for UCM fluid is considered by Rahman et al. [6]; and for
Newtonian fluids as a special case. Rajagopal [7] has studied exact solutions for a class of
unsteady unidirectional flows of a second-order fluid under four different flow situations.
Atalik et al. [8] furnished a strong numerical evidence that non-linear Poiseuille flow is un‐
stable for UCM, Oldroyd-B and Giesekus models. This fact is supported experimentally by
Yesilata, [9]. The unsteady flow of a blood, considered as Oldroyd-B fluid, in tubes of rigid
walls under specific APGs is concerned by Pontrelli, [10, 11].

Flow of a polymer solution in a circular tube under a pulsatile APG was investigated by
Barnes et al. [12, 13].The same problem for a White-Metzner fluid is performed by Davies et
al. [14] and Phan-Thien [15]. Recently, periodic APG for a second-order fluid has been stud‐
ied by Hayat et al. [16]. Numerical simulation based on the role of the pulsatile wall shear
stress in blood flow, is investigated by Grigioni et al. [1].

The present paper is concerned with the unsteady flow of a viscoelastic Oldroyd-B fluid
along the axis of an infinite tube of circular cross-section. The driving force is assumed to be
a time-dependent APG in the following three cases:

i. APG varies exponentially with time,

ii. Pulsating APG,

iii. A starting flow under a constant APG.

© 2013 Abu-El Hassan and El-Maghawry; licensee InTech. This is an open access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



2. Formulation of the problem

The momentum and continuity equations for an incompressible and homogenous fluid are
given by

,
dq

P S
dt

= -Ñ +Ñ ×r (1)

and

0,qÑ × = (2)

where ρ is the material density, q is the velocity field, p is the isotropic pressure and S
̿
 is the

Cauchy or extra-stress tensor. The constitutive equation of Oldroyd-B fluid is written as

1 1 2 1; { }T pI S S S A A
Ñ Ñ

= - + + = +l m l (3)

where T
̿
 is the total stress, I

̿
 is the unit tensor, μ is a constant viscosity, λ1 and λ2, (0≤λ2≤λ1)

are the material time constants, termed as relaxation and retardation times; respectively. The
deformation tensor A

̿
1 is defined by

1
 A ; .TLL L q= + = Ñ (4)

and “∇” denotes the upper convected derivative ; i.e. for a symmetric tensor G
̿
 we get,

.TG
Lq G G L GG t

Ñ ¶
= + ×Ñ - × - ×
¶

(5)

The symmetry of the problem implies that S
̿
 and q depend only on the radial coordinate r in

the cylindrical polar coordinates (r,θ,z) where the z-axis is chosen to coincide with the axis
of the cylinder. Moreover, the velocity field is assumed to have only a z-component, i.e.

(0, 0, ),q w= (6)

which satisfies the continuity equation (2) identically. The substitution of Eq. (6), into Eqs.
(1) and (3) yields the set of equations
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2

1 2( ),rz
rz

S w wS
t r r t

¶ ¶ ¶
+ = +

¶ ¶ ¶ ¶
l m l (7)

1 ,rz
rz

Sp wS
z r r t

¶¶ ¶
= + -

¶ ¶ ¶
r (8)

0.p p
r
¶ ¶

= =
¶ ¶q

(9)

Equations (8) and (9) imply that the pressure function takes the form; p = z f (t) + c, so that

( ).p f t
z
¶

=
¶

(10)

The elimination of Srz from (7) and (8) shows that velocity field w(r , t) is governed by:

2 2

1 2 12 2
1( ) (1 )( ) (1 ) .pw w w w

t r r zt t t t
¶¶ ¶ ¶ ¶ ¶ ¶

+ - + + = - +
¶ ¶ ¶¶ ¶ ¶ ¶

r l m l l (11)

The non-slip condition on the wall and the finiteness of w on the axis give

0and( , ) 0 0.| |r R r
ww r t
r= =

¶
= =

¶
(12)

Introducing the dimensionless quantities

2 1
2 2 2

1
, , , and ,

Re
Lr t Wew H

R R PR R
= = = = = =

D

l l mmmh t j l
lr r

(13)

where R is the radius of the pipe, ΔP  a characteristic pressure difference, L is a characteristic
length, We and Re are the Weissenberg and Reynolds numbers; respectively, into Eqs. (10),
(11) and (12) we get

2 2

2 2
1[1 ][ ] [1 ] ( ),H H H¶ ¶ ¶ ¶ ¶ ¶

+ - + + = + Y
¶ ¶ ¶ ¶¶ ¶

j j j jl t
t t h h tt h

(14)
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with the BCs.

(0, )(1, ) 0 and 0,¶
= =

¶
j tj t
h

(15)

and

( ) ( ).pL L f t
p z p
¶

Y = - = -
D ¶ D

t (16)

Equation (14) subject to BCs. (15) is to be solved for different types of APGs; i.e. different
forms of the function Ψ(τ).

3. Pressure gradient varying exponentially with time

We consider the two cases of exponentially increasing and decreasing with time APGs sepa‐
rately.

3.1. Pressure gradient increasing exponentially with time

Let,

2
( ) ,pL Ke

p z
¶

Y = - =
D ¶

a tt (17)

and assume that

2
( , ) ( ) ,g e= a tj h t h (18)

where K  and α are constants. The substitution of Eqs. (17) and (18) into Eq. (14) leads to

2 2 2

2 2
1 ( 1) 1 ,

1 1
H Hg g g K
H H

+ +¢¢ ¢+ - = -
+ +

a a a
h l a l a

(19)

while the BCs. (15) reduce to
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(1) 0, (0) 0g g¢= = (20)

A solution of Eq. (19) subject to the BCs. (20) is

0
2

0

( )
( ) [1 ],

( )
IKg
I

= -
bh

h
ba

(21)

where I0 (x) is the modified Bessel-functions of zero-order, and

2 2
2

2
(1 ) .

1
H
H
+

=
+

a a
b

l a
(22)

Therefore, the velocity field is given by

2
0

2
0

( )
( , ) [1 ] .

( )
IK e
I

= -
bh a tj h t
ba

(23)

The solution given by Eq. (23) processes the following properties:

i. The time dependence is exponentially increasing such that for η ≠ 1 lim
τ→∞
ϕ(η, τ)→∞.

It may be recommendable to choose another APG which increases up to a certain
finite limit in order to keep ϕ(η, τ) finite.

ii. The present solution depends on the parameter β in the same form as the solution
for the UCM [6]. For any value of β the Oldroyd-B fluid exhibits the same form as
the UCM- fluid. However, in the present case β depends on λ in addition to H and
α2. A close inspection show that lim

λ→0
β 2 =β 2 for the UCM-fluid while the lim

λ→1
β 2 =α 2

which coincides with the case of the Newtonian fluid, [8].

iii. The parameter β is inversely proportional to λ where the decay rate increases by
increasing the value of H. However, as mentioned above, as λ approaches the val‐
ue λ = 1 all the curves matches together approaching the value β2= α2 asymptotical‐
ly. The behavior of β as a function of λ, where H is taken as a parameter is shown
in Fig. (1).

For small values of |β |  and by using the asymptotic expansion of I0 (x),

it can be shown that the velocity profiles approaches the parabolic distribution;

2 22
20

( 1)( , ) (1 )
4( 1)
K HLim e
H®

+
= -

+b

a a tj h t h
l a

(24)
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For the case of large |β |  the velocity distribution is given as;

2(1 )
2

1( , ) [1 ]KLim e e- -

®¥
= - b h

b

a tj h t
a h

(25)

This solution is completely different from the parabolic distribution and it depends on η on‐
ly in the neighborhood of the wall. Therefore, such a fluid exhibits boundary effects.

The rising-APG velocity field ϕ(η, τ) is plotted in Figs. (2a) and (2b) as a function of η at
different values of β for α = 2 and α = 5.

3.2. Pressure gradient decreasing exponentially with time

The solution at present is obtained from the previous case by changing α 2  by − α −2 . There‐
fore,

20 1
2

0 1

( )
( , ) [1 ] .

( )
jK e
j

= - - -b h a tj h t
ba

(26)

where

Figure 1. The λβ - relation H= 2, 3, 5, 7, 9, (Bottom to top)
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2 2
2

1 2
(1 )

1
H
H
-

=
-

a ab
l a

(27)

The discussion of this solution is similar to the case of increasing APG except that the veloci‐
ty decays exponentially with time and the value α 2 = 1 /λH  is not permissible as it leads to
infinite β1

2 ; i.e.

2
1

2
1

1
lim

H®
® ¥

a l
b (28)

The two cases of small and large |β1 |  produce similar results as the previous solution. Thus

1

2 2
120

( , ) (1 ) ,
4
KLim e-

®
= - - atf h t b h

ab
(29)

and

 

(a) (b) 

(c) (d) 

Figure 2. Rising – (a,b) APG velocity filed ;β= 5.2, 3.5, 2.5, 2.1 (Bottom to top) Fig. (c) : Decreasing – APG velocity
filed ;β= 8.7, 3.9, 2.6, 2.1 ( Top to Bottom) Fig. (d) : Decreasing – APG velocity filed ;β= 16.4, 9.2, 6.5, 5.3 ( Top to
Bottom)
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1

1 2

2
1

cos( )1 4( , ) [1 ] .
cos( )

4

KLim e
®¥

-
= - -

-

-
b

pb h
a tj h t

pa h b
(30)

4. Pulsating pressure gradient

The present case requires the solution of Eq. (14) subject to BCs. (15) in the form

( ) ; 1 ,inpL K e i
P z
¶

Y = - = = -
D ¶

tt (31)

K and n are constants. Assuming the velocity function has the form

( , ) ( ) ,inre f eé ù= ë û
tj h t h (32)

1 (1 ) (1 )f f f .
(1 ) (1 )

inH inHin K
in H in H
+ +¢¢ ¢\ + - = -
+ +h l l

(33)

The solution of this equation satisfying the BCs. (15) is :

20

0

( ) (1 )f( ) [1 ] , .
( ) (1 )

Ik inHin
in I in H

+
= - =

+
bh

h b
b l (34)

Hence, the velocity distribution is given by:

0

0

( )
( , ) [1 ] .

( )
in Ikre e

in I
ì üï ï= -í ý
ï ïî þ

t bh
f h t

b
(35)

Obviously; for small |β | ,

2 2

0

(1 )( ) .
4

KLim f
in®

æ ö-
= ç ÷ç ÷

è øb

b hh (36)

and for large |β |
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(1 )0

0

( ) 1 ,
( )

I
Lim e

I
- -

®¥
= b h

b

bh
b h

(37)

So that,

(1 )1( , ) [1 ] ,inKre e e
in

- -ì üï ï= -í ý
ï ïî þ

b h tj h t
h

(38)

where,

2 2 2 2
2 2 2

(1 ) 1 [ ( 1} (1 )],
(1 ) 1
in inH H inn n Hin H n H

+
= = - + +

+ +
b l l

l l
(39)

or simply,

2,ie= Â qb (40)

222 2
22 2

2 2 ,(1 ) (1 )1
n

n H n H
n H

Â = +- +
+

l ll
(41)

2
-1θ 1 1+ λHn=- .Tan2 2 nH(1-λ)
é ù
ê ú
ê úë û

(42)

Substituting from Eqs.(40,41,42) into Eq. (37), we get:

1 (1 ) cos( 2)( , ) sin sin[ (1 sin )] .
2

kLim n e n
n®¥

ì üï ï- - Â= - - - Âí ý
ï ïî þb

qh qj h t t t h
h

(43)

As λ→0, [6], ℜ→ r1 =n 1 + n 2H 2 and 
θ
2 →

θ1
2 = − 1

2 Tan
−1(

1
nH ).

Then

11 1
1

(1 ) (cos 2)1( , ) sin sin[ (1 ) (sin )]
2

rk n e n r
n
ì ü- -ï ï= - - -í ý
ï ïî þ

qh q
j h t t t h

h
(44)

The velocity field φ(η,τ) is plotted in Figs. (3a) and (3b); respectively, against η for different
values of β. The two limiting cases for small and large |β| are represented in three-dimen‐
sional Figs. (4a) and (4b) in order to emphasize the oscillating properties of the solution.
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Figure 3. a) : Pulsating – APG ; n=2, H=5, β= 3.7 , 2.5 , 1.8 , 1.5 (b) : Pulsating – APG ; n=5, H=5,
β= 6.8 , 4.1 , 2.9 , 2.4 [Top to Bottom for all]

Figure 4. a): Pulsating-APG, n = 2, H = 5, at small |β |  ; β= 3.7 (b): Pulsating-APG, n = 3, H = 5, at large |β |  ; β= 6.8

5. Constant pressure gradient

Here we consider the flow to be initially at rest and then set in motion by a constant ABG “-
K”. Hence, Ψ(τ) ; Eq.(14), subject to BCs. (15) reduces to

.L P K
P z
¶

=-
D ¶

(45)

Therefore, we need to solve the equation
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2 2

2 2
1[1 ][ ] ,H H K¶ F ¶F ¶ ¶F ¶ F

+ - + + =
¶ ¶ ¶¶ ¶

l
t t h ht h

(46)

subject to the boundary and initial conditions

ϕ(1,τ) = 0, for τ ≥0 ,

( ,0) 0,for 0 1= £ £f h h (47)

Equation (46) can be transformed to a homogenous equation by the assumption

2( , ) (1 ) ( , ),
4
K

F = - -h t h y h t (48)

where Ψ(η,τ) represents the deviation from the steady state solution. Hence,

2

2
1[ (1 ) (1 ) ( )] 0,H H¶ ¶ ¶ ¶ ¶

+ - + + =
¶ ¶ ¶ ¶¶

l y
t t t h hh

(49)

subject to the boundary and initial conditions

(1, ) 0for 0.Y = ³t t (50)

2( ,0) (1 ) for
4

0 1.K
= - £ £y h h h (51)

Assuming that ψ(η, τ)=F (η)⋅G(τ), Eq.(49) separates to

2 2(1 ) 0,HG H G G¢¢ ¢+ + + =l a a (52)

1 2 2(1 ) 0.F H F F-¢¢ ¢+ + + =h l a a (53)

Equation (52) has the solution,
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1 2( )G Ae Be= +
g t g t

t (54)

where γ1 and γ2 are the roots of the Eq.( 52). On the other hand, Eq. (53 ) has the solution

0( ) ( ).mF J=h a h (55)

Therefore,

2 2 2 2

1,2
(1 ) (1 ) 4

.
2

m m mH H H
H

- + ± + -
=

l a l a a
g (56)

The BCs. (50,51) implies that the constant αm takes all zeros of the Bessel-function J0 (α1, α2,
………). Hence,

0
1

( , ) ( ) ( ),m
m

J G
¥

=
Y = åh t a h t (57)

1 2
0

1
( , ) ( )( ).m m

m m m
m

J A e B e
¥

=
\Y = +å g t g th t a h (58)

Τhe initial condition (50) and BCs. (51) will not be sufficient to evaluate the constants Am and
Bm. Hence, it is required to employ another condition. We assume that G(τ) is smooth about
the value τ = 0 and can be expanded in a power series about τ = 0. Assuming G(τ) to be line‐

ar function of τ in the domain about τ = 0, then G ″ =0 in Eq. (52). Hence

2 ` 2(1 ) (0) (0) 0,m m m mH G G+ + =l a a (59)

1 2( ) ,m m
m m mG A e B e= +g t g tt (60)

From which we obtain

2 2 2 2
1 2[(1 ) ] [(1 ) ] 0.m m m m m m m mA H B H+ + + + + =l a g a l a g a (61)

Rheology - New Concepts, Applications and Methods102



To determine the constants Am and Bm we firstly satisfy the remaining condition (51). Owing

to Eq. (58) and the initial condition, Eq. (51), we notice that,

2
0

1
( ,0) ( ) ( ) (1 ).

4m m m
m

KA B J
¥

=
Y = + = -åh a h h (62)

Via the Fourier–Bessel series, Eq. (62) leads to,

1
2

02
01

(1 ) ( ) .
2 ( )m m m

m

KA B J d
J

+ = -òh h a h h
a

(63)

Performing this integration we get

0
3 2 2

1 1

( )2 .
( ) ( )

m
m m

m m m m

JK KA B
J J

+ = -
a

a a a a
(64)

From Eqs. (61) and (64) we obtain :

2 2
2 0

2 3 2 2
2 1 1 1

[(1 ) ] ( )2 ,
(1 )( ) ( ) ( )

m m m m
m

m m m m m m m

H JK KA
H J J

é ù+ +
= -ê ú

+ - ê úë û

l a g a a

l a g g a a a a
(65)

2 2
1 0

2 3 2 2
1 2 1 1

[(1 ) ] ( )2 .
(1 )( ) ( ) ( )

m m m m
m

m m m m m m m

H JK KB
H J J

é ù+ +
= -ê ú

+ - ê úë û

l a g a a

l a g g a a a a
(66)

Finally, the velocity field has the series representation

ϕ(η, τ)=
K
4 (1−η 2)−∑

m=1

∞ J0(αmη)
(1 + λHαm

2)(γ2m−γ1m)
{ (1 + λHαm

2)γ2m + αm
2 e γ1mτ

}22 2 0
1 3 2 2

1 1

( )2[(1 ) ] [ ].
( ) ( )

m m
m m m

m m m m

JK KH e
J J

- + + -g t a
l a g a

a a a a
(67)

The constant-APG velocity field φ(η,τ) as a function of η shown in Fig. (5).
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6. Results and discussion

The behavior of |β| as a function of λ where H is taken as a parameter is shown in Fig. (1).
The behavior of β is inversely proportional to λ while it is fast-decreasing for higher H-val‐
ues. For any β-value, the Oldroyd-B fluid exhibits the same form as the UCM-fluid. A close
inspection of β2 = α2(1+α2H)/(1+λα2H) shows that UCM-fluid is obtained by lim

λ→0
β 2 = β 2

while lim
λ→0
β 2 = α 2 leads to the case of Newtonian fluid. For small values of |β| as well as |

βη| and by using the asymptotic expansion of I0(x), it can be shown that the velocity profiles
approaches the parabolic distribution.

For decay-APGs, Figs. (2a) and (2b) show that the velocity profiles of Oldroyd-B and UCM
fluids are parabolic for small values of |βη| while for large |βη| they are completely differ‐
ent from this situation. The solutions depend on η only in the neighboring of the wall.
Therefore, such fluids exhibit boundary layer effects [17]].

For pulsating-APG, the velocity distribution is represented in Figs. ( 3a ) and ( 3b). The
smallest value of β in both curves is almost parabolic as shown by Eq. (36) while the largest

Figure 5. The velocity distribution for constant – APG taking H=0.2, τ=0.1 where the summation is taken for α1=2.4,
α2=5.8, α3=8.4
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value exhibits boundary effect as reviled by Eq.( 43 ). To emphasize the oscillating nature of
the solution a three-dimensional diagrams (4a) and (4b) for the smallest and largest values
of |β| are respectively sketched.

Grigioni, et al [1], studided the behavior of blood as a viscoelastic fluid using the Oldroyd-B
model. The results obtained for the velocity distribution stands in agreement with the ob‐
tained results in the present work.
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