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1. Introduction

1.1. Overview of DPN

In diabetes mellitus, nerves and their supporting cells are subjected to prolonged hypergly‐
cemia  and metabolic  disturbances  and this  culminates  in  reversible/irreversible  nervous
system dysfunction and damage,  namely diabetic  peripheral  neuropathy (DPN).  Due to
the varying compositions and extents of neurological involvements, it is difficult to obtain
accurate  and  thorough  prevalence  estimates  of  DPN,  rendering  this  microvascular
complication  vastly  underdiagnosed  and  undertreated  [1-4].  According  to  American
Diabetes Association, DPN occurs to 60-70% of diabetic individuals [5] and represents the
leading cause of peripheral neuropathies among all cases [6, 7]. As the incidence of diabetes
is approaching global epidemic level, its neurological consequences are estimated to affect
some $300  million  people  worldwide  [8]  and costs  15  billion  dollars  on  annual  health‐
care expenditures in the U.S. alone [9].

1.1.1. A Complex natural history

Because  diverse  anatomic  distributions  and fiber  types  may be  differentially  affected in
patients with diabetes, the disease manifestations, courses and pathologies of clinical and
subclinical  DPN are  rather  heterogeneous  and encompass  a  broad spectrum [1,  10,  11].
Additionally, dietary influences, risk covariates, genetic and phenotypic multiplicity further
perplex the definition, diagnosis, classification and natural history of DPN [6, 10, 12, 13].
Current  consensus  divides  diabetes-associated  somatic  neuropathic  syndromes  into  the
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focal/multifocal and diffuse/generalized neuropathies [6, 14]. The first category comprises
a group of asymmetrical, acute-in-onset and self-limited single lesion(s) of nerve injury or
impairment  largely  resulting  from  the  increased  vulnerability  of  diabetic  nerves  to
mechanical  insults  (Carpal  Tunnel  Syndrome)  (reviewed in 15).  Such mononeuropathies
occur idiopathically and only become a clinical problem in association with aging in 5-10%
of those affected. Therefore,  focal neuropathies are not extensively covered in this chap‐
ter [16]. The rest of the patients frequently develop diffuse neuropathies characterized by
symmetrical  distribution,  insidious onset  and chronic  progression.  In  particular,  a  distal
symmetrical sensorimotor polyneuropathy accounts for 90% of all DPN diagnoses in type
1 and type 2 diabetics  and affects  all  types of  peripheral  sensory and motor fibers in a
temporally non-uniform manner [6, 17].

Symptoms begin with prickling, tingling, numbness, paresthesia, dysesthesia and various
qualities of pain associated with small sensory fibers at the very distal end (toes) of lower
extremities [1, 18]. Presence of the above symptoms together with abnormal nociceptive
response of epidermal C and A-δ fibers to pain/temperature (as revealed by clinical examina‐
tion) constitute the diagnosis of small fiber sensory neuropathy, which produces both painful
and insensate phenotypes [19]. Painful diabetic neuropathy is a prominent, distressing and
chronic experience in at least 10-30% of DPN populations [20, 21]. Its occurrence does not
necessarily correlate with impairment in electrophysiological or quantitative sensory testing
(QST). Some have suggested pain to reflect the pathobiological changes of serum glucose level
at least in individuals with pre- or recent diagnosis. Consistent with this notion, severe
neuropathic pain often presents as a typical feature in acute reversible sensory/hyperglycemic
neuropathy and its onset and remission following glycemic control can be indicative of
spontaneous repair of nerve damage in the early phase of DPN [1, 10, 22, 23]. Pain in many
diabetics may persist, however, only to be alleviated as progressive and irreversible nerve
deterioration and loss of thermal sensitivity take place [10, 21]. Large myelinated sensory fibers
that innervate the dermis, such as Aβ, also become involved later on, leading to impaired
proprioception, vibration and tactile detection, and mechanical hypoalgesia [19]. Following
this “stocking-glove”, length-dependent and dying-back evolvement, neurodegeneration
gradually proceeds to proximal muscle sensory and motor nerves. Its presence manifests in
neurological testings as reduced nerve impulse conductions, diminished ankle tendon reflex,
unsteadiness and muscle weakness [1, 24].

Both the absence of protective sensory response and motor coordination predispose neuro‐
pathic foot to impaired wound healing and gangrenous ulceration—often ensued by limb
amputation in severe and/or advanced cases [25, 26]. This traumatic procedure is performed
on approximately 100,000 Americans every year and is a major attributing factor for diabetes-
related hospital bed occupancy and medical expenses [27]. Although symptomatic motor
deficits only appear in later stages of DPN [25], motor denervation and distal atrophy can
increase the rate of fractures by causing repetitive minor trauma or falls [24, 28]. Other unusual
but highly disabling late sequelae of DPN include limb ischemia and joint deformity [6]; the
latter also being termed Charcot’s neuroarthropathy or Charcot’s joints [1]. In addition to
significant morbidities, several separate cohort studies provided evidence that DPN [29],
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diabetic foot ulcers [30] and increased toe vibration perception threshold (VPT) [31] are all
independent risk factors for mortality. Overall, neuropathic pain, foot complication as well as
various associated psychosocial comorbidities inflict a significant diminution on the quality
and duration of life of individuals affected by DPN, which in turn is raising an escalating
health, social and economic problem in both developed and developing countries [4, 14].

1.2. A medical challenge

Unfortunately, current therapy for DPN is far from effective and at best only delays the onset
and/or progression of the disease via tight glucose control, the only established means for
managing diabetic complications in the U.S. Several large-scale, multicenter and landmark
clinical studies, including Diabetes Control and Complication Trial, provided irrefutable
evidence that chronic hyperglycemia is a leading factor in the etiology and treatment of DPN
[32-36]. However, euglycemia cannot always be achieved through aggressive insulin therapy
or other anti-diabetic agents. Even with near normoglycemic control, a substantial proportion
of patients still suffer the debilitating neurotoxic consequences of diabetes [34]. On the other
hand, some with poor glucose control are spared from clinically evident signs and symptoms
of neuropathy for a long time after diagnosis [37-39]. Thus, other etiological factors independ‐
ent of hyperglycemia are likely to be involved in the development of DPN. Data from a number
of prospective, observational studies suggested that older age, longer diabetes duration,
genetic polymorphism, presence of cardiovascular disease markers, malnutrition, presence of
other microvascular complications, alcohol and tobacco consumption, and higher constitu‐
tional indexes (e.g. weight and height) interact with diabetes and make for strong predictors
of neurological decline [13, 32, 40-42]. Targeting some of these modifiable risk factors in
addition to glycemia may improve the management of DPN.

Meanwhile, enormous efforts have been devoted to understanding and intervening with the
molecular and biochemical processes linking the metabolic disturbances to sensorimotor
deficits by studying diabetic animal models. In return, nearly 2,200 articles were published in
PubMed central and at least 100 clinical trials were reported evaluating the efficacy of a number
of pharmacological agents; the majority of them are designed to inhibit specific pathogenic
mechanisms identified by these experimental approaches. Candidate agents have included
aldose reductase inhibitors, AGE inhibitors, γ-linolenic acid, α-lipoic acid, vasodilators, nerve
growth factor, protein kinase Cβ inhibitors, and vascular endothelial growth factor. Notwith‐
standing a fruitful of knowledge and promising results in animals, none has translated into
definitive clinical success (Figure 1). While the notorious biochemical heterogeneity and
temporal non-uniformity of the disease processes among and even within individuals can take
much of the blame, investigators must take into serious consideration the marked differences
between animals and humans, which may substantially impair the application of experimental
data to clinical settings. The following sections of this chapter describe the clinical outcomes
of these pathogenetic treatments that put previous observations generated by animal studies
into perspective, and discuss the molecular, cellular and physiological roots underlying the
limited translation.
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Figure 1. Summary of Current Clinical Status of Anti-DPN Drugs Developed via Animal Models. Data are generated
from published experimental and clinical results to date on pharmacological agents (a total of 23 drugs) targeting
pathogenetic mechanisms listed in but not limited to section 2.

2. Pharmacological management of DPN via targeting pathogenetic
mechanisms: From animal models to clinical practice

2.1. Managing metabolic derangements

2.1.1. Polyol pathway and aldose reductase inhibitors

Polyol pathway arose as a plausible link of glucose dismetabolism to DPN in middle 1960s [43]
and has received much interest due to the strong evidence accumulating from experimental
diabetic rats [44]. Two consecutive oxidoreductive reactions essentially constitute the polyol
pathway: the rate-limiting NADPH-dependent aldose reductase (AR) reduces glucose to
sorbitol, which then becomes the substrate for NAD+-dependent sorbitol dehydrogenase
(SDH) and oxidized into fructose. Although AR has a high KM for glucose under the physio‐
logical condition, hyperglysolia (high intracellular glucose concentration) can excessively
activate this enzyme resulting in a nearly 4-fold induction in glucose disposal through this
pathway in human erythrocytes [45, 46]. Because these polyhydroxylated alcohols have little
transmembrane diffusibility, their retention within ocular lens fibrils of hyperglycemic rats or
rabbits was proposed to cause hyperosmotic perturbation of intracellular metabolites,
electrolytes and other osmolytes and subsequent hydropic cataractogenesis as observed. All
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of these were preventable and reversible by blocking AR [47-51]. In mice, transgenic overex‐
pression of the gene encoding human AR (hAR) in lens epithelia submitted these cataract-
resistant animals to sugar-induced polyol deposit and cataract formation, which became more
acute when coupled with genetic SDH deficiency [52]. Studies of type 1 and type 2 diabetes
models, including alloxan- and streptozotocin (STZ)-induced diabetic rats and leptin-deficient
ob/ob mice, soon confirmed a significant elevation of sorbitol and fructose in sciatic nerves,
dorsal root ganglia (DRGs) and spinal cord. This correlated with nerve/axonal conduction and
transport deficiencies, loss of intraepidermal nerve fibers, increased neural and endoneurial
oxidative-nitrosative stress as well as thermal hypoalgesia and tactile allodynia [43, 53-57]. A
“polyol hypothesis” derived from diabetic lens was thus propelled to the pathogenesis of DPN
[47]. In keeping with this notion, AR inhibitors that reduce nerve polyol levels showed
remarkable preservation of nerve structure and function in rats with either spontaneous or
chemical-induced diabetes [53, 58-60]. Systemic hAR overexpression combined with STZ-
induced diabetes led to an exacerbated but AR inhibitor-preventable peripheral nerve sorbitol
and fructose buildup, electroactivity suppression and myelinated fiber atrophy [61]. A similar
biochemical and electrophysiological but not morphological abnormality was obtained with
Schwann cell (SC)-targeted hAR transgenic mice, indicating that SC AR hyperactivity con‐
tributes to many, though not all pathological change of DPN [62]. Conversely, AR-knockout
mice showed no obvious sorbitol accumulation, conduction slowing, oxidative stress, or stress
kinase activation. Additionally, there were fewer loss of sural nerve fibers in AR-deficient mice
compared to wild-types (WTs) [63]. Since galactose has approximately 4 times higher affinity
for AR than glucose [64] and its reduction product galactitol is poorly disposed, galactose-rich
diet was used as a popular substitute for classical hyperglycemic models to exemplify and
examine the role of excessive polyalcohol formation in the genesis of diabetic cataract and
neuropathy [47]. Along the line with “aldo-osmotic theory”, galactosemic rodents that accrue
much greater level of this alternate AR metabolite also exhibit similar and sometimes more
severe electrophysiological, anatomical and biochemical defects that are seen diabetic models
[65-67]. However, galactosemia is a rare metabolic condition in humans (less than 0.002% of
the population) [68] and the galactosemic lens and nerves often manifest functional and
structural lesions resulting from acute and exaggerated galactitol intoxication that differ from
those of diabetic cataract and neuropathy [47, 69-71]. Hence, galactose-fed animals are neither
appropriate models for studying diabetic complications nor good replacements for character‐
izing the pathogenetic involvement of sorbitol pathway in these conditions. Other studies
further revealed that neither the morphometrical [59] nor functional indices in DPN correlate
with the tissue sorbitol content [72, 73]. Instead, nerve myo-inositol content is more closely
related to the neurophysiological function according to most reports. Depletion of cytoplasmic
myo-inositol, protein kinase C activation and tubulin/Na+/K+-ATPase complex formation were
proposed mechanisms that mediate polyol pathway overflow-induced impairment of Na+/K
+-ATPase ion pumping and subsequent reduction of nerve conduction velocity (NCV) [45, 55,
74]. In addition, augmented cofactor consumption by AR and SDH not only deprives gluta‐
thione reductase of NADPH and the capacity to regenerate reduced glutathione (GSH) [45]
but also contributes to an imbalanced redox state of NADH/NAD+ [75], thus promoting
oxidative and vascular injury [63, 76, 77].
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Overall, the above and numerous other observations obtained from the use of animal models
demonstrated consistently that increased polyol metabolism is a strong and readily reversible
component in the pathogenesis of diabetes-induced degenerative changes. However, data
from human studies indicated no convincing association between the elevation of glucose flux
via AR and neuropathic development. Whereas nerves from amputated limbs of diabetic
individuals contained significantly higher concentrations of sorbitol and fructose than non-
diabetics [78], an assessment of sural nerve biopsies by Dyck et al. found that over two thirds
of subjects with mild to severe clinical signs or symptoms of DPN had a normal polyol content
[79]. A later study by the same group was able to show an inverse relationship between nerve
sorbitol level and myelinated fiber density but not other neurological parameters [80].
Importantly, none of the nerve specimen analyses identified a decrease in myo-inositols in
relation to DPN, in contrast with the invariable observations of myo-inositol deficiency in
rodent models. Likewise, dietary supplementation of myo-inositol prevented and reversed a
variety of pathophysiological processes associated with early DPN in rats [81, 82] but failed to
normalize any peripheral nerve deterioration in patients with a recent diabetes onset [83, 84].
Nevertheless, the prominent success of AR inhibitors (ARIs) in preventing and reversing
experimental diabetic cataract and neuropathy [58, 60, 85-89] as well as the findings of AR gene
polymorphisms in diabetic microvascular complication [90-93] spurred a broad enthusiasm in
the clinical exploration of these ARIs. While the use of various ARIs almost always prevented
or reversed the lens opacification in diabetic rats [94], whether they can reduce the risk of
cataract formation in human diabetics remains unclear. This is because most experimentally
induced diabetic cataracts occur acutely and possess distinct morphological alterations similar
to the features seen with the rare juvenile form of diabetic cataract. Contrasting the juvenile
form, the majority of cataracts in diabetes has a dubious sorbitol increase and is represented
by the slow, refractive cataract change in diabetic adults [95]. Therefore, a direct evaluation of
the use of ARIs as an anti-cataract treatment is difficult in these animal models.

With regard to DPN, two earliest ARIs to be tested for their clinical efficacy in treating DPN
were Alrestatin and Sorbinil, which were the prototypic ARIs belonging to the chemical classes
of succinimide and spirohydantoins, respectively. Alrestatin produced minor subjective
benefit but no improvement on NCV or other objective examinations [96, 97]. While Sorbinil
moderately reduced the NCV decline and increased the density of regenerating myelinated
fibers in sural nerves [98, 99], its influence on pain and vagal function is questionable and no
meaningful therapeutic effects were experienced by patients with diabetic autonomic or
polyneuropathy [100-102]. Both Sorbinil and Alrestatin were withdrawn from the clinical
setting due to a high rate of toxicity involving photosensitive skin rash [1, 14]. Tolrestat, an
acetic acid compound, was able to halt the progression of subclinical peripheral and autonomic
deficits in a 52-week duration but had only a mild benefit on chronic symptomatic sensori‐
motor neuropathy [103-106]. The poor electrophysiological outcome and the incidence of fatal
hepatic necrosis eventually led to discontinuation of Tolrestat study [107]. In the cases of the
carboxylic acid class of ARIs, Ponalrestat manifested minimal tissue penetration and nerve
sorbitol reduction, in spite of its good pharmacokinetics and pharmacodynamics in diabetic
rats [108-110]. Although Zopolrestat and Zenarestat demonstrated a dose-dependent amelio‐
ration in NCV deficits, both of them failed to significantly improve the clinical endpoints
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without causing serious adverse reactions [111, 112]. Ranirestat, or As-3201, emerged as a
spirosuccinimide with a better drug profile, and was effective in increasing NCVs and sensory
function in a phase II trial of mild to moderate diabetic sensorimotor polyneuropathy [113].
The large-scale long-term Phase III trial of Ranirestat, however, did not show statistically
significant differences in sensory parameters compared to placebo at all doses tested [114].
Another spirohydantoin, Fidarestat, displayed increased tolerability and a similar degree of
improvement in subjective measures to that of Sorbinil [115]. After phase III evaluation, a
minor therapeutic value was concluded for Fidarestat in the literatures and its further
development was suspended for financial reasons [14, 116]. To date, Epalrestat is the only ARI
approved for clinical use in Japan. Despite its success in delaying nerve conduction and sensory
abnormalities in a randomized, open label, controlled multicenter trial among Japanese
patients [117], the efficacy of Epalrestat has not been confirmed in other populations and
appears only marginal in other documentations [1, 118]. In an attempt to identify a meaningful
treatment effect of ARIs for clinical DPN, Chalk et al conducted a meta-analysis for 13 trials of
ARIs involving 879 treated participants and 909 controls. This report found no difference in
the overall outcome (SMD -0.25, 95% CI -0.56 to 0.05), nerve conduction parameters or foot
ulcers between treatment and control group [119]. Similarly, a previous meta-analysis of
studies published before 1996 testing four different ARIs indicated that AR inhibition achieved
less than 1 m/s offsets in the decline of median and peroneal motor nerve conduction velocity
(MNCV) as the single true statistical change [120]. Given these inconclusive results and safety
issues, FDA has not approved any of the aforementioned agents for pharmacological inter‐
vention of DPN. Although a number of confounding factors, including unexpected placebo
effect and trial design, have been blamed for the disappointing clinical outcome, the lack of
clear sensory protection by ARIs puts the relevance of polyol pathway to DPN into question.

2.1.2. Advanced glycation and aminoguanidine

Animal and cell studies have well established the contribution of advanced glycation end
products (AGEs) to diabetic tissue damage. Nerves, retina and kidney do not depend on insulin
for glucose uptake and absorb this energy substrate as a direct function of the circulating
glucose concentration. Prolonged hyperglysolia cultivates the glucose autoxidation, decom‐
position of the Amadori products (fructosamines) following adduction of glucose to the amino
groups of lysine residues in the proteins, and fragmentation of glycolytic intermediates (such
as glyceraldehyde-3-phosphate and dihydroxyacetone phosphate). All of these gives rise to
glyoxal, 3-deoxyglucosone and methylglyoxal within the cells [121]. These highly reducing
dicarbonyls are AGE precursors or glycating agents that non-enzymatically react with
intracellular nucleotides, proteins, lipids, extracellular matrix and plasma components [122].
The last one is best reflected by the elevated serum glycosylated hemoglobin [HbA1c] level in
diabetes. AGE modification of growth factors [123], endocytotic proteins [124], cytoskeletal
actin and filaments [125, 126], interstitial matrix and adhesive molecules [127] as well as serum
albumin [128] were found in increased amounts in hyperglycemia-treated endothelial cells or
diabetic rats and these associated with increased vascular damage, endocytosis, cytoskeletal
disassembly, fluid filtration and albuminuria. In both human diabetics and STZ-rats, there was
enhanced AGE deposition in peripheral nerves compared to healthy controls as indicated by
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immunohistochemical assay [129, 130]. Particularly, pentosidine, a long-lived AGE marker,
was significantly elevated in the cytoskeletal protein extracts isolated from diabetic subjects
[130, 131]. Moreover, nerve specimens that harvest more AGEs also manifest lower myelinated
fiber density.

With respect to intervention, aminoguanidine was the earliest chemical characterized for its
anti-glycation activity. It is a hydrazine that preferably and competitively binds to AGE
precursors and prevents further irreversible protein glycation [132]. Later studies discovered
that besides inhibition of AGE formation, aminoguanidine can negatively act on inducible
nitric oxide synthase [133], amine oxidase [134] and reactive oxygen species [135]. Such
plethoric pharmacological properties suggest that aminoguanidine is not an appropriate
investigational tool for the role of advance glycation in diabetic pathology. However, the
continuous use of this compound in preclinical and clinical research was justified by its
promising therapeutic effects in rat model of diabetic nephropathy [136], retinopathy [136] and
neuropathy [137]. Whereas treating diabetic rats with various doses of aminoguanidine
prevented or ameliorated the decrease in nerve blood flow, slowing of NCVs, endoneurial
microvessel expansion and failure of sensory nerve regeneration [137-141], subcutaneous
injection of aminoguanidine did not improve any of the structural or functional abnormalities
in STZ-induced type I diabetic baboons [142]. Although the authors concluded that accumu‐
lation of AGEs is not likely an early mechanism of nerve damage in DPN, this discrepancy
may also reflect considerable species differences. Indeed, none of the large standardized
clinical trials proved a significant advantage of aminoguanidine over placebo in patients, who
had well-established diabetic nephropathy [143, 144]. Rather, aminoguanidine adversely
affected gastrointestinal, hepatic, respiratory and immune functions and finally led to
termination of the studies. For these reasons, no further evaluation of the efficacy of amino‐
guanidine in treating DPN was pursued.

2.2. Blocking signaling conducers

2.2.1. Protein kinase C and ruboxistaurin

Protein kinase C (PKC) is a ubiquitous serine/threonine kinase of numerous isoforms and
cellular functions. Observations in retinal and glomerular tissues from diabetic animals in
vitro and in vivo support the hypothesis that elevated glycolysis subsequent to hyperglycemia
dramatically raises 1,2-diacylglycerol (DAG) synthesis. In turn, DAG activates a majority of
PKC family members, including PKC-α and -β [45]. Enhanced expression and activity of PKC
isoforms, primarily PKC-β, pathologically affect vascular contractility and permeability
thereby compromising microcirculation and causing microvascular occlusion [14, 145]. These
deleterious consequences have been suggested by many to contribute to the vascular insults
and development of retinopathy, nephropathy and cardiovascular disorder in diabetes.
However, DAG and PKC upregulation is not a uniform pattern of change in every complica‐
tion-prone tissue. Unlike the findings in nonneural diabetic complications, nerve DAG levels
fall in diabetes and experimental rodent models have presented decreased, increased and
unaltered PKC activity [146-148]. Studies of mesangial and smooth muscle cells have linked
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PKC activation to diminished Na+/K+-ATPase function [149]. On the other hand, both PKC
antagonists and agonists normalized Na+/K+ pumping in peripheral nerves of diabetic animals,
suggesting a conflicting involvement of PKC enhancement and diminishment in the mecha‐
nism of Na+/K+-ATPase deficits [146]. It is thus intriguing how administration of a PKC-β
selective inhibitor, LY333531, restored sciatic nerve blood flow and NCVs in STZ-induced
diabetes [150, 151]. In addition, little data from humans, if any, has been obtained to support
a PKC change in diabetic peripheral nerves. These experimental results nonetheless implicated
PKC inhibition as a prospective avenue for anti-diabetic complication to investigators. The
same inhibitor LY333531 (by Eli Lily) with a generic name Ruboxistaurin entered clinical
evaluation as a treatment for DPN. In the trial of a small cohort of patients, Vinik et al reported
that a 32 mg/day Ruboxistaurin for 6 months elicited significant alleviation on skin microvas‐
cular blood flow, total sensory symptoms and quality of life [152]. Recently, a 18-week
treatment of Ruboxistaurin to a smaller subset of patients with type 2 diabetes proved
beneficial in improving total symptom score (NTSS-6) and quality of life [153]. Unfortunately,
this did not translate to a multinational, randomized, phase II, double-blind, placebo-control‐
led study consisting of 205 patients at an equal or double dosage of Ruboxistaurin [154].
Although Ruboxistaurin is well tolerated, Eli Lily withdrew its marketing authorization
application.

2.3. Increasing neurotrophic support

2.3.1. Growth factors and growth factor replacement therapy

Mammalian nervous system depends on a group of endogenous and heterogeneous biomo‐
lecules for proper physiological functions including growth, survival, differentiation and
regeneration. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and
neurotrophin-3 (NT-3) from the neurotrophin family are retrogradely transported to neuronal
cell bodies after secretion from organs innervated by nerve terminals. These three neurotro‐
phins regulate the activity of small nociceptive and sympathetic sensory fibers, medium size
sensory and motor fibers, large diameter sensorimotor and sympathetic neurons, respectively
[155]. Other frequently studied growth factors in this context are glial-derived neurotrophic
factor (GDNF), ciliary neurotrophic factor (CNTF) as well as insulin-like growth factor-1
(IGF-1), which are expressed by peripheral glia and/or neurons and manifest diverse trophic
effects on sensory, motor and autonomic nerves [156]. In experimental rodent models, the
protein and/or mRNA levels of NGF, BDNF and NT-3 have been observed to both upregulate
and downregulate in peripheral nerves, sensory glia and such target tissues as skin keratino‐
cytes, skeletal muscles and submandibular glands [157-164]. Despite these conflicting reports,
it is generally believed that the retrograde and anterograde axonal transport of these neuro‐
trophins are diminished in diabetic nerves [14, 165]. Similarly, IGF-1 and CNTF were found
to be reduced in various tissues examined in type 1 and type 2 diabetic rat models [166-168].
In STZ or diabetic BB/Wor rats, deficient NGF and IGF-1 level correlated with inadequate
macrophage recruitment and Wallerian degeneration after sciatic nerve injury [166, 169]. As
postulated by the authors and others, this may explain the perturbed nerve regeneration in
diabetes. Considering the highly dynamic nerve degeneration/regeneration in the initial stage
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of DPN, growth factor therapy early in disease progression may minimize the damage and aid
the axonal repair. To this end, abundant support has been produced using an array of
spontaneous, chemical or transgenic diabetic models administered recombinant growth
factors. Of note, NGF treatment restored neuropeptide level, C-fiber function and dermal
myelinated innervation, alleviated neuropathic pain and promoted injury repair [156].
Whereas BDNF and NT-3 elicited a preferential attenuation in the structural and functional
changes of large myelinated sensory and motor fibers [14], GDNF and IGF-1 showed a broad
preservation of somatic and autonomic nervous system [19, 156]. Moreover, CNTF adminis‐
tration prevented/rescued behavioral and electrophysiological dysfunction, and enhanced
sensory nerve resprouting in rats previously injected STZ [168, 170].

In humans, there is no prevailing trend of change in the serum level of NGF in type 2 cohorts
with symptomatic DPN [171, 172]. Another study revealed significantly weaker immunoreac‐
tivity of NGF in the lateral calf skin of a group of type 1 diabetics who presented with
asymptomatic, early length-dependent loss of nociception and axon reflex vasodilation [173].
However, analysis of the same site from a mixed population of type 1 and type 2 patients with
mild early neuropathy indicated that expression of NGF transcripts was higher compared to
healthy individuals [174]. Furthermore, epidermal NT-3 protein level markedly increased as
a function of the severity of diabetic polyneuropathy [175], whereas CNTF did not vary in
postmortem sciatic nerve autopsies between normal and DPN subjects [176]. Likewise, sural
nerve IGF-1 mRNA expression was not altered by different durations of DPN [177]. Differing
from the findings in animal nerves [161, 178], diabetic humans who developed neuropathy
express more trkA and trkC, specific receptors for NGF and NT-3, in the epidermis than those
without neuropathy [179]. Whether this reflects a tissue-specific response to diabetes awaits
further examination of human nerve biopsies. Clinical testing of recombinant human NGF
(rhNGF) perhaps witnessed one of the most spectacular failures in DPN trials. A phase II trial
on 250 patients for 6 months reported a robust amelioration on subjective and objective sensory
measurements, particularly the components related to small fiber sensory function [180]. When
proceeded to a large-scale, multicenter,1-year phase III trial, 1019 participants randomized to
receive either placebo or subcutaneous injection of rhNGF could not confirm a neuroprotective
effect [181]. Most importantly, severe painful side effects including injection site hyperalgesia
and diffuse myalgia significantly limited the tolerable dose to less than 1μg/kg, a dosage 1000
times lower than most of those used in experimental models. This contradicts preclinical data
from rodents in which application of NGF reduced pain thresholds [156, 182]. On the opposite
side, the observation that NGF evokes pain or hypersensitivity in both animals and humans
led to the conception that anti-NGF therapy may reduce neuropathic pain [183-185]. This
appeared to be the case in a variety of chronic inflammatory and cancer pain models in which
hyperalgesia and/or allodynia were effectively attenuated by antibodies blocking NGF or TrkA
[186-188]. In this regard, some proof-of-concept, positive results have been generated in a
recent phase III trial on osteoarthritis for a monoclonal antibody against NGF (tanezumab)
[189]. However, Pfizer had to temporarily suspend the studies involving DPN after disease
worsening and joint replacements occurred in the treatment group.
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Other than NGF, a double-blind, placebo-controlled study was also conducted for rhBDNF
but found no evidence of improvements on the primary endpoints associated with diabetic
sensory neuropathy [190]. Although rhGDNF and rhNT-3 were supposed to enter early clinical
assessments for DPN management, they have not yielded any clinical report except the
withdrawal of NT-3 from phase I study [156]. It is therefore apparent that the expected
outcomes were not met. For IGF-1 and CNTF, development of replacement therapy is also
hindered by their non-specific impacts on the central nervous system [191] and muscles [192],
respectively.

2.4. Modulating neurovascular function

2.4.1. Nerve blood flow and angiotensin-converting enzyme inhibitors

Multiple epidemiological analyses have previously identified that hypertension strongly
increases the occurrence and severity of DPN in population studies [1]. Spontaneously
hypertensive diabetic rats developed a more severe behavioral, physiological and structural
phenotype pertinent to clinical DPN [193]. Tissues of neuropathic diabetic patients manifest
augmented vasoconstrictive response and diminuted endoneurial blood flow [194]. In turn,
vascular deficiency and impaired peripheral nerve perfusion contribute to neural hypoxia and
ischemia, two of the well-recognized factors in the pathogenesis of microvascular complica‐
tions in diabetes. This provides a rationale for enhancing vasodilation as a treatment regimen
in counteracting diabetes-induced neurovascular stress. This assumption is backed by the
observations in experimental diabetes that motor and sensory conduction deficits were
normalized by several vasodilating agents with distinct pharmacological actions [195-197]. The
most well-established class of compounds in this scenario is angiotensin-converting enzyme
(ACE) inhibitors. ACE inhibitors stimulate endothelium-dependent release of nitric oxide and
vessel relaxation by antagonizing ACE-mediated formation of the potent vasoconstrictor
angiotensin II and deactivation of bradykinin, a strong vasodilator [198]. Combination of these
hypotensive effects by ACE inhibitors corrected reductions in nerve blood flow, capillary
densities and conduction measurements in STZ-induced diabetic or Zucker fatty rats [199-201].

Although ACE inhibitors are the first line treatment for nephropathy and cardiovascular
condition in diabetes [202], there is scarce evidence suggesting the same for diabetic neuro‐
pathy. To date, only one small double-blinded, randomized, placebo-controlled DPN clinical
study has been conducted on one ACE inhibitor, trandalapril [203]. In this study, normotensive
DPN patients treated with trandalapril over 1 year demonstrated significant improvements in
electrophysiological function but not QST, neuropathy symptom/deficit score or autonomic
function. A major disappointment came from the Appropriate Blood Pressure Control in
Diabetes (ABCD) trial. This prospective study followed 470 type 2 diabetic patients for 5.3
years and found neither moderate nor intensive blood pressure control using nisoldipine
(Ca2+ blocker) or enalapril (ACE inhibitor) was effective in modulating the progression of
diabetic triopathy (neuropathy, nephropathy, retinopathy) [204]. Furthermore, there were no
overall differential outcomes between interventions. This result along with the fact that clinical
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DPN develops and exacerbates in many patients that regularly take the ACE inhibitor casts
reasonable doubt on the extent to which ACE intervention is useful in DPN management [205].

2.4.2. Vascular supply and vascular endothelial growth factor therapy

Another approach to address vascular insufficiency is to promote the angiogenesis via
expression of vascular endothelial growth factor (VEGF), a cytokine primarily mitogenic for
vascular endothelial cells. Overexpression of VEGF through gene transfer stimulated vascu‐
larization in both animals [206, 207] and humans [208, 209]. Diabetes was shown to compromise
the expression of this growth factor in the skin of patients who also had loss of intraepidermal
nerve fiber density (IENFD) [210]. In comparison, most evidence derived from diabetic rodents
contradicts with this finding and indicates an upregulation of VEGF in diabetic tissues [211]
thatcan be normalized by insulin or NGF infusion [212]. If these observations are true, this
could mean VEGF is differentially involved in the pathogenetic processes underlying human
and rodent DPN. It is paradoxical, however, that preliminary studies using the same models
in which pathological VEGF induction by diabetes was seen also generated data favoring
VEGF-enhancing gene therapy in treating DPN. For example, subcutaneous inoculation of
herpes simplex virus carrying VEGF-transgene in STZ rats prevented multiple characteristics
of experimental DPN, particularly those associated with dorsal sensory function [213]. In a
separate report, intramuscular delivery of plasmid DNA encoding VEGF-1 or VEGF-2
completely reversed attenuation of nerve blood flow, slowing of NCV, destruction of vasa
nervorum, and dysfunction of small and large fibers in STZ rats [214]. The same study was
also able to reproduce the results in rabbits with alloxan-induced diabetes. Two randomized
controlled trials (RCTs) have been undertaken to translate this experimental approach to
clinical usage. The first trial tested intramuscular VEGF-1 or VEGF-2 gene transfer in 50 DPN
patients with presenting symptoms of pain and/or numbness, and achieved an improvement
on symptom score, regions of sensory loss and visual analog pain scale over 6-month duration
[215]. Other primary and secondary endpoints including quantitative sensory and electro‐
physiological testing were not met. In addition, there were significantly more severe adverse
events in gene therapy group compared to placebo group. Among the listed events, hemor‐
rhage, diabetic retinopathy and peripheral edema had been previously brought up as concerns
but apparently were not properly addressed during preclinical animal evaluation [216]. The
second trial was reported in a published meeting presentation by Sangamo BioSciences, which
announced the phase I/II results for a series of injectable plasmids encoding VEGF gene-
targeting zinc-finger DNA-binding transcription factor with proven-efficacy in experimental
models [217]. Of these, SB-509 was praised to be well-tolerated with a most positive outcome
in sensory nerve conduction velocity (SNCV), IENFD and neuropathic impairment score.
However, the treatment arm as a whole did not obtain a convincing benefit versus placebo to
make this a successful trial. With an argument by Sangamo that a carefully chosen cohort may
be more sensitive to SB-509, a latest phase IIb study was set to recruit 170 patients with
moderate or severe DPN. Despite broad outcome measures and rigorous analysis, the trial was
concluded as being unequivocally disappointing which led to the eventual cessation of this
Sangamo’s lead program [218].
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2.4.3. Lipid metabolism and γ-linolenic acid

γ-Linolenic acid is an important precursor for arachidonic acid. The latter produces the potent
vasodilator and platelet inhibitor prostacyclin or prostaglandin I2 (PGI2) [219], lack of which
can increase the risk of developing thrombosis in diabetic vessels [24] and microvascular
diseases. γ-Linolenic acid is primarily synthesized from the dietary ω-6 essential fatty acid
linolenic acid, but this reaction is impaired in STZ or alloxan-treated rats [220, 221]. In human
type 1 diabetic patients, disturbed fatty acid metabolism has also been inferred from the serum
lipid profile [222, 223]. Since γ-linolenic acid also forms the neuronal phospholipids [224,
225], direct supplementation of this polyunsaturated fatty acid can theoretically treat DPN by
enhancing both microcirculation and membranous structures in the nervous system, such as
the myelin. In keeping with this hypothesis, administration of γ-linolenic acid prevents or
reverses the development of experimental DPN in rodents [226-229]. Clinical assessments of
the evening primrose oil, the herbal source of γ-linolenic acid, took place in the United
Kingdom and suggested an efficacious treatment effect on human DPN [230, 231]. However,
some negative outcomes have been obtained for γ-linolenic acid in other clinical conditions
by independent groups [232, 233] and the British General Medical Counsel filed a report that
the efficacy of evening primrose oil in diabetics claimed by one company-funded trial was
falsified [234]. Some issues related to marketing fraud and publication suppression by the drug
company attempting to develop evening primrose oil for clinical use have also been raised
[235, 236]. Due to these controversies, UK’s Medicines Control Agency withdrew the drug’s
product license. As of today, no further evidence has been acquired to confirm the validity of
γ-linolenic acid as an anti-DPN medicine.

2.5. Counteracting oxidative stress

2.5.1. Reactive oxygen species and α-lipoic acid

After years of investigations through experimental approaches which harvested knowledge
on a plethora of biochemical pathways linking hyperglycemic stress to nerve injury, a general
consensus has been reached by the DPN research community that all these complex molecular
and cellular events converge on and interact with one universal consequence, oxidative stress
[45, 237]. Direct and indirect evidence of oxidative stress in tissue sites of diabetic complications
is overwhelming in animals with induced diabetes. In general, hyperglycemia induces a
composite oxidative insult to neurons, SCs as well as vasa nervorum through: 1) accelerated
free radicals production; 2) increased oxidation and nitration of proteins, lipids and nucleic
acids; and 3) deprivation of antioxidant defense system [238]. Many excellent reviews have
illustrated and discussed the pathophysiological consequences of redox imbalance in the
peripheral nervous system (PNS) [45, 239] therefore an elaborated description will not be
provided here. Briefly, increased intracellular glucose metabolism through the classical
glycolytic tricarboxylic acid cycle leads to mitochondrial nutrient overload and subsequently
uncontrolled superoxide (O2

−) production by its oxidative respiratory machinery. Excessive
generation of superoxide in conjunction with polyol synthesis exhausts the detoxificating
agents including superoxide dismutase and GSH. This eventually gives rise to accumulation
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of other reactive oxygen (ROS) and nitrogen species (RNS) such as hydrogen peroxide (H2O2),
hydroxyl radicals (OH•) and peroxynitrite (NO•). Other hyperglycemia-initiated events such
as AGE formation and NGF deficiency have also been suggested to fuel the ROS generation
in various compartments. These highly reactive free radicals can non-specifically oxidize and
nitrosylate cellular/extracellular biomolecules and undermine organellar function. Particular‐
ly, increased protein nitration, lipid peroxidation products and mitochondria dysfunction are
predominant phenomena in DRGs and sciatic nerves in diabetic animals [240-242]. Compared
to the clear evidence of oxidative damage in experimental DPN, expression of the correspond‐
ent biomarkers indicating oxidative stress in human tissues is rather vague [239, 243]. Some
studies even suggested a reduced free radical reaction in diabetic patients versus normal
control [244, 245]. Further, despite a strong rationale and the promise of substantial neuro‐
protection by anti-oxidant treatments in rodent diabetics [246-249], this anti-oxidative ap‐
proach is not spared from the irreproducibility of the results obtained from basic research in
clinical practice.

Among a number of anti-oxidants that corrected experimental DPN, α-lipoic acid (ALA) has
gone the furthest into clinical use, while the others have proven largely ineffective [14, 250].
ALA or thioctic acid is naturally synthesized in mitochondria and has a powerful antioxidant
capacity because of its dual ability to scavenge ROS/transition metals and regenerate other
endogenous antioxidants. Approximately 7 double-masked multicenter RCTs, including the
series of ALADIN, SYDNEY and NATHAN, testing the efficacy of ALA in treating sympto‐
matic DPN have been completed in Europe [251]. Of these, a general benefit on sensory
symptoms and deficits was extrapolated by a meta-analysis incorporating 4 trials (ALADIN
I, ALADIN III, SYDNEY, NATHAN II) that treated subjects with 600 mg/day ALA via
intravenous infusion for 3 weeks [252]. However, there is an overall mixed bag of results and
several therapeutically important indices including symptoms score, nerve conduction and
QST were not consistently ameliorated in these studies [205, 252, 253]. Notably, some asserted
improvement fell below the clinically meaningful threshold of 30% when adjusted to placebo
control [254]. It is also discouraging that trials in which patients received oral dosing of ALA
presented only marginal benefit; this significantly precludes the oral application of ALA.
Although ALA has been marketed in Germany for treating DPN and is available as nutritional
supplement in the US, current existing evidence suggests that ALA at best only retards the
neuropathic progression in diabetes.

3. Scientific rationale for the limited translational success: What have we
learned?

Based on the records published by National Institute of Neurological Disorders and Stroke
(NINDS), a main source of DPN research, about 16,488 projects were funded at the expense of
over $8 billion for the fiscal years of 2008 through 2012. Of these projects, an estimated 72,200
animals were used annually to understand basic physiology and disease pathology as well as
to evaluate potential drugs [255]. As discussed above, however, the usefulness of these
pharmaceutical agents developed through such a pipeline in preventing or reducing neuronal
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damage has been equivocal and usually halted at human trials due to toxicity, lack of efficacy
or both (Figure 1). Clearly, the pharmacological translation from our decades of experimental
modeling to clinical practice with regard to DPN has thus far not even close to satisfactory.
Undoubtedly, the flawed design of some clinical trials has led to the inadequate evaluation of
certain candidate compounds and for a thorough discussion on this specific topic the readers
are referred elsewhere [256]. In this section, we focus on discussing some of the fundamental
species differences that render a direct translation unrealistic.

3.1. Failure to predict toxic effects

Whereas a majority of the drugs investigated during preclinical testing executed experimen‐
tally desired endpoints without revealing significant toxicity, more than half that entered
clinical evaluation for treating DPN were withdrawn as a consequence of moderate to severe
adverse events even at a much lower dose. Generally, using other species as surrogates for
human population inherently encumbers the accurate prediction of toxic reactions for several
reasons.

First of all, it is easy to dismiss drug-induced non-specific effects in animals—especially for
laboratory rodents who do not share the same size, anatomy and physical activity with
humans. Events such as cardiac attack are often overlooked without a complex and careful
examination. A case in point is the anti-diabetic drug Avandia for which the market approval
has been a center of dispute. Avandia’s active ingredient rosiglitazone promotes insulin
sensitivity by activating peroxisome proliferator-activated receptors (PPARs) and was claimed
by its maker GlaxoSmithKline to be safe in the preclinical report. Some even went further to
advocate the favorable application of rosiglitazone to heart conditions based on its positive
influence on cardiovascular biomarkers in rodent studies [257, 258]. Only after accumulating
incidents of congestive heart failure among patients receiving Avandia was presented to the
FDA, did it begin to spur wide concerns and active investigations of the serious cardiotoxicity
by Avandia in humans and animals [259].

Second, some physiological and behavioral phenotypes observable in humans are impossible
for animals to express. In this aspect, photosensitive skin rash and pain serve as two good
examples of non-translatable side effects. Rodent skin differs from that of humans in that it
has a thinner and hairier epidermis and distinct DNA repair abilities [260]. Therefore, most
rodent stains used in diabetes modeling provide poor estimates for the probability of cutane‐
ous hypersensitivity reactions to pharmacological treatments [261]. Although skin engraft‐
ment onto nude mice has been attempted to circumvent this issue [260], mice with
immunodeficiency do not constitute an appropriate background for studying diabetes.
Another predicament is to assess pain in rodents. The reason for this is simple: these animals
cannot tell us when, where or even whether they are experiencing pain, leaving us to read.
Since there is not any specific type of behavior to which painful reaction can be unequivocally
associated, this often leads to underestimation of painful side effects during preclinical drug
screening (e.g. rhNGF).

The third problem is that animals and humans have different pharmacokinetic and toxicologi‐
cal responses. For instance, troglitazone (Rezulin), another anti-hyperglycemic PPAR agonist,
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was withdrawn after inducing idiosyncratic liver failure in patients but a similar hepatotoxici‐
ty could not be reproduced in animal models [262, 263]. Even in organ systems that were
previously defined as having an overall high rate of interspecies toxicity concordance, unanti‐
cipated drug toxicity can still occur. This was the case for trastuzumab (Herceptin), a human‐
ized monoclonal antibody that treats advanced breast carcinoma by binding and blocking human
epidermal growth factor receptor 2 (HER2). Both preclinical and on-going toxicological studies
in rhesus monkeys and rodents indicated no evidence of cardiac dysfunction [264]. However,
trastuzumab administration to  patients  during clinical  trials  caused frequent  and severe
cardiomyopathy [265]. As discussed in a published scientific document of Herceptin toxicity by
the European Medicines Agency, it is also unsuitable to assess the cytotoxicity of this antibody
that specifically recognizes a single human protein in nonhuman species which have a distinct
molecular and immunogenic environment [264]. In addition to the inaccuracies, disparities in
pharmacokinetics  underpin  some of  the  extreme species  differences.  MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine)-induced  neurotoxicity  is  a  classic  example.  MPTP  be‐
comes poisonous to dopaminergic neurons once metabolized to MPP+ by the enzyme monoamine
oxidase-B (MAO-B) and elicits permanent Parkinson-like symptoms in human subjects [266]. In
sharp contrast, MPTP is barely psychoactive in rats since they produce minimal MPP+ and only
mild damage to mouse brains due to much faster clearance of MPP+ compared to primates [267].
By the same token, 350 mg of aspirin can be eliminated by half from human circulation in about
3 hours but retained in feline plasma for 37.5 hours, which is essentially lethal to these animals
[268]. The argument can be finally strengthened by the work of two independent groups, who
compared bioavailability between primates, rodents and dogs for various drugs and both
demonstrated that no correlation exists between animal and human data [269]. The matter of
drug-induced non-specific  effects  and uniquely human phenotypes  may theoretically  be
resolved via rigorous pathological evaluation and better experimental method. By compari‐
son, the pharmacokinetic and toxicological data highlights profound interspecies barriers and
may not succumb to current technical manipulation. Considering some of the drugs were
withdrawn when unexpected toxicological outcomes occur in only 1-2% of the population,
relying on laboratory models to predict drug safety certainly puts us in a dilemma with very
little medical and ethical risks from which our society can suffer (Figure 1).

3.2. Failure to recapitulate human neuropathologies

Genetic or chemical-induced diabetic rats or mice have been a major tool for preclinical
pharmacological evaluation of potential DPN treatments. Yet, they do not faithfully repro‐
duce many neuropathological manifestations in human diabetics. The difficulty of such begins
with the fact that it is not possible to obtain in rodents a qualitative and quantitative expres‐
sion of the clinical symptoms that are frequently presented in neuropathic diabetic patients,
including  spontaneous  pain  of  different  characteristics  (e.g.  prickling,  tingling,  burning,
squeezing),  paresthesia and numbness.  As symptomatic changes constitute an important
parameter of therapeutic outcome, this may well underlie the failure of some aforementioned
drugs  in  clinical  trials  despite  their  good  performance  in  experimental  tests  measuring
behavioral responses of animals to external stimuli (Table 1). Development of nerve dysfunc‐
tion in diabetic rodents also does not follow the common natural history of human DPN. As
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described  earlier,  sensory  neuropathy  in  humans  typically  adopts  a  length-dependent,
“stocking-glove” loss of sensation that slowly progresses from distal to proximal. Such a pattern
was never functionally recapitulated in the commonly used type 1 and type 2 diabetic animal
models, including STZ-injected rats, Zucker diabetic fatty (ZDF) rats and db/db mice. Besides
the lack of anatomical resemblance, the changes in disease severity are often missing in these
models. For example, although the majority of diabetic rodent models developed thermal
hypoalgesia with long durations of diabetes as revealed by the sensory assay correspondent to
that of QSTs in humans, there is no agreement between different studies in a consistent trend
of progressive decline in thermal pain perception [270-272], a well-known phenomenon in
patients. Alterations in thermal sensation in the tails of diabetic rodents varied upon studies
and species  used [273-275]  and several  groups have documented increased temperature
perception after prolonged diabetes [276, 277], thus falsifying the relevance of tail flick test to
human conditions. More importantly, foot ulcers that occur as a late complication to 15% of all
individuals  with  diabetes  [14]  do  not  spontaneously  develop in  hyperglycemic  rodents.
Superimposed injury by experimental procedure in the foot pads of diabetic rats or mice may
lend certain insight in the impaired wound healing in diabetes [278] but is not reflective of the
chronic, accumulating pathological changes in diabetic feet of human counterparts. Another
salient feature of human DPN that has not been described in animals is the predominant sensory
and autonomic nerve damage versus minimal involvement of motor fibers [279]. This should
elicit particular caution as the selective susceptibility is critical to our true understanding of the
etiopathogenesis underlying distal sensorimotor polyneuropathy in diabetes. In addition to the
lack of specificity, most animal models studied only cover a narrow spectrum of clinical DPN
and have not successfully duplicated syndromes including proximal motor neuropathy and
focal lesions [279].

Morphologically, fiber atrophy and axonal loss exist in STZ-rats and other diabetic rodents but
are much milder compared to the marked degeneration and loss of myelinated and unmyeli‐
nated nerves readily observed in human specimens [280]. Of significant note, rodents are
notoriously resistant to developing some of the histological hallmarks seen in diabetic patients,
such as segmental and paranodal demyelination [44]. There are sporadic reports of demyeli‐
nation in STZ and genetically diabetic Bio-Breeding (BB) rats after 8-12 months of diabetes [58,
281-283]. However, this is apparently related to a different microvascular pathology as
morphometric analysis of sural and tibial vasa nervorum in these rats revealed dilated lumina,
flattening of endothelial cells and microvessel walls [284], contrasting with the basement
membrane thickening, endothelial hyperplagia and narrowing of endoneurial lumen in
human diabetics [285, 286]. Similarly, the simultaneous presence of degenerating and regen‐
erating fibers that is characteristic of early DPN has not been clearly demonstrated in these
animals [44]. Since such dynamic nerve degeneration/regeneration signifies an active state of
nerve repair and is most likely to be amenable to therapeutic intervention, absence of this
property makes rodent models a poor tool in both deciphering disease pathogenesis and
designing treatment approaches. Given that our ability to devise a cure for human DPN
depends ultimately on our successful understanding and reduction of its various functional
and structural indexes, failure of most animal models to replicate these human neuropathol‐
ogies with high fidelity renders this task difficult at best.
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Species/ 

Models 

 

Characteristics 

Humans 

Induced Spontaneous 
Transgenic/ 

Knockout mice 
STZ-rats/mice BB/Wor-rats NOD mice ZDF rats ob/ob mice db/db mice 

Disease Genesis multigenic monogenic 

Onset chronic (years to decades) acute (3 days) 
moderate 

(2-5 months) 

unpredictable 

(4-30 weeks) 
mild (1-2 months) various, 

superimposed by 

other diabetogenic 

protocols 

Progression slow, chronic (years to decades) Rapid (6-20 weeks) Slow (11-68 weeks) 

Glycemic Profile moderate hyperglycemia severe hyperglycemia 
severe/fatal hyperglycemia, 

requires insulin for life preservation 

severe 

hyperglycemia 

normo- to mild 

hyper-glycemia 

moderate 

hyperglycemia 

Symptoms 

varying degree and properties of pain, 

paresthesia, numbness, insensitivity, 

absent reflexes, muscle weakness 

no clear definition/presentation of spontaneous pain or other symptoms;  

thermal/mechanical hyperalgesia and tactile allodynia are often used as indication of increased pain perception however cannot be differentiated from increased sensory 

function 

Sensory Function 

thermal hypoalgesia, decreased 

vibration perception threshold, loss of 

Achilles reflex 

mechanical hyperalgesia, 

thermal 

hyperalgesia/hypoalgesia, 

mechanical/tactile allodynia 

thermal 

hyperalgesia 

thermal 

hyperalgesia/ 

hypoalgesia, tactile 

allodynia 

thermal/ 

mechanical 

hyperalgesia 

thermal/ 

mechanical 

hypoalgesia 

thermal 

hypoalgesia 
various 

Nerve Conduction 
progressive decrease at a rate of 0.5m/s 

per year 
>10m/s reduction within 6-20 weeks 

Morphology 

loss of unmyelinated and myelinated 

fibers, evidence of axonal degeneration 

and regeneration, segmental and 

paranodal demyelination, distal 

axonotrophy; 

basement membrane thickening, 

narrowing of endoneuriallumina 

distal axonotrophy, myelinated fiber atrophy, few 

axonal loss, demyelination only after long-term 

hyperglycemia; 

basement membrane flattening, widening of 

microvascularlumina 

axonal atrophy and 

degeneration 
not characterized 

slight fiber atrophy and loss; 

basement membrane thickening, 

narrowing of endoneuriallumina 

various 

Nerve Biochemistry 

sorbitol, fructose content not altered or 

slightly elevated, much lower 

compared to rodents at both healthy 

and diabetic states; 

myo-inositol level unchanged 

sorbitol, fructose level highly increased by diabetes; 

myo-inositol level markedly reduced 
unclear 

sorbitol, fructose level normal or 

moderately elevated; 

myo-inositol level unchanged 

AR-overexpressing 

mice exhibit 

exaggerated increase 

of polyol pathway 

metabolites and 

reduction of myo-

inositol 

Overall Limitation of the Model phenotypic exaggeration and acceleration driven mostly by severe hyperglycemia 
representing early or prediabetesrather 

than overt diabetes 

amplifying specific 

components, 

applicable to rare 

cases 

A
bbreviations: N

O
D

=non-obese diabetic, A
R=aldose reductase
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3.3. Overrepresentation of pathogenetic pathways

STZ is a glucose analog of selective toxicity to pancreatic β-cells and induces insulin-deficiency
and hyperglycemia mimicking that in human type 1 diabetes mellitus. Injection of this
chemical provides a convenient and affordable tool in inducing robust hyperglycemia in
animals with good control over disease onset and duration. Therefore, STZ-rats have been
favored by researchers during preclinical drug assessments for diabetic complications [280].
However, STZ typically produces a rather immediate, severe hypoinsulinemia and elevation
of blood glucose, whereas the development of hyperglycemia in most human conditions is
slow and modest [287]. The contrariety manifests stably in the serum HbA1c levels. While the
non-diabetic range (~4-5.6%) is similar, a single administration of STZ to Wistar rats can
increase the HbA1c to above 12% in 4-5 weeks [288, 289], which indicates a very poor glucose
control that is considered rare in the clinic setting with anti-diabetic care. In fact, less than 15%
of patients may have an HbA1c level exceeding 9% by sample estimation [290]. Such extreme
hyperglycemia in STZ-treated rats could give rise to exaggerated glucose accumulation and
metabolic derangements that would not be commonly present in human diabetics. Indeed, the
concentrations of sorbitol and fructose per unit weight of nerve tissue in STZ diabetic rats is
consistently increased and dramatically higher in comparison with human diabetics, who on
average also do not uniformly show upregulation of these glucose metabolites via polyol
pathway [44, 55, 79]. Of interesting note, under normal physiological conditions the contents
of nerve sorbitol in rodents are almost 10-fold higher than those in humans, suggesting some
species difference in the relative involvement of AR in glucose metabolism during both normo-
and hyperglycemia. Observations of polyol pathway utilization in different species and cell
types vary widely; the total glucose utilization through polyol pathway is one third in rabbit
ocular lenses and only one tenth in human erythrocytes in response to high glucose stress [45,
291]. Consistent with an inverse association between increased polyol flux and electrophysio‐
logical dysfunction, diabetic rodents frequently exhibit 10 m/s or more reduction in NCV
within the typical 6-20 week experimental duration [271, 292-294]. By contrast, the deteriora‐
tion of NCV in human patients gradually takes place and has an average loss of 0.5 m/s per
year [1] (Table 1). It is also suspicious that the profound and precipitated NCV deceleration in
STZ-rodents occur without apparent histopathological changes, which can be a prominent
feature in diabetic neuropathic patients at early stage. Therefore, enhanced AR activity might
contribute differently or less significantly to the pathogenesis of DPN in humans than rodents.
This could explain why AR inhibitors, and by extension, many other pathogenetically targeted
inhibitors afford potent neuroprotection in experimental studies but only marginal effects in
clinical trials.

Another criticism is that most STZ models were rendered diabetic at puberty since adminis‐
tering STZ to rodents after sexual maturation cannot always produce peripheral nerve
abnormalities [280, 295]. Unlike matured nerves that displayed little change in response to
diabetic insults, immature peripheral nerves readily manifest hyperglycemia-induced
morphological and electrophysiological deficits within an even shorter duration [295].
However, such a phenotype bears little relevance to 90% of clinical conditions, in which
diabetes-induced nerve damage has an adult onset and slow time course.
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3.4. Other physical and environmental factors

Humans certainly share considerable biological similarities with other mammals. In the
nervous system, these include some of the nociceptive responses and higher cognitive
activities. At the same time, no one would suggest that humans and animals are the same—
they obviously differ in many physiological and behavioral aspects. The question is: can we
obtain effective therapeutic applicability after evolution has well separated our species from
others? In order to answer this, it is necessary to carefully examine these differences and their
impacts on the pharmacokinetic and pharmacological extrapolation. As delineating every
single molecular, cellular and phenotypic difference is a laborious task, we will highlight only
those relevant to our discussion of DPN. When comparing humans with the conventionally
used experimental animals, namely rats and mice, the most conspicuous difference is ana‐
tomical. With particular respect to neuroanatomy, a peripheral axon in humans can reach as
long as one meter [296] whereas the maximal length of the axons innervating the hind limb is
five centimeters in mice and twelve centimeters in rats. This short length makes it impossible
to study in rodents the prominent length dependency and dying-back feature of peripheral
nerve dysfunction that characterizes human DPN. Even if size were an issue and macro-
structure appears similar, there might still be striking differences in the micro-structure within
the tissue or organ. This is the case for insulin-secreting islets. For decades the cytoarchitecture
of human islets was assumed to be just like those in rodents with a clear anatomical subdivision
of β-cells and other cell types. By using confocal microscopy and multi-fluorescent labeling, it
was finally uncovered that human islets have not only a substantially lower percentage of β-
cell population, but also a mixed—rather than compartmentalized—organization of the
different cell types [297]. This cellular arrangement was demonstrated to directly alter the
functional performance of human islets as opposed to rodent islets. Although it is not known
whether such profound disparities in cell composition and association also exist in the PNS,
it might as well be anticipated considering the many sophisticated sensory and motor activities
that are unique to humans.

Considerable species difference also manifest at a molecular level. The chemical structure and
signaling profile of a molecule may not always be conserved throughout the evolution. Such
difference, although small, can account for a significant translational limitation for pharma‐
cological treatments targeted at a specific biomolecule. A good explanation is the case of
trastuzumab. As mentioned earlier, trastuzumab was specifically designed to immuno-
antagonize HER2, thereby inhibiting cancer cell growth. However, this drug could not be
adequately assessed in rodents or primates because of the inability of this human protein-
targeting antibody to recognize the HER2 homologues expressed in these nonhuman species
[264]. Despite the successful employment of nude mice for the preclinical evaluation of
trastuzumab, a comprehensive pharmacological and pharmacokinetic profile was not ob‐
tained for this humanized antibody and it resulted in unpredicted toxicity in patients. While
the molecular difference might not be as serious of a problem for rhNGF and rhVEGF, critical
retrospective examination into this aspect may lend some insight into the failure of these gene
therapies in DPN trials. At least 80% of human genes have a counterpart in the mouse and rat
genome. However, temporal and spatial expression of these genes can vary remarkably
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between humans and rodents, in terms of both extent and isoform specificity. The first is
evident from the differential level of MAO-B expression in humans and rats which resulted in
distinct susceptibility of these two species to MPTP-induced neurotoxicity [266]. The second
category involves protein families comprising multiple isoforms owing to different promoter
usage and alternative gene splicing. For instance, the enzyme PKC has at least 12 different
subtypes, of which, PKC-α is predominantly expressed in human hearts and PKC-ε in rodents
[298]. Since activation of PKC-α and PKC-ε are differentially regulated, species-specific PKC
inhibitors will need to be developed in order to efficiently block the pathogenic action of this
kinase in cardiomyopathy, especially when a non-selective inhibition of PKC function is
unwanted or even detrimental. Given that the efficacy of ruboxistaurin in treating DPN was
also based on data from rat diabetic models [150, 151], it is imperative to speculate that the
unsatisfactory results of ruboxistaurin in patients is due at least in part to a relatively less
important role of PKC-β in the pathological development of diabetic human nerves. The last
type of molecular difference is that the components along a particular signaling axis may be
preferentially vulnerable to pathological alteration in different species. This possibility has
been largely ignored but could underpin a major limitation in current translational research.
One typical example is that much has been learned regarding the anti-hyperphagic effects of
leptin from ob/ob mice, which also led to the exciting finding that administration of this
hormone can successfully suppress weight gain [299]. Nonetheless, this offered little treatment
benefit for the majority of obese people (99.95%) who have impaired signaling downstream of
leptin instead of leptin deficiency as observed in ob/ob mice [300]. Some may argue that these
issues can be overcome by creating genetically engineered or “humanized” mice in which a
mouse gene is substituted by the human version. However, transgenic or knockout mice can
be afflicted with developmental deficits and alterations which are inappropriate for modeling
a chronic disease that appears in the later life time, such as type 2 diabetes and its complications.
Moreover, we do not know whether a genetically introduced human protein—if it is different
enough from the murine orthologue that a transgene is necessary—faithfully maintains the
same expression and interaction properties in mouse system as it would in humans.

Ultimately, a fundamental problem associated with resorting to rodents in DPN research is to
study a human disorder that takes decades to develop and progress in organisms with a
maximum lifespan of 2-3 years. The longest duration of experimental diabetes in a rodent
model was documented by Ras et al., who observed leptin-deficient db/db mice for 17 months
and reported only mild pathological changes in the peripheral nerve fibers [301]. It is thus fair
to say that a full clinical spectrum of the maturity-onset DPN likely requires a length of time
exceeding the longevity of rodents to present and diabetic rodent models at best only help
illustrate the very early aspects of the entire disease syndrome. Since none of the early
pathogenetic pathways revealed in diabetic rodents will contribute to DPN in a quantitatively
and temporally uniform fashion throughout the prolonged natural history of this disease, it is
not surprising that a handful of inhibitors developed against these processes have not benefited
patients with relatively long-standing neuropathy. As a matter of fact, any agents targeting
single biochemical insults would be too little too late to treat a chronic neurological disorder
with established nerve damage and pathogenetic heterogeneity (Figure 2). In DPN, such
heterogeneity is the consequence of a complex interplay between genetic predisposition,
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physical characteristics, nutritional and other environmental factors. On the contrary, experi‐
mental rodents are maintained at a homogeneous genetic background. Genetic homogeneity
becomes particularly apparent with the inbred strains and genetically engineered mice,
making them more of a tool to elucidate the contribution of a specific component to disease
development and less of a tool for an accurate prediction of the likelihood that a treatment will
be effective for a general population. Apart from these internal factors, laboratory caged
animals have an uniform dietary constitution, life cycle and environmental contact, therefore
would not be exposed to the majority of the external risk factors otherwise incurred by
individual patients, such as smoking and alcohol consumption [10]. Finally, humans have
some unique behaviors that assume an integral part of DPN-associated complications but
cannot be adopted by animals. This is perhaps the simplest reason why diabetic rodents are
immune to gangrenous foot ulceration as upright walking has not evolved in these species.

Figure 2. Schematic Demonstration of the Progressive Pathogenetic and Pathophysiological Changes in DPN.
Components highlighted in red marks changes that are often over-exaggerated in frequently used rodent models,
whereas those in green mark physiological and morphological changes not replicated or misreplicated. Darker color in
the triangle box indicates less likely the pathologies are to be adequately modeled in rodents. Double-headed arrows
indicate interaction. PARP: poly(ADP-ribose) polymerase, MAPK: mitogen-activated protein kinase, ER: endoplastic re‐
ticulum.

4. Conclusion and outlook

Needless to say, DPN has been a significant source of diabetes-induced mortality and mor‐
bidity that strike individuals, families and society with a staggering health and economic cost.
There is little doubt that the need for effective DPN management is currently unmet and better
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therapeutic regimens ought to be sought. The invasive nature of present methods of biochem‐
ical, structural and functional measurements dictates that systemic and longitudinal assess‐
ments are not feasible in humans. To address this, miscellaneous rodent models have been
created and used as substitutes for diabetic patients for the purpose of uncovering the
pathogenetic mechanisms and testing potential pharmacological treatments. However, these
conventional approaches have so far failed to yield a successful therapeutic translation.
Further, animal surrogates are afflicted with species differences in genotype and behavior,
nerve structure and metabolism, duration of diabetes, and tissue vulnerability, which allow
limited transferability of animal results into clinical settings. It is important to point out that
the present review does not argue against the ability of animal models to shed light on basic
molecular, cellular and physiological processes that are shared among species. Undoubtedly,
animal models of diabetes have provided abundant insights into the disease biology of DPN.
Nevertheless, the lack of any meaningful advance in identifying a promising pharmacological
target necessitates a reexamination of the validity of current DPN models as well as to offer a
plausible alternative methodology to scientific approaches and disease intervention. After a
critical reevaluation of the experimental results and clinical outcomes for several previously
high-profile anti-DPN drugs, we conclude that the fundamental species differences have led
to misinterpretation of rodent data and overall failure of pharmacological investment. As more
is being learned, it is becoming prevailing that DPN is a chronic, heterogeneous disease
unlikely to benefit from targeting specific and early pathogenetic components revealed by
animal studies. Rather, an efficacious therapy must impact on multiple etiologic events and
manage various risk factors. In this regard, rigorous lifestyle modulation may simultaneously
intervene with a multitude of internal and external diabetogenic processes without generating
significant tissue toxicity and side effects. Particularly, diet and exercise intervention provides
an approach to improve metabolic management and enhance long-term reparative and
regenerative capacity of diabetic nerves. Moreover, investigating the disease process via
human-based study to the extent possible promises to lend much better insight into the
pathology and pathogenesis of DPN as well as the clinical utility of potential treatments. We
propose that future research should put an emphasis on advancing methodological and
technological approaches that maximizes the access and utilization of human specimens under
ethical guidelines, and on refining lifestyles for preventing and modifying DPN, which are
more cost-effective and directly applicable to clinical practice in this otherwise largely
intractable disorder.
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