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1. Introduction 

The goal of this ongoing study is to examine the impact of climate change on vegetation and 

permafrost in ecosystems of West Siberia Subarctic. Results of long-term monitoring of 

northern taiga ecosystem under impact of climatic changes are presented. 

The warming of an observable climate from the end of 20th century was accompanied by 

changes of vegetation and permafrost degradation, especially in the zone of sporadic 

permafrost. This important problem is examined in works of many researchers (Tyrtikov, 

1969, 1979; Belopukhova, 1973; Brown, Pewe, 1973; Nevecherya et al, 1975; Yevseyev V.P, 

1976.; Nelson et al. 1993; Ershov et al. 1994; Pavlov 1997, 2008; Moskalenko,1999; Osterkamp 

et al. 1999; Parmuzin & Chepurnov 2001; Izrael et al. 2002, Kakunov & Sulimova 2005; 

Hollister, Webber & Tweedie, 2005; Walker et al. 2006; Perlstein et al. 2006; Oberman 2007; 

Leibman et al. 2011). They demonstrated that freezing and thawing conditions change in 

response to the vegetation dynamics. Increases in moss and lichen cover thickness result in 

the reduction of active layer thickness, and decreases in soil and ground temperatures. 

However in these works not enough attention was given to estimated impact of climate on 

the vegetation and permafrost in the ecosystems. In the present report the author tries to fill 

this deficiency based on long-term monitoring of changes in the northern taiga ecosystem of 

Western Siberia. 

2. Location and parametric considerations 

Research on ecosystems were carried out since 1970 on the Nadym stationary site (Fig. 1), 

located 30 km to a southeast from the town of Nadym (Moskalenko, 2006) in the zone of 

sporadic permafrost distribution (Melnikov, 1983). Patches of permafrost, occupying up to 

50% of areas, are closely associated with peatlands, peat bogs, and frost mounds of III 
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fluvial-lacustrine plain having elevations ranging from 25 to 30m above sea level. The plain 

is composed of sandy deposits interbedded with clays, with an occasional covering of peat 

(Andrianov et al. 1973). 

During ecosystem monitoring were used remote and cartographical methods. Office studies 

and field decoding of remote sensing materials from 1970 up to 2009 was added by land 

route and detail field descriptions on permanent transects and 10x10m plots, fixed on a 

terrain. Leveling of permanent marks was carried out by electronic level Sprinter 150M 

every year. Two times for observation period near plots biomass resources were 

determined. Repeated mapping of vegetation was performed on 1x1m permanent grids for 

studying of vegetation structure and dynamics. Annual geobotanical descriptions are made 

on 28 permanent fixed (10 x 10 m) plots. The structure, average height, phenological and 

vital condition, frequency and coverage of plant species on 50 registered 0.1m2 plots were 

recorded. 

Study of spatial and temporal patterns of active layer thickness, caused with microrelief and 

vegetation mosaic was carried out on 100x100m CALM (Circumpolar Active Layer 

Monitoring) grid. On 121-grid nodes detail vegetation descriptions and repeated leveling of 

microrelief were performed. It would reveal some correlations between active layer 

thickness, vegetation and microrelief. In 16 10-m boreholes and 1 30-m borehole were 

established loggers Hobo, and measurements of permafrost temperature were carried out by 

project TSP (Thermal State of Permafrost). Air and soil temperatures were measured too. 

Monthly average and mean annual temperatures of air and grounds in a wood and on a 

peatland are resulted in tables 1 and 2. 

3. Investigations and observations 

Ecosystem changes have been revealed as a result of 40-years observation over a microrelief, 

species composition of a vegetation cover, height, frequency and coverage of dominant 

species of plants, soil and permafrost temperature, thickness and moisture of active layer on 

permanent plots and transects. 

3.1. Impact of increase in amount of atmospheric precipitation on vegetation and 

permafrost 

The analysis of the received data has allowed to revealing tendencies in development of a 

natural vegetation cover. In wood communities in connection with increase of atmospheric 

precipitation amount which is marked last decades, the increase in participation of mosses, 

and change of green moss-lichen sparse forests by lichen-green moss plant communities on 

drained sites is observed. Changes of atmospheric precipitation (Fig. 2) and Cladina 

rangiferina frequency (Fig. 3) in Birch-pine sparse forest are presented. Coverage of 

Pleurozium Schreberi opposite increases (Fig. 4). 

In connection with the increase of atmospheric precipitation process of bog formation on flat 

poorly drained surfaces of plains becomes more active. As a result hummocky pine 
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cloudberry-wild rosemary-lichen-peat moss open woodlands were replaced by andromeda-

cotton grass-sedge-peat moss bogs. Hummocks settled, and the lenses of permafrost under 

hummocks thawed.  

 

1– site, 2 – boundaries of zones (Т – tundra, FT – forest tundra, F – taiga) 3 – boundaries of tundra subzones (Т1 – 

northern, Т2 – typical, Т3 – southern). 

Figure 1. Location of the Nadym site 

Depth, 

m, year 

Months 
Year 

1 2 3 4 5 6 7 8 9 10 11 12 

Air            а 

b 

-17,8 -18,5 -14,6 -9,5 2 8,7 15,9 11,6 5,9 -3,1 -14 -16,1 -4,1 

-24,3 -28,2 -14,5 -6,4 -2,1 10,1 15,1 11,4 8 -2,4 -21,4 -33,8 -7,4 

0                а 

b 

-2,7 -2,5 -3,1 -2,2 -0,16 7 12,9 11,5 5,8 0,49 -2,4 -1,8 1,9 

-1,8 -2,5 -2,2 -1,2 -0,1 5,1 11,8 9,8 7,6 1 -2,6 -3,1 1,3 

0,25           а 

b 

-0,3 -0,5 -0,9 -1,0 -0,3 0,0 5,5 8,1 6 2,3 0,5 0,1 1,6 

0 -0,2 -0,5 -0,5 -0,1 -0,1 5,7 7,8 6,6 3,2 0,4 0 1,8 

0,5             а 

b 

0,2 0 -0,4 -0,6 -0,1 0,0 3,6 6,8 5,9 2,9 1,2 0,6 1,7 

0,4 0,2 0 -0,2 0 0 3,8 6,4 6,2 3,8 1,2 0,5 1,9 

1                а 

b 

0,5 0,3 0,1 -0,1 -0,1 0,0 2,0 5,3 5,3 3,3 1,7 1 1,6 

0,7 0,5 0,2 0,1 0,1 0,2 2,4 4,8 5,6 4,1 1,9 1 2,1 

1,5             а 

b 

0,8 0,8 0,4 0,2 0,2 0,2 1,3 4,3 4,7 3,5 2 1,3 1,6 

1 0,7 0,5 0,3 0,3 0,3 1,5 3,9 4,8 4 2,2 1,3 2,2 

3              а 2,1 1,6 1,4 1 1 0,9 0,8 1,5 2,0 2,0 1,5 1,0 1,4 

Table 1. Monthly average and mean annual temperatures of air and grounds in the wood (а -2008, b -

2009). 
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Depth, 

m,     year 

Months Year 

1 2 3 4 5 6 7 8 9 10 11 12 

Air         а 

b 

-17,2 -18,9 -15,7 -11 0,8 8,5 15,8 11,7 6,1 -2,8 -13,8 -16 -4,4 

-24,2 -28,3 -15,4 -8,2 -3,9 9,5 15 13,8 8,3 -2,1 -21,2 -33,3 -7,5 

0             а 

b 

-2,5 -2,5 -2 -0,9 1,1 7,9 13,3 11,3 5,5 0,12 -1,6 -0,9 2,1 

-2,5 -2,5 -2 -0,9 1,1 7,9 13,3 11,3 5,5 0,12 -1,6 -0,9 2,1 

0,25        а 

b 

-0,5 -0,6 -0,7 -0,5 -0,2 0,8 3,8 5,6 3,9 0,5 -0,1 -0,1 1,0 

-0,3 -0,8 -0,8 -0,5 -0,2 0,7 4,2 6,3 4,8 1,6 -0,1 -0,3 1,2 

0,5          а 

b 

-0,1 -0,1 -0,3 -0,3 -0,1 -0,1 1,0 3,9 3,1 0,5 -0,0 -0,0 0,6 

-0,1 -0,1 -0,3 -0,3 -0,1 -0,1 0,8 4 3,8 1,5 0 0 0,8 

1             а 

b 

-0,0 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 1,9 1,8 0,3 -0,0 -0.0 0,3 

-0,0 -0,0 -0,00 -0.1 -0,0 -0,0 -0,0 1.1 1,6 1,5 0,8 0,2 0 

1,5          а 

b 

-0,1 -0,1 -0,1 -0,1 -0,1 -0,0 -0,0 0,6 0,7 0,1 -0,1 -0,1 0,1 

-0,1 -0,1 -0,1 -0,1 -0,1 -0,1 0 0,2 0,6 0,5 0,3 0 0 

3             а 

b 

-0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 

-0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 

 

Table 2. Monthly average and mean annual temperatures of air and grounds on the peatland (а -2008, b 

-2009). 

 

 

 

 

 

 
Figure 2. Amount of atmospheric precipitation 
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Figure 3. Frequency changes of Cladina rangiferina in Birch-pine sparse forest 

The frequency of wild rosemary (Ledum palustre) which dominated in a cover of the open 

woodland fell sharply after 1997 (Fig. 5, 2). The frequency of cotton-grass (Eriophorum 

angustifolium) for the past decade increased, and it began to dominate the cover (Fig. 5, 1). 

 

 

 

 

Figure 4. Coverage changes of Pleurozium schreberi in Birch-pine sparse forest 
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Figure 5. Frequency changes of Ledum palustre (2) and Eriophorum angustifolium (1) on flat boggy site 

Comparison of biomass in wood communities and bog communities shows that by bog 

formation in wood all aboveground biomass decreases from 2316 to 1715 g/m2 and biomass of 

graminoid and mosses increases (table 3). Comparison of species composition of wood and 

bog plant communities presents that biodiversity of vegetation cover in process of bogginess 

decreases in the result of absence mesophyte species of sedges and shrubs (Carex globularis, 

Empetrum nigrum, Vaccinium vitis-idaea), аnd also lichens (Cladina rangiferina, C. stellaris, Cetraria 

islandica, Cladonia coccifera, table 4). Common number of species decreases from 27 to 17. 

Vegetation Wood Bog Tundra 

Deciduous shrubs Stems 41 84 10 

Live leaves 9 23 1 

Dead leaves 1 0 0 

Berries 0,5 1 0 

Evergreen shrubs Stems 141 141 141 

Live leaves 66 84 33 

Dead leaves 2 4 1 

Berries 0,2 2 1 

Graminoid Live leaves 0.3 3 14 

Dead leaves 0.3 19 46 

Forb  2 13 3 

Mosses Live 80 383 1 

Dead 274 272 1 

Lichens Live 812 228 930 

Dead 400 104 524 

Litter  490 317 215 

All biomass  2316 1715 1926 

Table 3. Aboveground biomass (g/m2) of different plant communities on the Nadym site. 
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Species Year Height, cm Coverage, % Frequency, % 

1. Andromeda polifolia 1 7 2 54 

2 12 4 72 

3 15 5 76 

4 15 3.5 72 

5 15 1 54 

2. Betula nana 1 45 2 16 

2 65 1 30 

3 80 2.5 32 

4 80 0.8 14 

5 80 0,1 2 

3. Calamagrostis lapponica 1 30 <1 2 

2 70 0.1 12 

3 25 0.5 10 

4 60 <1 <1 

5 50 <1 <1 

4. Carex globularis 1 20 4 32 

2 25 7 64 

3 30 4.5 52 

4 35 0.1 2 

5 - - - 

5. Carex rotundata 1 20 <1 10 

2 30 1 12 

3 60 0.5 4 

4 50 0.1 4 

5 30 1.5 28 

6. Empetrum nigrum 1 4 1 6 

2 10 1 10 

3 10 1 14 

4 8 0.1 2 

5 - - - 

7. Eriophorum 

angustifolium 

1 30 4 20 

2 50 0.2 10 

3 75 1.5 6 

4 100 2 52 

5 60 10.5 84 

8. Eriophorum vaginatum 1 30 1 1 

2 60 0.2 10 

3 30 1 14 

4 50 0.1 2 

5 60 3 14 

9. Juncus filiformis 1 15 0.1 4 

2 35 0.1 4 

3 40 1 8 

4 30 2 8 

5 40 2 6 
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Species Year Height, cm Coverage, % Frequency, % 

10. Ledum palustre 1 30 7 32 

2 40 3 48 

3 40 8 60 

4 40 1.5 2 

5 40 1.5 2 

11. Oxyccocus microcarpus 1 1 5 44 

2 2 2 30 

3 2 1.5 30 

4 2 0.1 2 

5 2 1 10 

12. Pinus silvestris 1 300 <1 <1 

2-4 - - - 

5 45 <1 <1 

13. Rubus chamaemorus 1 3 14 52 

2 9 3 46 

3 10 8 52 

4-5 - - - 

14. Vaccinium myrtillus 1 3 1 28 

2 10 3 44 

3 15 1.5 42 

4-5 - - - 

15. Vaccinium uliginosum 1 20 6- 54 

2 30 10 60 

3 30 15 72 

4 40 0.1 2 

5 40 0.6 16 

16. Vaccinium vitis-idaea 1 4 <1 <1 

2 6 1 12 

3 10 1 22 

 4-5 - - - 

17. Cetraria islandica 1 1 0.1 2 

2 2 0.2 8 

3 5 1 6 

4-5 - - - 

18. Cladonia coccifera 1 1 1 4 

2 1 1 4 

3 3 0.1 4 

4-5 - - - 

19. Cladina rangiferina  1 6 1 4 

2 7 1 22 

3 7 3.5 26 

4-5 - - - 

20. Cladina stellaris 1 7 4 10 

2 8 3 22 

3 8 0.2 8 
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Species Year Height, cm Coverage, % Frequency, % 

4-5 - - - 

21. Aulacomnium palustre 1 2 0.1 2 

2 2 0.1 2 

3 2 <1 <1 

4 - - - 

5 2 <1 <1 

 22. Dicranum congestum 1 1 0.1 2 

2 1.5 0.1 2 

3 2 3 6 

4 - - - 

5 0.5 0.1 4 

23. Pleurozium schreberi 1 1 8 20 

2 2 28 42 

3 4 20.5 40 

4 4 0.1 2 

5 4 2 8 

24. Polytrichum commune 1 3 3 38 

2 8 16 60 

3 8 21 70 

4 8 0.2 2 

5 8 25.5 66 

25. Sphagnum 

angustifolium 

1 1 11 18 

2 4 7 14 

3 4 6 8 

4 4 0.1 2 

5 5 19 48 

26. Sphagnum fuscum 1 2 36 52 

2 2.5 21 24 

3 3 25 28 

4 3 0.1 2 

5 3 9.5 20 

27. Sphagnum lindbergii 1 4 23 34 

2 8 8 14 

3 8 5 10 

4 8 <1 <1 

5 8 26.5 36 

Table 4. Species composition of vegetation on flat boggy site in 1975 (1), 1985 (2), 1995 (3), 2005 (4) and 

2010 (5) years. 

3.2. Impact of increase in air temperature on vegetation and permafrost 

Last decades in the north of Western Siberia rise in air temperature is observed (Fig. 6). 

Increase of the air thawing index (the sum monthly mean air temperatures above 0°C) 

caused the appearance on flat and palsa peatlands separate trees (Betula tortuosa, Pinus 

sibirica, Pinua silvestris); increase in frequency and height of shrubs (Betula nana, Ledum 
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palustre, Fig. 7) and coverage them of a soil surface. These plant species can serve as 

indicators of climate warming. 

Long-term studying of plants communities and active layer thickness in northern taiga has 

allowed calculating of plant communities frequency with active layer thickness. The 

smallest values of active layer thickness (67.1 cm) are observed under Rubus chamaemorus-

Ledum palustre-Sphagnum-Cladina rangiferina cover on flat peatland (coefficient of correlation 

-0.71). Areas with deepest active layer thickness (173.7 cm) are confined to large sedge-moss 

pools within peatlands (coefficient of correlation 0.58). 

The analysis of the given measurements of the active layer thickness on palsa peatland (Fig. 

8) has shown that it has a trend to the increase, caused by increase in the thawing index of 

air temperature, which trend for 1970-2010 makes 0.20С in a year. The permafrost 

temperature at the depth of 10m has increased on 1.40С. Temperature of permafrost at the 

depth of 10m (layer with minimum annual fluctuations of temperatures) for the period of 

researches on the palsa peatland has increased from -1.80С up to -0.40С (Fig.9, 2). On flat 

peatland increase of permafrost temperature was less; here permafrost temperature at the 

depth of 10m has increased from -0.90С up to -0.20С (Fig.9, 1). 

Increase in air temperature and rise in amount of atmospheric precipitation promoted faster 

recovery of a vegetation cover after a fire. For example, on frost mounds with Pinus sibirica- 

wild rosemary-peat moss-lichen open woodland in 35 years after the fire Betula nana-wild 

rosemary-peat moss-lichen community with Pinus sibirica in height 2m had developed 

(Fig.10). 

On the permanent plot located on a flat southern slope the frost mound in height of 3 m. In a 

well-defined microrelief of tussocks and hummocks height up to 0.8m are characteristic. 

Pools were usual, sometimes filled with water. 

Soil is sandy peat-gley, and frozen at 0.5m depth. Average peat horizon thickness is 30сm. A 

crown density of Pinus sibirica is 0.1, its height 7-8m. The coverage of grasses and dwarf 

shrubs makes up 40-50%. 

 

Figure 6. Air thawing index in Nadym 
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The grass-dwarf shrub cover has two-layer structure: the upper layer in height is 0.3-0.35m 

composed of wild rosemary and Betula nana, and the lower layer in height is 0.05-0.15m with 

abundant cowberry (Vaccinium vitis-idaea), Chamaedaphne calyculata, cloudberry and sedge 

(Carex globularis). Peat mosses and lichens make up the continuous ground cover.  

 

 

 

 

Figure 7. Frequency of Ledum palustre on the flat peatland 

 

 

 

 

Figure 8. Active layer thickness on the palsa peatland 
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Figure 9. Permafrost temperature (T 0C) at the depth of 10m on the flat peatland (1) and  the palsa 

peatland (2) 

In June 1976 the plot of grass-dwarf shrub cover, and a forest stand was completely burned. 

Within two months following the fire the surface cover of 25% consisted of shoots of Carex 

globularis, Betula nana, wild rosemary, and cloudberry. In pools the moss coverage of up to 

30% was maintained. 

One year following the fire the sedge-cloudberry-peat moss grouping was formed, and the 

next year it was replaced by cloudberry-sedge-wild rosemary-peat moss community. This 

was the result of the fast recovery of a former role of wild rosemary (Fig.11, 1). In this 

community the coverage of grasses and dwarf shrubs increased up to 35%, and mosses up 

to 40%. The next years the coverage of grasses and dwarf shrubs reached its initial value (40-

50%), but mosses still covered less than half of plot surface. The frequency of Betula nana has 

increased in 3 times, probably, in connection with the rise in air temperature (Fig. 11, 2).  

The occurrence of lichens sharply decreased after the fire, and within 16 years had 

considerably increased. Only the frequency of Cladonia coccifera strongly increased after the 

fire. The frequency of Cladina stellaris was recovered (Fig. 12, 1), and its reduction last 

decade is connected to increase of amount of atmospheric precipitation that is observed and 

in undisturbed conditions. The frequency of Sphagnum fuscum (Fig. 12, 2) while remains in 2 

times less than in initial community. The increase in height of shrubs (Betula nana, 

Chamaedaphne calyculata, Ledum palustre) is marked also. Changes in species composition, 

height, coverage and frequency of plants on frost mound are presented in the table 5. 

On the cloudberry-wild rosemary-lichen palsa peatlands n 40 years after the fire the 

cloudberry- Betula nana- wild rosemary-lichen-Polytrichum communities are found. These 

communities differ from the initial communities by ground vegetation composition (smaller 

percentage of lichens) and increase in presence of Betula nana. The last, apparently, is 

connection to the increase of the air thawing index and a snow thickness over the last 

decades. 
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In 1971, plot on palsa peatland on which in 1970 were carried out the detailed description of 

a vegetation cover, measurements of active layer thickness and permafrost temperature, was 

burned.  

This plot is located at top of peat hillocky with height of 2m and with cloudberry-wild 

rosemary-lichen plant community. In the microrelief of plot are characteristic small 

Dicranum hummocks with heights of 0.1-0.3m and pools with bog dwarf shrubs (Andromeda 

polifolia, Chamaedaphne calyculata) and mosses. The soil of the plot is peaty, and maximum 

thickness of the active layer is 0.6m. The coverage of grasses and dwarf shrubs equaled 45 

%; mosses and lichens - 90%. In a grass-shrub cover two layers are found: an upper layer in 

height of 0.2-0.4m made up of wild rosemary and Betula nana, and a lower layer in height up 

to 0.15m formed of cloudberry and cowberry. In ground vegetation, lichens preedominated 

over a Cladina genus and frequent Dicranum mosses but with low coverage.  

In 1975, four years after the fire at the top of the peaty hillocky where the vegetation had 

been described in 1970, a permanent 10 x 10m plot on the soil surface was established. On 

this plot, since 1975 on present time, annual geobotanical descriptions are performed.  

A 10-meter borehole was drilled at the hillocky top near to the geobotanical plot. According 

to the drilling the peat thickness is 1m, below lies sand with layers of the clay, underlaying 

with depth 3,75m by clay. From 1975 year-round temperature measurements of soil and 

permafrost were observed (Fig. 13). Since 2001 year-round measurements of temperature by 

loggers are obtained. Thickness and moisture of the active layer were measured. 

In four years since the fire on hillocky the cotton-grass-cloudberry-Polytrichum community is 

found in which the coverage of grasses made 15%, and mosses 50 %. After the fire the 

number of species on the plot was 42% of their common number in 1970. Change of species 

number could be still large, but appearance of new grass species (Erophorum russeolum, Carex 

limosa, Chamaenerium angustifolium) and shoots of a birch (Betula tortuosa) compensated for 

significant decrease of species number. It has been related to disappearance of five dwarf 

shrubs (Vaccinium uliginosum, V. vitis-idaea, Empetrum nigrum, Andromeda polifolia and 

Chamaedaphne calyculata), Eriophorum vaginatum, one species of lichens (Alectoria ochroleuca) 

and three species of mosses (Sphagnum fuscum, Pleurozium schreberi, Hylocomium splendens). 

In the first years of vegetation recovery the frequency and coverage of Polytrichum mosses 

strongly increased (Table 6). Occurrence of dwarf shrubs has decreased, bog grasses have 

appeared absent earlier, and the occurrence of shrubs increased. 

In five years after the fire on hillocky landscape with cotton-grass-cloudberry-Polytrichum 

community the coverage of grasses was 20%, and mosses 50%. The next year there was an 

appreciable increase in occurrence of Betula nana that led to changes of the grass-moss 

community with Betula nana- cloudberry-cotton-grass-Polytrichum community.The coverage 

of grasses and dwarf shrubs in this community gradually grew and in 14 years after the fire 

had reached its initial value. At this time an appreciable role of wild rosemary began to 

occur. The ground vegetation by this time covered up to 85% of a plot surface, but it still has 

consisted of Polytrichum mosses. The thickness of the active layer in this plant community 

has increased up to 65-70сm.  
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The frequency of lichens though has increased, but the coverage on the surface did not 

exceed 1-3 %. However the coverage of lichens gradually continued to increase, and in 23 

years after the fire it has reached 8.5 %. The coverage of lichens has increased for 40th year 

up to 18.5%, and includes Betula nana-wild rosemary-cloudberry-Cladina- Polytrichum 

community in which the occurrence of cotton-grass has decreased. The number of dwarf 

shrubs and mosses by this time has appreciably increased, but remained less than in 

undisturbed cover due to the absence of bog dwarf shrubs (Andromeda polifolia, 

Chamaedaphne calyculata) and one species of mosses (Hylocomium splendens). The bog grasses 

which have appeared at early stages of plant community recovery in 2005 have disappeared 

from the plant community.  

 

A 

 

B 

Figure 10. Frost mound before fire (А) and 35 years after it (B) 
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Figure 11. Frequency of Ledum palustre (1) and Betula nana (2) on the frost mound 

 

 

 

 

 

 

Figure 12. Frequency changes of Cladina stellaris (1) and Sphagnum fuscum (2) on the frost mound 
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Species Year Height, cm Coverage, % Frequency, % 

1. Andromeda polifolia 1 10 1 18 

2 13 0.1 8 

3 15 1 14 

4 15 0.1 6 

5 15 0.2 12 

2. Betula nana 1 45 2 22 

2 65 1 18 

3 65 1.5 22 

4 80 7 46 

5 100 6 46 

3. Carex globularis 1 15 6 64 

2 35 15 80 

3 30 16 86 

4 40 4 96 

5 35 2 84 

4. Chamaedaphne 

calyculata 

1 15 4 56 

2 30 1 24 

3 30 7 36 

4 40 2.5 62 

5 40 1 54 

5. Empetrum nigrum 1 7 0.1 6 

2 10 0.2 10 

3    

4 10 0.2 16 

5 10 0.2 10 

6. Eriophorum vaginatum 1 10 <1 <1 

2 10 0.4 2 

3 20 0.1 2 

4 20 0.1 2 

5 30 <1 <1 

7. Ledum palustre 1 40 15 86 

2 50 9 84 

3 50 20 94 

4 55 21.5 96 

5 55 30 92 

8. Oxyccocus microcarpus 1 1 3 46 

2 2 3 30 

3 1 3 30 

4 2 0.9 18 

5 2 0.2 20 



 
Impact of Climate Change on Vegetation and Permafrost in West Siberia Subarctic 315 

Species Year Height, cm Coverage, % Frequency, % 

9. Pinus sibirica 1 800 <1 <1 

2 35 0.1 4 

3 60 <1 <1 

4 170 0.1 2 

5 200 0.1 4 

10. Rubus chamaemorus 1 5 5 72 

2 10 11 84 

3 10 6.5 68 

4 12 3 66 

5 10 1.5 46 

11. Vaccinium myrtillus 1 10 0.1 2 

2 10 <1 <1 

3 10 0.1 2 

4 12 0.1 4 

5 12 <1 <1 

12. Vaccinium uliginosum 1 17 0.1 4 

2 25 0.1 2 

3 25 1 2 

4 25 0.2 8 

5 25 0.1 2 

13. Vaccinium vitis-idaea 1 7 5 82 

2 10 11 88 

3 15 4 86 

4 15 6.5 86 

5 20 7 84 

14. Cetraria cucullata 1 4 0.2 10 

2 4 <1 <1 

3 4 0.1 2 

4 5 0.1 4 

5 5 0.4 2 

15. Cetraria islandica 1 4 0.2 10 

2 4 0.1 6 

3 4 15 16 

4 5 0.1 6 

5 5 0.2 8 

16. Cladonia amaurocraea 1 3 0.1 2 

2 3 0.1 2 

3 4 0.2 10 

4 5 1.5 12 

5 8 0.8 8 

17. Cladonia coccifera 1 3 0.1 2 

2 2 1 54 

3 4 10 52 

4 5 2.5 32 

5 7 2.5 22 
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Species Year Height, cm Coverage, % Frequency, % 

18. Cladina rangiferina 1 8 19 60 

2 5 0.5 26 

3 5 0.7 36 

4 9 5.5 32 

5 9 2 32 

19. Cladina stellaris 1 8 27 60 

2 4 0.4 18 

3 4 1 56 

4 9 7.5 48 

5 10 12 42 

20. Dicranum congestum 1 1 0.1 2 

2 1 2 2 

3 2 0.5 4 

4 2 <1 <1 

5 2 <1 <1 

21. Pleurozium schreberi 1 2 2 52 

2 2 0.1 2 

3 3 3 8 

4 3 0.4 2 

5 3 3 12 

22. Polytrichum commune 1 5 0.1 4 

2 3 2 24 

3 3 7 20 

4 3 0.2 6 

5 3 3 16 

23. Sphagnum 

angustifolium 

1 2 0.1 2 

2 3 14 22 

3 3 8 26 

4 3 10 18 

5 3 6 12 

24. Sphagnum fuscum 1 2 23 52 

2 3 14 14 

3 3 6 8 

4 3 16.5 18 

5 3 14.5 18 

25. Tomenthypnum nitens 1 1 2 2 

2 1 0.1 2 

3 1 0.8 4 

4 1 0.1 2 

5 2 <1 <1 

Table 5. Species composition of vegetation on the frost mound in 1975 (1), 1985 (2), 1995 3), 2005 (4) and 

2010 (5) years. 
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Figure 13. Five-year moving averages of ground temperatures at the depths of 1-10 m on the palsa 

peatland 

Negatively reacted to a fire some shrubs (Vaccinium vitis-idaea, Ledum palustre), lichens, green 

mosses and Sphagnum fuscum. In 15 years after a fire at the cowberry, the wild rosemary and 

all before plentiful species of lichens (Cladina, Cetraria), the frequency and the coverage 

strongly differed from initial sizes. This distinction was kept and in 23 years after fire. 

Participation of some species of lichens (Cladonia coccifera and Cladonia amaurocraea) and 

blueberries for the investigated period was recovered. At cloudberries sizes of the coverage 

were made even to initial sizes, but it frequency still was more than in 2 times smaller. 

In 30 years after the fire the frequency of Betula nana has exceeded initial size, the frequency 

of Ledum palustre too has considerably increased and for 40-th year was only a little less, 

than in not disturbed community. Only at the cowberry and dominant species of lichens 

(Cladina stellaris and Cladina rangiferina) the frequency for all period of observations was not 

recovered. The analysis of frequency diagrams of Betula nana and Ledum palustre (Fig. 14) 

shows, that there is a positive trend which will be coordinated to increase of summer air 

temperatures.  

 

Figure 14. Frequency of Ledum palustre (1) and Betula nana (2) on the palsa peatland 
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Species 1970 1975 1980 1985 1990 1995 2000 2005 2010 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

Andpol 2 7 - - - - - - - - - - - - - - 1 10 

Betnan 4 40 5 35 16 50 28 70 36 70 44 70 48 80 60 90 64 100 

Bettor - - 1 45 1 130 1 200 1 300 1 400 1 500 1 600 4 600 

Callap 4 30 - = 1 30 1 60 1 20 - - - - - - 1 40 

Carglo 2 25 - - - - - - 1 20 1 20 2 35 1 30 1 35 

Carlim - - 2 20 2 20 - - - - - - - - - - - - 

Carrot - - - - 2 20 - - - - - - - - - - - - 

Chaang  - - 2 30 1 40 1 35 - - - - - - - - - - 

Chacal 2 17 - - - - - - - - - - - - - - - - 

Empnig 2 10 - - 4 10 - - 1 10 1 10 2 10 1 10 1 10 

Eriang - - - - 2 20 1 30  20 1 20 1 10 - - - - 

Erirus - - 45 35 46 30 64 30 82 30 34 15 - - - - - - 

Erisch - - - - 12 20 2 30 - - - - - - - - - - 

Erivag 10 12 - - 2 35 16 30 10 50 54 20 68 30 58 50 38 35 

Ledpal 98 20 10 15 22 25 24 30 32 35 42 35 60 40 76 45 86 45 

Pinsib - - - - 1 5 - - 4 5 4 15 1 20 6 35 10 55 

Pinsil - - - - - - - - - - - - 2 6 - - 1 50 

Rubcha 98 10 28 5 22 10 34 12 30 12 34 10 32 15 44 15 42 15 

Vaculi  1 10 - - 2 10 1 20 1 20 1 30 1 30 1 35 1 35 

Vacvit 46 5 - - 6 7 6 7 2 7 4 7 4 7 1 10 1 10 

Aulpal 6 2 - - - - - - - - - - - - - - - - 

Diccon 10 2 12 1 20 1 1 1 1 2 1 4 2 1 2 1 1 2 

Hylspl 2 1 - - - - - - - - - - - - - - - - 

Plesch 4 2 - - - - - - - - - - - - - - 4 2 

Polcom 6 2 96 2 96 5 98 6 98 7 96 7 96 7 94 7 98 7 

Sphfus 5 2 - - - - - - - - - - - - - - 4 3 

Aleoch 4 3 - - - - - - - - 2 2 2 3 6 4 6 5 

Cetcuc 28 3 6 1 2 1 1 2 2 3 4 3 8 4 8 5 10 5 

Cetisl 6 3 4 1 2 2 2 3 2 3 2 4 1 5 2 5 12 6 

Cetniv 94 2 10 1 6 2 1 2 1 2 6 3 2 3 8 4 8 4 

Claama 14 3 2 1 1 1 4 2 4 3 26 4 18 4 18 5 22 6 

Clacoc 20 3 2 1 12 1 36 2 38 3 48 4 40 4 48 5 40 5 

Claran 78 8 2 1 8 2 6 3 14 5 34 6 12 6 20 6 30 6 

Claste 98 10 10 1 12 2 22 3 38 4 42 5 30 5 38 6 40 6 

Table 6. Frequency (1, %) and height (2, cm) changes of plant species on the palsa peatland in 1970-2010 

years. 

Plant species. Vascular plants: Andpol – Andromeda polifolia, Betnan – Betula nana, Bettor – 

Betula tortuosa, Callap – Calamagrostis lapponica,  Carglo – Carex globularis, Carlim – Carex 

limosa, Carrot – Carex rotundata, Chaang – Chamaenerium angustifolium, Empnig – Empetrum 

nigrum, Eriang – Eriophorum angustifolium, Erirus – Eriophorum russeolum, Erisch – Eriophorum 

scheucheri, Erivag – Eriohorum vaginatum, Ledpal – Ledum palustre, Pinsib – Pinus sibirica, Pinsil 

– Pinus silvestris, Rubcha – Rubus chamaemorus, Vaculi – Vaccinium uliginosum, Vacvit – 

Vaccinium vitis-idaea.  
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Mosses: Aulpal – Aulacomnium palustre, Diccon – Dicranum congestum, Hylspl – Hylocomium 

splendens, Plesch – Pleurozium schreberi, Polcom - Polytrichum commune, Sphfus – Sphagnum 

fuscum.  

Lichens: Aleoch – Alectoria ochroleuca, Cetcuc – Cetraria cucullata, Cetisl – Cetraria islandica, 

Cetniv – Cetraria nivalis, Claama – Cladonia amaurocraea, Clacoc – Cladonia coccifera, Claran – 

Cladina rangiferina, Claste – Cladina stellaris.  

Stages of vegetation recovery after the fire on the frost mound and the palsa peatland are 

presented in Table 7. Comparison of rates of vegetation cover restoration in these 

ecosystems demonstrate that on flat weakly drained top of frost mound the vegetation 

recovery is faster than on better drained palsa peatland. The domination in ground 

vegetation of Polytrichum mosses and the lower occurrence of lichens persists longer.  

 

Stages and their duration (years) Ecosystems 

I II 

Grass-moss (1-5) 1а 1б 

Shrub-grass-moss (6-15) 2а 2б 

Shrub-grass-lichen-moss (16-35) 3а 3б 

Grass-shrub-moss-lichen (36-50) 4а 4б 

Table 7. Stages of vegetation recovery after the fire in different ecosystems 

Ecosystems: I – cloudberry-wild rosemary-lichen palsa peatland, II – frost mound with Pinus 

sibirica wild rosemary- peat moss-Cladina open woodland. 

Plant communities: 1а – cotton grass-cloudberry-Polytrichum, 1б–sedge-cloudberry-peat 

moss, 2а – Betula nana-cloudberry-cotton- grass-Polytrichum, 2б – cloudberry-sedge-wild 

rosemary-peat moss, 3а – cloudberry-Betula nana--wild rosemary-Cladina-Polytrichum, 3б – 

Betula nana-wild rosemary-peat moss-Cladina, 4а - cloudberry-Betula nana-wild rosemary- 

Cladina-Polytrichum, 4б – Pinus sibirica- Betula nana-wild rosemary-peat moss-Cladina. 

3.3. Impact of vegetation dynamics on permafrost 

On the dwarf shrub-cotton grass-peat moss bogs in the result of vegetation dynamics it is 

possible to observe formation of new frost heavy hummocks (Fig.16). The height of one of 

young frost mound, which beginning of formation concerns to 1973, makes by the present 

moment 80 cm. 

The ecosystems are detected, in which the local temperature decrease observed on a 

background of the general tendency of temperature increase, caused by dynamics of a 

vegetation cover. It is necessary to allow a possibility of such different tendencies of 

temperature changes in ecosystems at for the same changes of a climate at geocrylogical 

monitoring. 

For example, such downturn of permafrost temperatures was observed on dwarf shrub-

sedge-peat moss bog, replaced through 25 years by sedge-dwarf shrub- lichen-peat moss 
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peatland as a result of increase in moss thickness, accumulation of peat and growths of 

dwarf shrubs (Andromeda polifolia, Chamaedaphne calyculata). Here permafrost temperatures 

for the investigated period have gone down on 0.30С (Fig.15) though in the next flat 

peatlands surrounding a drained up bog, the permafrost temperature became higher.  

On cotton grass-peat moss bogs with the lowered permafrost table on formed on it dwarf 

shrub-peat moss hummocks after cold winters it is observed formation of new frozen 

ground. Mean active layer thickness on these hummocks is 80 cm. 

 

 

 

 

 

 

 

 

Figure 15. New frost heavy hummocks on the dwarf shrub-cotton grass-peat moss bog 
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Figure 16. Permafrost temperature (T0C) changes on the bog (1) and on the peatland (2) at the depths of 

1-10 m in 1979, 1989, 1999 and 2009 years. 
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4. Results and discussions 

Long-term monitoring of the northern taiga ecosystem changes has allowed revealing 

impact of climatic changes on a vegetation cover and permafrost. 

During the last decades in the north of West Siberia the rise in air temperature and the 

increase in amount of atmospheric precipitation are observed.  In wood communities in 

connection with increase of atmospheric precipitation amount which is marked last decades, 

the increase in participation of mosses, and change of green moss-lichen sparse forests by 

lichen-green moss plant communities on drained sites is marked.  

On flat poorly drained surfaces of plains process of bog development became more active. 

As a result of it hummocky pine cloudberry-wild rosemary-lichen-peat moss open 

woodlands with lenses of permafrost under the hummocks are replaced by andromeda-

cotton grass-sedge-peat moss thawed bogs. Comparison wood communities and bog 

communities show that by bog formation in wood all aboveground biomass decreases on 

26% and biodiversity in process of bogginess decreases on 37%. 

Increase of the thawing index of air temperature caused the appearance on the flat and palsa 

peatlands separate trees (Betula tortuosa, Pinus sibirica, Pinus silvestris), increase in the 

frequency and the height of shrubs (Betula nana, Ledum palustre) and in the coverage them of 

a soil surface. These plant species can serve as indicators of climate warming. 

The analysis of the given measurements of the active layer thickness on palsa peatland has 

shown that it has a trend to the increase, caused by increase in the air thawing index, which 

trend for 1970-2010 makes 0.20С in a year. 

The permafrost temperature at the depth of 10 m has increased on 1.40С. Temperature of 

permafrost at the depth of 10 m for the period of research on the palsa peatland has 

increased from -1.80С up to -0.40С. On the flat peatland increase of the permafrost 

temperature was less; here the permafrost temperature at the depth of 10 m has increased 

from -0.90С up to -0.20С.  

In conditions of climate warming fires began to be observed more often. On cloudberry-wild 

rosemary-lichen palsa peatlands 40 years after a fire are formed cloudberry-Betula  

nana-wild rosemary-lichen-Polytrichim plant communities. These plant communities differ 

from initial communities by ground vegetation composition (smaller participation of 

lichens) and increase in occurrence of Betula nana connected with increase of the air thawing 

index.  

On flat weakly drained top of frost mound the vegetation recovery after the fire is faster 

than on better drained palsa peatland. Here Pinus sibirica- wild rosemary-peat moss-lichen 

open woodland in 35 years after the fire changed by Betula nana-wild rosemary-peat moss-

lichen community with Pinus sibirica in height 2m. 

Stages and rate of vegetation recovery after the fire were revealed. 
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The ecosystems are established, in which the local temperature decrease observed on a 

background of the general tendency of temperature increase, caused by dynamics of the 

vegetation cover. 

The carried out researches prove observations of A.P.Tyrtikov (1969), E.B.Belopukhova 

(1973), V.L.Nevecherya et all. (1975). These researchers marked, that in modern climatic 

conditions of Western Siberia northern taiga  during dynamics of bog vegetation are 

formed new frost  mounds which are considered as some researchers relic formations 

(Yevseyev, 1976; Brown, Pewe, 1973) for which formation now there are no necessary 

conditions.  

5. Conclusion 

In my research the vegetation cover is considered as one of components of the natural 

ecosystems, closely connected with other components and first of all with soils, 

underground waters and permafrost for which indication it is used. As the mobile 

component of ecosystem easily broken at external impact, but capable to self-recovery, 

vegetation is one of critical components of ecosystems and the major factor of their 

stabilization. 

Long-term monitoring of vegetation cover show that main environmental factors in 

development of plant communities in the North of West Siberia are water and thermal 

regime of soil. 

Studying of interactions of vegetation with other ecosystem components and revealing of 

leading factors in vegetation dynamics of region allows more proved to approach to 

compiling the prediction of vegetation changes in conditions of a varying climate on 

materials received as a result of long-term monitoring. Use of the interactions existing 

between the vegetation cover and permafrost, enables to predict on expected tendencies of 

vegetation development changes of geocryological conditions and to recommend necessary 

actions on preservation of natural balance in environment. 

In all territory of the north of Western Siberia climate changes in time have oscillatory 

character on a background of the general warming which have begun since 1970th years. 

On data of Nadym weather station for 1970-2011 the trend to increase of mean-annual 

air temperature is revealed. Increase of mean-annual temperature has made 0.040С in a 

year. 

The steady increase in active layer thickness is connected to rise in air temperature in all 

natural complexes. Extreme reaction to climatic changes natural complexes of bogs and 

peatlands in the north of Western Siberia possess. Active layer thickness in palsa peatlands 

for the 40-years period has increased on 30 %. 

Despite of climate warming and observed rise in permafrost temperature single instances of 

permafrost transition in a thawed condition on all thickness of annual heat turn layer are 

fixed only. 
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