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1. Introduction 

Early and accurate diagnosis of patients with cerebral demyelinating or infection diseases, 

space occupying mass lesions and neurological deficits, is essential for optimum treatment 

decision concerning the administration of specific medication or chemotherapeutic agents, 

radiation therapy and/or surgical resection.  

Currently, conventional MR imaging (MRI) is considered to be an established and useful 

tool in brain disease detection and it is widely chosen as the initial examination step in 

patients suspected of brain lesions as it is effective in simultaneously characterizing the soft 

tissue, cerebrospinal fluid (CSF) spaces, and blood vessels. It is a flexible imaging modality 

for which contrast can be extensively manipulated without patient burdening by ionizing 

radiation. Nevertheless, the accurate characterization of brain lesions with MR imaging 

remains problematic in several cases as the sensitivity and specificity with which this 

modality defines several brain lesions remains limited [1].  

To overcome the aforementioned limitation, the development of new imaging techniques is 

required, in order to highlight functional or metabolic properties of brain tissue. Proton 

Magnetic resonance spectroscopy (1H-MRS) is one such technique which provides a non-

invasive method for characterizing the cellular biochemistry which underlies brain 

pathologies, as well as for monitoring the biochemical changes after treatment in vivo. It is 

considered as a bridge between metabolism and the anatomic and physiological studies 

available from MRI [2].  

Until now, 1H-MRS has been used as both a research and a clinical tool for detecting 

abnormalities -visible or not yet visible- on conventional MRI. Suggestively, Moller-

Hartman et al. reported that when only the MR images used for radiological diagnosis of 

focal intracranial mass lesions, their type and grade were correctly identified in 55% of the 
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cases, however, the addition of MR spectroscopic information significantly raised the 

proportion of correctly diagnosed cases to 71% [3]. 

1H-MRS has been always challenging in terms of its technical requisites (field strength, 

gradients, coils and software), as well as the accurate metabolic interpretation with regards 

to pathologic processes. However, the clinical applications of 1H-MRS are continuously 

increasing as the clinical hardware have become more robust and user-friendly along with 

improved data analysis, spectra post-processing techniques and metabolite interpretation 

confidence.  

The purpose of this chapter is to provide a thorough review concerning the current status of 
1H-MRS in terms of its clinical usefulness as well as its technical prerequisites.  

2. Basic principles 

In order to introduce the basic concepts and terminology of 1H -MRS, the basic principles of 

MRS are briefly described below.  

Proton is a charged particle with spin, and exhibits the electromagnetic properties of a 

dipole magnet. When protons are placed in an external magnetic field B0, they align 

themselves along the direction of the field (either parallel or anti-parallel) and demonstrate a 

circular oscillation. The frequency of this circular motion (called Larmor frequency) is 

dependent on the strength of the local magnetic field and the molecular structures at which 

protons belong. This can be expressed by the Larmor equation: 

0 0ω γB
  

where ω0 is the Larmor frequency, γ is the gyromagnetic ratio specific for the nuclei, and B0 

is the strength of the external magnetic field.  

When electromagnetic energy (in the form of a RF pulse) is supplied at this frequency, the 

molecules absorb this energy and change their alignment. When the RF pulse is switched 

off, the molecules realign themselves to the magnetic field by releasing their absorbed 

energy. This released energy is the basis of the MR signal [4].  

1H-MRS uses the same hardware as conventional MRI, however, their main difference is 

that the frequency of the MR signal is used to encode different types of information. MRI 

generates structural images, whereas 1H-MRS provides chemical information about the 

tissue under study.  

Although recent studies have shown promise for the use of 1H-MRS to investigate malignant 

processes to prostate [5], breast [6], skeletal muscles [7], cervical and ovarian cancer [8], the 

overwhelming number of applications have been demonstrated in the brain, due to the 

absence of free lipid signals in normal cerebrum, relative ease of shimming, and lack of 

inherent motion artifacts.  

The output of 1H-MRS is a spectrum which is described by two axes as it is illustrated in 

figure 1. The vertical axis (y) represents the signal intensity or relative concentration for the 
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various cerebral metabolites and the horizontal axis (x) serves to describe the frequency 

chemical shift in parts per million (ppm). The nature of the chemical shift effect is to 

produce a change in the resonant frequency for nuclei of the same type attached to different 

chemical species. It is due to variations in surrounding electron clouds of neighboring 

atoms, which shield nuclei from the main magnetic field (B0). The resulting frequency 

difference can be used to identify the presence of important chemical compounds.  Within 

the spectrum, metabolites are characterized by one or more peaks with a certain resonance 

frequency, line width (full width at half maximum of the peak’s height, FWHM), line shape 

(e.g., lorentzian or Gaussian), phase, and peak area according to the number of protons that 

contribute to the observed signal. By monitoring those peak factors, 1H-MRS can provide a 

qualitative and/or a quantitative analysis of a number of metabolites within the brain if a 

reference of known metabolite concentration is used at a particular field strength [9]. 

  

Figure 1. Proton MR spectrum from Parietal White Metter measured at 3T in the normal human brain 

of a 19-year-old volunteer.  

3. Neurospectroscopy biochemical features and their clinical significance 

Accurate classification of cerebral lesions by in-vivo 1H-MRS requires determination of the 

relationship between metabolic profile and pathologic processes. 

The assignment and clinical significance of the basic resonances in a spectrum as well as the 

less commonly detected compounds are discussed below: 

N-Acetyl Aspartate (NAA) in 1H-MR spectra of normal cerebral tissue, is the most prominent 

resonance which originates from the methyl group of NAA at 2.01ppm with a contribution 

from neurotransmitter N-aspartyl-glutamate (NAAG) (figure 1). NAA is exclusively 
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localized in central and peripheral nervous system and it is synthesized in brain 

mitochondria. Its concentration subtly varies in different parts of the brain [10] and 

undergoes large developmental changes, increasing from 4.82mM at birth to 8.89mM in 

adulthood. Although NAA is considered as a neuronal marker and equate with neuronal 

density and viability, its exact function remains largely unknown.  

The utility of NAA, as an axonal marker is supported by the loss of NAA in many white 

matter diseases, including leukodystrophies [11], multiple sclerosis (MS) [12] and hypoxic 

encephalopathy [13], chronic stages of stoke [14] and tumors [1, 2, 9]. However, there are 

cases when the abnormal levels of NAA do not reflect changes in neuronal density, but 

rather a perturbation of the synthetic and degradation pathways of NAA metabolism. For 

instance, in Canavan’s disease high levels of intracellular NAA [15] are due to 

aspartoacylase (ASPA) deficiency, which is the enzyme that degrades NAA to acetate and 

aspartate.  

Further examples that show the lack of direct relationship of NAA to neuronal integrity 

include various pathologies such as temporal lobe epilepsy (TLE) [16] or amyotrophic lateral 

sclerosis (ALS) [17], which exhibit spontaneous or treatment reversals of NAA to normal 

levels. 

Choline-containing compounds comprise signals from free choline (Cho), phosphocholine (PC) 

and glycerophosphocholine (GPC), with a resonant peak located at 3.22 ppm. Since the 

resonance contains contributions from several methyl proton choline-containing 

compounds, it is often referred as “total Choline” (tCho). tCho is involved in pathways of 

phospholipid synthesis and degradation thus reflecting a metabolic index of membrane 

density and integrity as well as membrane turnover [1, 2, 9].  

Consistent changes of tCho signal have been observed in a large number of cerebral 

diseases. Processes that lead to elevation of tCho include accelerated membrane synthesis of 

rapidly dividing cancer cells in brain tumors [1, 2, 9], cerebral infractions, infectious diseases 

[18], and inflammatory-demyelinating diseases [19]. 

Unlike to NAA, which is distributed almost homogeneously throughout the healthy brain, 

tCho exhibits a marked regional variability with higher concentrations observed in the pons 

and lower levels in the vermis and dentate [20]. Therefore, detailed knowledge about 

regional variations of tCho is necessary for an accurate interpretation of the metabolite’s 

levels, especially in diseases such as epilepsy and psychiatric disorders where tCho is subtly 

different to normal levels.  

Creatine (Cr) and Phosphocreatine (PCr) together they are often referred as total creatine (tCr) 

because they cannot be distinguished with standard clinical MR unit (up to 7T) and their 

sum is thus mentioned. Cr and PCr arise from the methyl and methylene protons of Cr and 

phosphorylated Cr. Within the 1H-MR spectrum, tCr is located at 3.03 ppm and 3.93 ppm 

resonant frequencies. 

In the brain tCr is present in both neuronal and glial cells and is involved in energy 

metabolism serving as an energy buffer via the creatine kinase reaction retaining constant 
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ATP levels and as an energy shuttle, diffusing from the energy producing (i.e. 

mitochondria) to energy utilizing sites (i.e. nerve terminals in brain) [21]. As tCr is not 

naturally produced in the brain, its concentration is assumed to be stable with no changes 

reported with age or a variety of diseases and is used for calculating metabolite ratios 

(NAA/Cr, tCho/Cr etc) [21]. Nevertheless, the use of tCr as an internal concentration 

reference should be used with caution as decreased tCr levels have been observed in the 

chronic phases of many pathologies including tumors [22], stroke [23] and gliosis [24].  

myo-inositol (mI) is a cyclic sugar alcohol that gives rise to four groups of resonances with the 

larger and most important signal occurring at 3.56 ppm. It is observable on short time echo 

(TE) spectra as it exhibits short T2 relaxation times and is susceptible to dephasing effects 

due to J-coupling. The exact function of mI is uncertain, however it has been proposed as a 

glial marker and an increase of mI levels is believed to represent glial proliferation or an 

increase in glial cell size, both of which may occur in inflammation [2].  Additionally, this 

metabolite is involved in the activation of protein C kinase which leads to production of 

proteolytic enzymes found in malignant and aggressive cerebral tumors, serving as a 

possible index for glioma grading [25]. mI has also been labeled as a breakdown product of 

myelin. Thus, altered levels of mI have been also encountered in patients with degenerative 

and demyelinating diseases [12, 15]. 

Lactate and Lipids, in the normal brain should be maintained below or at the limit of 

detectability within the 1H-MR spectrum, overlapping with macromolecule (MM) 

resonances at 1.33ppm (doublet) and 0.9-1.3 ppm respectively. Any detectable increase in 

lactate and lipids can therefore be considered abnormal. Lactate is present in both 

intracellular and extracellular spaces and provides an index of metabolic rate and clearance 

[22].  As an end-product of anaerobic glycolysis, increased lactate levels have been observed 

in a wide variety of conditions in which oxygen supply is restricted such as in both acute 

and chronic ischemia [14], metabolic disorders [2], and tumors [1, 2, 9, 22]. Lactate also 

accumulates in tissues that have poor washout like cysts [26] and normal pressure 

hydrocephalus [27]. However, in CSF, lactate may be detectable at low levels in normal 

subjects with prominent ventricles [4].  

The spectral region between 0.9ppm and 1.3ppm as referred above; represents the 

methylene (1.3ppm) and the methyl (0.9ppm) groups of fatty acids. It is during membrane 

breakdown when fractured proteins and lipid layers become visible. Regardless of the exact 

molecular source, an elevation of lipid resonances indicates cerebral tissue destruction such 

as infarction [14], acute inflammation [28] and necrosis [18]. In addition, lipid signals have 

been observed in patients with several metabolic disorders such as Zellweger syndrome and 

Refsum’s disease [29]. 

Glutamate (Glu) and Glutamine (Gln) together they form a complex of peaks (Glx complex) 

between 2.15 ppm and 2.45 ppm, as their similar chemical structures, renders their 

distinction difficult within a proton spectra at 1.5T. However, at 3T and above Glu and Gln 

start to become resolved [30] and at magnetic fields of 7T and higher, the Glu and Gln 

resonances are visually separated leading to big quantification accuracy [21]. Glu is the 
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major excitatory neurotransmitter in mammalian brain and the direct precursor for the 

major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). The amino acid Gln, is an 

important component of intermediary metabolism, is primarily located in astroglia and it is 

synthesized from Glu [21].  

The Glx complex plays a role in detoxification and regulation of neurotransmitters. 

Increased levels of Glx complex are markers of epileptogenic processes [31] and low levels 

of Glx have been observed in Alzheimer Dementia and patients with chronic Schizophrenia 

[32]. Glx complex increment, has been also observed in the peritumoral brain edema 

correlated with neuronal loss and demyelination [33]. As reported by Malhorta et al., Glx 

might be used as an in vivo index of inflammation since they observed elevated Glx levels in 

acute MS plaques but not in chronic ones [34]. 

Alanine (Ala) is an amino acid present in the normal brain, resonating at 1.47 ppm. It is 

frequently considered as a specific metabolic charecteristic of meningiomas, however, its 

identification rate varies from 32% to 100% [3, 22]. It can be also presented in neurocytomas 

[35], gliomas and PNETs [36]. In vivo 1H-MRS at 1.5T often cannot provide a distinction 

between Ala and Lac peaks as they resonate in neighboring frequencies. When both 

metabolites are present they produce a triplet peak located between 1.3 ppm and 1.5 ppm 

[37] observed at 3T and higher. 

Glycine (Gly) is the simplest amino acid and possible antioxidant, distributing mainly in 

astrocytes and glycinergic neurons, where it is regulated due to its neuroactive properties as 

an inhibitory neurotrasmitter [28]. It resonates at 3.55 ppm and it overlaps with mI 

rendering the observation of Gly impossible in a non-processed spectrum. In cases of mI 

absence, the even low Gly levels can be quantified [38].  

High levels of Gly have been observed in glioblastomas, medulloblastomas, ependymomas 

and neurocytomas [28]. It has also been reported that this metabolite may provide a 

noticeable metabolic index for the differentiation of glioblastomas from lower grade 

astrocytomas, primary gliomas from recurrence [38] and glial tumors from metastatic brain 

tumors [36].  

Taurine (Tau) gives two triplets at 3.25 ppm and 3.42 ppm, which can be observed at higher 

magnetic fields [21] as they significantly overlap with Cho and mI. Tau is an inhibitory 

neurotransmitter that activates GABA-a receptors or strychnine-sensitive glycine receptors 

and it has also been proposed as an osmoregulator and a modulator of neurotransmitter 

action [21]. High levels of Tau have been observed in medulloblastoma, pituitary adenoma 

and metastatic renal cell carcinoma [39]. Shirayama et al have been also reported increased 

levels of Tau in the medial prefrontal cortex in schizophrenic patients [40]. 

Glutathione (GSH) is the major protective molecule of living cells assigned to 2.9 ppm. It 

serves as an antioxidant and detoxifier thus having an important role against oxidative 

stress [41]. Glutathione also plays a role in apoptosis and amino acid transport [42]. 

Altered levels of this metabolite have been reported in acute ischemic stroke patients as 

ischemia is associated with significant oxidative stress [41], in Parkinson’s disease and other 
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neurodegenerative diseases affecting the basal ganglia [21]. GSH has been also found to be 

significantly elevated in meningiomas when compared to other tumors [42], showing as well 

an inverse relationship with glioma malignancy. 

Several other amino Acids such as Succinate at 2.4 ppm, Acetate at 1.92 ppm, Valine and 

Leucine at 0.9 ppm together with Alanine and Lactate, are the major spectral findings of 

bacterial and parasitic diseases. Acetate and Succinate are presumably originating from 

enhanced glycolysis of the bacterial organism [9]. The amino acids Valine and Leukine are 

known to be the end-products of proteolysis by enzymes released in pus [9]. Specifically, 

Leucine and Valine peaks have been detected in cystercercosis lesions, however they have 

not been reported in proton MR spectra of brain tumors [9].  

4. Technical considerations 

In order to precisely identify the metabolite peaks within a spectrum, several technical 

considerations should be taken into account concerning the applied magnetic field, the 

shimming procedures as well as the adequate voxel positioning and the available 1H-MRS 

techniques , which all highly affect the quality of the yielded spectrum before any post-

processing intervention. 

4.1. Field strength 

In 1H-MRS clinical applications, it is not the signals of water and fat that are of interest, but 

rather the smaller signals of metabolites, thus a magnetic field of sufficient strength is 

required. Therefore, most clinical 1H-MRS measurements are performed using MR systems 

with field strengths of 1.5T and higher. Although more powerful 4-, 6-, 7- , and even 8T MR 

body scanners are currently in use, the most common high field systems operate at 3T. The 

main advantage of increasing magnetic field strength is the subsequent increase of the 

signal-to-noise ratio (SNR). Theoretically, SNR increases proportionally to field strength, 

however, when put into clinical practice, the study of Barker et al [43], demonstrated a 28% 

increase in SNR at 3T compared to that of 1.5T at short TEs, appreciably less than the 

theoretical 100% improvement. Another advantage of magnetic field increment, is the 

proportional increase of the Chemical Shift, from 220 Hz at 1.5T to 440 Hz at 3T. This is 

reflected by more effective water suppression and improved baseline separation of J-

coupled metabolites such as glutamate, glutamine and GABA, without the need of 

sophisticated spectral editing techniques [44]. The improvement in spectral resolution is 

further evident at 7T where weakly represented neurochemicals with important clinical 

impact, such as scyllo-Ins, aspartate, taurine and NAAG, can be clearly visible [44].  

On the other hand, the aforementioned advantages may be hampered by intrinsic field-

dependent technical difficulties that should be considered. When the frequency shift 

between two adjacent nuclei is large enough, a measurable alteration of MR signal, used to 

encode the x- and y-axis spatial coordinates, will occur producing a spatial misregistration. 

This means that the volume of MRS information may not be the same as that displayed on 

the localizer MR image [45]. J-modulation anomalies represent another difficulty 
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encountered at high magnetic fields. The large separation of coupled resonances such as 

Lactate can result in incomplete inversion of the coupled spin over a large portion of the 

selected volume, resulting in anomalous intensity losses at long echo times. Strategies to 

quantify the lactate signal loss have been previously discussed by Lange et al. [46]. Magnetic 

susceptibility from paramagnetic substances and blood products, are sensibly increased 

with increasing magnetic field strength. Consequently, magnetic field inhomogeneity and 

susceptibility artifacts makes more difficult to obtain good-quality spectra, especially from 

largely heterogeneous lesions [45]. Improved local shimming methods can alleviate the 

problem. 

4.2. Shimming 

Shimming refers to the process of adjusting field gradients, either manually or 

automatically, in order to optimize the magnetic field homogeneity over the volume under 

study. Magnetic field inhomogeneities result primarily from susceptibility differences 

between different tissues and between tissue and air cavities, which are scaled non-linearly 

in ultra-high magnetic fields [47]. Thus, voxels that are placed in inhomogeneous regions of 

the brain, such as the temporal poles, are difficult to shim due to their close proximity to the 

sinuses. 

Field homogeneity is specified by measuring the full width at half maximum (FWHM) of 

the water resonance, which determines the spectral resolution. Special emphasis, especially 

when field is increased, must be placed on shimming, as it increases both sensitivity and 

spectral resolution. This is why most devices come equipped with second or third order 

shimming by monitoring either the time domain or frequency domain of the 1H-MRS signal 

[48]. Some times 4-order shimming might be necessary [49], especially in cases when field 

homogeneity should be reached in large volumes of interest during magnetic resonance 

spectroscopic imaging (MRSI).  

Effective shimming requires methods for mapping field’s strength variations over the area 

under study. Methods that have been developed for field mapping can be grouped in two 

categories: those which are based on 3D field mapping [49] and those which map the 

magnetic field along projections [50]. In both shimming methods, information about the 

magnetic field variation is calculated from phase differences acquired during the evolution 

of the magnetization in a non-homogeneous field.  

4.3. Voxel positioning 

For a meaningful in vivo 1H-MRS, it is important to locate the voxel in the appropriate 

region for a reliable metabolic characterization of a lesion [48]. 

First and foremost, cautious spatial localization is used to remove unwanted signals from 

outside the ROI, like extracranial lipids and to avoid “partial volume effects”, thereby 

providing a more genuine tissue characterization.  Additional benefits from careful spatial 

voxel localization, originate from the fact that variations in the main magnetic field and 



 
Proton Magnetic Resonance Spectroscopy of the Central Nervous System 27 

magnetic field gradients, are greatly reduced, thereby providing narrower spectral lines and 

more uniform proton excitation.  

Several lesions and stroke infarcts do not always place themselves in positions that are easy to 

shim such as temporal lobes, the base of the brain and the cortex near the scull. Small voxels is 

those regions are easier to shim, but the signal also depends on volume so a voxel with 1-cm 

sides is often considered the practical minimum size to achieve a reasonable SNR [51].  

4.4. 1H-MR spectroscopy data acquisition techniques 

Spectra can be acquired either with a single voxel (SV) technique (single voxel spectroscopy, 

SVS) or multiple voxels technique, known as either magnetic resonance spectroscopic 

imaging (MRSI) or chemical shift imaging (CSI) in two or three dimensions. SVS is based on 

the stimulated echo acquisition mode (STEAM) [52] or the point resolved spectroscopy 

(PRESS) [53] pulse sequences while MRSI uses a variety of pulse sequences (Spin Echo, 

PRESS etc.) [54].  

SVS acquires a spectrum from a small volume of tissue located at the intersection of three 

mutual orthogonal slice-selective pulses as depicted in figure 2. The pulse sequence is 

designed to collect only the echo signal from the point where all three slices intersect [53].  

 

Figure 2. Schematic representation of the three orthogonal SV slice selective pulses (left) resulting in the 

signal collection only from the rectangular region of interest. 

The advantages of this approach are that: 

1. the volume is typically well-defined with minimal contamination (e.g. extracranial 

lipids),  

2. the magnetic field homogeneity across the volume can be readily optimized, leading to  

3. improved water suppression and spectral resolution.  

The main disadvantage of SVS is that it does not address spatial heterogeneity of spectral 

patterns and in the context of brain tumors, these factors are particularly important for 

treatment planning such as radiation or surgical resection. 

Lesion’s heterogeneity is better assessed by MRSI. MRSI techniques have been extended to 

two dimensions (2D) by using phase-encoding gradients in two directions, or, subsequently, 
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three-dimensional (3D) encoding [55]. Thus, the detection of localized 1H-MR spectra from a 

multidimensional array of locations is allowed (Figure 3). While technically more 

challenging -due to (1) significant magnetic field inhomogeneity across the entire area of 

interest, (2) spectral degradation due to intervoxel contamination the so called “voxel 

bleed”, (3) long data acquisition times and (4) post-processing of large multidimensional 

datasets- MRSI can detect metabolic profiles from multiple spatial positions, thereby 

offering an unbiased characterization of the entire object under investigation.  

 

Figure 3. An example of 2D-MRSI of a 50-year old female with a glioblastoma. Simultaneously acquired 

spectra from multiple regions located at the same plane of the lesion (left). Data are also presented as a 

metabolic map of Choline/Creatine (right).  

4.5. Water and lipid suppression techniques 

Water and peri-cranial lipid suppression techniques are of paramount importance in 1H-

MRS procedure in order to observe the much less concentrated metabolite signals. The 

metabolites of interest are usually about a factor of 8,000 less in concentration than water. 

Therefore, the water suppression efficiency should be robust and should not vary spatially 

across the field of view (FOV). 

The existing water suppression techniques can be divided into three major groups, namely: 

(1) methods that employ frequency-selective excitation and/or refocusing pulses; or (2) 

utilize differences in relaxation parameters; and (3) other methods, including software-based 

water suppression. The most common method of the first group utilizes multiple (typically 

3) frequency-selective, 90° pulses (chemical shift selective water suppression (CHESS) pulses 

[56], prior to localization pulse sequence. Additionally suppression can be achieved by 

selectively diphase water, while metabolites of interest are rephased using refocusing pulses 

during the spin echo period [57]. As water and metabolites T1s are sufficiently different, it is 

possible to suppress the water signal and observe the metabolites in the close proximity to 

the water resonance [58]. The third method involves the acquisition of two separated scans 

in which the metabolite resonances are inverted. The large (unsuppressed) water resonance, 
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as well as the water-related sidebands, is not inverted in either scan. The difference between 

the two scans therefore results in a water-subtracted (suppressed) metabolite spectrum 

without any interfering water-related sidebands [21]. 

Lipid suppression can be performed by avoid the excitement of the lipid signal using 

STEAM or PRESS localization to select a relatively large rectangular volume inside the 

brain. Since the extracranial lipids are not excited they do not contribute to the detected 

signal. Opposite to the strategy employed by volume pre-localization, outer volume 

suppression pulses (OVS) are applied to presaturate the lipid signal [54]. As illustrated in 

figure 4, rather than avoiding the spatial selection of lipids, OVS excites narrow slices 

centered the brain’s lipid-rich regions. Additionally, the difference in T1s of lipids (250-350 

msec) and metabolites (1000-2000msec) allows the application of an inversion pulse 

(inversion time ~ 200 msec), which will selectively null the lipid signal [59]. By choosing the 

inversion delay such that the longitudinal lipid magnetization is zero, the lipids are 

effectively not excited. 

 

Figure 4. The location and orientation of OVS pulses have been prescribed in order to saturate as much 

peri-cranial lipid as possible while the signal within the voxel remains unperturbed. 

5. Post processing techniques 

In MR spectroscopy, post-processing is considered any signal manipulation performed in 

order to improve the visual appearance of the MR spectrum or the accuracy during 

metabolite estimation. Therefore, for a reliable analysis of in vivo 1H-MR spectra, an 

understanding of the principles of post-processing techniques is necessary.  

Signal post-processing can be performed either on time domain or after Fourier 

transformation on frequency domain [60]. Eddy current correction, removal of unwanted 

spectral components, signal filtering, zero filling, phase correction and baseline correction, 

consist the most common post-processing techniques for effective signal improvement, and 

they will be briefly discussed below: 

During signal localization RF pulses are applied together with magnetic field gradients. The 

switching pattern of the gradients applied, can cause eddy current (EC) artifacts that are 

time and space dependent, causing time dependent phase shifts in the FID and distorted 
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metabolite lineshapes within the spectrum preventing accurate quantification. In a spectrum 

EC artifacts can be removed by acquiring an additional FID without water suppression. The 

phase of the water FID is determined in each time point and it is subtracted from the phase 

of the corrupted FID [24]. The EC artifact correction comprises the first step of the post-

processing procedure.  

The removal of unwanted signals from the FID which may disturb signals from the 

resonances of interest is the next step of signal post processing. A typical example of such an 

unwanted signal in 1H-MRS is that of water. Water suppression during measurement is 

never perfect and a residual water signal remains in the spectrum which often has a 

complicated lineshape [24]. Residual water elimination from the FID can be achieved, either 

by approximating the water signal and subtract it from the FID, or by eliminate it using 

special filters [61], or by applying baseline correction for the removal of the broad water 

peak from the spectrum [62].  

The existence of a distorted spectral baseline hampers quantitative analysis as the estimation 

of metabolite peak areas is not reliable. The main sources of the baseline signal are fast 

decaying components with very short T2* values such as macromolecules, hardware 

imperfections, signal from the sample and as mentioned above, inefficient water 

suppression. Thus, for robust data acquisition and quantification methods, baseline 

correction is of paramount importance. Delayed acquisition (e.g. TE > 80 ms) removes the 

macromolecules due to their shorter T2 relaxation times (∼30 msec), at the expense of loss of 

information of many scalar-coupled resonances [21] which have been suggested valuable for 

tumor and stroke characterization [4, 21, 22, 24, 25, 33].  

Special functions, called filters, can be subsequently applied at the signal in the time 

domain. The goal is to enhance or suppress different parts of the FID leading to improved 

signal quality. The three most commonly used filtering approaches are: sensitivity 

enhancement, to reduce the noise from the FID; resolution enhancement, to achieve 

narrower metabolite linewidths; and apodization for signal’s ripple (due to signal 

truncation) reduction [62]. 

The FID of a spectrum, when acquired, is sampled by the analog-to-digital converter over N 

points in accordance to the Nyquist sampling frequency. Therefore, if the number of points 

is not sufficient, the reliable representation of the signal fails. Instead of increasing the 

acquisition time with the inevitable noise increment, the acquired FID can artificially be 

extended by adding a string of points with zero amplitude to the FID prior to Fourier 

Transformation, a process known as zero filling. Zero filling does not increase the 

information content of the data but it can greatly improve the digital resolution of the 

spectrum and helps to improve the spectral appearance [21], rendering it an important post-

processing step. 

After Fourier transformation, the spectrum will be phase corrected. When the zero-phased 

FID signal shifts to the frequency domain, yields a complex spectrum with absorption (real) 

and dispersion (imaginary) Lorentz peaks. However, when the initial phase is non-zero, it is 

not attainable to restore pure absorption or dispersion line shapes and phase correction 
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must be applied [4, 21, 62]. A zero-order phase correction compensates for any mismatch 

between the quadrature receive channels and the excitation channels to produce the pure 

absorption spectrum, whereas, a first-order phase correction compensates for the nuclei 

dephase due to the delay between excitation and the detection of FID [62].  

6. 1H-MRS metabolic profiles of brain lesions 

The effective differential diagnosis of brain lesions using 1H-MRS depends on the ability of 

the experienced neuroscientist to interpret and evaluate the metabolic criteria and data 

underlying each disease. However, similarities in the chemical composition among diseases 

and/or atypical metabolic characteristics, often burden the diagnosis. Thus, a clinical guide 

to the main MR spectroscopic findings of cerebral disorders is necessary.  

This section focuses on the metabolic patterns of a variety of intra-cranial diseases.  

6.1. Multiple Sclerosis (MS)  

Multiple Sclerosis (MS) is an auto-immune inflammatory disease of the central nervous 

system (CNS) in which the myelin sheaths around the axons are damaged leading to 

demyelination, neuronal affection, inflammation, gliosis and axonal degeneration [14].  1H-

MRS is particularly informative in MS, by providing evidence of the two primary pathologic 

processes of the disease: active inflammatory demyelination and neuronal injury in both 

lesional and non-lesional brain tissue [63, 64].  

Acute demyelinating lesions reveal increased Cho and Lac resonance intensities due to the 

release of membrane phospholipids during active myelin breakdown and the impaired 

metabolism of the inflammatory cells, respectively [63]. Short TE spectra also provide 

evidence of increased lipids, mI [63, 64] and glutamate levels [34]. Increased glutamate 

levels in acute MS lesions address a link between the direct axonal injury and glutamate 

excitotoxicity [65], whereas mI is suggestive of glial proliferation and astrogliosis [63]. The 

aforementioned changes are accompanied by a substantial decrease in NAA due to axonal 

injury reflecting metabolic or structural changes [64, 65]. It is important to note that the 

spectroscopic changes seen in acute MS plaques are often very similar to the spectra 

observed in brain tumors (high Cho, low NAA, increased Lac, etc.), and therefore this 

should be kept in mind when evaluating spectra from patients with undiagnosed brain 

lesions.  

After the acute phase transition, Lac, Cho and lipids seem to return to normal levels, 

whereas NAA may remain decreased or show partial recovery, lasting for several months 

[64]. The recovery of NAA can be attributed to resolution of edema, diameter increment of 

the previously shrinked axons, as a result of the re-myelination and reversible metabolic 

changes in neurons [64, 65]. There are reports of elevated Cho resonance in chronic MS 

plaque, probably reflecting the associated gliotic process [66]. Cr seems to be a variable 

metabolite both in chronic and acute, but is also described to be slowly increasing over time, 

indicative of gliotic reaction or attempts of incomplete re-myelination of the chronic 

diseased tissue phases [14]. 
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Metabolic abnormalities in MS patients not only concern the lesions, but are found 

throughout the normal appearing white matter (NAWM) with notably reduced NAA, which 

is thought to indicate diffuse axonal dysfunction or loss. It must also be stressed out that the 

presence of intense gliosis may also cause increased levels of mI [67] and Cr [68]. Increased 

glutamate, lipids and Cho can be also found in regions of the NAWM, which later are going 

to develop T2-hyperintense focal lesions [64].   

6.2. Intracranial abscesses  

Brain abscesses are focal, intracerebral infections that begin with a localized region of 

cerebritis, evolving into a discrete collection of pus surrounded by a well-vascularized 

capsule. The causative organisms involved in brain abscesses are quite variable, and may 

consist of mixed cultures: aerobes, anaerobes, facultative anaerobes, and facultative 

anaerobes in combination with aerobes/anaerobes.  

MRS has been proven beneficial in differentiating between brain abscesses and other cystic 

lesions [69], which can be used to implement the appropriate antimicrobial therapy. Brain 

abscesses reveal specific metabolic substances, such as succinate, acetate, alanine, valine, 

pyrouvate, leukine, lipids and lactate [69, 70],which are all present in untreated bacterial 

abscesses or soon after the initiation of treatment [70]. Increases in lactate, acetate, and 

succinate presumably may originate from the enhanced glycolysis and fermentation of the 

infecting microorganisms. Amino acids such as valine and leucine are known to be the end 

products of proteolysis by enzymes released by neutrophils in pus [14]. However, cerebral 

abscesses contain no neurons [71], therefore no peaks of NAA and Cr/PCr should be 

detected. The detection of any NAA and/or Cr/PCr is indicative of either signal 

contamination or erroneous interpretation of acetate peak as NAA [72]. Similarly no tCho 

peak is present in an abscesses spectrum because there are no membranous structures in its 

necrotic core [73]. On the other hand, abscesses of tuberculous origin are characterized by 

the predominant presence of lipids, moderate increase of tCho resonance and no evidence of 

cytosolic amino acids [4]. 

Differential diagnosis of brain abscess versus brain tumor is sometimes difficult on the basis 

of imaging findings and clinical judgment, especially in the case of a brain tumor with a 

mainly cystic or necrotic component. However, because the vast majority of the 

aforementioned amino acids have not been detected in brain neoplasms, their presence 

strongly differentiates abscesses from highly aggressive tumors [71].  

6.3. Ischemia  

Most studies of 1H-MRS of the human brain have focused on the signals from NAA and 

lactate, as potential markers of brain ischemia, respectively, although there are also often 

changes in the other metabolite signals, such as Cho, Cr, glutamate (Glu) and glutathione 

(GSH) [74].  The time course of these metabolite changes through time is an important factor 

for the diagnosis and prognosis of a brain infarct.  
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In acute stroke the infarct core rapidly shows signs of cell death and a spectrum from this 

area has the characteristic lactate peak, often with a broad lipid peak too. Lactate could also 

arise from a shift toward anaerobic glycolysis in potentially viable cells that continue to 

metabolize glucose under locally hypoxic conditions [75]. Lactate may also be present in 

smaller concentrations in the ischemic penumbra, the region around the core which if 

quickly re-perfused may recover its function [75]. Lactate formed in the initial period of 

ischemia could remain in necrotic tissue and leave the region of injury after cell lysis in a 

period of weeks or months after the stroke onset.  

Unlike to the increase of lactate, NAA is observed to slowly decrease over a time scale of 

hours after the induction of ischemia [75]. Several studies have described an initial rapid 

decrease in NAA of about 10% within the first few minutes followed by a slower decrease.  

It has been suggested that NAA diminish may be due to NAA degradation by enzymes 

within the injured neurons in the first few days or hours following infarction, or perhaps 

due to changes in other molecules (e.g. Glu, Gln, GABA etc.) which overlap with the spectral 

resonance of NAA [74]. 

tCho has been observed to either increase or decrease both in acute and chronic human 

ischemia [76]. Increases in Cho in stroke may be the result of gliosis or ischemic damage to 

myelin, while decreases are probably the result of edema, necrosis and cell loss [4]. Initial 

reduction in Cr/PCr is identified following infarction and further reductions have been 

demonstrated up to ten days following the time of onset [74]. Muniz Maniega et al. reported 

continuous reduction of Cr levels over a period of three months from the stroke onset [76].  

A study by Rumpel et al. revealed that mI might also significantly contribute to the 

understanding of brain tissue response to ischemia, which is in line with a persistent 

cytotoxic swelling, attributed to the glial population, found in early subacute ischemic 

infarcts [77]. Acute ischemic also causes changes in the glutathione (GSH) system (decreased 

GSH in ischemic patients) as stroke is associated with significant oxidative stress [41]. 

Experimental studies have suggested that ischemic stroke may cause an increment in 

extracellular level of GABA; however there is very little work on the detection of GABA and 

glutamate in cerebral ischemia [78].  

6.4. Epilepsy 

The term epilepsy covers a wide group of syndromes with varied etiology and prognosis. 

By providing an insight into the biochemical processes related to epileptic seizures, 1H-MRS 

aids in the localization or lateralization of the epileptogenic foci and in the influence of the 

metabolites concentration after the administration of antiepileptic drugs and/or after 

resection of the epileptogenic tissue. 

Temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) is the most 

common refractory focal epilepsy. The localization is performed by the comparison of 

metabolites on the left and right temporal lobe, especially in the hippocampus and temporal 

poles, to determine which hemisphere is responsible for the genesis of seizures [79]. The 
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metabolites of interest in epilepsy are NAA, GABA and glutamine/glutamate (Glx) and the 

less prominent mI and lactate (Figure 5). Most of the studies dealing with mesial TLE, 

demonstrate decreased levels of NAA in the affected temporal lobe when compared with 

controls or with the homologous non-epileptic contralateral region, with no changes or mild 

increases of tCho. Interestingly, not only decrease of NAA content occurs in the 

epileptogenic foci, but also unilateral presence of lactate in the mesian temporal lobe could 

potentially be indicative of the side of the epileptogenic zone [16].  

Nowadays, a hypothesis exists in which the raise of mitochondrial energy consumption 

promotes a reduction of neuronal synthesis of NAA, and, therefore, an increase of glutamate 

(its precursor) [80]. In epileptic patients, it seems to exist a disequilibrium of 

glutamine/glutamate (Glx) and GABA [81]. Therefore, spectroscopic measurements of Glx 

complex could yield spatial information on the epileptogenic zone. However, although there 

is some evidence that Glx is elevated in TLE, its value as a marker for the epileptogenic zone 

has not been established yet. 

Additionally, 1H-MRS studies of TLE have also been focused on mI, however, its role 

remains controversial. The study of Wellard et al. revealed elevated mI in the epileptogenic 

temporal lobe of patients with HS [82]. They also reported a difference of mI levels between 

the seizure focus (temporal lobe) where mI is increased, and areas of seizure spread (frontal 

lobe) where mI is decreased. Thus, 1H-MRS may aid to the distinction of primary 

epileptogenic brain damage from seizure secondary effects on adjacent normal brain  and 

help to distinguish drug refractory TLE patients, who will benefit from surgery by 

predicting postoperative outcome [83].  

 

 

Figure 5. Short TE (35msec) spectra at 3T obtained in the left and right hippocampal formation from a 

patient with right HS using single-voxel technique. The decreased NAA signal and the increased mI at 

the affected region (A) are evident when compared with the contralateral normal hippocampal 

formation (B). Note the mild elevation of the Glx complex at the affected region (B). 
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6.5. Neurodegenerative diseases (Alzheimer/Parkinson)  

Numerous studies have attempted to identify specific metabolic markers for different 

neurodegenerative diseases, such as Alzheimer’s dementia (AD) and Parkinson’s disease 

(PD), which concern loss of structure or function of neurons including death of the neuronal 

cells. The clinical objective in that cases is to establish a precise and early diagnosis as well 

as to understand the related brain changes that could help to slow down the course of the 

disease [60]. 

1H-MRS has been demonstrated to be highly specific and sensitive to the diagnosis of 

Alzheimer’s dementia (AD) [15]. Reduction in NAA is the most frequent 1H-MRS finding in 

AD [84, 85]. Single Voxel 1H-MRS studies have consistently found reductions in NAA/Cr 

ratio in the hippocampal formation [85] as well as other temporal regions [86] and the 

posterior cingulate gyrus [87]. Findings of reduced NAA have been also detected in the 

temporoparietal area, and the occipital lobes [85, 87]. There have been conflicting reports 

regarding Cho levels in patients with AD. Some researchers found elevated Cho and/or 

Cho/Cr ratios in AD patients, while others not [32, 85, 87]. Increased mI has been also 

observed, most often, in the temporal-parietal area [85], the posterior cingulate gyrus [32, 86, 

87], the parietal white matter 86] and less often in the frontal lobes [86]. Few studies have 

also reported reduced Glx levels in AD patients compared to control subjects in the 

posterior cingulated gyrus [88] and lateral temporal cortex [86].  

The majority of 1H-MRS studies in Parkinson’s Disease (PD) to date have primarily targeted 

brain levels of NAA, Cr, and Cho [89, 90]. Many researchers disclosed a significant 

reduction of ratios NAA/Cr and NAA/Cho in the temporoparietal cortex [91], the substantia 

nigra, the basal ganglia [92], the striatum or the occipital lobe [93]. Griffith et al. have 

demonstrated lower NAA/Cr ratios in the posterior cingulate gyrus of demented versus non 

demented subjects with PD [94]. Other investigators, however, have not detected such 

changes [95] in NAA, Cr, and Cho measurements, and the reasons for these different 

findings need to be resolved.  

6.6. Gliomas 

Gliomas are spatially heterogeneous lesions which arise from the ‘gluey’, or supportive 

tissue of the brain. The main types of gliomas are astrocytomas, oligodendrogliomas, and 

ependymomas. 1H-MRS is increasingly used in clinical studies to non-invasively identify 

regions with metabolic specific characteristics that reflect glioma type and grade.  

A common observation in 1H-MRS of all glial tumors is a decreased levels of NAA and 

increased levels of tCho with a significant overlap among different glioma types [2, 22]. 

Thus, 1H-MRS is currently used primarily to differentiate glial tumor grade rather than to 

confirm a histopathological diagnosis [96]. 

However, the signal intensity of glutamine and glutamate (Glx) may aid the distinction 

between oligodendrogliomas and astrocytomas. Rijpkema et al. found significantly 

increased Glx levels for oligodendrogliomas when compared to that of astrocytomas [97] 
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using short TE 1H-MRS. Additionally, in a study by Majos et al, ependymomas 

differentiated well from the other glial tumors by showing prominent peaks of mI+Gly and 

Taurine at long TE spectra [98].  

Discrimination between tumor grades in gliomas is an important clinical issue, because 

there is a dispute on the optimum treatment strategy for patients with low-grade tumors. It 

remains an open question whether 1H-MRS is able to define WHO grade of gliomas. 

However, a recent study by Porto et al. revealed a more prominent loss of NAA and 

increase of tCho in WHO III over WHO II astrocytomas [99]. They consequently proposed 

NAA/tCho ratio as the most accurate index to discriminate between those tumor grades 

which is in agreement with what it is generally accepted, i.e. NAA/tCho ratios decrease with 

higher histological grade of gliomas. Law et al. demonstrated a threshold value of 1.6 for 

tCho/NAA which provided 74.2% sensitivity and 62.5% specificity in predicting the 

presence of a high-grade glioma [100]. Thus it is obvious that there is a consistent correlation 

between Cho increase as well as NAA decrease and tumor grade.  

A study by Moller-Hartmann et al. revealed that instead of tCho, the amount of lipids 

proved to be the second-best discriminator between low- and high-grade gliomas, with 

glioblastomas multiforme (GBM) to exhibit the highest amount of lipids since necrosis is one 

of their microsopic hallmarks [3].  Although it has been previously proved that lactate also 

increases with grade, it is not always significantly differentiated between high and low 

grade gliomas [22]. Poor correlation between tumor grade and lactate is most likely due to 

the difficulty of accurately quantifying lactate in the presence of high lipid signals.  

Short TE studies have also shown that mI levels may aid tumor classification and grading 

[22, 25]. Specifically, Castillo et al. retrospectively studied 34 patients with astrocytomas and 

found a trend towards lower mI levels in high-grade compared with low-grade tumors [25].  

One of the most interesting results of the study by Server et al. was the elevation in the 

peritumoral Cho/Cr and Cho/NAA metabolite ratios in relation to glioma grading [101]. 

Thereby, as gliomas are infiltrating intracerebral tumors, 1H-MRS may allow to readily 

appreciate their grade in the perifocal region.  

6.7. Cerebral metastasis 

Cerebral metastases are a common complication of cancer and can affect 20% to 40% of 

patients [102] who suffer from primary tumors in lung, breast, skin or colon.  

When a metastatic brain tumor presents as a solitary lesion, it is usually indistinguishable 

from a high grade glioma [103]. Their distinction is important because the treatment 

approach and follow-up are different for these two different tumors. 

The potential of in vivo 1H-MRS for differentiating intracerebral metastases from GBMs has 

been investigated in a number of studies [102, 104]. Older studies [22, 105] have reported 

that intratumoral 1H-MRS, either on short or long TE, was unable to differentiate between 

metastases and GBMs, as they share common metabolic features. Those concern increased 

levels of lipids and tCho and reduced levels of NAA as it is depicted in figure 6. 



 
Proton Magnetic Resonance Spectroscopy of the Central Nervous System 37 

Nevertheless, a study by Moller-Hartman et al. revealed elevated lipids for metastases, with 

statistically significant difference from GBMs [3]. Opstad et al. speculated that the 

differences in lipid profiles may be related to differences of membrane structures of 

infiltrative versus migratory tumor cells [106]. Significantly higher Cho/Cr ratio for 

metastases than for GBMs was reported by Server et al. due to GBMs higher levels of 

necrosis [102]. On the contrary, Law et al. revealed significantly lower Cho/Cr ratio for 

metastases than for high grade gliomas [105]. These conflicting results may be due to the 

intrinsic heterogeneity of such tumors.  

 

 

Figure 6. Typical Short TE spectra from glioblastoma multiforme (A) and intracerebral metastases (B). 

 

 

Figure 7. Short TE spectra from peritumoral areas of glioblastoma multiforme (A) and intracerebral 

metastases (B). 
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Furthermore, promising results in differentiating between GBMs and metastases by means 

of the resonances at 3.56 ppm, represented by the sum of mI and Gly, have been previously 

observed [36]. Gly/mI showed a tendency to be higher in GBMs than in metastases. 

Measuring the peritumoral metabolites or metabolic ratios is often more useful in 

differentiating intracranial metastases from high grade gliomas with more reproducible 

results among different studies. Elevated Cho as well as reduced NAA have been found in 

the peritumoral region of high-grade gliomas, but not in the peritumoral region of 

metastases when compared to normal levels as it is illustrated in figure 7.  

Those findings support the hypothesis that the edema surrounding metastases is purely 

vasogenic, while the peritumoral region of GBMs is characterized by extensive infiltration of 

tumor cells [102, 104-106]. 

Some patients get their brain metastases detected before the primary cancer. Since GBM case 

has being withdrawn from the differential diagnosis, identification of metastases type 

would be important for further treatment. Sjobakk et al. investigated the feasibility of using 
1H-MRS to characterize brain metastases originating from different primary cancers. The 

results presented in their study, demonstrated that lipid signals on both short and long TE 

spectra are important for metastases characterization. Although non-statistically significant, 

lung metastases tended to differentiated from breast metastases in respect to their lipid 

signals, while the melanoma showed no trend [107]. Chernov et al retrospectively studied 25 

metastatic brain tumors from lungs, colon, breast, kidney, prostate and cardiac muscle, 

using 1H-MRS on long TE. The detected metabolic characteristics revealed that metastases of 

colorectal carcinoma have significantly greater lipid content, expressed as Lipids/Cr ratio, 

compared to metastatic tumors of other origin. The authors suggested an optimal Lipids/Cr 

cut off value of 2 for the identification of the colorectal carcinoma [108]. It is obvious that 1H-

MRS may aid in the determination of cerebral metastases origin, nevertheless, further 

research is needed to determine the exact role of proton MR spectroscopy in the 

identification of the tissue type of metastatic brain tumors. 

6.8. Meningiomas 

Meningiomas are common intracranial tumors and are generally easily diagnosed by their 

characteristic radiological imaging appearance of solid mushroom imaging pattern, 

extracranial location, dura matter conjunction and sinus involvement. However, 15% of 

meningiomas exhibit rim like enhancement, a prominent cystic component, hemorrhage, or 

even metaplasia [109], mimicing gliomas or cerebral metastatic tumors. 1H-MRS has been 

proved useful in differentiating meningiomas with atypical radiologic pattern from other 

brain tumors [36]. 

Alanine at 1.47ppm has been considered as the characteristic metabolic marker of 

meningiomas which differentiates them from other brain tumors [36, 38]. Nevertheless, 

reported occurrence of Alanine varies among different studies [37, 16] as it can significantly 

overlap with lactate resonance due to J-coupling effect [37].  
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In the absence of Alanine, several investigators aimed to correlate other metabolites to 

meningioma presence. Studying the metabolic profile of different cerebral tumors using 

short TE 1H-MRS, Howe et al. found that low levels of mI and Cr were characteristic for 

meningiomas relative to grade II astrocytomas, anaplastic astrocytomas and glioblastomas 

[22]. In the same study meningiomas revealed the highest Cho/Cr ratio among the other 

brain tumors, on both short and long TE. Another reported specific finding for 

meningiomas, is the absence of the neuronal marker NAA. Instead of partial volume effects 

[3], the peak of NAA at meningioma spectra, may also represent other endogenous NAA 

compounds (NACs) such as N-acetylaspartylglutamate, N-acetylneuraminic acid and N-

acetylgalactosamine [37]. 

A recent study by Kousi et al.  revealed a distinct chemical compound, observed in all 

meningiomas recruited for that study, which may establish a rather specific marker in their 

differential diagnosis from high grade gliomas and metastases [6]. This chemical substance, 

resonated at 3.8ppm using short TE 1H-MRS (Figure 8) and according to the in vitro study of 

Tugnoli et al. it might receive contribution from phosphoethanolamine (PE) and other 

amino acids such as Leukine, ALanine, Glutamate, Glutamine, Glutathione, Lysine, 

Arginine and Serine [110].  

 

Figure 8. FLAIR T2 images (left) of a meningioma with its corresponding spectrum (right), at short TE 

(35ms). Elevated Cho and lipid resonances were detected at 3.2ppm and 1.3ppm respectively, as well as 

a distinct chemical compound resonating at 3.8 ppm [6]. 

6.9. Primary Central Nervous System Lymphomas (PCNSL) 

Primary central nervous system lymphoma (PCNSL) represents 1% of all brain tumors and 

its incidence has increased in the last 3 decades. Although densely contrast-enhancing 

lesions, without the presence of necrosis are characteristic imaging features of PCNS 

lymphoma, it can be difficult, sometimes even impossible, to distinguish PCNSLs from high 

grade gliomas on conventional MRI [111]. Their differentiation, however, has important 

diagnostic and therapeutic implications.  



 

Novel Frontiers of Advanced Neuroimaging 40 

For the correct diagnosis of brain lymphomas, 1H-MRS has reported promising results. The 

most specific finding for PCNSL on MRS is an increase in lipid and Cho resonances (Figure 

9).  Sometimes, lipid peaks in PCNSL may be more prominent than in high grade gliomas 

and can help differentiate between the two tumor types [107]. 

Lipids are typically a signature of cell death; however, a lipid dominated spectrum found in 

PCNSL does not indicate necrosis. This appears to be due to numerous macrophages and 

the increased turnover of membrane components in transformed lymphoid cells which 

contain high concentrations of mobile lipids [112].  

Histopathologically, PCNSLs are characterized by a diffusely infiltrative pattern and hence, 

it is important to survey the peritumoral area also and not just the area of obvious tumor 

involvement. Like high grade gliomas, the peritumoral area of PCNSLs demonstrates an 

abnormal metabolite pattern. Chawla et al. reported increased Cho/Cr and Lip+Lac/Cr ratios 

in the peritumoral area of PCNSLs. They also observed significantly higher Lip+Lac/Cr ratio 

in the peritumoral area of PCNSLs when compared with that of GBMs, suggesting the 

presence of infiltrative active lymphocytes and macrophages in areas beyond lymphoma 

boundaries. Using a threshold value of 7.09 for Lip+Lac/Cr ratio they differentiated PCNSLs 

from GBMs with 84.6% sensitivity and 75% specificity [107]. Therefore, in the absence of 

obvious necrosis, increased lipid concentration together with a markedly elevated Cho/Cr 

ratio for both intratumoral and peritumoral areas can provide important metabolic 

information which may improve the distinction between PCNSLs and other brain tumors. 

 

Figure 9. Spectra from an intracerebral lymphoma on both short (A) and long TE (B), demonstrating the 

characteristic elevation of lipid and Cho resonances.  

6.10. Central neurocytomas 

Central neurocytomas (CNCs) are a neuronal tumor almost exclusively located in the lateral 

ventricles that appear in young adults. Most of these tumors do not recur after surgery and 

are generally considered benign, with a favorable prognosis [28].  
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Instead of their typical radiological appearance - a well circumscribed lobulated mass in the 

anterior portion of the lateral ventricles– it may not always be possible to differentiate CNCs 

from other intraventricular tumors such as oligodendrogliomas and ependymomas [113].   

1H-MRS has been proved a valuable tool for the presurgical diagnosis of these neoplasms. 

Previous studies have reported CNCs to consistently show the tumoral pattern of increased 

Cho and decreased NAA levels [28, 35]. On the contrary, lactate has not been observed 

consistently in all studies. Specifically, although Kim et al. reported lactate in all of their 

patients, Shah et al. observed lactate in only 9% of the CNC cases [114, 115]. A few studies 

have speculated the rather specific marker of Gly at 3.55ppm on long TE spectra, strongly 

suggesting CNC occurrence [28, 115].  

The presence of Ala in a patient with CNC was first reported by Chuang et al. using a 3T 

MR system [116]. It was demonstrated as an inverted doublet at 1.5 ppm with a TE of 135 

msec. Similarly, Krishnamoorthy et al. also observed Ala in all three CNC cases (100%) 

studied, whereas in the study of Shah et al. Ala was observed in 64% of the CNCs [35, 115]. 

Thus, CNCs may show Ala as an inverted doublet at 1.5 ppm in long TE spectra. Although 

one may observe Ala in other intraventricular tumors such as meningioma, other 

characteristic peaks such as Gly, high Cho and decreased NAA should help to correclty 

identify CNC. 

6.11. Gliomatosis Cerebri 

Gliomatosis Cerebri (GC) is a rare brain tumor characterized by a diffuse neoplastic 

overgrowth of glial elements of various histological subtypes (astrocytoma, 

oligodendroglioma, or mixed glioma) and extensive infiltration of at least two lobes [117]. 

Unlike gliomas, the neuronal architecture is usually preserved [118]. 

MRI characteristics of GC are non-specific and occasionally it is difficult to differentiate GC 

from demyelinating diseases or viral encephalitis, and biopsy is often inconclusive [9]. 

Given the unfavorable prognosis of this tumor type, there is a demand for alternative 

imaging techniques, such as 1H-MRS, to grade GC and to detect the most anaplastic areas 

for determining surgical areas and radiotherapeutic targets.  

A few studies have looked at the spectral features of such tumors and those are consistent 

with the spectral features of gliomas discussed above. By studying 8 patients with GC using 

long TE 1H-MRS, Bendszus et al. found elevated Cho/Cr and Cho/NAA ratios, as well as 

decreased NAA/Cr ratios of varying degrees in the abnormal areas on T2-weighted images 

[119]. Similarly, a retrospective analysis by Yu et al. also revealed high Cho/Cr and 

Cho/NAA ratios and low NAA/Cr ratio within the areas of hyperintensity on T2-weighted 

images in 8 histopathologically confirmed patients with GC. Anaplastic areas had higher 

Cho/NAA ratio and the lactate doublet was present [117]. Apart from being beneficial in the 

grading of GC, 1H-MRS might reflect the true extent of neoplastic infiltration more 

accurately than MRI.  Bendszus et al. found elevated Cho/Cr and Cho/NAA ratios in the 
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tumor margins that appeared normal on T2- weighted images. Tumoral infiltration of the 

margin of the lesion that appeared normal on T2-weighted images was also confirmed by 

Yu et al. by observing increased Cho/NAA ratio in those areas [117].  

From the aforementioned findings it can be concluded that 1H-MRS when combined to MRI 

findings may aid to GC diagnosis. Additionally, the determination of highly anaplastic areas 

and areas of tumoral infiltration may have a great impact in radiotherapy planning. 

6.12. Suprasellar tumors 

Pituitary adenomas and craniopharyngiomas, are the most frequent suprasellar space 

occupying lesions and are generally regarded as benign neoplasms of the pituitary gland. 

Nevertheless, with respect to the differential diagnosis of suprasellar masses, pituitary 

adenomas, craniopharyngiomas together with gliomas and meningiomas can be considered 

[120].   

To date only a few cases of pituitary adenomas and craniopharyngiomas have been studied 

by in-vivo 1H-MRS [16, 120, 121], probably because of their relative rarity and the technical 

difficulties in obtaining in vivo high-quality spectra without artifacts is such a region [120]. 

In a study by Chernov et al., the vast majority of the 19 pituitary adenomas were 

characterized by a significant reduction of NAA peak, moderate elevation of Cho, and 

infrequent presence of small lipid and lactate peaks. This metabolic pattern differentiated 

them from low grade gliomas which showed a moderate decrease of NAA and Cr peaks. In 

the same study, craniopharyngiomas were typically characterized by a significant decrease 

of all metabolites and presence of multiple additional peaks which were possibly resulted 

from the presence of calcifications and microcysts within the investigated volume of tissue 

[16]. On the contrary, Sener et al. demonstrated very prominent peaks in the 

craniopharyngiomas between 0.5 and 1.5 ppm, which probably corresponded to lipid peaks. 

Histological findings also revealed high amounts of cholesterol, lipids and lactate in the cyst 

fluid correlating with their spectroscopic findings [120]. 

7. Conclusion 

1H-MRS can provide important in vivo metabolic information, complementing 

morphological findings from conventional MRI in the clinical setting. This technique is an 

extremely valuable tool in solving difficult neurological cases and increase confidence in 

diagnosis; however, it should be always considered a supplementary tool to the patients’ 

clinical history, examination, and conventional MRI when reaching the final diagnosis.  

The future would be to combine 1H-MRS with other advanced magnetic resonance 

techniques such as Diffusion/Diffusion Tensor Imaging and Perfusion-weighted Imaging, 

which will potentially prove to be useful in both clinical and research settings. Ultimately, 

these advanced tools may be used in a multiparametric, algorithmic fashion to characterize 

tissue biology and dramatically improve tumor differential diagnosis. 
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