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1. Introduction 

Brain morphology is in constant change from the very beginning of the neurodevelopment 

in human beings. The characterization of the brain morphology and its biological 

implications on a specific subject is a complex task which requires efficient computational 

approaches. Radiology has traditionally assessed the main brain changes in different 

alterations from a macroscopic point of view, thus, not considering subtle changes as a results 

of neuronal plasticity. In conjunction with functional information, the structural neuroimaging 

methods have established as the key in the diagnosis of several central nervous system 

disorders, including tumours, neurodegenerative disorders and psychiatric diseases. 

2. Brain morphometry 

2.1. Introduction 

Morphometry techniques use statistical methods to detect and to quantify subtle structural 

abnormalities that appear when comparing different populations. Nowadays, there are 

several methodologies which have been designed to achieve these goals. The fast evolution 

in terms of spatial resolution and signal-to-noise ratio in Magnetic Resonance (MR) scanners 

as well as the improvements on new imaging techniques and data processing algorithms, 

help to developing studies that increase the knowledge over many fields of neuroimaging. 

This section describes the scope of these new methodologies and the main processes related 

with their implementation.  

2.2. Morphometric methods 

The first method developed in order to measure anatomical differences was based on the 

manual delineation of brain structures and their analysis by defining regions of interest 
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(ROI). Although its main advantage is the anatomical accuracy of the measures, there are 

some assumptions that should be taken into account, including high variability, poor 

reproducibility, the need for previous hypotheses about the anatomical areas and regions to 

study and computational requirements needed to study a large number of subjects. 

In order to supply these restrictions, semiautomatic methods have been developed. These 

methodologies perform a fully computerized treatment of different brain areas, providing a 

reproducible way to define exploratory analysis without a priori knowledge about the 

spatial distribution of the potentially affected areas. 

2.2.1. Deformation-based morphometry 

Models based on deformation fields use the spatial transformations needed to register an 

image to a template. In this registration process, a three-dimensional nonlinear deformation 

map is generated, which contains the adjusted parameters obtained by the fitting process 

between both, the image and the template. The deformation-based morphometry (DBM) 

(Gaser et al., 2001) is therefore a useful methodology to find differences at the macroscopic 

level. 

To obtain the deformation field, the algorithm is initialized and a first mesh is generated. At 

each iteration, this mesh is fitted to achieve the required target varying from low to high 

detail by a coarse to fine minimization strategy. This registration is followed by an 

estimation of the nonlinear deformations which are composed by a linear combination of 3D 

discrete cosine (DC) transform basis functions. Displacement vectors are then smoothed 

with and 8 x 8 x 8 mm Full Width at Half Maximum (FWHM) filter. 

The statistical analysis of these parameters helps to determine whether there are specific 

differences between subjects. The deformation field provides information about both 

volume and position differences, and can be studied by analyzing the displacement vectors 

for each point or by quantifying the local signal variation. Multivariate statistical models are 

needed in order to make inferences about the differences between groups. 

2.2.2. Tensor-based morphometry 

Tensor-based morphometry (TBM) (Kipps et al., 2005) is a morphometric method which 

uses tensor magnitudes to identify regional changes in anatomical areas The estimation of 

these differences is based on the small variations that are generated when normalizing each 

voxel of an image (ia, ib, ic) to a template reference (ja, jb, jc). 

By using the deformation fields, the determinants of the Jacobian matrix (J) can be 

estimated. This matrix is equivalent to a second-order tensor that provides univariate (point 

to point) information about how the brain shape varies from the original image to the 

template. This feature improves the use of the DBM method, because it avoids the use of the 

entire deformation field (multivariate approach) in order to determine if there are specific 

(local) differences between images. 
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For each voxel, the Jacobian matrix contains information about translation, rotation and 

shear transformations: 

/ / /

/ / /

/ / /

a a a b a c

b a b b b c

c a c b c c

i j i j i j

J i j i j i j

i j i j i j
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In order to perform the statistical analysis to detect differences between subjects, the J matrix 

can be decomposed into a rotation matrix (R) and symmetric positive-definite matrices (U or 

V), to satisfy the following axioms: 

J RU VR   

 TU J J  

 TV JJ  

1 1R JU V J    

In the normalization process which applies rigid transformations, it holds that U = V = I, 

where I is the identity matrix. If U and V matrices are different from the matrix I, there is a 

change in the shape which can be encoded by the tensor E. For a given deformation, there 

are infinite ways to express the associated tensors in terms of an n-parameter: 

10 ( 1)

0 ln( )

n n

n

n E n U

n E U

    


   

 

When n = 0, the obtained tensor is the Hencky tensor, which is useful to express local brain 

volume increases or decreases relative to the template. From these calculations, a 

comparison between images of many subjects can be done by extracting different variables 

(area, length and volume) and analyzing those using statistical models. 

2.2.3. Diffeomorphic morphometry 

This methodology is based on registering an image with a template using a flow field that 

encodes the geometric transformation required to normalize an image to another. A large 

deformation framework is used in order to conserve topology, obtaining a diffeomorphic 

and invertible deformation (Ashburner, 2007). 

If there are two images A and B (with the same dimensions) and a function f which takes 

points from A and put those on B, then f can be considered as a translator; i. e. for each point 

of A provides the corresponding B-point. In order to maintain the diffeomorphic propriety, 
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this function must be bijective; i. e. the relationship between A and B points must be 1 to 1 (a 

specific point of A only can be associated to a specific point of B and vice versa).  

1

:

:

f A B

f B A

 



 

where the transformation is diffeomorphic if there is a smooth bijective function f that 

transforms A into B and vice versa. The last step is to estimate a statistical model to detect 

significant changes between groups. 

2.2.4. Voxel-based morphometry 

The voxel-based morphometry (VBM) technique (Ashburner and Friston, 2000) is based on 

the normalization of several individual brains with to a specific template. These normalized 

images are voxel-by-voxel analyzed to detect variations of local tissue. Unlike other 

morphometric techniques, VBM is based on applying a mass univariate statistical analysis 

for each voxel. Typically, the brain is previously segmented into gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) maps. These calculations need a prior 

preprocessing to normalize the data in a common stereotactic space. The purpose of these 

processes is the minimization of the anatomical variability between different subjects, 

discounting macroscopic factors and allowing a statistical analysis to obtain subtle 

differences that can be attributed only to the anatomical variability between groups. 

2.2.4.1. Signal heterogeneity 

This step aims to minimize the bias field contained in the MR images. The lack of signal 

homogeneity, which may result from factors such as static magnetic field inhomogeneities, 

sensitivity of transmit and receiving coils and dielectric effect, directly affects the voxel 

intensities. In order to quantitatively evaluate the data, differences in the brightness between 

voxels of a particular region or area can be a source of bias for the algorithms convergence 

criteria (figure 1). 

 

Figure 1. Low-frequency bias field estimated from brain MR images 
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For these reasons, it is necessary to correct this inhomogeneity and there are several 

approaches, including modeling of field heterogeneity by DC basis functions (Ashburner 

and Friston, 2000), the use of Legendre polynomial basis functions (Brechbühler et al., 1996) 

or the Gaussian deconvolution on the histogram of the image (Sled et al., 1998). There are 

also methods which model the field by a linear combination of low frequency functions 

based on cubic B-splines adjusted by a cost function based on the intensity and the gradient 

of the image (Manjón et al., 2007). 

2.2.4.2. Non-linear normalization 

The nonlinear normalization (or warping) normalizes an image to a template by applying 

transformations that do not preserve the proportions of the original image. The main aim is 

to perform a deformation of an original image with a template to facilitate a high precise 

comparison within brain regions between different subjects. 

The algorithm tries to reduce the difference between original and template images, using a 

standard least-squares minimization (Mean Square Error, MSE): 

 2( , , ) ( ', ' ')i i i i i i
i

MSE f x y z w g x y z    

where f(xi, yi, zi) represents the value of the voxel i in the coordinate (x,y,z) of the original 

image f, g(xi’, yi’, zi’) is the value of the voxel i in the coordinate (x’,y’,z’) of the template g 

and w represents a weighting factor. 

2.2.4.3. Segmentation 

The segmentation process aims to classify the MR brain images into GM, WM, CSF and 

other cortical and subcortical areas. Although there are many algorithms for brain 

segmentation, there is an efficient strategy commonly used by neuroimaging applications 

that in practice gives good results but theoretically is slightly away from the pure concept of 

segmentation. This method does not obtain the real tissue-intensity extracted from the 

image but a probability map for each class. Each voxel in these maps has a normalized 

brightness value in the range [0 ... 1], that reflects the probability of belonging to a particular 

tissue.  

In order to identify and classify the different tissues, the algorithm analyzes the range of the 

brightness values of each voxel in the original image. If n is the number of bits of the image, 

then the intensity values can be assigned in the range [0 ... 2n-1]. For example, a coded image 

with 8 bits, has a brightness value between 0 and 255, with 0 black (no light) and 255 white 

(figure 2). With this approach, it is possible to represent images using cumulative graphs 

(histograms) in which each point represents the number of voxels with a given brightness 

level. 

 

Figure 2. Gray scale with 256 potential values (0 black, 255 white) 
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The intensities can be modeled by its mean and variance, adjusting the image histogram by 

a Gaussian-mixture function,. The algorithm performs a separate treatment for each tissue, 

assigning a different group (class) to each voxel (figure 3). Initially, these voxels are assigned 

to an initial value defined by a priori knowledge. Then, the algorithm obtains the total 

number of voxels in each group and their mean and variance. With these data, new 

iterations are recalculated: 

 
2

,

( ( ) )1
exp

22

i k
i k

kk

f x v
p

cc

  
   
 

 

where pi,k represents the probability that the voxel i is assigned to the k-tissue, ck is the 

variance of the tissue k, f(xi) represents the brightness of the i-voxel in the image f and vk is 

the mean of the k-tissue. With the new probabilities, the algorithm continues until either the 

convergence criterion is achieved or the fixed number of iterations is exceeded. 

 

Figure 3. Segmentation process. Top: original image. Bottom (from left to right): gray matter, white 

matter and cerebrospinal fluid probability maps. 

2.2.4.4. Smoothing 

The main purpose of the smoothing process is to increase the signal-to-noise ratio by 

reducing the high-frequency random noise. Additionally, smoothing involves other 

advantages such as increasing the normality of the data and the minimization of inter-
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subject anatomical differences. The smoothing kernel fixes the brightness of each voxel 

taking into account the Gaussian average of their adjacent voxels (neighbors). The filtered 

image is then blurred, mainly in edge and contour areas because the high-frequency signals 

are removed while the low-frequency bands are preserved (figure 4). The main parameter 

which defines the shape of the filter is the standard deviation (σ) expressed as the total 

amplitude at FWHM: 

 8 log(2)FWHM    

 

Figure 4. Smoothing of an image. From left to right: original image, 2D Gaussian kernel and smoothed 

image. 

2.2.5. Statistics and results 

Usually, the statistical analysis that follows the application of morphometric techniques is 

based on the General Linear Model (GLM) (Friston et al., 1995). This model allows statistical 

inferences selecting specific effects of interest in the study groups and is based on an 

equation that defines the measured signals by a linear combination of explanatory variables 

plus an error whose distribution is (assumed) Gaussian: 

Y X    

where Y represents the measured data, X models the design matrix, β represents the 

estimated parameters and ε is the error. 

This structure allows the definition of a measured variable Y as a linear combination of 

explanatory variables plus an error. It is assumed that this error is independent and follows 

a Gaussian distribution with zero mean. The design matrix X is a model structure which 

includes covariates of interest that could potentially influence the results (age, sex, clinical 

scales, overall tissue volume,...). 

By using a voxel-by-voxel approach, multiple statistical comparisons are tested. So, it is 

necessary to apply additional corrections to minimize the presence of false positives (type I 

errors). This problem can be solved by applying specific corrections to ensure the reliability 

of the results. In this sense, the Bonferroni correction based on setting the significance 

criteria to α / number of observations or the False Discovery Rate (FDR) (Genovese et al., 
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2002) that controls the fraction of false positives, can be used. The obtained maps are then 

colored and overlaid over a high resolution T1 image showing the morphometric differences 

between groups (figure 5). 

 

Figure 5. From left to right: original statistic map, colored statistic map and overlay over a T1 axial MR 

image. 

2.3. Structured report 

The final step of the morphometric procedure is to include all the information in a 

structured, concise and brief report (Marti-Bonnmati L., 2011). This report lists all the 

variables and numerical data calculated in the different processes: 

- Parametric data 

- The report should include the parameters used in the morphometric method (type of 

technique, normalization, segmentation, smoothing, templates…) and statistical 

information (type of test, thresholds, p-values,…). 

- Volumetric measures 

- Overall volumes of GM, WM and CSF and absolute (ml) and relative (%) values must 

be included. Furthermore, volumetric measurements for subcortical areas (for example, 

basal ganglia) are desirable. These values are compared with normal values (obtained 

from healthy subjects) after discounting potentially relevant sources of bias (age, sex, 

laterality,…) 

- Figures, coordinates and labels for each area of interest 

- The final report should also incorporate the significant areas showing differences 

between groups and their associated values and coordinates. If any, these areas should 

be overlaid onto a T1 template and detailed in a table which shows statistic values, 

location of the affected regions (including Brodmann areas) and cluster volumes. 

3. White matter tractography 

3.1. Introduction 

The diffusion tensor magnetic resonance imaging (DT-MRI, DTI) technique is widely used 

nowadays to explore the anatomy of white matter tracts in the human brain in vivo. The DTI 

is a non-invasive technique that permits the visualization of white matter fiber bundles by 
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the reconstruction of their trajectories in a voxel-by-voxel basis through the measurement of 

water diffusion along different directions. Water molecules movement in white matter is 

restricted by the axon and the longitudinal arrangement of myelin covering the axon. In 

these situations, where a main direction predominates over the others, the water molecules 

movement has a high anisotropy.  

The DTI technique permits the acquisition of MR diffusion images with different 

orientations of the magnetic field gradients, thus, obtaining a set of images with information 

of the water movement directionalities for each anatomical cut. The number of gradient 

orientations is a key parameter in the acquisition of DTI data and, although it is 

mathematically enough to have 6 directions in order to calculate a tensor, a higher number 

of directions provide a higher directional resolution.  

The computational processing of the DTI data permits the calculation of the orientation and 

fractional anisotropy (FA) voxelwise. In fact, FA parametric maps can be generated to depict 

the main orientation of the white matter structure. Computational algorithms specially 

designed for fiber tracking can be applied to the orientation and anisotropy data in order to 

reconstruct the trajectory of white matter tracts.  

The DTI has a unique view of the tissue architecture of neurons and changes associated with 

various pathophysiological alterations. There is an increase in the use of this technique for 

the analysis of white matter alterations produced by tumours and the corresponding 

surgery planning. Also, the study of congenital abnormalities of the corpus callosum and 

cerebellum, epilepsy, schizophrenia and early and late Alzheimer's disease is being widely 

assessed by this technique (Catani M., 2006). 

The DTI can be combined with other MRI techniques, such as conventional T1 and T2 

images, MR perfusion studies or the results of the concentration of metabolites composing 

fiber bundles obtained from MR spectroscopy.   

3.2. Principles of diffusion tensor MRI 

The phenomenon of molecular thermal motion results in random movement of molecules in 

the three directions of space. These displacements are considered, in general, as translational 

motions of molecules characterized by Brownian nature. This movement or molecular 

diffusion in the human body takes place mostly between water molecules. 

In some tissues of the human body, water molecules can present a free movement without 

barriers, also known as free diffusion, or a movement which is limited by the structure of 

the neighbouring tissues, known as restricted diffusion. The figure 6, shows both 

concepts. 

In general, diffusion measurements express the effective displacement in space of the water 

molecules in a certain time interval (Le Bihan D., 1988). Although temperature modulates 

the molecular motion of water molecules (approximately 2.4% per degree Celsius) (Tofts 
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PS., 2000), that thermal influence is not significant in the study of diffusion, as there are 

other biophysical properties that have a significant effect on the mobility of tissue water. 

 

Figure 6. Schematics of diffusion of water molecules in a free environment (left) and in a restricted 

environment (right). 

If pure water is used as a reference standard, the average displacement of the water 

molecules in a range of about 50ms does not exceed 20µm. Because this dimension is 

comparable to the cell dimensions, there is a high probability that the water molecules also 

interact with intracellular components, hydrophobic membranes and macromolecules that 

impede the movement of water. Therefore, the "apparent" diffusion is several times lower 

than in the case of pure water. In biological systems, diffusion comprises a complex mixture 

of single thermal diffusion with exchange between the intracellular and extracellular 

compartments through cell membranes and tortuosity of the interstitial space, which is 

conditioned by cell size, organization and density clustering. 

To understand diffusion and its quantification, it is assumed that in the initial time we have 

a group of molecules concentrated at one point. If we wait a time t, without exerting any 

action on the molecules, they will have expanded in the three dimensions following the 

Einstein's equation of diffusion: 

2 6· ·r D t  

where t is the time interval and r is the average radius of the distribution. As can be 

deduced, the diffusion coefficient D is expressed as units of distance squared per unit time. 

For use in radiology or clinical applications, it is usually expressed in mm2/s. 

In order to study the physical diffusion properties explained above, MRI is the only imaging 

modality that allows visualization and calculation of molecular diffusion in vivo directly 

from molecular translational movement of water. 

MR signal is sensitive to microscopic movements water molecules. During the de-phase of 

the spins after the radio frequency (RF) pulse, phase incoherencies appear in the spins 

relaxation due to thermal agitation of the water molecules, which accelerates the loss of 

spins synchronism and reduces the relaxation time. Moreover, the repeated movement of 
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water molecules cause the nuclear spins displacement to other regions in which magnetic 

field differs from the original value, thus causing a frequency modulation of relaxation. 

In order to quantify the displacement movement of the spins independently, a gradient in 

one direction can be applied immediately after the pulse. In this situation, the water 

molecules which have been moved in the direction of the gradient will be under a magnetic 

field be farther more of the original and therefore the signal drop faster. 

The free diffusion approximation of light in the previous sections cannot be assumed in 

biological tissues, because sometimes, the movement of water molecules is restricted or 

defined to a certain direction. In the latter case, in which a molecule is most likely to move in 

one direction than another, one speaks of an anisotropic diffusion. The most obvious 

example (as will be seen below) takes place in the cerebral white matter, where the water 

molecules tend to move along axonal tracts of the different fascicles brain. 

This anisotropy of diffusion can be characterized mathematically, considering a diffusion 

tensor in the following matrix form: 

xx xy xz

yx yy yz

zx zy zz

D D D

D D D

D D D

 
 
 
 
 
 

 

Since the matrix is symmetric, ie Dxy = Dyx; Dyz = Dzy and dxz = Dzx, simply calculate 6 of 

the 9 parameters. Therefore, we can deduce that to extract directional properties of 

diffusion, it will require at least 6 different gradient directions. 

An example of 6 acquisitions can be appreciated in figure 7. 

 

Figure 7. Diffusion images acquired in different magnetic field gradient orientations for the calculation 

of the diffusion tensor. 
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The eigenvector of the diffusion matrix provide the information about main orientation of 

the water molecules movement in each voxel. An example of orientation maps at different 

detail scales can be appreciated in figure 8: 

From the diffusion matrix, the fractional anisotropy (FA) parameter can be calculated from 

the expression: 

     2 2 2

1 2 3

2 2 2
1 2 3

fF
     

  

    


 
 

Being λ1, λ2 and λ3 the eigenvalues of the diffusion matrix, and the average value of the 

eigenvalues. An example of the combination of both orientation and FA information in a 

voxel-by-voxel basis may be appreciated in figure 9. 

 

Figure 8. Orientation maps calculated from the diffusion matrix. From left to right: full brain map 

showing the vector field with the main orientations for each region. Detail of the vector field in a 

selected region. Voxel-by-voxel representation of the main diffusion orientation. 

 

Figure 9. Combined fractional anisotropy (FA) and orientation map. The level of intensity expresses the 

FA value, while the color indicates the main orientation (LR: left-right, AP: anterior-posterior, FH: foot-

head). 
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3.3. Fiber segmentation 

Different segmentation strategies exist for white matter tractography reconstructions of the 

fibers. The main segmentation techniques can be divided in seed based segmentation, 

regions of interest segmentation and white matter atlas segmentation.  

3.3.1. Seed segmentation 

This technique considers an initial point in a 3D space with a given orientation and FA. 

Thus, the algorithm will initiate a path by the neighbouring voxels showing similar 

orientations. This trajectory will be calculated until a too sharp angle exists between the 

orientation of the current voxel and the following. The fiber trajectory calculated will be 

reconstructed unless if it accomplishes also the condition of the minimum length, which is 

another parameter imposed in the segmentation to avoid the reconstruction of small fibers 

from random noise. 

3.3.2. Regions of interest segmentation 

This is the technique with a higher use in clinical routine nowadays. White matter fibers are 

reconstructed from regions of interest (ROIs) which are placed according to the user 

anatomical knowledge. This technique allows for the calculation of the fibers that pass 

through the ROIs that have been introduced. Exclusive ROIs can also be placed in order to 

avoid the reconstruction of fibers bundles which are adjacent to the one of interest. 

An example of this technique can be appreciated in figure 10, where the uncinate fasciculus 

is reconstructed. Two ROIs are placed in order to exclusively reconstruct fibers crossing 

both regions.  

 

 

Figure 10. Segmentation of the uncinate fasciculus by the placement of two ROIs, in the frontal and 

temporal lobes. 
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3.3.3. Atlas based segmentation 

The tracts segmentation using white matter atlas has a higher complexity. In general terms, 

the main basis of the method consists in the calculation of the orientation and FA maps for 

large series of subjects. All these data is anatomically co-registered and a final expert 

anatomical labelling is performed (O'Donnell LJ., 2007). 

3.4. Extracted parameters 

The main white matter tracts can be segmented routinely by ROI segmentation for clinical 

applications. The authors suggest the segmentation of the following white matter fasciculum 

according to experience with pre-surgical evaluation and study of neurodegenerative 

disorders: 

 Corpus callosum 

 Cingulate fasciculus 

 Uncinate fasciculus 

 Corticospinal fasciculus 

 Inferior longitudinal fasciculus 

 Superior longitudinal fasciculus 

In figure 11, examples of fiber reconstructions in different pathologic conditions can be 

appreciated. 

 

Figure 11. White matter fasciculus reconstruction in different clinical cases. In a), main white matter 

fibers segmentation for the pre-surgical evaluation of a glioblastoma multiforme. The right superior 

longitudinal fasciculus, in blue, can be appreciated to be attached to the tumour periphery. In b), the 

reconstruction of a sectioned cingulum is observed in a patient after an emergency intervention due to an 

acute hydrocephaly. In c), corpus callosum fibers shortening due to advanced multiple sclerosis lesions. 
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In each reconstructed fiber bundle we can extract a set of parameters related to the 

microstructure: 

 Fractional anisotropy (FA): its value ranges from 0 (pure isotropic) to 1 (highly 

anisotropic) and shows the degree of existence of a preferential diffusion direction 

within the voxel. 

 Mean diffusivity (D): it is measured in mm2/s and expresses the degree of restriction to 

water molecules movement in a voxel. High D values reflect low degree of restriction to 

movement, while low D values show a restricted diffusion of molecules due to a higher 

cell density and reduced interstitial space. 

 Number of fibers (NF): it is the total number of fibers that have been reconstructed in a 

certain fasciculum. 

 Average length (L): it is mostly expressed in centimetres and provides the average 

length of the fibers of the reconstructed fasciculum. 

3.5. Structured report 

An adequate tractography report should be brief and concise (Marti-Bonmati L., 2011), and 

include:  

 Parametric data: the results of the parameters presented in the anterior section (FA, D, 

NF, L) for each reconstructed white matter fasciculum. These values should be 

compared to values obtained in a large series of age-matched healthy subjects. 

 Figures: representative figures of the main white matter tracts superimposed on 

anatomical images. 

4. Conclusions and future challenges 

The brain morphometry and tractography techniques have established as the main image 

processing methodologies for the characterization of brain structure in all types of central 

nervous system disorders. Although many centres benefit from their application to different 

clinical cases, large population studies have been mainly limited due to lack of 

standardization in the acquisition, processing and reporting techniques. The future 

challenges for these techniques have to be focused in multi-centre initiatives that facilitate 

the protocols sharing, the standardization of analysis procedures and the way this 

information is presented in adequate structured reports. 
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