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1. Introduction 

Stroke is one of the leading causes of disability in the elderly in many countries. Residual 

motor impairment, especially hemiparesis, is one of the most common sequelae after stroke. 

Motor recovery after stroke exhibits a wide range of difference among patients, and is 

dependent on the location and amount of brain damage, degree of impairment, and nature 

of deficit (Duncan et al., 1992). Full recovery of motor function is often observed when initial 

impairment is mild, but recovery is limited when there were severe deficits at stroke onset. 

The motor recovery after stroke may be caused by the effects of medical therapy against 

acute stroke, producing a resolution of brain edema and an increase in cerebral blood flow 

in the penumbra and remote areas displaying diaschisis. However, functional 

improvements may be seen past the period of acute tissue response and its resolution. The 

role of rehabilitation in facilitating motor recovery is considered to be produced by 

promoting brain plasticity.  

Non-invasive neuroimaging techniques, including functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET), enable us to measure task-related brain 

activity with excellent spatial resolution (Herholz & Heiss, 2000; Calautti & Baron, 2003; 

Rossini et al., 2003). The functional neuroimaging studies usually employ active motor tasks, 

such as hand grip and finger tapping, and require that the patients are able to move their 

hand. Neuroimaging studies in stroke patients have reported considerable amounts of data 

that suggest the mechanisms of motor functional recovery after stroke. Initial cross-sectional 

studies at chronic stages of stroke have demonstrated that the pattern of brain activation is 

different between paretic and normal hand movements, and suggested that long-term 

recovery is facilitated by compensation, recruitment and reorganization of cortical motor 
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function in both damaged and non-damaged hemispheres (Chollet et al., 1991; Weiller et al., 

1992; Cramer et al., 1997; Cao et al., 1998; Ward et al., 2003a). Subsequent longitudinal 

studies from subacute to chronic stages (before and after rehabilitation) have revealed a 

dynamic, bihemispheric reorganization of motor network, and emphasized the necessity of 

successive studies (Marshall et al., 2000; Calautti et al., 2001; Feydy et al., 2002; Ward et al, 

2003b).  

When the stroke patients are unable to move their hand, alternative paradigms are 

necessary to study their brain function. Passive, instead of active, hand movement has been 

employed for this purpose, and increases in brain activities are found not only in sensory 

but also motor cortices (Nelles et al., 1999; Loubinoux et al., 2003; Tombari et al., 2004). 

Functional neuroimaging studies suggest that a change in processing of somatosensory 

information in the sensorimotor cortex may play an important role in motor recovery after 

stroke (Schaechter et al., 2006). 

Most significant recovery of motor function takes place within the first weeks after stroke 

and an early introduction of rehabilitation is crucial for a good outcome. Rehabilitation at 

the early stages of stroke uses physiotherapy, such as massage and passive movement of the 

paretic hand, as an initial step of rehabilitation, especially in patients with severe motor 

impairment. However, it is difficult to assess the effects of physiotherapy in patients with 

severe impairment early after stroke. In this fMRI study, we investigated the effects of 

somatosensory input on the activity of brain sensorimotor network in stroke patients. Since 

somatosensory feedback is essential for the exact execution of hand movement, the result 

can provide a scientific basis for the establishment of rehabilitation strategies. 

2. Materials and methods 

2.1. Subjects 

We selected 6 stroke patients with pure motor hemiparesis (4 men and 2 women, 63-85 years 

old). Three of them received fMRI during a task of unilateral palm brushing (stimulation of 

tactile sensation using a plastic hairbrush at approximately 1 Hz), and three other patients 

received fMRI during a task of unilateral passive hand movement (stimulation of 

proprioceptive sensation by passive flexion-extension of fingers at approximately 1 Hz). The 

fMRI studies were performed 5 days to 2 months after stroke onset.  

The patients presented with neurological deficits including moderate to severe hemiparesis, 

and were admitted to our hospital. They received standard medical therapy for stroke and 

rehabilitation. All of them were right-handed. All the cerebral infarcts were evidenced by 

MRI, and were located in various regions of the cerebrum. They could hardly move their 

hands when the fMRI was performed. Clinical data are summarized in Table 1. Three right-

handed, normal subjects (59-68 years of age; 2 men and 1 woman) served as controls for a 

comparison to show normal brain activation during a unilateral hand grip task. This study 

was approved by the ethics committee of our hospital and informed consent was obtained 

from all subjects in accordance with the Declaration of Helsinki.  
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 Age 

Sex 

H 

 

Stroke 

location 

PMH 

 

day 

 

fMRI activation 

 

Palm brushing 

1 68M L R corona 

radiata 

HT 

DM 

28 

 

N:  L S1M1, L SMA, R Cbll 

P:  R S1M1, R SMA  

2 75M L R internal 

capsule 

DM 

 

39 

 

N: L S1M1, L SMA 

P: R S1M1, R SMA, Blt IPC 

3 63F R L corona 

radiata 

HT 

DM 

HL 

5 

 

 

N: R S1M1 

P: L S1M1, Blt SPC, R IPC 

 

Passive movement 

4 85F L R internal 

capsule 

HT 

HL 

72 

 

N: L S1M1 

P: R S1M1 

5 79M R L MCA 

cortex 

HT 

HL 

af 

13 

 

 

N: L S1M1, R Cbll 

P: R S1M1 

 

6 76M L R pons DM 

HT 

21 

 

N: L S1M1, L SMA, R Cbll 

P: R S1M1 

M = male; F = female; H = hemiparesis; R = right; L = left; MCA = middle cerebral artery; PMH = past medical history; 

HT = hypertension; DM = diabetes mellitus; HL = hyperlipidemia;af = atrial fibrillation; N = non-affected hand,  

P = paretic hand; S1M1 = primary sensorimotor cortex; SMA = supplementary motor areas: Cbll = cerebellum;  

Blt = bilateral; SPC = superior parietal cortex; IPC = inferior parietal cortex; 

Table 1. Patient characteristics 

2.2. Functional MRI 

The fMRI studies were performed using a 1.5 T Siemens Magnetom Symphony MRI scanner 

as described previously (Kato et al., 2002). Briefly, blood oxygenation level-dependent 

(BOLD) images were obtained continuously in a transverse orientation using a gradient-

echo, single shot echo planar imaging pulse sequence. The acquisition parameters were as 

follows: repetition time 3 s, time of echo 50 ms, flip angle 90°, 3-mm slice thickness, 30 slices 

through the entire brain, field of view 192 x 192 mm, and 128 x 128 matrix. During the fMRI 

scan, the patients and normal controls received or performed a task as mentioned above. 

This task performance occurred in periods of 30 s, interspaced with 30 s rest periods. The 

cycle of rest and task was repeated 5 times during each hand study. Therefore, the fMRI 

scan of each hand study took 5 min to complete, producing 3,000 images. A staff member 

monitored the patient directly throughout the study, and gave the sensory stimulations or 

the start and stop signals of hand grip by tapping gently on the knee.  
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Data analysis was performed using Statistical Parametric Mapping (SPM) 2 (Wellcome 

Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm/) 

implemented in MATLAB (The MathWorks Inc., Natick, MA, USA). After realignment and 

smoothing, the general linear model was employed for the detection of activated voxels. The 

voxels were considered as significantly activated if p<0.05 using the FWE analysis. All the 

measurements were performed with this same statistical threshold. The activation images 

were overlaid on corresponding T1-weighted anatomic images. 

3. Results  

Both tactile and proprioceptive inputs via the unaffected hand activated contralateral 

primary sensorimotor cortex (S1M1) in all the patients, and the supplementary motor areas 

(SMA) and the ipsilateral cerebellum in part of the patients (Table, Figs. 1 &2). This 

activation pattern is similar to that activated during active hand movement (Fig. 3), 

although the activation was less extensive. Both tactile and proprioceptive inputs via the 

paretic hand also activated the contralateral S1M1 in all the patients, and in SMA and 

superior and inferior parietal cortices in part of the patients (Table, Figs. 1 & 2), although to 

a lesser extent as compared with unaffected hand. No cerebellar activation was observed 

when paretic hand was stimulated. 

 

Figure 1. fMRI of a 68-year old man (patient 1) who had a cerebral infarct in the right corona radiata 

(arrow in a, diffusion-weighted MRI) . After 28 days of stroke onset, palm brushing of the right 

(unaffected) hand (b-d) induced activation in the left primary sensorimotor cortex (1), the 

supplementary motor area (2), and right cerebellum (3). During palm brushing of the left (paretic) hand 

(e-g), activation in contralateral primary sensorimotor cortex (1) was seen, although less extensive, and 

no activation was seen in the supplementary motor areas and the cerebellum.  



Activation of Brain Sensorimotor Network by  
Somatosensory Input in Patients with Hemiparetic Stroke: A Functional MRI Study 

 

71 

 

Figure 2. fMRI of a 79-year old man (patient 5) who had a cerebral infarct in part of the right middle 

cerebral artery territory (arrow in a, diffusion-weighted MRI). After 13 days of stroke onset, passive 

movement of the left (unaffected) hand (e-g) induced activation in the right primary sensorimotor 

cortex (1) and left cerebellum (3). During passive movement of the right (paretic) hand (b-d), activation 

in contralateral primary sensorimotor cortex (1) was observed.  

 

Figure 3. fMRI of a 61-year old man (control). Active right hand movement (a-c) induced a normal 

activation pattern in the left primary sensorimotor cortex (1), supplementary motor areas (2) and right 

cerebellum (3).  

4. Discussion 

4.1. Activation of sensorimotor network by somatosensory input  

The results demonstrated that somatosensory stimulation of the unaffected hand, both 

tactile and proprioceptive input, activated sensorimotor network in the brain, and that the 

activation pattern was similar to that induced by active hand movement. Somatosensory 

input to the paretic hand also activated the sensorimotor network in the brain, although to a 
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lesser degree. Of importance was that the activation involved not only postcentral S1 but 

also precentral M1, as observed in previous reports employing somatosensory stimulation 

as a task.  

Passive movement studies have shown that brain activation during passive movement is 

seen in regions such as the contralateral sensorimotor cortex, the bilateral premotor cortex, 

supplementary motor areas, and inferior parietal cortex (Nelles et al., 1999; Loubinoux et al., 

2003; Tombari et al., 2004). The similarity of activation patterns between passive and active 

hand movements highlights the contribution of afferent synaptic activity for central motor 

control, and suggests that the sensory systems play an important role in central motor 

control. Additional explanation may be that the repetitive sensory input induces motor 

imagery in the patients. Imagery of movement activates largely the same brain areas that are 

activated when movements are actually executed (Decety, 1996; Grezes & Decety 2001).  

The brain activation during paretic hand sensory stimulation in this study was reduced as 

compared to that during unaffected hand sensory stimulation. This reduction may reflect 

the sensorimotor network damage caused by stroke, although the fMRI BOLD response 

could be reduced in the cerebral hemisphere of the lesion side (Murata et al., 2006; 

Mazzetto-Betti et al., 2010). Nevertheless, the result confirms the possibility of inducing 

sensorimotor transformations even in severely impaired stroke patients.  

The observation of S1 and M1 activation during sensory input as well as active movement 

suggests that the sensorimotor network is functionally connected with each other. Actually, 

human motor and sensory hand cortices overlap, and are not divided in a simple manner by 

the central sulcus (McGlone et al., 2002; Morre et al.; 2000; Nii et al., 1996). Furthermore, S1 

and M1 are heavily interconnected (Jones et al., 1978) and both are the sites of origin of 

pyramidal tract neurons in the monkey (Fromm & Evarts, 1982). Proprioceptive afferents 

from the muscle spindles (fibers IA, II), along with the projections from other articular and 

cutaneous receptors (fibers I to IV), gain access not only to S1 but also to M1 in the monkey 

(Lemon, 1999; Lemon & Porter, 1976).  

Previous studies have also demonstrated the activation of secondary sensorimotor areas 

induced by passive hand movements, as seen in our study. SMA has rich anatomical 

connections with many areas in the central nervous system, such as thalamus, dorsal 

premotor cortex (PMd), spinal cord, and contralateral hemisphere (Juergens, 1984; Rouiller 

et al., 1994; Dum & Strick, 1996; Dum & Strick, 2005), and may be an important source of 

descending commands for the generation and control of distal movements in the monkey 

(He et al., 1995). SMA is also involved in motor learning in man (Halsband & Lange, 2006). 

Therefore, SMA has been suggested to play a crucial role in the early processes of recovery 

after lesions of primary motor pathways (Loubinoux et al., 2003).  

Ventral premotor cortex (PMv) receives strong projections from S1 (Stepniewska et al., 

2006), and PMv neurons project onto cervical and thoracic motoneurons in the monkey (He 

et al., 1993; Rouiller et al., 1994). The PMv corticospinal neurons supply part of the hand 

function after M1 lesion in the monkey (Liu & Rouiller, 1999). Nudo and colleagues 

demonstrated rewiring from M1 to PMv after ischemic brain injury, with substantial 
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enlargements of the hand representation in the remote PMv that are proportional to the 

amount of hand representation destroyed in M1 (Frost et al., 2003; Dancause et al., 2005). 

Nelles et al. (2001) pointed out the crucial role of a network including the lower part of BA40 

and PMv, bilaterally, in task-oriented passive training aimed at improving motor recovery 

in severely impaired stroke patients. These areas could also be crucial for promoting 

reorganization in the rest of the brain. 

4.2. Activation of sensorimotor network by active motor task 

Previous functional neuroimaging studies on poststroke cerebral reorganization from acute 

to chronic stages revealed several activation patterns during active paretic hand movement 

(Ward & Cohen, 2004; Jang, 2007; Kato & Izumiyama, 2010). These include (1) a posterior 

shift of contralateral S1M1 activation (Pineiro et al., 2001; Calautti et al., 2003) , (2) peri-

infarct reorganization after infarction involving M1 (Cramer et al., 1997; Jang et al., 2005a), 

(3) a shift of M1 activation to the ipsilateral (contralesional) cortex (Chollet et al., 1991; 

Marshall et al., 2000; Feydy et al., 2002), (4) contribution of the secondary motor areas 

(Cramer et al., 1997; Carey et al., 2002; Ward et al., 2006), and (5) higher contralateral activity 

in the cerebellar hemisphere (Small et al., 2002).  

These studies have also shown that the expanded activations may later decrease with 

functional improvements, indicating that best recovery is obtained when there is restitution 

of activation toward the physiological network over time. The contralesional shift of 

activation may return to ipsilesional S1M1 activation with functional gains (Feydy et al., 

2002; Takeda et al., 2007), but worse outcome may correlate with a shift in the balance of 

activation toward the contralesional S1M1 (Calautti et al., 2001; Feydy et al., 2002; Zemke et 

al., 2003). Thus, the patterns of cerebral activation evoked by active hand movement show 

impaired organization and reorganization of brain sensorimotor network, and best recovery 

may depend on how much original motor system is reusable. The patterns of activation may 

also be dependent on the patient’s ability to recruit residual portions of the bilateral motor 

network (Silvestrini et al., 1998). 

Early involvement of secondary sensorimotor areas after M1 lesion may temporarily 

substitute for the original sensorimotor network involving M1. This step may be a 

prerequisite to M1 functional reconnection through indirect pathways and to its efficacy in 

processing motor signals. The previous data suggest that different motor areas operate in 

parallel rather than in a hierarchical manner, and they are able to substitute for each other 

(Traversa et al., 1997; Loubinoux et al., 2003). Thus, remodeling of activation within a pre-

existing network may be an important process for recovery. 

4.3. Implication of somatosensory input as a rehabilitation strategy 

There is consensus on the efficacy of physiotherapy. Active training is more efficient than 

passive training, but active training cannot be applied to very impaired patients. We need to 

consider other approaches for patients who cannot move the paretic limbs at the early phase 

of recovery. Physiotherapists apply sensory stimulation and passive movement daily to 
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acute stroke patients and only these approaches are possible when the patients have 

complete paralysis. A few studies have validated the efficacy of sensory or proprioceptive 

stimulation on motor recovery.  

Carel et al. (2000) have shown that proprioceptive training induces a reorganization of 

sensorimotor representation in healthy subjects, and that the anatomical substrates are SMA 

and S1M1 contralateral to the stimulation. Subsequently, Dechaumont-Palacin et al. (2008) 

showed that paretic wrist proprioceptive training produced change in SMA, premotor 

cortex, and a contralesional network including inferior parietal cortex (lower part of BA 40), 

secondary sensory cortex, and PMv. Thus, increased contralateral activity in secondary 

sensorimotor areas may facilitate control of recovered motor function by simple 

proprioceptive integration in severely impaired patients. Brain activation during passive 

movement increase with time after stroke (Nelles et al., 1999; Loubinoux et al., 2003; 

Tombari et al., 2004). Nelles et al. (2001) tested a mixed, task-oriented rehabilitative program 

that is at first passive, then active as recovery permits, and observed hyperactivation of the 

bilateral low parietal cortex and premotor cortex and a smaller hyperactivation of the 

ipsilateral M1. Thus, the changes might represent increased processing of sensory 

information relevant to motor output.  

Somatosensory input to the motor cortex, via corticocortical connections with the 

somatosensory cortex, is important for learning new motor skills (Sakamoto et al., 1989; 

Pavlides et al., 1993; Vidoni et al., 2010). Somatosensory input may also play a critical role in 

motor relearning after hemiparetic stroke (Dechaumont-Palacin et al., 2008; Conforto at al. 

2007; Vidoni et al., 2009). Schaechter et al. (2012) showed that increased responsiveness of 

the ipsilesional S1M1 to tactile stimulation over the subacute posrstroke period correlated 

with concurrent motor recovery and predicted motor recovery experienced over the year. 

This finding suggests that a strong link between change in processing of somatosensory 

information in the S1M1 during the early poststroke period and motor recovery in 

hemiparetic patients.  

Muscular and peripheral nerve electrical stimulation increases motor output after stroke 

(Conforto et al., 2002; Kimberley et al., 2004; Wu et al., 2006; Conforto et al., 2010). Peripheral 

nerve stimulation increases corticomotoneuronal excitability (Kaelin-Lang et al., 2002; 

Ridding et al., 2000), and activation of S1M1 and PMd in healthy subjects (Wu et al., 2005). If 

applied to paretic hand of stroke patients paired with motor training, electrical nerve 

stimulation may enhance training effects on corticomotoneuronal plasticity in stroke 

patients (Sawaki et al, 2006; Yozbatiran et al., 2006; Celnik et al., 2007).  

Thus, increased activity in brain sensorimotor network by somatosensory input may 

facilitate control of recovered motor function by operating not only at a high-order 

processing level but also at a low level of simple sensory integration. Therefore, early post-

stroke fMRI studies using sensory stimulation as a task may be of great clinically 

importance and somatosensory stimulation over the poststroke recovery period may form a 

basis for improving motor recovery in stroke patients. 
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Another merit of massage or touch therapy may be the psychological effects produced by 

tactile stimulation, such as relaxation, alleviation of anxiety and depression. These effects 

may be evoked by stimulation of dopamine and serotonin secretion since increased levels of 

dopamine and serotonin have been shown in the urine following tactile skin stimulation 

(Field et al., 2005). Tactile stimulation in the rat evokes an increased dopamine release in the 

nucleus accumbens of the brain, which is thought to play a key role in motivational and 

reward processes (Maruyaka et al.; 2012). Relieving anxiety and depression seems important 

in the early steps of rehabilitation for patients with acute stroke. 

5. Conclusion 

The findings of this study demonstrate that the somatosensory inputs via the normal hand 

can activate brain sensorimotor network to a comparable extent with the areas that are 

activated during active hand movement, and that the somatosensory inputs via the paretic 

hand at the early stages of stroke before clinical motor recovery can also induce activities to 

some of the brain sensorimotor network. The result suggests that physiotherapy that 

employs somatosensory input via the paretic hand may be used as a first step to activate 

rehabilitation-dependent changes in the motor network in the brain toward restoration of 

motor function. The result may provide new insight into the establishment of rehabilitation 

strategies after stroke. 
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