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1. Introduction 

This chapter investigates the application of digital signal processing techniques to ECG 

signals. The first few sections of this chapter are devoted to definitions and properties of 

cumulants, their spectra, and associated statistics. This is followed by describing the 

structural properties of the third-order cumulants of an adult male’s chest ECG, maternal 

chest ECG, transabdominally-measured ECG, as well as fetal ECG signal using scalp-

electrode. The non-linearity and non-stationarity of ECG signals are investigated using the 

bispectrum and bicoherence squared. The third-order cumulants, bispectra, and bicoherence 

squared of some noise components, namely, the baseline wander, electromyographic 

(EMG), and motion artefact noise isolated from the MIT/BIH databases are analysed. Finally, 

concluding remarks are discussed and summarised. 

Adequate knowledge of the higher-order statistics (HOS) of both the maternal and fetal ECG 

signals must be acquired in order to pave the way for fetal QRS-complex identification and 

detection. There are several motivations behind using higher-order statistics in processing 

ECG signals. These motivations are: 

i. ECG signals are predominantly non-Gaussian (Rizk et al., 1995; Rizk and Zgallai, 1999), 

and exhibit quadratic and higher-order non-linearities supported by third- and fourth-

order statistics, respectively. It is worth mentioning that, in general, the third-order 

cumulants can support linear non-Gaussian, and non-linear signals.  

ii. The maternal and fetal QRS-complex bispectral contours do not overlap with that of the 

baseline wander and that of the EMG above –20 dB normalised to the peak of the 
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maternal QRS-complex bispectrum (Zgallai, 2007). It is comparatively easy to detect 

and classify either using the bispectral contour template matching technique.  

iii. In the HOS domain, the Gaussian noise diminishes if the data length is adequate 

(Nikias and Petropulu, 1993; Nam and Powers, 1994). This implies that it is possible, 

under certain conditions, to process the ECG signal in Gaussian noise-free domains. It 

was found (Rizk and Zgallai, 1999) that for ECG signals a minimum length of 1 sec is 

adequately long to suppress Gaussian noise in the higher-order statistical domains, 

whilst not long enough to violate Hinich’s criterion of local stationarity (Brockett et al. 

1988). Hinich tests for Gaussianity and linearity were performed on ECG signals 

(Zgallai, 2007). ECG signals are non-stationary in the statistical sense, but relatively 

short data can be successfully treated with conventional signal processing tools 

primarily designed for stationary signals. For example, when dealing with individual 

cardiac cycles, non-stationarity is not an issue but when one takes on board the heart 

rate time series which is chaotic and multi-dimensional then it is not wise to assume 

stationarity for analysis purposes (Rizk et al. 2002). 

iv. In the third-order domain all sources of noise with symmetric probability density 

functions (pdfs), e.g., Gaussian and uniform, will vanish. The ECG signals are retained 

because they have non-symmetric distributions (Zgallai, et al., 1997).  

v. ECG signals contain quadratic and cubic non-linearities (Rizk et al., 1998). Such 

measurable quantities of non-linearity if not synthesised and removed before any 

further processing for the purpose of signal identification and classification could lead 

to poor performance with regard to fetal QRS-complex detection rates. 

An adaptive third-order Volterra structure (Nam and Powers, 1994) has been used to 

synthesise the linear, quadratic non-linear, and cubic non-linear components of ECG signals. 

The removal of non-linearities in the transabdominal ECG signal yields an increase in the 

fetal heartbeat detection rates by up to 7% in the third-order cumulant matching technique 

(Zgallai, 2010), and 10% in the bispectral contour template matching technique (Zgallai, 2012 

a, Zgallai, 2012 b). 

For noise identification and characterisation in the third-order statistical domain, use is 

made of the recorded normal ECG signals contained in the MIT/BIH databases (MIT/BIH, 

1997). The third-order cumulants, bispectra, and bicoherence squared of some noise 

components, namely, the baseline wander, electromyographic (EMG) (Zgallai, 2009), and 

motion artefact noise isolated from the MIT/BIH databases are analysed. Knowing the 

statistics of those noise components, would facilitate the detection of ECG signals against a 

cocktail of background noise in either the cumulant or the bispectrum domain. Higher 

detection rate of fetal QRS-complex can be achieved in the enhanced fetal QRS-complex 

bispectrum domain against both maternal and motion artefact bispectral contribution 

(Zgallai, 2012 a). Bispectral enhancement has been carried out after removing the baseline 

wander, and in difficult cases, after linearisation (removing non-linearity from the noise 

contaminated maternal transabdominal signal). 
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2. Background and definitions 

2.1. Cumulants 

Given a set of n real variables {x1, x2, …, xn}, their joint moments of order, r = k1 + k2 + … + kn 

are given by (Kravtchenko-Berejnoi, V. et al. 1995): 
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denotes the expectation operator. Another form of the joint characteristic function is defined 

as the natural logarithm of 1 2( , , , )n    , i.e., (Nikias and Petropulu, 1993) 
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For Gaussian processes, the logarithm of the characteristic function is a polynomial of 

degree two. Hence, all cumulants of order three and higher will be identically zero. The joint 

cumulants of order r of the same set of random variables, are defined as the coefficients in 

the Taylor expansion of the second characteristic function about zero, i.e., (Nikias and 

Petropulu, 1993) 
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Thus, the joint can be expressed in terms of the joint moments of a set of random variables. 

The moments of the random variable {x1} are defined as (Nikias and Petropulu, 1993):: 

    2 3
1 1 2 1 3 1m  E  x . m  E  x . m  E x .          

 (4) 

Cumulants are related to moments by (Nikias and Petropulu, 1993) 

 2 3
1 1 2 2 1 3 3 2 1 1c  m . c  m m . c  m – 3 m m 2 m .             (5) 

For three random variables x1, x2, and x3 the third-order cumulants are defined as 

(Kravtchenko-Berejnoi, V. et al. 1995): 

            3
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2.2. Properties of cumulants 

1. c [a1x1, a2x2, …, anxn] = a1a2 … an c [x1, x2, …, xn] (Nikias and Petropulu, 1993). 
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2. Cumulants are symmetric functions in their arguments, e.g., c[x1,x2,x3] = c[x2,x1,x3] = 

c[x3,x2,x1], and so on (Nikias and Petropulu, 1993).. 

3. If the random variables {x1, x2, …, xn} can be divided into any two or more groups which 

are statistically independent, their nth-order cumulant is identical to zero; i.e. c[x1, x2, 

…, xn] = 0, whereas in general Mom[x1, x2, …, xn]  0 (Nikias and Petropulu, 1993).. 

4. If the sets of random variables {x1, x2, …, xn} and {y1, y2, …, yn} are independent, then 

c[x1+y1, x2+y2, …, xn+yn] = c[x1, x2, …, xn] + c[y1, y2, …, yn] (Nikias and Petropulu, 1993). 

5. If the set of random variables {x1, x2, …, xn} is jointly Gaussian, then all the information 

about their distribution is contained in the cumulants of order n  2. Therefore, all 

cumulants of order greater than two (n > 2) have no new information to provide. This 

leads to the fact that all joint cumulants of order n > 2 are identical to zero for Gaussian 

random vectors. Hence, the cumulants of order greater than two, in some sense, 

measure the non-Gaussian nature of a time series (Nikias and Petropulu, 1993). 

2.3. One-dimensional third-order cumulant slices 

Since higher-order cumulants and spectra are multi-dimensional functions, their 

computation may be impractical in some applications due to excessive crunching. This is 

caused by the large CPU time taken to calculate HOS functions, compared to SOS functions. 

It was suggested to use 1-d slices of multi-dimensional cumulants, and their 1-d Fourier 

transforms, as ways of extracting useful information from higher-order statistics of non-

Gaussian stationary processes (Nagata, 1970). The third-order cumulants of a non-Gaussian 

process, {x(k)}, is given by (Nikias and Petropulu, 1993):  
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A 1-d spectrum could be defined as (Nikias and Petropulu, 1993): 
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2.4. Cumulant spectra 

Higher order spectra are defined as the multi-dimensional Fourier transforms of the higher 

order statistics of the superimposed signals in the presence of noise (Nikias and Raghuveer, 

1987; Rosenblatt, 1985; Brillinger, 1965). The nth-order cumulant spectrum of a process {x(k)} 

is defined as the (n-1)-dimensional Fourier transform of the nth-order cumulant sequence. 

The nth-order cumulant spectrum is thus defined as (Nikias and Petropulu, 1993): 
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where  
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Special cases 

1. Power spectrum (n = 2): 
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where 2 ( )xc  is the covariance. 

2. Bispectrum (n = 3): 
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where 3 1 2( , )xc    is the third-order cumulant. Conventional higher-order statistics (HOS) 

estimates are asymptotically unbiased and consistent (Nagata, 1970), and easy to implement 

using FFT-based methods. The ability to resolve harmonic components is limited by the 

uncertainty principle of the Fourier transform. There are numerous methods for polyspectra 

estimation based on parametric methods. MA models have been treated in (Nikias, 1988; 

Friedlander and Porat, 1988). Spectral estimation methods based on non-causal AR models 

were developed in (Huzi, 1981). Methods based on ARMA models have been published (Lii, 

1982). MA, AR and ARMA methods based on higher-order statistics were described 

(Mendel, 1988). A review of cumulant spectra and the asymptotic properties of their 

estimators were given in (Rosenblatt, 1983). Practical considerations for bispectral estimation 

were given (Subba Rao, 1983). The relationship between the bispectrum and conventional 

methods for their estimation was discussed (Zurbenko, 1982). 
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2.5. Non-stationarity and the OT region of the bispectrum 

The bispectrum of a stationary sampled process must be zero in the triangle region OT, i.e., 

the region defined by the triangle, OT = { The 

bispectrum in the OT region will be non-zero if the process is non-stationary. The 

bispectrum has 12 symmetric regions. The knowledge of the bispectrum in one triangular 

region is enough for a complete description of the bispectrum of a real process. 

2.6. Nth-order coherency function 

A normalised cumulant spectrum or the nth-order coherency index is a function that 

combines the cumulant spectrum of order n and the power spectrum. It is defined as (Nikias 

and Petropulu, 1993) 
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The third-order (n = 3) coherence index is also called bicoherence. The nth order coherence 

index is useful for the detection and characterisation of non-linearities in time series via 

phase relations of their harmonic components. The coherency index is used to differentiate 

between linear non-Gaussian processes and non-linear processes when both have non-zero 

cumulants. If the coherency index is zero, then the process is linear and Gaussian. If the nth 

order coherency index is not frequency dependent, then the process is linear non-Gaussian. 

If the coherency index is frequency dependent, then the process is non-linear (Nikias and 

Petropulu, 1993). 

2.7. Statistical measures 

A statistical measure could be described as an unbiased estimate when the expected value of 

the estimated statistic is, asymptotically, equal to the true value. An estimate of the 

cumulant spectra is unbiased if 

    
^

3 1 2 3 1 2, ,

x

xE C C     (17) 

The bias is defined as the difference between the true value and the expected value. 

3. Second-order statistics of ECG signals 

3.1. The probability density functions (pdfs) of ECG signals 

Three essential ECG signals are considered: 

1. the maternal chest ECG signal. This is measured using one surface electrode positioned 

on the chest and one reference electrode on the thigh; 
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2. The transabdominally-measured ECG signal which contains both maternal and fetal 

contributions amongst other deterministic and chaotic signals plus noise artefacts (Rizk 

et al., 2002). This is acquired using twin surface electrodes positioned near the mother’s 

umbilicus and synchronised with the maternal chest signal; 

3. the fetal scalp electrode ECG signal which will always be used as a reference signal in 

the assessment of any particular QRS detection technique based on non-invasive 

transabdominally-measured ECG signals. The non-symmetry of the probability density 

functions (pdfs) of the above mentioned signals is shown in the histograms of Fig. 1 and 

supports their third-order cumulants. 

 

Figure 1. Histograms of typical templates of (a) a maternal chest ECG, (b) a fetal scalp electrode FECG, 

and (c) a maternal transabdominal ECG. They all show non-Gaussian distributions.  
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3.2. The second-order cumulants of ECG signals 

Fig. 2 (a) shows a full maternal transabdominal cardiac cycle (1000 ms) which has been 

divided into four segments, I, II, III, and IV. These segments represent (I) the predominantly 

maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution, (III) QRS-

free ECG, and (IV) the second fetal heartbeat with maternal contribution, respectively. Fig. 2 

(b) shows a typical example of the second-order cumulants (auto-correlation functions) for 

the segments shown in Fig. 2 (a). Second-order statistics do not show any distinguishable 

features that could be used to differentiate between maternal QRS-complex, fetal heartbeat 

with maternal contribution, and QRS-free ECG contributions. 

3.3. The power spectrum of ECG signals 

Fig. 3 depicts the power spectrum using the FFT method for (a) fetal scalp electrode ECG 

signal (data length 500 ms), (b) maternal transabdominal ECG (data length 1000 ms). The 

maternal cardiac cycle begins 50 ms before the R-wave and ends 50 ms before the next R-

wave. The subject is at the first stage of labour (40 weeks gestation). The FFT method reveals 

a fetal scalp electrode ECG principal spectral peak at 30 Hz. The FFT method for the 

transabdominal cardiac cycle reveals the maternal principal spectral peak of 15 Hz. 

However, the FFT does not show fetal spectral peak from the segmented transabdominal 

signal. There is a shallow peak at 28 Hz and a shifted peak at 42 Hz (Zgallai, 2007). 

4. Third-order statistics of ECG signals 

4.1. Cumulants and their slices of cardiac cycles 

The maternal chest ECG is measured using the standard three-lead electrode system. The 

maternal transabdominally-measured signals are obtained using two surface electrodes. The 

electrode pair is set over the umbilicus, and lined up with the median vertical axis of the 

uterus. The ground electrode is located on the woman’s hip. The fetal scalp electrode is used 

when deemed necessary. Multi-dimensional Third-order cumulants TOCs were computed for 

the above ECG signals as well as for the four segments of the maternal transabdominal cardiac 

cycles. The four segments were coded as I, II, III, and IV, each of length 250 ms which has been 

considered short enough as not to satisfy the assumption of non-stationarity, and long enough 

to meet the threshold of the higher-order statistical variances. The four coded segments ascribe 

to the following often occurring scenario; (I) Segment I, 0–250 ms; Predominantly maternal 

QRS-complex (no fetal QRS-complex present), (II) Segment II, 251 –500 ms; The first fetal 

heartbeat with maternal contribution, (III) Segment III, 501 ms – 750 ms; QRS-free ECG, and 

(IV) Segment IV, 751 – 1000 ms; The second fetal heartbeat with maternal contribution.  

Fig. 4 (a), (b), (c), and (d) each depicts ECG signals (upper panel) and their third-order 

cumulants (lower panel) for fetal scalp ECG (550 ms), maternal chest ECG (900 ms), and two 

different and randomly picked transabdominally-measured maternal ECGs (1000 ms each). 

The subject is at 40 weeks gestation after the water has been broken hence facilitating fetal 

scalp measurements. The maternal cardiac cycle begins 50 ms before the R-wave and ends 

50 ms before the next R-wave.  
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Figure 2. (a). Maternal transabdominal cardiac cycle (1000 ms) divided into four segments. The maternal 

cardiac cycle begins 50 ms before the R-wave and ends 50 ms before the next R-wave. The subject is at the 

first stage of labour (40 weeks gestation). (b). Typical examples of the second-order cumulants computed 

using the segments I, II, III, and IV shown in  2 (a) of maternal transabdominal ECG. 
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Figure 3. The power spectrum using the FFT method for (a) fetal scalp electrode ECG (data length 500 

ms), and (b) maternal transabdominal ECG signal (data length 1000 ms). The maternal cardiac cycle 

begins 50 ms before the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage 

of labour (40 weeks gestation).  

A quick glance at the similarities of the four cumulant patterns in Fig. 4 (a), (b), (c) and (d), 

gives a little hope of successful detection of the fetal presence in the maternal cardiac cycle. 

To complicate the matter further, the two transabdominal cumulants in Fig. 4 (c) and (d) 

look dissimilar even though both contain two fetal QRS-complexes. However, the best way 

to distinguish between those patterns is to slice them and look for discriminant features. 

Fig. 5 shows the third-order cumulants and their diagonal (l.h.s.) and wall (r.h.s.) slices of 

one transabdominal cardiac cycle which is segmented into four segments of 250 ms each for 

(I) predominantly maternal QRS, (II) the first fetal heartbeat with maternal contribution, (III) 

QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution. The diagonal 

and wall TOC slices of the maternal segment (I) are easily distinguished from the diagonal 

and wall TOC slices of segments (II), (III), and (IV). Furthermore, the diagonal and wall TOC 

slices of fetal QRS segments (II) and (IV) are distinguishable from the diagonal and wall 

TOC slices of the QRS-free ECG segment (III) in that there is a distinguishable and well-

formed peak at the origin in both diagonal and wall TOC slices. The peak of the QRS-free 

ECG segment is much narrower and more related to motion artefact than a signal. 

Note that having computed the three-dimensional TOCs, either the diagonal or the wall 

slice could be used in the detection / classification process. Therefore, computing the full 

multi-dimensional TOC and then extracting individual slices is an unnecessary waste of the 

CPU time. So, why not compute any arbitrary 1-d slice directly without firstly having to 
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compute the two-dimensional TOC and secondly extract the 1-d slice? The TOC-diagonal 

and the TOC-wall slices are straightforward to compute directly, by freezing one of the two 

cumulant lags and changing the other one. However, computing any other arbitrary slice 

requires the development of an auxiliary algorithm (Zgallai, 2007). It has been found that 

performing direct computations of the 1-d TOC slices instead of computing the 2-d TOC 

firstly and secondly extracting individual 1-d slices results in saving of more than 99% of the 

CPU time.  
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Figure 4. ECG signals (upper panel) and their third-order cumulants (lower panel) for (a) fetal cardiac 

cycle using fetal scalp electrode ( data length 550 ms), (b) maternal chest cardiac cycle using one surface 

electrode and a reference electrode (data length 900 ms), (c) and (d) are two maternal transabdominal 

cardiac cycles measured using twin surface electrodes (data length 1000 ms each). The maternal cardiac 

cycle begins 50 ms before the R-wave and ends 50 ms before the next R-wave. The subject is at the first 

stage of labour, 40 weeks. 
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Figure 5. (a) Maternal transabdominal ECG signal (upper panel) and the synchronised fetal ECG signal 

measured using fetal scalp electrode (lower panel). (b), (c), (d) and (e) are the third-order cumulants and 

their diagonal (l.h.s.) and wall (r.h.s.) slices for segments I, II, III, and IV, respectively, each segment is 250 

ms. Segment I: pre-dominantly maternal QRS-complex, segment II, the first fetal heartbeat with maternal 

contribution, segment III: QRS-free ECG, and segment IV: the second fetal heartbeat with maternal 

contribution. The maternal cardiac cycle begins 50 ms before the R-wave and ends 50 ms before the next R-

wave.   
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Fig. 6 shows four selected slices of the third-order cumulants computed using one cardiac 

cycle for each of the following; (a) and (b) an adult male and female chest, respectively, (c) 

maternal transabdominal, and (d) fetal scalp electrode ECG signal. 

 

Figure 6. Third order cumulant slices at 0o (wall), 11.25o , 22.50o, and 45o (diagonal) for (a) male chest 

cardiac cycle using one surface electrode (data length 1180 ms), (b) maternal chest cardiac cycle using 

one surface electrode (data length 900 ms), (c) maternal transabdominal cardiac cycle using twin surface 

electrodes (data length 1000 ms), and (d) fetal cardiac cycle using fetal scalp electrode (data length 550 

ms). The maternal cardiac cycle begins 50 ms before the R-wave and ends 50 ms before the next R-wave. 

The female subject is at the first stage of labour, 40 weeks gestation.  
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4.2. The bispectrum, contour maps and slices for cardiac cycles 

Fig. 7 shows the bispectrum magnitudes (left panel) and the corresponding contours (right 

panel) using one cardiac cycle for; (a) fetal scalp electrode ECG, (b) maternal chest ECG, and 

(c) maternal transabdominal ECG signal. Before attempting to assess any advantages of the 

ECG bispectrum over and above the power spectrum one should regress,  

 

Figure 7. The bispectrum magnitude (left panel) and contour map (right panel) for (a) a fetal cardiac 

cycle using fetal scalp electrode (data length 550 ms), (b) a maternal chest cardiac cycle (data length 1000 

ms), and (c) a maternal transabdominal cardiac cycle (data length 1000 ms). The maternal cardiac cycle 

begins 50 ms before the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage 

of labour, 40 weeks gestation. The direct method is used to calculate the bispectrum. 
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for a moment, to view the power spectrum and locate the frequency ranges for adult and 

fetal QRS-complexes. The power spectrum of appropriately sampled ECG showed the QRS-

complex principal peak in the frequency range from 15 Hz to 20 Hz, and 25 Hz to 40 Hz, for 

the maternal chest ECG and fetal scalp electrode ECG, respectively. The power spectrum 

has limitations as an estimator in terms of resolution, variance, and clarity of the spectrum 

to be able to produce clear and distinguishable peaks for the P-waves. An alternative 

spectrum estimator was used instead, namely, the multiple signal classification (MUSIC) 

pseudo-spectrum. The MUSIC-based pseudo-spectrum also showed that the principal peaks 

for the p-waves occupy a range from 5 Hz to 8 Hz for adults. The principal peaks for the P-

waves of the fetal scalp electrode ECG occupy a range from 8 Hz to 10 Hz. The same 

MUSIC-based spectral estimators have revealed high local energy peaks around 5 Hz due to 

motion artefact (Zgallai, et al., 1997). 

It is clearly seen in Fig. 7 that all significant twin-frequency peaks occur at frequencies lower 

than the p-wave and QRS-complex frequencies. It is very difficult to observe any p-wave or 

QRS-complex frequencies. The only thing that could be construed from these results is that 

the combined effect of the low temporal resolution resulting from using the whole cardiac 

cycle and the low spectral resolution inherent in the bispectrum formation, the QRS-

complex twin peaks which should occur at frequency ranges from (15 Hz, 15 Hz) to (20 

Hz,20 Hz) for adults and from (25 Hz,25 Hz) to (40 Hz,40 Hz) for fetal scalp electrode ECG 

are completely masked and cannot be found even at –30 dB normalised to any significant 

low frequency peak. Instead, only low frequencies predominate (Zgallai, 2012 b).  

Fig. 8 shows the bispectra of fetal scalp electrode and maternal chest ECG signals (left panel) 

and the corresponding contour maps (right panel). The maternal cardiac cycle begins 50 ms 

before the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage of 

labour, 40 weeks gestation. The bispectrum is calculated using the direct method which 

involves calculating a two-dimensional Fourier transform. Ten Hanning windows is used in 

calculating the bispectrum which are averaged for smoothing. The bispectral peaks of the 

fetal scalp electrode and maternal chest QRS-complexes exist at (40 Hz,40 Hz) and (13 Hz,13 

Hz), respectively. However, they are shifted, shallow and inconclusive even though they are 

centred near the right frequency pairs, (30 Hz,30 Hz) for the fetal scalp electrode and (17 

Hz,17 Hz) for the maternal chest ECG. 

The temporal resolution could be improved by applying appropriate segmentations to the 

QRS-complexes. Instead of taking one cardiac cycle for an adult, which is on average 1000 

ms, the 250 ms QRS-complex segment which is centred on the R-wave and runs 125 ms in 

opposite directions is considered. This also applies to the fetal scalp electrode ECG signal 

but with a reduced QRS-complex length of typically 60 ms. 

Fig. 9 (top) depicts bispectral slices of the fetal QRS-complex which shows the correct 

position of a spectral peak at 30 Hz but only on the diagonal slice. Fig. 9 (middle and 

bottom) show maternal chest and transabdominal QRS-complex bispectrum slices. The 

maternal chest and abdomen both exhibit spectral frequencies of 17 Hz and 15 Hz, 

respectively, but only on the diagonal slice. Considerable improvement has resulted due to 
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improving the temporal resolution prior to the bispectral calculations for both fetal and 

maternal chest segmented QRS-complexes. However, looking at the maternal chest and 

transabdominal bispectral diagonal slices, lowering of the QRS peak frequency from 17 Hz 

to 15 Hz is observed. 

 

Figure 8. The bispectra of (a) a fetal scalp and (b) a maternal chest ECG signal (left panel) and the 

corresponding contour maps (right panel). The maternal cardiac cycle begins 50 ms before the R-wave 

and ends 50 ms before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation. 

The bispectrum is calculated using the direct method. A Hanning window is used to calculate the 

bispectrum which is averaged for smoothing. 

A possible cause of this shifting in the QRS-complex frequency peak is the susceptibility and lack 

of predictability of the bispectral representation of highly-complex multi-frequency signals. 

During labour contractions, the presence of very strong deterministic and chaotic signals 

emanating from the uterus, and the accompanying motion artefacts result in highly dimensional 

transabdominal signals (Rizk et al., 2000) is shown. Consequently it is very difficult to isolate 

with integrity the maternal and fetal QRS- complex spectral peaks without first resorting to 

super-resolution algorithms using eigenvector-based projections (Zgallai, 2007). 

4.3. Non-linearity of ECG signals 

The non-linearity in the ECG signal can be detected using the bicoherence squared. Fig. 10 

depicts the bicoherence squared and their corresponding contour maps using one cardiac 

cycle for a fetal scalp electrode, maternal chest, and maternal transabdominal ECG. The 

bicoherence squared has peaks at the frequency pairs of (6 Hz,15 Hz) and (14 Hz,14 Hz) for 

the fetal scalp cardiac cycle, (15 Hz,15 Hz) for the maternal chest cardiac cycle, and (7.5 
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Hz,7.5 Hz) for the maternal transabdominal cardiac cycle. These bicoherence peaks support 

non-linearity. 

 

Figure 9. Bispectrum slices at 0o (wall), 11.25o , 22.50o, and 45o (diagonal) for 250 ms segments of; fetal 

cardiac cycle using fetal scalp electrode (upper panel), maternal chest cardiac cycle (middle panel), and 

maternal transabdominal cardiac cycle (lower panel). The maternal cardiac cycle begins 50 ms before 

the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage of labour, 40 weeks 

gestation. 

4.4. Proximity of the maternal and fetal QRS- complexes 

There is a general consensus that individual cardiac cycles are locally stationary. This was 

substantiated (Zgallai, 2007) by Hinich test (Hinich, 1982). However, when applying a 

highly dimensional signal such as the transabdominal ECG that have several individual 

non-linear and deterministic signals overlapping both in the time and frequency domains, 

all coexisting in a cocktail of noise and motion artefact, it is prudent to re-examine the 
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Figure 10. The bicoherence squared (left panel) and contour map (right panel) for (a) a fetal cardiac 

cycle using fetal scalp electrode (data length 550 ms), (b) a maternal chest cardiac cycle (data length 1000 

ms), and (c) a maternal transabdominal cardiac cycle (data length 1000 ms). The maternal cardiac cycle 

begins 50 ms before the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage 

of labour, 40 weeks gestation. The bispectrum is calculated using the direct method. A Hanning 

window is used to calculate the bispectrum which is averaged for smoothing. 

validity of the stationarity assumption in relation to such signals. It is only natural to expect 

that the proximity of two non-linear signals such as the maternal and fetal QRS-complexes 

would result in non-linear (quadratic and higher-order) coupling and this in turn would 

invoke non-stationarity. The above is demonstrated to be true by inspecting the bispectral 

OT region shown in Fig. 11. The maternal cardiac cycle in Fig. 11 begins 50 ms 
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Figure 11. (a1), (a2) Two typical examples of maternal transabdominal cardiac cycles, (b1) and (b2) are 

the corresponding fetal ECG signals using fetal scalp electrode. The first fetal QRS-complex in (b1) is 

separated from the maternal QRS-complex in (a1) by 200 ms. The first fetal QRS-complex in (b2) is 

separated from the maternal QRS-complex in (a2) by 35 ms. The corresponding bispectrum contour 

maps at a level of -30 dB for the two cycles in (a1) and (a2) are shown in (c1) and (c2), respectively. The 

R-wave of the first fetal QRS-complex in (b1) is separated from the R-wave of the maternal QRS-

complex in (a1) by 200 ms. The corresponding bispectrum in (c1) does not show extra activity in the OT 

region. The R-wave of the first fetal QRS-complex in (b2) is separated from the R-wave of the maternal 

QRS-complex in (a2) by 35 ms. The corresponding bispectrum in (c2) shows extra activities in the OT 

region due to non-linear coupling between the mother and the baby.  

before the R-wave and ends 50 ms before the next R-wave. The subject is at the first stage of 

labour, 40 weeks gestation. Fetal cardiac cycle data length is 550 ms, and transabdominal 

ECG cardiac cycle data length is 1000 ms. Two typical transabdominally measured maternal 

ECG cycles, ((a1), (a2)), and two synchronised fetal scalp ECG cycles ((b1), (b2)) are shown. 

The lower parts of the Figure, (c1) and (c2), consist of the corresponding maternal bispectral 

contour maps at a level of -30 dB. The two R-waves of the maternal and fetal QRS-
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complexes in (a1) and (b1), respectively, are separated by 200 ms. The resultant bispectrum 

in (c1) does not support the OT region. However, the situation is totally different when the 

two R-waves are as close as 35 ms as shown in Fig. 11 (a2) and (b2). Now the OT region of 

the bispectrum in (c2) is fully occupied and non-stationary. This means conventional signal 

processing techniques cannot be used to separate the maternal and fetal QRS-complexes. 

This problem has been adequately solved by linearising (at least removing quadratic 

coupling) the transabdominal signal before attempting to separate individual QRS-

complexes. 

4.5. Cumulants and bispectra of noise components 

The MIT/BIH databases (MIT/BIH, 1997) have recordings of the three main types of noise in 

ECG signals, namely, (a) baseline wander, (b) electro-myographic (EMG) noise, and (c) 

motion artefact. The following statistics help in the processing stages of the fetal heartbeat 

detection. When using super-resolution techniques requirement for Gaussian and non-

Gaussian extraction and suppression is eliminated except for the conventional removal of 

baseline wander which is embedded in all data acquisition systems (baby monitors). 

a. Baseline Wander noise 

Fig. 12 depicts second- and third-order statistics of a baseline wander noise segment of 

10,000 samples (approximately 30 sec) extracted from the MIT/BIH databases. Both the 

bispectrum and the bicoherence squared show high peaks at low frequencies (< 5 Hz). This 

means that the effect of the baseline wander noise on both maternal and fetal QRS-

complexes at 15 Hz and 30 Hz, respectively, is not significant. It is prudent to eliminate such 

noise in the pre-processing stage. One conventional method of eliminating baseline wander 

employs a high-pass filter such as Butterworth high-pass filter of order 5, cut-off frequency 

of 1 Hz, a transition period of 1 Hz, a minimum ripple of –50 dB outside the main frequency 

lobe.  

b. Electromyographic noise 

Fig. 13 shows some statistics of an electromyographic (EMG) noise segment of 10,000 

samples extracted from the MIT/BIH databases. The noticeable feature is that the bispectrum 

is confined to low frequencies less than (10 Hz,10 Hz). This means that it will not interfere 

with the isolation of the adult QRS-complex bispectrum peak which occupies frequencies 

between (15 Hz,15 Hz) and (20 Hz,20 Hz), provided that an appropriate super-resolution 

technique is employed. But the bicoherence squared of the EMG noise is spread over a wide 

band of frequencies, up to (120 Hz, 120 Hz). The carpet effect of the non-linearity attributed 

to the EMG noise will be eliminated by linearising the transabdominal signal prior to fetal 

QRS-complex detection in the third-order statistical domain. Under broad signal and noise 

conditions, linearisation of the transabdominal ECG signal not only removes to a great 

extent the signal non-linearity, but also partially eliminates other types of non-linearity due 

to noise. 
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Figure 12. Characterisation of 10,000 samples of baseline wander noise extracted from the MIT/BIH 

database and sampled at 360 samples per second. (a) time series, (b) its histogram showing non-

Gaussian pdf, (c) third-order cumulants, (d) power spectrum using the averaged periodogram method, 

(e) the bispectrum (l.h.s.) calculated using the direct method with contour maps (r.h.s.) and (f) the 

bicoherence squared (l.h.s.) with contour maps (r.h.s.). 
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Figure 13. Characterisation of 10,000 samples of electromyographic noise extracted from the MIT/BIH 

database and sampled at 360 samples per second. (a) time series, (b) its histogram, (c) third-order 

cumulants, (d) power spectrum using the averaged periodogram method, (e) the bispectrum (l.h.s.) 

calculated using the direct method with contour maps (r.h.s.) and (f) the bicoherence squared (l.h.s.) 

with contour maps (r.h.s.). 
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Figure 14. Characterisation of 10,000 samples of motion artefact noise extracted from the MIT/BIH 

database and sampled at 360 samples per second. (a) time series, (b) its histogram, (c) third-order 

cumulants, (d) power spectrum using the averaged periodogram method, (e) the bispectrum (l.h.s.) 

calculated using the direct method with contour maps (r.h.s.) and (f) the bicoherence squared (l.h.s.) 

with contour maps (r.h.s.). 



Second- and Third-Order Statistical Characterization of  
Non-Linearity and Non-Gaussianity of Adult and Fetal ECG Signals and Noise 49 

c. Motion artefact noise 

Fig. 14 depicts second- and third-order statistics of a motion artefact noise segment of 10,000 

samples extracted from the MIT/BIH databases. The bispectrum has many frequencies in the 

triangle region of (0 Hz,0 Hz), (0 Hz,35 Hz) and (35 Hz,0 Hz). These bispectral frequencies of 

motion artefact would be overlapping with those of the maternal and fetal QRS-complexes, 

albeit at around –20 dB level. However, the level of noise at the QRS-complex spectra is 

comparatively small and the effect of motion artefact on the detection of QRS-complexes is 

not noticeable. Fig. 14 (f) reveals that the bicoherence squared is rather confined to very low 

frequencies. As mentioned above, linearisation plays a definitive role. 

5. Discussion and conclusions 

The objective of this chapter is to introduce the subject of higher-order statistics (HOS) and 

its applications to the non-linear / non-Gaussian ECG signals to pave the way for employing 

HOS-based techniques as the solution to the formidable problem of transabdominal fetal 

heartbeat detection during labour. High detection rates can be accomplished by invoking 

the HOS-based techniques, namely, the third-order cumulant template matching and the 

bispectral contours template matching and which utilises a set of different levels of 

bispectral contours. 

The key question that was attempted is why do HOS-based techniques yield the highest 

possible Fetal Heart Rate FHR? The reasons behind achieving high FHRs when using the 

HOS-based well-refined techniques are; (1) Under broad signal and noise conditions, 

higher-order cumulants and their spectra become high signal-to-noise ratio domains where 

detection, parametric estimation and signal classification can be performed. (2) The 

Gaussian noise diminishes in the HOS domains if the data length is adequate. For ECG 

signals, a minimum length of 1 sec is sufficiently long to suppress Gaussian noise and 

maintain a low level of HOS variances in the HOS domains, whilst not sufficiently long to 

violate Hinich’s criterion for local stationarity. (3) In the third-order domain all sources of 

noise with symmetric probability density functions (pdfs), e.g., Gaussian and uniform, will 

vanish. The ECG signals are retained because they have non-symmetric distributions. This 

implies that it is more than adequate to utilise only the TOCs and their bispectra. There is no 

need to seek higher-than-third-order statistics as implicated in all the Independent 

Component Analysis (ICA) applications to FHR detection. (4) The maternal and fetal QRS-

bispectral contours, which are used as the discriminant patterns in the identification and 

classification, only overlap with the bispectra of the baseline wander and that of the EMG at 

very low levels (around –20 dB normalised to the peak of the maternal QRS-complex 

bispectrum). Therefore, it is comparatively easy to detect and classify QRS-complexes in 

ECG signals utilising either the TOC or the BIC template matching techniques. 

5.1. Direct computations of individual 1-d TOC slices  

It is also shown that, having computed the two-dimensional TOC, either the diagonal or the 

wall slice or a combination of the diagonal and wall slices is used in the detection / 
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classification process. Therefore, computing the full multi-dimensional TOC and then 

extracting individual slices is an unnecessary waste of the CPU time. So, why not compute 

any arbitrary 1-d slice directly without firstly having to compute the two-dimensional TOC 

and secondly extract the 1-d slice? The TOC-diagonal and the TOC-wall slices are 

straightforward to compute directly, by freezing one of the two cumulant lags and changing 

the other one. However, to compute any other arbitrary slice requires the development of an 

auxiliary algorithm. It has been found that performing direct computations of the 1-d TOC 

slices instead of computing the 2-d TOC firstly, and secondly extracting individual 1-d slices 

results in saving of more than 99% of the CPU time. The same applies to the 2–d bispectrum. 

However, it has to be borne in mind that it is the matching of the horizontal bispectral 

contours that is used in the Bispectral Contour (BIC) template matching technique instead of 

the 1-d polar bispectral slices. Because in order to use the 1-d polar bispectrum slices 

effectively one needs to use a minimum of 24 polar slices so as not to miss the capturing of 

rapid changes or null features in the bispectrum that could be used as discriminant patterns. 

Whereas for BIC contours the number of discriminant horizontal slices required for 

detection / classification does not exceed 10.  

5.2. Bispectral features of QRS-complexes 

The power spectrum of appropriately sampled ECG showed the QRS-complex principal 

peak in the frequency range from 15 Hz to 20 Hz, and 25 Hz to 40 Hz, for the maternal chest 

ECG and fetal scalp electrode ECG, respectively. Unfortunately, the power spectrum has 

limitations as an estimator in terms of resolution, variance, and clarity of the spectrum to be 

able to produce clear and distinguishable peaks for the P-waves. Therefore, an alternative 

spectrum estimator was used instead, namely, the multiple signal classification (MUSIC) 

pseudo-spectrum. The MUSIC-based pseudo-spectrum showed that the principal peaks for 

the p-waves occupy a range from 5 Hz to 8 Hz for adults. The principal peaks for the P-

waves of the fetal scalp electrode ECG occupy a range from 8 Hz to 10 Hz. The same 

MUSIC-based spectral estimators have revealed high local energy peaks around 5 Hz due to 

motion artefact (Zgallai et al., 1997).  

As with cumulants, their bispectra were computed for the above mentioned ECG data 

samples and segmentations using the direct method which involves calculating a two-

dimensional Fourier transform. The following bispectral peaks have been observed only on 

the bispectral diagonal slice at the following frequency pairs;  

a. (17 Hz,17 Hz) and (15 Hz,15 Hz) for the maternal chest and the transabdominal ECGs, 

respectively. So, there is a shift in the bispectral peak from 17 Hz to 15 Hz in the 

transabdominal ECG.  

b. (30 Hz,30 Hz) and less prominently at (20 Hz,20 Hz) for the fetal scalp electrode ECG. 

5.3. Quadratic coupling in transabdominally measured ECG signals 

It has been found in maternal transabdominal ECG signals that close proximity of the 

maternal and fetal QRS-complexes initiates additional quadratic and higher-order non-



Second- and Third-Order Statistical Characterization of  
Non-Linearity and Non-Gaussianity of Adult and Fetal ECG Signals and Noise 51 

linearities that could be due to higher-order coupling of the maternal and fetal own 

harmonics and the concomitant mixing of the ECG signals and the non-linear uterine 

contraction interference signal. This so called coupling between maternal and fetal ECGs 

(Rizk et al., 2001) is manifested in a newly formed bicoherence squared peak(s) which did 

not exist in either of the isolated maternal bicoherence squared or the isolated fetal 

bicoherence squared computed from their respective ECG signals. The non-linear second- or 

third-order Volterra structure has been used (Rizk et al., 2001) to quantify the effect of this 

coupling, in part. The rest of the quantification process is carried out using the bicoherence 

squared. 

It is worth mentioning that, depending on the bispectrum estimation method employed, the 

techniques for the detection and quantification of quadratic phase coupling are divided into 

two categories: the conventional and the parametric. The conventional techniques are based 

on the bicoherence spectrum and they are better qualifiers of the phase coupling (Kim and 

Powers, 1978; Kim and Powers, 1995). However, their resolution is limited by the 

uncertainty principle of the Fourier transform. On the other hand, the parametric techniques 

are based on the auto-regressive (AR) modelling of the third-order cumulants. Although the 

parametric AR methods are not good quantifiers, they possess a high resolution capability, 

much higher than the frequency resolution of the conventional methods (Nikias and 

Raghuveer, 1987; Raghuveer and Nikias, 1986). The so called coupling results in non-

stationarity in the transabdominal ECG signal. This is evidenced by the filling of the 

bispectrum OT region which is used as a measure of non-stationarity in non-Gaussian 

signals.  

5.4. Noise identification in male and non-pregnant female adults 

For noise identification and characterisation in the third-order domain, the MIT/BIH 

databases were utilised (MIT/BIH 1997). Apart from Gaussian noise, there exist three types 

of non-Gaussian noise in ECG signals, namely, baseline wander, electromyographic (EMG), 

and motion artefact noise. 10,000 samples of each of these three types of noise are analysed. 

A brief summary of their third-order statistics is shown in Table 1.  

 

 

 

Baseline wander Electromyographic Motion artifact 

Third-order 

cumulants 

Support Support Support 

Bispectrum Frequency < 5 Hz Frequency < 10 Hz Frequency < 35 Hz 

Bicoherence 

Squared 

Frequency < 5 Hz Frequency < 120 Hz Frequency < 5 Hz 

Table 1. Third-order statistics of three types of noise in ECG signals; baseline wander, 

electromyographic noise, and motion artefact. 

The effect of the baseline wander noise on both the maternal and the fetal QRS-complexes at 

15 Hz and 30 Hz, respectively, is not significant. Table 1 shows that only the bispectrum of 
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the motion artefact and the bicoherence squared of the EMG noise have frequencies that 

would potentially overlap with those of the QRS-complexes of the mother and the fetal, 

albeit at –20 dB level. The bicoherence squared of the EMG noise is spread over a wide band 

of frequencies, up to (120 Hz ,120 Hz). The carpet effect of the non-linearity attributed to the 

EMG noise will be significantly reduced by linearising the transabdominal signal prior to 

fetal QRS detection in the third-order statistical domain. Under broad signal and noise 

conditions, linearisation of the transabdominal ECG signals not only removes to a great 

extent the signal non-linearity, but also partially eliminates other types of non-linearity due 

to noise or non-linearity due to strong uterine contractions. 

It could be deduced from Table 1 that there would be overlapping between the bispectral 

frequencies of motion artefact and those of the maternal and the fetal QRS-complexes, albeit 

at around –20 dB level. However, the level of noise at the QRS-complex spectra is 

comparatively small and by using QRS-complex tailor-made spectral windows, the effect of 

motion artefact on the detection of the QRS-complexes is not noticeable. 
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