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1. Introduction 

The application of engineering techniques into biomedical procedures has proved extremely 

beneficial in many areas of medicine. A developing area is in epidural analgesia and 

anaesthesia, a technique employed for the relief of pain in both acute and chronic, and for 

anaesthesia to enable pain-free surgery. The aim of this chapter is to demonstrate several 

specific areas of research and how biomedical engineering techniques are used to improve and 

enhance the experience and training in the epidural procedure. The overall goal is to reduce 

the risks and subsequent morbidity in patients using advanced technologies to recreate the 

epidural procedure replicating as far as possible the in-vivo procedure. This would allow 

anaesthetists to practice the procedure in a safe and controlled environment without risk to 

patients. This could be achieved by recreating the sensation of the needle passing through the 

tissues and ligaments and by the generation of forces that match exactly those felt in-vivo. 

Epidural simulators are currently used as a training aid for anaesthetists, however existing 

simulators lack realism to various degrees and their operation is not based on measured in-

vivo data that can accurately simulate the procedure. The techniques of advanced simulation 

and biomedical engineering detailed in this chapter can provide a solution. 

Haptic devices have been used previously to reproduce needle forces but the forces are 

often not based on measured data. Needle insertion forces in-vivo are largely unknown as 

there are few studies in this specific area. Without accurate measurement of resultant 

pressure on the syringe plunger of the epidural needle, as the needle passes through the 

various ligaments and tissues of the spine, it is difficult to create accurate simulation of the 

epidural procedure. The ideal model would require other features such as a palpable spine, 

ability to accommodate for patient variation, 3D graphics visualisation and an adjustable 

needle insertion point. Techniques in biomedical engineering can provide solutions through 
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the design of devices capable of making precise measurements and utilising them in a novel 

high fidelity epidural simulator. Adequate training on an advanced simulator will help 

alleviate the risks of epidural failures from inaccurate placement and also reduce potential 

morbidity to patients thereby improving the safety of the procedure.  

This chapter is laid out in various sections to illustrate different aspects of current epidural 

anaesthesia research. Section 2 describes the actual epidural procedure and its challenges. 

Section 3 discusses the needle insertion forces in epidurals. Section 4 describes an 

interspinous pressure measurement device for wireless data collection during needle 

insertion leading to a porcine trial discussed in Section 5. Section 6 describes an image 

processing technique for non-contact needle depth measurement that could be used in 

conjunction with pressure measurement for fully characterising the needle insertion. In 

Section 7, 3D-modelling of spine with bending and flexing is discussed for flexibility of 

patient’s positions together with heterogeneous volumetric modelling of spinal ligaments in 

Section 8. Stereo 3D visualisation for depth perception of epidural procedure has been 

discussed in Section 9. Section 10 applies a haptic force feedback device configured with the 

measured force data to create an electronic human–computer interface which is described in 

Section 11. Finally, section 12 brings all these technologies together and demonstrates the 

complete system that makes up our current epidural simulator prototype with conclusions 

provided in section 13.  

2. Epidural procedure and challenges of clinical simulation 

Epidural analgesia and anaesthesia is commonly used as a form of pain relief during 

childbirth, for the treatment of chronic back pain or as a means to provide anaesthesia or 

analgesia during specific operations. Monitoring the depth of the needle during an epidural 

insertion is crucial because once the needle tip enters the epidural space, an epidural 

catheter is usually sited to a specific length. This enables the intermittent or continuous use 

of the epidural for anaesthesia or pain relief. If the needle is advanced too far it will 

puncture the dural sac and cause leakage of cerebrospinal fluid. Post dural puncture 

headaches may result, which can be extremely disabling for the patient. Other potential 

risks include nerve damage or bleeding which may very rarely lead to paralysis. If the 

needle is not within the epidural space, the analgesia or anaesthesia may be ineffective or 

absent due to incorrect placement of the catheter.  

During an epidural insertion, the operator tries to perceive which tissue layer the needle tip 

is passing through by feeling the resistances on the needle. This is a process known as 

“haptic” feedback. A simulator can assist the development of this visuospatial awareness of 

spinal anatomy and ‘feel’ of the procedure to allow practice prior to attempts on patients. 

Not only will this serve to enhance patient safety but it also creates a safe and controlled 

environment in which to learn. 

The procedure of inserting an epidural needle into the lumbar spine requires the operator to 

visualise in their mind a three-dimensional (3D) anatomical image of the bony alignments 

and the various tissue layers from skin, through to subcutaneous fat, supraspinous and 
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interspinous ligaments, ligamentum flavum and then to the epidural space. Epidural needle 

insertion is essentially a blind procedure, but utilises a well-known technique referred to as 

“loss of resistance” (LOR). LOR essentially involves identification of the epidural space by 

compression of either fluid or air as the epidural needle encounters the various ligaments of 

the lumbar vertebral column [1]. Initially, the back of the patient is palpated, and using 

surface landmarks such as the iliac crests, an assessment is made of suitable intervertebral 

spaces and of midline. For lumbar epidurals, this may be between lumbar vertebra 3 (L3) 

and lumbar vertebra 4 (L4) for instance. The epidural or Tuohy needle, as it is commonly 

called, is inserted into the interspinous ligament and a syringe filled with saline is attached 

to the end of the needle. These LOR syringes are specially manufactured so that there is less 

friction between the plunger and the inner wall of the LOR syringe. A constant or 

intermittent force is then applied to the plunger by the operator’s thumb as the needle is 

slowly advanced forward. As the tougher and more fibrous ligamentum flavum is 

encountered, a higher resistive force to injection is encountered. Once the needle tip 

traverses the ligamentum flavum, the epidural space is then entered into and saline can be 

quite easily injected, hence the phenomenon of LOR. It is this haptic perception that informs 

the operator of needle location within the various tissue layers, obstruction from bone and 

loss of resistance from potential spaces such as those between the ligaments. Combining this 

with the creation in one’s mind of a three-dimensional image of lumbar spinal anatomy 

enables successful placement of an epidural catheter. 

The ideal epidural simulator should be capable of replicating the above procedure and aim 

to recreate as far as possible the in-vivo procedure. A real Tuohy needle could be inserted at 

any intervertebral space in the lumbar or thoracic region using the midline or paramedian 

approach [2]. It would contain a force feedback haptic device, with force data originating 

from measured Tuohy needle insertions from patients. Using measured in-vivo data from 

patients and integrating this into the epidural simulator software, the resistance would 

automatically adjust to give patient variation on weight, height and body shape. This could 

simulate random patients or match measurements from a specific patient. The 3D virtual 

patient and virtual vertebrae can also be adjusted in size and shape to match measurements 

from actual patients. As the needle advances, the resultant force should represent each 

tissue layer and a LOR on reaching the epidural space. Once the epidural space is reached, 

saline would be released. During the entire insertion, a 3D virtual spine could be displayed 

on the monitor showing the trajectory of the needle in real time. The manikin could bend 

forwards to mimic spinal flexion to increase spacing between the vertebrae or alternatively 

bend backwards (extension) to simulate increased difficulty in locating the interspinous 

space for training purposes.  

Variation in patient size, height, weight and other characteristics should be possible based 

upon actual patient measurements. Currently, most simulators have only two or three 

options such as obese, elderly and normal [3-6] which is perhaps not enough to encapsulate 

reality and could therefore be improved. Simulators could have unlimited patient variation 

by including parameters such as height, weight, body shape, age, obesity which could be 

adjustable. Ideally, the settings should match measurements from real patient data. The 
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adjustments can be programmed to occur automatically based on basic patient data, so that 

the user does not have to manually configure all the settings. The simulator could then re-

create a virtual model of a particular patient. Clinicians planning on performing the 

epidural can practice beforehand on a virtual model of the patient thereby reducing the 

learning curve during the procedure on the patient. The four common patient positions 

adopted during epidural insertion are sitting, sitting with lumbar flexion, lateral decubitus 

and lateral decubitus with lumbar flexion. These four common positions at least should be 

modelled in an epidural simulator to give a greater level of realism than static epidural 

simulators. Ideally, variable spine flexibility could be achieved by modelling 3D flexible 

spine vertebrae and extended to other positions to simulate difficult spinal anatomy. This 

may allow simulation of spinal conditions such as curvatures and rotations caused by 

kyphosis and scoliosis. These conditions cause difficulties in placing the needle due to 

unusually positioned landmarks. Also the accuracy of the forces in epidural simulators is a 

topic of recent discussion [7-9], so it is important that the forces required to insert a needle 

during simulation match those achieved in reality. Skills learned during this simulation can 

then be transferred to the actual clinical environment. 

3. Modelling the needle insertion forces 

Epidural insertion consists of a complicated interaction of many forces, needle position and 

intrinsic properties of the epidural equipment: a) Each tissue has various viscosity, elasticity, 

density and frictional properties. b) Bubbles of air in saline can compress. c) The method of 

insertion can vary depending upon needle inclination angle, paramedian angle, speed of 

insertion and twisting of the needle. d) Properties of the needle can vary, including the angle 

of the tip, tip type - side tipped or two-plane symmetric, needle gauge from 15-20 and width 

of the metallic walls in hollow needles vary. e) Plunger resistance is caused by friction on 

the inner syringe walls. f) The flow of saline is restricted by the funnel narrow opening of 

the syringe at LOR. g) The needle orifice can plug with tissue obstructing saline release. 

Theoretically, a model can partition reaction force down into its individual constituents. The 

thumb applies force onto the plunger of the syringe and this force interacting with the 

frictional and resistive tissue forces contributes to the ‘resultant pressure’, see Figure 1. This 

pressure cannot escape so it causes the needle to push forwards. This causes the ‘reaction 

force’ which is equal and opposite to the applied force and comprised of several factors: a) 

The cutting force required for the needle tip to pierce the tissue. b) Friction caused by needle 

shaft resistance on the tissue. c) Static friction to get the stationary needle moving. d) Side 

compression force is caused by the surrounding tissues. e) Torque is caused by twisting of 

the needle. f) All of these forces, resistances and torque vary according to depth and tissue 

stiffness. 

It is not feasible to measure all of these forces individually in-vivo and it would not make 

sense to measure the exact proportions of each force that make up the reaction force. In 

practice, it may be sufficient to measure the resultant pressure of the saline instead. 

Measuring resultant pressure provides a combination of all reaction forces, which is felt by 
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the anaesthetist during insertion, and this combination of all forces is what simulators need 

to re-create to simulate the feeling on insertion. 

 

Figure 1. Several forces involved with needle insertion 

4. Pressure measurement for realistic epidural simulation 

A sterile wireless measurement device was developed to record the resultant pressure of the 

saline inside the syringe during an epidural needle insertion. This measurement device is 

used to enable data collection to quantify the pressure during the epidural procedure. 

Quantifying the pressure will enable accurate configuration of an epidural simulator.  

Our novel pressure measurement device has wireless functionality and by using entirely sterile 

components allows in-vivo trials to be conducted with patients. A wireless data transmitter is 

utilized to minimize the equipment and disruption in the hospital room (Figure 2).  

 

Figure 2. Remotely monitored wireless epidural pressure measurement system. 

The design aims to minimise changes to the standard epidural set up. A small sterile three-

way tap (BD ConnectaTM) is connected between the Tuohy needle and syringe (Figure 3). 

The tap is connected to the pressure transducer via a one metre length of saline-filled sterile 

manometer tubing. The transducer’s electrical plug is connected by a short electrical cable to 

our wireless transmitter. At the remote site, a wireless receiver is connected via Universal 

Serial Bus (USB) to the computer.  

The UTAH Medical Deltran disposable transducer is used for the pressure measurement 

sensor. These transducers are commonly used in hospitals to monitor systemic blood 

pressure and central venous pressure. Transducers produce a small electrical signal based 

on the pressure of the liquid inside the manometer tubing. Disposable transducers are 

designed to have accuracy of +/- 3% with the average output of 100.03 +/- 0.55 mm Hg and 

the worst cases being 98.53 and 101.36 when 100 mm Hg was applied [10].  
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Figure 3. Wireless Device for recording measured pressure of saline during insertion. 

The computer can process pressure data, display a real-time graph on screen and 

simultaneously record the data to a file. When the anaesthetist presses on the syringe 

plunger, the saline inside the syringe is pressurised and the device quantifies this pressure. 

The computer runs our custom built software (Figure 4) which monitors pressure data as it 

arrives [11]. The software displays the live data on screen in the form of a real-time graph, 

can save graphs as images to file and writes data to a text file. The data files can be used for 

further analysis using statistical software. Before each insertion, the graph and start-time are 

reset and a new data file is created. Pressure can be converted into various units. In the 

current implementation the pressure is measured in mmHg or kPa and also a provision is 

given to determine force on the plunger in Newtons. This directly provides actual pressure 

measurement of saline inside the needle as applied to a continuum. To test this device a 

pilot trial was conducted on a porcine cadaver.  

 

Figure 4. Screen print of the software to monitor and record pressure of saline during insertion 

5. Trial on porcine cadaver 

A trial using a section of a porcine cadaver was conducted to test the pressure measurement 

device during epidural insertions. The pig is claimed to be the closest animal model for 
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human spinal research and can be a representative anatomical model for the human spine 

and tissues [12]. The porcine tissue specimen was a double loin saddle cut. The cadaver was 

obtained from a livestock farm within 24 hours of slaughter without being frozen or 

modified in any way to avoid desiccation and deterioration of the spinal tissues which 

would affect the pressure measurements. The pig was a standard hybrid Large White cross 

Saddleback. The specimen contained the entire back in one piece, with the whole spine, and 

all tissue layers from external skin, through to the thoracic cavity. The porcine tissue was 

mounted vertically against a wooden support to mimic sitting position, resting upon, but 

not attached onto, a platform beneath (Figure 5). 

Epidural insertions were performed by two experienced anaesthetists. The epidural space 

was located using a Portex 16-gauge Tuohy needle (Smiths Medical International Ltd, Kent, 

UK) at L2/3 or L3/4 intervertebral levels using a midline approach. Subsequently a number 

of different vertebral levels ranging from T12-L5 were targeted. The porcine spine was 

palpated to locate anatomical landmarks prior to insertion. The Tuohy needle with its 

introducer stylet penetrates the skin as is standard procedure. The recordings of pressure 

were then started and continuously recorded throughout needle insertion until after the loss 

of resistance had been experienced.  

 

Figure 5. Porcine cadaver set up for Tuohy needle insertions  

The majority of insertions located the epidural space during the first attempt. Data from 

hitting bone was also recorded to analyse the effect on pressure. In some cases, the number 

of attempts to find the space was greater than three so those recordings were abandoned. 

The maximum pressure during ligamentum flavum was 500 mmHg. The highest pressures 

were obtained when the Tuohy needle hit bone. 

The results demonstrated that during needle insertion the saline pressure started low and 

gradually built up, although the increase was not entirely steady due to the various tissues 

encountered. A similar pressure trend was found; a depression occurred on insertion 2 

during 3-6 seconds and insertion 3 during 12-15 seconds (Figure 6, circular area). This may 

have been caused by the interspinous ligament and the pressure required to traverse this 

was 350 mmHg on insertion 2 and 470 mmHg on insertion 3. The final peak pressure was 

500 mmHg which was caused by the ligamentum flavum (Figure 6, rectangular area). It was 
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also noted that after the final drop of pressure there was often a ‘step’ before the bottom 

pressure was reached (square area). One explanation is that the initial pressure is the effect 

of opening up the epidural space which is a potential space and also saline pushing the dura 

away. 

 

Figure 6. Pressure recordings durings two successful insertions to the epidural space. 

The opinion of the trial anaesthetists was that porcine tissue did feel like a close 

approximation to human tissue and the shape of the graphs were similar to graphs 

previously reported from human insertions [8]. In most cases the resulting pressure-time 

graphs clearly show a drop when the loss of resistance occurred as the needle entered the 

epidural space (Figure 6). The maximum pressure peak during successful insertions ranged 

from 470 to 500 mmHg (62.7 - 66.7 kPa) caused by ligamentum flavum. After this the needle 

tip enters the epidural space causing a sudden loss of pressure back to the starting pressure. 

The shapes of each graph in successive trials were similar but also different to reflect 

individual variations.  

The results of this pilot trial demonstrate that the wireless pressure measuring system is 

accurate and responsive in the porcine model. Such measurements from patients could be 

used to create realistic epidural simulators.  

6. Image processing for non-contact needle depth measurement 

The reason why needle depth is important is that it relates the depths at which each 

resultant pressure occurred during the epidural procedure. This can also provide 
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information about the depth of ligaments. We have developed image processing algorithms 

to measure the needle depth by a wireless camera during insertion [13].  

During the epidural insertion procedure, the needle is slowly advanced through layers of 

tissue into the epidural space which is on average somewhere between 40-80mm deep. It is 

possible to record the depth of the needle tip by viewing the 10mm markings printed on the 

metallic needle; however, it is important to measure the needle depth precisely so that the 

needle travel can be guided with available measurements from techniques such as 

ultrasound scanning or magnetic resonance imaging for precise needle placement in the 

actual procedure. We have developed a novel image processing technique which aims to 

measure insertion depth of an epidural Tuohy needle in real-time. The implemented 

technique uses a single wireless camera to transmit depth data remotely to a host computer. 

Combining length and pressure data enables more accurate interpretation of the data in that 

the various changes in pressure can be linked to the actual depth at which the changes 

occurred. 

The 16 gauge Portex Tuohy needle of 80mm length (Figure 7) is the most common epidural 

needle used in hospitals. The needle has grey and silver markings on the metallic shaft at 

10mm intervals which are used by the software as a reference length. The blue handle is the 

plastic part at the base which is held by the operator and connected to a LOR syringe. This is 

used for colour detection. 

 

Figure 7. Properties of the 80mm Tuohy needle used for image processing 

The actual technique of length and size measurement by digital image processing is well 

established, however, in this specific circumstance, image processing is much more complex 

and challenging due to many reasons; (i) the needle is a thin, narrow object, (ii) the needle is 

composed of reflective stainless steel, (iii) the needle is circular in cross-section causing 

colour changes around the shaft of the needle, (iv) wireless camera introduces transmission 

noises, (v) as the needle is tilted it reflects in different directions, (vi) the needle will not be 

the only object in the foreground due to the operator’s hands and patient’s back, (vii) 

lighting conditions vary from room to room. We have overcome these problems by 

advanced analysing techniques focusing on a small area of the dynamic environment. 

The actual technique involves placing a wireless camera in the procedure room, one metre 

away from the needle insertion, which will transmit data to a remotely located computer. 
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The camera transmits a 640x480 pixel image in full colour over a 20MHz wireless link. The 

computer contains the image processing algorithm to detect the visible needle in the image 

and measure its length. The first step in the algorithm is to automatically calibrate the 

background model. For ten seconds, with no objects in the foreground, the colour values 

(HSV) for each pixel are analyzed. Maximum and minimum values are stored in an array 

and used later as a background model. HSV values from each frame are compared to the 

background model. Foreground objects are identified by HSV values outside of the expected 

range. The pixels from foreground objects are scanned for HSV values which match the blue 

handle. The centre point of the blue handle is found by taking an average and is stored for 

object tracking in subsequent frames, and is assumed to be approximately at the level of the 

needle shaft. The rightmost edge is stored and assumed to be the start point of the metal 

shaft. The blue handle is removed from further processing. The algorithm scans horizontally 

from the position of the blue handle to find the metal needle shaft by matching HSV values. 

The leftmost and rightmost pixels in the metal shaft are identified. These are stored for 

tracking in subsequent frames. At this point a strip of image remains over the needle. For 

each column, an average HSV value is taken. This average is used to create four separate 

histograms for H, S, V and the total along the length of the metallic shaft. The histograms 

identify sudden changes in colour, caused by the boundaries between 10mm markings 

(Figure 8). Histograms make the markings more detectable under reflective conditions. The 

number of visible 10mm markings is counted. The number of pixels in each division is 

counted to find how many pixels equate to 10mm. If the final marking is only partially 

visible the length is calculated by comparing it to a full division. 

 

Figure 8. Output of the algorithm to measure needle length with histograms 

The image processing algorithm was tested during insertions. The needle was successfully 

detected and measured accurately in most frames. The developed software was used to 

draw a graph of the length in real time and write the length data into a data file. Figure 9 

shows the graph during an insertion in which the needle was slowly advanced and then 

rapidly withdrawn. We found that length measurement was accurate to within +/-3mm, 
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when the needle was 500mm from the camera. The graph shows two erroneous readings at 

about 4 and 8 seconds, which was due to camera noise and in these frames the needle shaft 

was not detected properly, but all other frames were successfully measured and verified by 

the actual measurement. The total insertion took about fifteen seconds with 10 frames per 

second. The failure rate was 3 frames out of 150 which gave an overall 97.8% reliability 

during this insertion [13]. Errors like this could potentially be removed by ignoring sudden 

jumps in the data. The graph currently displays length but this can be converted from length 

to needle depth by simply subtracting the value from 80 mm, which is the total length of the 

needle. 

 

Figure 9. Software showing plot of needle length during insertion 

The distance between needle and camera can be varied because length is measured using 

the 10mm markings as a reference length. At distances over 150cm the reliability dropped 

but this could be improved with a higher resolution camera. The needle can be tilted up or 

down to +/-30 without any adverse effect to measurements. Tilting towards or away from 

the camera does not affect measurement as long as the divisions are clearly visible because 

division length differentiates between length reductions caused by tilt and caused by 

insertion. Failures occurred on some frames, due to blur in the image, or at certain angles 

where silver and grey areas became merged. The background model successfully removed 

the majority of background, even with cluttered multi-colour backgrounds. 

7. 3D spine modelling for epidural training 

In order to simulate the whole epidural procedure a realistic user interface must be 

provided together with the flexibility of 3D visualization and haptic interaction. The 3D 

models for the epidural simulator were generated with an object modelling software. Each 

vertebra is an individual wireframe model, constructed from 514 vertices. The vertices are 

positioned and then wrapped by a texture. Shadows and light sources are applied through 

OpenGL interfaces. The spine in the simulator contains 26 separate objects for the thoracic, 

cervical and lumbar spinal vertebrae, sacrum and coccyx. Layers of tissue, fat, muscle and 
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skin were appended as layers above the bones. The different parts of the model were 

exported into separate format files. The format is text based with each vertex on a separate 

line. A custom C++ OpenGL graphics application then parses the text file to re-create each 

vertex. The epidural Tuohy needle was created as separate 3D models allowing it to be 

moved around independently. This is important to allow the operator to place the needle 

anywhere along the spine for training purposes.  

The 3D objects can be viewed as stereograms (Figure 10) by displaying two images of the 

same object side by side with slight rotation around the Y axis [14]. The epidural simulator 

also supports this method of stereo in addition to page-flip stereo. 

 

Figure 10. Stereogram view of the spine model with two perspectives and binocular parallax 

Transparency is applied to skin, subcutaneous fat, supraspinous ligament, interspinous 

ligament and ligamentum flavum. This allows the user to see the position of the needle tip 

in the tissue layers. Transparency can be adjusted during the simulation by a control on the 

keyboard. Rotation is enabled allowing the camera angle to rotate around the scene. This is 

applied by OpenGL translation and rotation which gives an effect of camera movement 

whilst the other objects all remain stationary. During rotation, the tip of the needle remains 

at the central focus point of the screen. Zoom can be applied to move closer or further away 

from the site of insertion in the working epidural simulator. Pan can also be applied which 

is a translation of the camera which allows the user to view other areas or to move up and 

down the spine when selecting the insertion site. 

Another issue equally important is the flexibility built into the spine model. There are four 

common patient positions adopted during the administration of spinal or epidural 

anaesthesia [15]. Lateral decubitus (Figure 11) involves lying down sideways on the patients 

left or right, usually the right side is used for caesarean patients, because it is the opposite 

side from which the patient will lie on during surgery in the left lateral tilt position, which 

helps to increase the spread of anaesthetic. When the patient lies in lateral positions their 

back should be close and parallel to the edge of the bed, with their spine in a straight line. 

However, a variation to this position, maximal lumbar flexion in the lateral decubitus 

position can be used. The sitting position is preferred and often required in obese patients to 
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enable the palpation of spinal processes and identification of the midline. Finally, the sitting 

position combined with maximal lumbar flexion is also used, and having the patient bend 

forward is advantageous to the anaesthetists because it increases the space between the 

vertebrae, which increases the target space for the needle to pass through. 

 

Figure 11. Four common patient positions used for epidural insertion 

Based on this, the patient could bend the spine to various positions, so the epidural 

simulator is required to use computer graphics models of the human spine which can bend, 

flex and twist. The model can realistically duplicate the shape of the spine during various 

sitting positions adopted by patients during surgery and epidural anaesthesia. The extent of 

bending and flexing is kept within the limits of human spine flexibility. Also the model 

vertebrate adapt in size to match weight and height of specific patient bodies based on 

parametric modelling [16]. Our spine model is flexible for epidural simulation which offers 

accurate models of spinal vertebrae. 

The human spine consists of twenty six vertebrae. Each of the vertebrae connects with 

numerous ligaments. Internally, there is a protective space running through the centre of the 

spine, housing the spinal cord. The column of vertebrae also provides connection points 

with the ribs and back muscles. The twenty six vertebrae are segmented into five regions, 

each with varying characteristics. From cranial to caudal there are cervical vertebrae (C1-

C7), thoracic vertebrae (T1 – T12), lumbar vertebrae (L1 – L5), sacrum and coccyx. The 

human spine is able to bend, flex and rotate in various directions. Lumbar flexion occurs 

when the patient bends forwards and lumbar extension occurs when bending backwards. 

The spine was modelled using 3D design software, formed from 26 individual vertebrae, 

shown in Figure 12. The 26 vertebrae were each loaded as 3D models into a custom made 

software graphics application. The software renders 3D objects using vertices with the 

OpenGL graphics library and its utility toolkit (GLUT). The colours of each region of 

vertebrae bone, flesh and the spinal discs were set using materials. 

 

Figure 12. The model spine consisting of 26 individually rendered 3D vertebrae 
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Initially the vertebrae are positioned in the standing position and are then adjusted by 

mathematical equations to match the current patient position. The curvature of the spine for 

four common patient positions was calculated using the equations. The shape of the spine 

was based on the four common patient positions used for epidural insertion. Our model’s 

prediction for the spine shape for each of the positions is shown in Figure 13 [14]. 

 

Figure 13. The spine model with flexion for four common patient positions 

The ability to flex and rotate the spine has provided the opportunity to simulate epidural 

insertions on patients in various positions. This is important because the feeling of insertion 

is different for each patient position. This novel aspect has not been attempted in epidural 

simulation before and will increase versatility of the simulation. 

8. Heterogeneous ligament modelling 

Since the introduction of traditional computer graphics and modelling techniques, the 

primary focus has been to display and modelling of homogenous objects which have 

uniform interior and consist of one material throughout. This was acceptable for many 

situations, however, such surface-based approaches were aimed to represent the visual 

appearance of the external layer of objects, leaving the interior untouched. Recently, with 

the availability of increased computing power, the focus has shifted from surface-based to 

volume-based graphics, whereby volume-based architecture attempt to describe the 

material structure of internal regions by the use of voxels [17]. This can allow manipulation 

and experimentation on the physical properties of the materials, such as density, friction, 

elasticity, tensile strength and in so doing opens up new possibilities for experimentation. 

Heterogeneous objects are a step further, being solid physical objects, which consist of two 

or more material primitives but offering the advantage of materials that may be distributed 

continuously blending with each other. 

For epidural needle insertion, the needle passes through several ligaments along its path to 

the epidural space, with each of the ligaments having different properties such as density, 

resistance to insertion and friction (see Section 3). A model is required to encompass these 

aspects of each ligament if the graphics are to be capable of displaying a true likeness of the 

materials in-vivo. Ligamentum flavum (LF) is heterogeneous in nature, containing both 

elastic tissue and fibrous tissue. Certain data describing the ligamentum flavum has been 

recorded in the literature and can be used to set up a heterogeneous model of the ligament. 
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As LF thickness increases, fibrosis increases and elastic tissue decreases. The dorsal side of 

LF contains more fibrous tissue and less elastic tissue than the dural and middle sides, as 

indicated by a fibrosis Score of 1.58, 1.63, and 2.63 for dural, middle, and dorsal sides 

respectively [18]. The loss of elastic fibres caused by increased thickness is more pronounced 

along the dorsal side. A single patient has several ligamentum flava, one at each spinal level 

between the lamina and their thicknesses vary according to the spinal level. A study of 77 

patients measured LF at spinal level L2/3, L3/4, L4/5, and L5/S1, the mean LF thickness is 

2.41, 3.25, 4.08, and 2.68 mm [18]. It was shown that the thickest part of ligamentum flavum 

is consistently at L4/5, which is the level that endures the greatest mechanical stress. LF is 

crescent shaped in cross section on the horizontal plane with the thickest part in the middle. 

It wraps around the circular epidural space and dura. It connects to lamina above and 

below. The elastic fibres are yellow in colour, hence ‘flava’ being Latin for yellow. Each flava 

is a separate ligament which is clearly seen from the side of the lamina. 

Object modelling software was used to create a model of the vertebrae. At the location of 

L2/L3 a ligamentum flavum was modelled with the thickness 2.41mm which was internally 

comprised of bundles of fibres (Figure 14). 

 

Figure 14. The modelled ligamentum flavum between L2/L3 vertebrae. 

The interior structure of the ligamentum flavum has been modelled by numerous bundles of 

fibres extending vertically and parallel to one another, as do the elastic and fibrous tissues 

in-vivo. By creating this heterogeneous model of the internal structure of ligamentum 

flavum, the model will describe more accurately how the material responds to a needle 

being inserted through it. Similar models may be created for interspinous ligament and 

supraspinous ligament which are also both heterogeneous in nature, consisting of over three 

types of elastic fibres that can used to provide realistic haptic feedback.  

9. 3D visualisation of epidural procedure 

We have applied stereoscopic 3D computer graphics for visualization of epidural insertions. 

The stereoscopic images are viewed through a head mounted visor containing two OLED 

micro-displays in stereo using the page-flipped method. The 3D graphics are built from 

several vertex models of the anatomical structures as described in section 7. The stereo 
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simulation allows depth to be perceived so that the operator can judge depth of the needle 

tip in relation to tissue layers and bones, which aids to the location of the epidural space. 

Applying stereoscopic vision to epidural simulators helps the operator to visualize the 

depths required for correct needle placement in the epidural space [14]. 

Depth judgement is crucial to the technique and since stereographics allows the perception 

of depth in 3D graphics, epidural simulators can benefit greatly from stereo-technology. 

Here the aim is to apply stereo vision technology to simulate epidural needle insertion. 

Without stereo graphics the depths of objects in simulations are not perceived accurately. By 

viewing 3D graphics on a flat computer screen there is no way of knowing the actual 

distance between objects other than by estimating their size. Estimation is not always 

accurate and some medical applications may require far more precision in depth perception. 

Epidural simulators require the needle tip to penetrate several layers of tissue between 42-

47mm thick and must stop within the 6mm epidural space [19], which is difficult to achieve 

without depth perception. With stereo vision, distance can be perceived natively allowing 

the user to intuitively view the depth and distance between objects by perceiving differences 

between the two images, if images are appropriately scaled. 

Stereo glasses contain two small OLED screens, one for each eye. Alternatively, glasses can 

be polarized, which allows viewing of a polarized screen, which has both images 

superimposed, one of which arrives at each eye. Shutter glasses can be used which contain 

moving mechanisms to consecutively close each eye similar to a camera shutter. The screen 

then displays images for left and right eye consecutively at the same shutter speed. 

Alternatively, a glasses free approach, vertically dispersive holographic screen (VDHS) can 

be used by directing two beams of light containing the images into each eye separately [20]. 

Mirror screens contain two monitors mounted at 110 degrees with a plane of silver-coated 

glass combining the two images and cross-polarized glasses are worn to separate the 

images. For all stereo systems, once the two images arrive separately at each eye, the brain 

combines them to generate 3D with depth perception based on some calibrated data. 

For this epidural simulator, we have used stereo glasses containing two OLED micro-

displays, one for each eye, with magnifying lenses. Figure 15 shows how the epidural 

simulator is being used with the stereo glasses displaying the 3D spine model. The glasses 

have advantages that the user can see the image whichever direction they look in and as 

they turn their head motion detectors can rotate the image to follow. The glasses produce a 

40-degree diagonal field of view for each eye. The image appears the same size as a 105 inch 

projection screen viewed from 12 feet. Magnifying lenses allow the eye to focus further 

away avoiding eye strain. The graphic resolution must be fixed at 800x600 pixels which 

display sufficient details. Two separate images are displayed on each eye display. Stereo is 

achieved by using the page-flip method. A signal is generated by the graphics card at 60Hz, 

with the images consecutively swapped between left eye and right eye. The swapping is 

done by the graphics card drivers. The hardware inside the 3D glasses splits this into two 

separate 30Hz signals and delivers one to each eye, this results in stereoscopic images. 
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Figure 15. Stereo glasses used for epidural insertion visualization 

The epidural simulator software interfaces with head motion detectors. When the user turns 

their head, the 3D objects rotate by the same degree in the opposite direction to create an 

illusion of camera rotation. This interface allows the user to change the view point to 

different directions by turning their head, so that the mouse and keyboard are no longer 

required. The feedback from experienced anaesthetists suggested that the flexible spine 

model will be useful for modelling patient position. The options for adjustable body shape 

and size was seen as a positive step to encapsulate the variety of patients which has not 

previously been accomplished.  

10. Haptic interface for epidural insertion 

Haptic devices have become a more popular and accepted tool for medical simulation and 

provide an accurate way of re-creating the feel of surgery [21, 22]. The insertion of an 

epidural is a procedure which relies almost entirely upon feeling the forces on the needle. 

Epidural simulators are therefore ideally suited to haptic technology. This section describes 

methods for configuration of a haptic device to interact with 3D computer graphics as part 

of a high fidelity epidural simulator development program.  

Haptic devices have been used in epidural simulators previously, although they are not based 

on measured patient data from needle insertions. Instead, they are configured by ‘experts’ 

trialling and adjusting the system. It is therefore hard to assess the accuracy of the forces 

generated and so creates a real potential for improvement. The haptic device has currently 

been set up to reconstruct the force data found during the porcine trial. The force data from the 

graphs were divided into sections to represent each of the tissue layers separately [23]. 

A haptic device has been connected and used as an input to move the needle in 3D, and also to 

generate force feedback to the user during insertion (Figure 16). A needle insertion trial was 

conducted on a porcine cadaver to obtain resultant pressure data (Section 5). The data 

generated from this trial was used to recreate the feeling of epidural insertion in the simulator. 

The interaction forces have been approximated to the resultant force obtained during the trial 
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representing the force generated by the haptic device. The haptic device is interfaced with the 

3D graphics (see Sections 7-9) for visualization. As the haptic stylus is moved, the needle 

moves on the screen and the depth of the needle tip indicates which tissue layer is being 

penetrated. Different forces are generated by the haptic device for each tissue layer as the 

epidural needle is inserted. As the needle enters the epidural space, the force drops to indicate 

loss of resistance. An advantage to the use of haptic devices for epidural simulators is that they 

can accept various adjustable settings, so that patient variation including weight, height, age 

and sex can be accounted for, which helps to train for a range of patients. Patient variety is 

becoming an even more important aspect than ever since the current obesity epidemic poses 

great challenges for the anaesthetist. In obese patients, the depth to the epidural space is 

increased, anatomical landmarks are harder to feel and the midline is more difficult to locate. 

The resultant effect is that the risk of injury is increased. 

 

Figure 16. The haptic device interfaced with the graphics 

To apply different forces to each layer, 3D vector regions were defined within the graphics 

model. As the needle tip enters these regions, the software identifies which tissue layer the 

needle is in, based on the depth data from the trial (Table 1). The software then uses a 

lookup table to find the appropriate force for each layer, and instructs the haptic device to 

generate that force. The forces generated represent the resultant pressure on the syringe 

which is a sum of all resistances to insertion, which are the equal and opposite to the force 

applied by the user. For example, if a particular layer has insertion force of 4.3N, and the 

user is pressing with only 3.2N, then the haptic device exerts 3.2N, so the stylus remains 

stationary. Only if the user increases the force to over 4.3N the stylus will move forward. 

Table 1 is based on measurements taken from our porcine trial in line with [24]. 

The haptic device is also able to simulate palpation of the lumbar region. Palpation is the 

process for choosing which location to insert the needle. The haptic device was configured for 

palpation by creating a surface hardness profile of the lumbar region, with a hardness value 

for each point in the region (see Section 8). The haptic device can be used to press at any point 

and the user can feel the hardness at that point. This allows the user to locate landmarks and 

choose a point to commence needle insertion. Our advanced haptic interface is based on the 
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measured data and the aim is to develop a generic simulator based on measured data to offer a 

realistic in-vitro experience before attempting the procedure on actual patients.  

 

Porcine Tissue Layer 
Tissue thickness 

(mm) 

Needle depth 

(mm) 

Insertion force 

(N) 

Skin 3 0 12.9 

Subcutaneous fat 6 3 6 

Supraspinous ligament 4 9 9 

Interspinous ligament 26 13 8 

Ligamentum flavum 3 39 11.1 

Epidural space 6 42 0 

Dura 15 48 2.0 

Table 1. Insertion forces in porcine [23, 24] 

11. Human-computer interface for loss of resistance syringe 

With the above developed components, a hardware device has been created consisting of a 

regular Portex LOR syringe connected to the computer via a serial data transfer device. This 

allows a regular clinical syringe to be used as part of an interactive system for the epidural 

simulator development. The syringe was also combined with the haptic device to create a 

comprehensive human-computer interface. The simulator can measure force applied to the 

plunger and the resultant pressure of the saline inside the syringe barrel. This interface 

enables a real clinical syringe to interface with a 3D graphical visualization showing the 

simulated insertion of the Tuohy epidural needle through the spinal ligaments. 

The developed hardware interface makes use of the equipment as developed in Sections 4 & 

6 by incorporating custom made hardware with the developed software and the graphical 

visualization of the needle insertion procedure. The hardware device takes measurements of 

the forces applied onto the needle and the resultant pressure of the saline inside the barrel of 

the syringe caused by the pressure from the operators thumb on the plunger. The 

measurements are sent to the computer by a custom-made hardware interface device (see 

Sections 4 & 6). The graphical simulation uses these measurements to update the needle in 

the simulation and calculates the needle position. The graphical software calculates if any 

collisions have occurred between the needle and any bone structures, plus the resistance of 

insertion to saline, and the force required for the needle to move forwards through the 

current ligament. 

The developed human-computer interface uses an actual syringe and an epidural Tuohy 

needle as shown in Figure 17. During insertions, the LOR syringe is normally connected 

directly onto the Tuohy needle. We have introduced a three-way tap between the needle 

and syringe. This connects onto a one metre length of saline manometer tubing which runs 

to a disposable pressure transducer. The transducer converts the pressure of the saline into 

an electrical signal. The electrical signal is connected into a hardware device which amplifies 

and sends the pressure reading to the computer. This allows the graphics visualization to 
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update according the pressure applied by the operator’s thumb on the plunger of the 

syringe. This has the advantage that the user can control the visualization with the same 

equipment that would be used in-vivo, which is a more natural interface than simply using 

keyboard or mouse. Additionally, since the saline line separates the hardware device from 

the needle, the user can move the needle around since it is attached only by the saline line. 

 

Figure 17. The syringe connected to the computer as an input device. 

The hardware device runs at 8MHz. Data is transmitted from the hardware device to the 

computer using the serial RS232 port. The serial bit rate is running at 22000 bits per second. 

The serial data transfer protocol uses -12V DC as a positive bit and +12V DC as a negative 

bit. The serial transfer cycle starts with a negative start bit, followed by 8 data bits sent 

consecutively and finished with a positive stop bit. As shown in Figure 18, the following 

start bit can then occur either immediately or after a pause of arbitrary length.  

 

Figure 18. Binary serial data transfer protocol. 

The 8 data bits are received and interpreted as binary and converted into a decimal number 

from 0 to 255 for use in the software. The decimal value represents the pressure of the saline 

between 0 to 70 kPa, which is 0 to 550 mmHg. The 256 possible values give an accuracy 

resolution to within +/- 0.14 kPa. This can be easily increased to 1024 with 10 bits data 

transfer which will then provide accuracy of within +/- 0.03kPa. The speed could also 

increase beyond the current 22000 bits per second but it does not seem necessary since no 

delay is noticed between pressing the plunger and seeing the results on screen. Currently at 

22000 bits per second the time delay between bits is 45μS so the start bit is identified by 
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testing the pin for +12V, and then checking again after 22μS for the same high value. The 

computer runs the custom designed software which monitors the data as it arrives. Also the 

values are received by the graphics application which updates the visualisation to match the 

pressure applied on the physical syringe. 

This study has demonstrated the development of a human-computer interface based around a 

clinical Portex LOR syringe connected via a custom made hardware interface device to a 

computer for use in an epidural simulator. The results show that the device is both fast and 

accurate enough to be used seamlessly in the simulation. The addition of the Portex LOR 

syringe with a pressure monitoring device has undoubtedly improved the human-computer 

interaction. Using the actual medical components in the implementation is beneficial because 

epiduralists will be familiar with the syringe and use it to interact with the 3D graphics 

visualization intuitively. The interface could be modified to be bi-directional i.e. the graphics 

software could send back data to the device which could control a motor to cause forces which 

affect the physical needle so that the user can feel the forces through the needle as in-vivo. 

12. Creation of a novel epidural simulator 

The presented biomedical engineering ideas have enabled us to develop a simulator with a 

combination of engineering, computing and clinical technologies as discussed in previous 

sections above. Data from the developed measurement devices have been used to configure 

a realistic force feedback epidural simulator [25]. Numerous improvements have been 

identified that could enhance existing epidural simulators. Manikin models are generally 

static and only able to represent one or two patient variations, such as normal and obese. An 

advanced simulator would be able to simulate insertions on a variety of body mass indices 

because excess fat deposition has the potential to generate very different changes in patient 

characteristics.  

The developed system offers a virtual reality based epidural simulator (Figure 19) 

incorporating a 3D graphically modelled spine complete with skin, fat and tissue layers, 

supraspinous, interspinous ligaments and ligamentum flavum. In the current prototype, a 

Novint Falcon haptic device is used in combination with a Portex LOR syringe connected as 

a human-computer interface via a custom made electronic serial interface. As the haptic 

stylus is moved, the needle follows on the screen in 3D in real time. When pressure is 

applied to the plunger by the operator’s thumb, this is displayed in the graphic model. As 

the needle is advanced through the tissues, the forces are generated by the haptic device to 

reconstruct the feelings of needle insertion through each tissue layer. The forces of the 

needle insertion are based on the recorded forces measured during the clinical trial, and this 

data based approach is more accurate than previous simulators which have used a user 

evaluation approach to configure the forces. 

Novel aspects of our epidural simulator include stereo graphics, modelled vertebrae, spine 

flexibility, patient variation, haptic force feedback based on measured needle insertion data, 

custom made syringe interface. The simulated needle can be inserted at any spinal position  
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Figure 19. Prototype 3D graphics epidural simulator with haptic device interface 

from T2 – L5 and needle direction from midline to paramedian. The 3D graphics allow a 

close-up real time view of the needle internally during insertion. The virtual patient can 

adjust to various body shapes, weights and heights since body size considerably affects 

insertion force. These all have roots in biomedical engineering that can potentially enhance 

many clinical procedures.  

13. Conclusions 

The application of biomedical engineering approaches can help simplify many clinical 

problems as demonstrated for the epidural procedure.  

We have described in this chapter, the developed measuring devices which have 

successfully recorded the data on resultant pressure and depth of epidural Tuohy needles 

during insertions in a porcine model. These data are very useful in developing a realistic 

high fidelity epidural simulator. We aim to measure pressures in-vivo with obstetric 

patients in labour of differing body mass indices and integrating this data with ultrasound 

and MRI scan imaging data. It is our belief that the resulting epidural simulator based on 

such data will replicate the in-vivo procedure more accurately since it is going to be based 

on patient specific information. No such simulator exists at the present time. 

The overall benefits of applying biomedical engineering techniques to this research are that 

we are able to achieve a high degree of accuracy and improved technology for replicating 

the epidural procedure. By achieving higher realism and accuracy of simulation, 

epiduralists will be better trained with the procedure and this in turn will improve patient 

safety by minimizing the risk of failure and harm to patients. 
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