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1. Introduction

One of the most promising and well-motivated mechanisms for the generation of the Baryon
Asymmetry of the Universe (BAU) is via an initial generation of a lepton asymmetry, which
can be subsequently converted to BAU through sphaleron effects – see e.g. Ref. [1, 2].
Non-Thermal Leptogenesis (nTL) [3, 4] is a variant of this proposal, in which the necessitated
departure from equilibrium is achieved by construction. Namely, the right-handed (RH)
neutrinos, ν

c
i , whose decay produces the lepton asymmetry, are out-of-equilibrium at the

onset, since their masses are larger than the reheating temperature. Such a set-up can be
achieved by the direct production of ν

c
i through the inflaton decay, which can also take

place out-of-equilibrium. Therefore, such a leptogenesis paradigm largely depends on the
inflationary stage, which it follows.

In a recent paper [5] – for similar attempts, see Ref. [6–8] –, we investigate an inflationary
model where a Standard Model (SM) singlet component of the Higgs fields involved in
the spontaneous breaking of a supersymmetric (SUSY) Pati-Salam (PS) Grand Unified Theory
(GUT) can produce inflation of chaotic-type, named non-minimal Higgs Inflation (nMHI),
since there is a relatively strong non-minimal coupling of the inflaton field to gravity [9–12].
This GUT provides a natural framework to implement our leptogenesis scenario, since the
presence of the SU(2)R gauge symmetry predicts the existence of three ν

c
i . In its simplest

realization this GUT leads to third family Yukawa unification (YU), and does not suffer from
the doublet-triplet splitting problem since both Higgs doublets are contained in a bidoublet
other than the GUT scale Higgs fields. Although this GUT is not completely unified – as,
e.g., a GUT based on the SO(10) gauge symmetry group – it emerges in standard weakly
coupled heterotic string models [13] and in recent D-brane constructions [14].

The inflationary model relies on renormalizable superpotential terms and does not lead to
overproduction of magnetic monopoles. It is largely independent of the one-loop radiative
corrections [15], and it can become consistent with the fitting [16] of the seven-year data of
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the Wilkinson Microwave Anisotropy Probe Satellite (WMAP7) combined with the baryon-acoustic
oscillation (BAO) and the measurement of the Hubble constant (H0). At the same time the GUT
symmetry breaking scale attains its SUSY value and the µ problem of the Minimal SUSY SM
(MSSM) is resolved via a Peccei-Quinn (PQ) symmetry, solving also the strong CP problem.

Inflation can be followed by non-thermal leptogenesis, compatible with the gravitino (G̃)
limit [17–19] on the reheating temperature, leading to efficient baryogenesis. In Ref. [5]
we connect non-thermal leptogenesis with neutrino data, implementing a two-generation
formulation of the see-saw [20–22] mechanism and imposing extra restrictions from the
data on the light neutrino masses and the GUT symmetry on the heaviest Dirac neutrino
mass. There we [5] assume that the mixing angle between the first and third generation,
θ13, vanishes. However, the most updated [23, 24] analyses of the low energy neutrino data
suggest that non-zero values for θ13 are now preferred, while the zero value can be excluded
at 8 standard deviations. Therefore, a revision of our results, presented in Ref. [5], is worth
pursuing.

The three-generation implementation of the see-saw mechanism is here adopted, following a
bottom-up approach, along the lines of Ref. [25–28]. In particular, we use as input parameters
the low energy neutrino observables considering several schemes of neutrino masses. Using
also the third generation Dirac neutrino mass predicted by the PS GUT, assuming a mild
hierarchy for the two residual generations and imposing the restriction from BAU, we
constrain the masses of νc

i ’s and the residual neutrino Dirac mass spectrum. Renormalization
group effects [28, 29] are also incorporated in our analysis.

We present the basic ingredients of our model in Sec. 2. In Sec. 3 we describe the inflationary
potential and derive the inflationary observables. In Sec. 4 we outline the mechanism of
non-thermal leptogenesis, while in Sec. 5 we exhibit the relevant imposed constraints and
restrict the parameters of our model. Our conclusions are summarized in Sec. 6. Throughout
the text, we use natural units for Planck’s and Boltzmann’s constants and the speed of light
(h̄ = c = kB = 1); the subscript of type , χ denotes derivation with respect to (w.r.t) the field χ

(e.g., ,χχ = ∂2/∂χ2); charge conjugation is denoted by a star and log [ln] stands for logarithm
with basis 10 [e].

2. The Pati-Salam SUSY GUT model

In this section, we present the particle content (Sec. 2.1), the structure of the superpotential
and the Kähler potential(Sec. 2.2) and describe the SUSY limit (Sec. 2.3) of our model.

2.1. Particle content

We focus on a SUSY PS GUT model described in detail in Ref. [5, 30]. The representations and
the transformation properties of the various superfields under GPS = SU(4)C × SU(2)L ×

SU(2)R, their decomposition under GSM = SU(3)C × SU(2)L × U(1)Y , as well as their extra
global charges are presented in Table 1.

The ith generation (i = 1, 2, 3) left-handed (LH) quark and lepton superfields, uia, dia (a =
1, 2, 3 is a color index), ei and νi are accommodated in a superfield Fi. The LH antiquark
and antilepton superfields uc

ia, dc
ia, ec

i and νc
i are arranged in another superfield Fc

i . The
gauge symmetry GPS can be spontaneously broken down to GSM through v.e.vs which the
superfields Hc and H̄c acquire in the directions νc

H and ν̄c
H . The model also contains a gauge

singlet S, which triggers the breaking of GPS, as well as an SU(4)C 6-plet G, which splits
into gc

a and ḡc
a under GSM and gives [13] superheavy masses to dc

Ha and d̄c
Ha. In the simplest
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Super- Represe- Trasfor- Decompo- Global

fields ntations mations sitions Charges

under GPS under GPS under GSM R PQ Z
mp
2

Matter Superfields

Fi (4, 2, 1) FiU
†
LU❚C Qia(3, 2, 1/6) 1 −1 −

Li(1, 2,−1/2)

Fc
i (4̄, 1, 2) U∗

CU∗

RFc
i uc

ia(3̄, 1,−2/3) 1 0 −

dc
ia(3̄, 1, 1/3)

νc
i (1, 1, 0)

ec
i (1, 1, 1)

Higgs Superfields

Hc (4̄, 1, 2) U∗

CU∗

RHc uc
Ha(3̄, 1,−2/3) 0 0 +

dc
Ha(3̄, 1, 1/3)

νc
H(1, 1, 0)

ec
H(1, 1, 1)

H̄c (4, 1, 2) H̄cU❚R U❚C ūc
Ha(3, 1, 2/3) 0 0 +

d̄c
Ha(3, 1,−1/3)

ν̄c
H(1, 1, 0)

ēc
H(1, 1,−1)

S (1, 1, 1) S S(1, 1, 0) 2 0 +

G (6, 1, 1) UCGU❚C ḡc
a(3, 1,−1/3) 2 0 +

gc
a(3̄, 1, 1/3)

IH (1, 2, 2) UL IHU❚R Hu(1, 2, 1/2) 0 1 +

Hd(1, 2,−1/2)

P (1, 1, 1) P P(1, 1, 0) 1 −1 +

P̄ (1, 1, 1) P̄ P̄(1, 1, 0) 0 1 +

Table 1. The representations, the transformations under GPS, the decompositions under GSM as well as the extra global

charges of the superfields of our model. Here UC ∈ SU(4)C, UL ∈ SU(2)L, UR ∈ SU(2)R and ❚, † and ∗ stand for the
transpose, the hermitian conjugate and the complex conjugate of a matrix respectively.

realization of this model [13, 30], the electroweak doublets Hu and Hd, which couple to the
up and down quarks respectively, are exclusively contained in the bidoublet superfield IH.

In addition to GPS, the model possesses two global U(1) symmetries, namely a PQ and

an R symmetry, as well as a discrete Z
mp
2 symmetry (‘matter parity’) under which F, Fc

change sign. The last symmetry forbids undesirable mixings of F and IH and/or Fc and Hc

and ensures the stability of the lightest SUSY particle (LSP). The imposed U(1) R symmetry,
U(1)R, guarantees the linearity of the superpotential w.r.t the singlet S. Finally the U(1)
PQ symmetry, U(1)PQ, assists us to generate the µ-term of the MSSM. The PQ breaking
occurs at an intermediate scale through the v.e.vs of P, P̄, and the µ-term is generated
via a non-renormalizable coupling of P and IH. Following Ref. [30], we introduce into the
scheme quartic (non-renormalizable) superpotential couplings of H̄c to Fc

i , which generate
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intermediate-scale masses for the νc
i and, thus, masses for the light neutrinos, νi, via the

seesaw mechanism [20–22]. Moreover, these couplings allow for the decay of the inflaton

into νc
i , leading to a reheating temperature consistent with the G̃ constraint with more or less

natural values of the parameters. As shown finally in Ref. [30], the proton turns out to be
practically stable in this model.

2.2. Superpotential and Kähler potential

The superpotential W of our model splits into three parts:

W = WMSSM + WPQ + WHPS, (1)

which are analyzed in the following.

• WMSSM is the part of W which contains the usual terms – except for the µ term – of the
MSSM, supplemented by Yukawa interactions among the left-handed leptons and νc

i :

WMSSM = yijFi IHFc
j =

= yij

(
Hd
❚

εLie
c
j − Hu

❚
εLiν

c
j + Hd

❚
εQiadc

ja − Hu
❚

εQiauc
ja

)
, with ε =


 0 1
−1 0


 · (2)

Here Qia =

uia dia


❚ and Li =


νi ei


❚ are the i-th generation SU(2)L doublet LH

quark and lepton superfields respectively. Summation over repeated color and generation
indices is assumed. Obviously the model predicts YU at MGUT since the fermion masses
per family originate from a unique term of the PS GUT. It is shown [31, 32] that exact
third family YU combined with non-universalities in the gaugino sector and/or the
scalar sector can become consistent with a number of phenomenological and cosmological
low-energy requirements. On the other hand, it is expected on generic grounds that the
predictions of this simple model for the fermion masses of the two lighter generations are
not valid. Usually this difficulty can be avoided by introducing [33] an abelian symmetry
which establishes a hierarchy between the flavor dependent couplings. Alternatively,
the present model can be augmented [34] with other Higgs fields so that Hu and Hd

are not exclusively contained in IH, but receive subdominant contributions from other
representations too. As a consequence, a moderate violation of exact YU can be achieved,
allowing for an acceptable low-energy phenomenology, even with universal boundary
conditions for the soft SUSY breaking terms. However, we prefer here to work with the
simplest version of the PS model, using the prediction of the third family YU in order to
determine the corresponding Dirac neutrino mass – see Sec. 5.1.

• WPQ, is the part of W which is relevant for the spontaneous breaking of U(1)PQ and the
generation of the µ term of the MSSM. It is given by

WPQ = λPQ
P2P̄2

MS
− λµ

P2

2MS
❚r

(
IHεIH❚ε

)
, (3)
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where MS ≃ 5 · 1017 GeV is the String scale. The scalar potential, which is generated
by the first term in the RHS of Eq. (3), after gravity-mediated SUSY breaking, is
studied in Ref. [30, 35]. For a suitable choice of parameters, the minimum lies at
|〈P〉| = |〈P̄〉| ∼

√

m3/2 MS. Hence, the PQ symmetry breaking scale is of order
√

m3/2 MS ≃
(

1010 − 1011
)

GeV. The µ-term of the MSSM is generated from the second
term of the RHS of Eq. (3) as follows:

− λµ
〈P〉2

2MS
❚r

(

IHεIH
❚

ε

)

= µHd
❚

εHu ⇒ µ ≃ λµ
〈P〉2

MS
, (4)

which is of the right magnitude if λµ ∼ (0.001 − 0.01). Let us note that VPQ has
an additional local minimum at P = P̄ = 0, which is separated from the global PQ
minimum by a sizable potential barrier, thus preventing transitions from the trivial to the
PQ vacuum. Since this situation persists at all cosmic temperatures after reheating, we
are obliged to assume that, after the termination of nMHI, the system emerges with the
appropriate combination of initial conditions so that it is led [36] in the PQ vacuum.

• WHPS, is the part of W which is relevant for nMHI, the spontaneous breaking of GPS and
the generation of intermediate Majorana [superheavy] masses for νc

i
[dc

H
and d̄c

H
]. It takes

the form

WHPS = λS

(

H̄
c
H

c − M
2
PS

)

+ λH H
c❚

GεH
c + λH̄ H̄

c
ḠεH̄

c❚ + λiνc

(

H̄cFc
i

)2

MS
, (5)

where MPS is a superheavy mass scale related to MGUT – see Sec. 3.2 – and Ḡ is the dual
tensor of G. The parameters λ and MPS can be made positive by field redefinitions.

According to the general recipe [11, 12], the implementation of nMHI within SUGRA requires
the adoption of a Kähler potential, K, of the following type

K = −3m
2
P ln

(

1 −
Hc† Hc

3m2
P

−
H̄c H̄c†

3m2
P

−
❚r
(

G†G
)

6m2
P

−
|S|2

3m2
P

+ kS

|S|4

3m4
P

+
kH

2m2
P

(H̄
c
H

c + h.c.)

)

,

(6)
where mP = 2.44 · 1018 GeV is the reduced Planck scale and the complex scalar components of
the superfields Hc, H̄c, G and S are denoted by the same symbol. The coefficients kS and kH

are taken real. From Eq. (6) we can infer that we adopt the standard quadratic non-minimal
coupling for Higgs-inflaton, which respects the gauge and global symmetries of the model.
This non-minimal coupling of the Higgs fields to gravity is transparent in the Jordan frame.
We also added the fifth term in the RHS of Eq. (6) in order to cure the tachyonic mass
problem encountered in similar models [10–12] – see Sec. 3.1. In terms of the components of
the various fields, K in Eq. (6) reads

K = −3m
2
P ln

(

1 −
φαφ∗ᾱ

3m2
P

+ kS

|S|4

3m4
P

+
kH

2m2
P

(

νc
H

ν̄c
H
+ e

c
H

ē
c
H
+ u

c
H

ū
c
H
+ d

c
H

d̄
c
H
+ h.c.

)

)

(7a)
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with

φα = νc
H , ν̄c

H , ec
H , ēc

H , uc
H , ūc

H , dc
H , d̄c

H , gc, ḡc and S (7b)

and summation over the repeated Greek indices is implied.

2.3. The SUSY limit

In the limit where mP tends to infinity, we can obtain the SUSY limit of the SUGRA potential.
Assuming that the SM non-singlet components vanish, the F-term potential in this limit, VF,
turns out to be

VF = λ2
∣∣∣ν̄c

Hνc
H − M2

PS

∣∣∣
2
+ λ2|S|2

(
|νc

H |2 + |ν̄c
H |2
)

, (8a)

while the D-term potential is

VD =
5g2

16

(
|νc

H |2 − |ν̄c
H |2
)2

. (8b)

Restricting ourselves to the D-flat direction |νc
H | = |ν̄c

H |, we find from VF that the SUSY
vacuum lies at

〈S〉 ≃ 0 and |〈νc
H〉| = |〈ν̄c

H〉| = MPS. (9)

Therefore, WHPS leads to spontaneous breaking of GPS. As we shall see in Sec. 3, the same
superpotential, WHPS, gives rise to a stage of nMHI . Indeed, along the D-flat direction
|νc

H | = |ν̄c
H | ≫ MPS and S = 0, VSUSY tends to a quartic potential, which can be employed in

conjunction with K in Eq. (6) for the realization of nMHI along the lines of Ref. [12].

It should be mentioned that soft SUSY breaking and instanton effects explicitly break
U(1)R × U(1)PQ to Z2 × Z6. The latter symmetry is spontaneously broken by 〈P〉 and
〈P̄〉. This would lead to a domain wall problem if the PQ transition took place after nMHI.
However, as we already mentioned above, U(1)PQ is assumed already broken before or

during nMHI. The final unbroken symmetry of the model is GSM × Z
mp
2 .

3. The inflationary scenario

Next we outline the salient features of our inflationary scenario (Sec. 3.1) and calculate a
number of observable quantities in Sec. 3.2.

3.1. Structure of the inflationary potential

At tree-level the Einstein Frame (EF) SUGRA potential, V̂HI, is given by [11]

V̂HI = eK/m2
P

(
Kαβ̄FαF∗

β̄
− 3

|WHPS|
2

m2
P

)
+

1

2
g2 ∑

a
DaDa, (10a)

Open Questions in Cosmology246



where g is the unified gauge coupling constant and the summation is applied over the 21
generators Ta of the PS gauge group – see Ref. [5]. Also, we have

Kαβ̄ = K,φαφ∗β̄ , Kβ̄αKαγ̄ = δ
β̄
γ̄, Fα = WHPS,φα + K,φα WHPS/m2

P and Da = φα (Ta)
α
β K,φβ (10b)

The φα’s are given in Eq. (7b). If we parameterize the SM singlet components of Hc and H̄c

by

νc
H = heiθ cos θν/

√
2 and ν̄c

H = heiθ̄ sin θν/
√

2, (11)

we can easily deduce that a D-flat direction occurs at

θ = θ̄ = 0, θν = π/4 and ec
H = ēc

H = uc
H = ūc

H = dc
H = d̄c

H = gc = ḡc = 0. (12)

Along this direction, the D-terms in Eq. (10a) – and, also, VD in Eq. (8b) – vanish, and so V̂HI

takes the form

V̂HI = m4
P

λ2(x2
h − 4m2

PS)
2

16 f 2
(13)

with
f = 1 + cRx2

h, mPS =
MPS

mP
, xh =

h

mP
and cR = −1

6
+

kH

4
· (14)

From Eq. (13), we can verify that for cR ≫ 1 and mPS ≪ 1, V̂HI takes a form suitable
for the realization of nMHI, since it develops a plateau – see also Sec. 3.2. The (almost)

constant potential energy density V̂HI0 and the corresponding Hubble parameter ĤHI (along
the trajectory in Eq. (12)) are given by

V̂HI0 =
λ2h4

16 f 2
≃

λ2m4
P

16c2
R

and ĤHI =
V̂1/2

HI0√
3mP

≃ λmP

4
√

3cR
· (15)

We next proceed to check the stability of the trajectory in Eq. (12) w.r.t the fluctuations of the
various fields. To this end, we expand them in real and imaginary parts as follows

X =
x1 + ix2√

2
, X̄ =

x̄1 + ix̄2√
2

where X = ec
H , uc

H , dc
H , gc and x = e, u, d, g . (16)

Notice that the field S can be rotated to the real axis via a suitable R transformation. Along
the trajectory in Eq. (12) we find

(
Kαβ̄

)
= diag




MK

f 2
,

1

f
, ...,

1

f︸ ︷︷ ︸
3+6·3 times


 with MK =


κ κ̄

κ̄ κ


, κ̄ = 3c2

Rx2
h and κ = f + κ̄. (17)
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To canonically normalize the fields νc
H and ν̄c

H , we first diagonalize the matrix MK . This can
be achieved via a similarity transformation involving an orthogonal matrix UK as follows:

UK MKU❚K = diag
(

f̄ , f
)

, where f̄ = f + 6c2
Rx2

h and UK =
1√
2


 1 1
−1 1


. (18)

Utilizing UK , the kinetic terms of the various fileds can be brought into the following form

Kαβ̄φ̇αφ̇∗β̄ =
f̄

2 f 2

(
ḣ2 +

1

2
h2 θ̇2

+

)
+

h2

2 f

(
1

2
θ̇2
− + θ̇2

ν

)
+

1

2 f
χ̇αχ̇α =

1

2
˙̂
h

2
+

1

2
˙̂ψα

˙̂ψα, (19)

where θ± =
(
θ̄ ± θ

)
/
√

2, χα = x1, x2, x̄1, x̄2, S and ψα = θ+, θ−, θν, χα and the dot denotes
derivation w.r.t the cosmic time, t. In the last line, we introduce the EF canonically

normalized fields, ĥ and ψ̂, which can be obtained as follows – cf. Ref. [5, 11, 12, 37]:

dĥ

dh
= J =

√
f̄

f
, θ̂+ =

Jhθ+√
2

, θ̂− =
hθ−√

2 f
, θ̂ν =

h√
f

(
θν −

π

4

)
and χ̂α =

χα√
f
· (20)

Taking into account the approximate expressions for ḣ, J and the slow-roll parameters ǫ̂, η̂,

which are displayed in Sec. 3.2, we can verify that, during a stage of slow-roll inflation, ˙̂θ+ ≃
Jhθ̇+/

√
2 since Jh ≃

√
6mP, ˙̂θ− ≃ hθ̇−/

√
2 f and ˙̂θν ≃ hθ̇ν/

√
f since h/

√
f ≃ mP/

√
cR. On

the other hand, we can show that ˙̂χα ≃ χ̇α/
√

f , since the quantity ḟ /2 f 3/2χα, involved in

relating χ̇α to ˙̂χα, turns out to be negligibly small compared with ˙̂χα. Indeed, the χ̂α’s acquire

effective masses mχ̂α
≫ ĤHI – see below – and therefore enter a phase of oscillations about

χ̂α = 0 with decreasing amplitude. Neglecting the oscillatory part of the relevant solutions,
we find

χ ≃ χ̂α0

√
f e−2N̂/3 and ˙̂χα ≃ −2χα0

√
f ĤHIη̂χα e−2N̂/3, (21)

where χ̂α0 represents the initial amplitude of the oscillations, η̂χα = m2
χ̂α

/3ĤHI and we

assume ˙̂χα(t = 0) = 0. Taking into account the approximate expressions for ḣ and the
slow-roll parameter ǫ̂ in Sec. 3.2, we find

− ḟ /2 f 3/2χα =
(

cR ǫ̂Ĥ2
HI/m2

χ̂α

)
˙̂χα ≪ ˙̂χα. (22)

Having defined the canonically normalized scalar fields, we can proceed in investigating the

stability of the inflationary trajectory of Eq. (12). To this end, we expand V̂HI in Eq. (10a) to
quadratic order in the fluctuations around the direction of Eq. (12), as described in detail in
Ref. [5]. In Table 2 we list the eigenvalues of the mass-squared matrices

M2
αβ =

∂2V̂HI

∂ψ̂α∂ψ̂β

∣∣∣∣∣
Eq. (12)

with ψα = θ+, θ−, θν, x1, x2, x̄1, x̄2 and S (23)
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Fields Masses Squared Eigenstates

The S – ν
c
H – ν̄

c
H Sector

2 real scalars m2
θ̂ν

= m2
Px2

h

(
2λ

2(x2
h − 6) + 15g2 f

)
/24 f 2

θ̂ν

m2
θ̂+

= λ
2m4

Px2
h (1 + 6cR) /12J2 f 3 ≃ 4Ĥ2

HI θ̂+

1 complex scalar m2
Ŝ
= λ

2m2
Px2

h

(
12 + x2

h f̄
)
(6kS f − 1) /6 f 2 f̄ Ŝ

The uc
Ha – ūc

Ha (a = 1, 2, 3) and ec
H – ēc

H Sectors

2(3 + 1) real scalars m2
û− = m2

Px2
h

(
λ

2(x2
h − 3) + 3g2 f

)
/12 f 2 ûa

1−, ûa
2+,

m2
ê− = m2

û− ê1−, ê2+

The dc
Ha – d̄c

Ha and gc
a – ḡc

a (a = 1, 2, 3) Sectors

3 · 8 real scalars m2
ĝ = m2

Px2
h

(
λ

2x2
h + 24λ

2
H̄

f
)

/24 f 2 ĝa
1, ĝa

2

m2
̂̄g = m2

Px2
h

(
λ

2x2
h + 24λ

2
H f

)
/24 f 2 ̂̄ga

1, ̂̄ga
2

m2
d̂+

= m2
Px2

h

(
λ

2 + 4λ
2
H f

)
/4 f 2 d̂a

1+, d̂a
2−

m2
d̂− = m2

Px2
h

(
λ

2
(
x2

h − 3
)
+ 12λ

2
H f

)
/12 f 2 d̂a

1−, d̂a
2+

Table 2. The scalar mass spectrum of our model along the inflationary trajectory of Eq. (12). To avoid very lengthy formulas

we neglect terms proportional to m2
PS and we assume λH ≃ λH̄ for the derivation of the masses of the scalars in the

superfields dc
H and d̄c

H .

involved in the expansion of V̂HI. We arrange our findings into three groups: the SM singlet
sector, S − ν

c
H − ν̄

c
H , the sector with the uc

H , ūc
H and the ec

H , ēc
H fields which are related with

the broken generators of GPS and the sector with the dc
H , d̄c

H and the gc, ḡc fields. Upon
diagonalization of the relevant matrices we obtain the following mass eigenstates:

x̂1± =
1√
2

(̂̄x1 ± x̂1

)
and x̂2∓ =

1√
2

(̂̄x2 ∓ x̂2

)
with x = u, e, d and g. (24)

As we observe from the relevant eigenvalues, no instability – as the one found in Ref. [37]
– arises in the spectrum. In particular, it is evident that kS & 1 assists us to achieve m2

Ŝ
> 0

– in accordance with the results of Ref. [12]. Moreover, the D-term contributions to m2
θ̂ν

and

m2
û− – proportional to the gauge coupling constant g ≃ 0.7 – ensure the positivity of these

masses squared. Finally the masses that the scalars d̂1,2 acquire from the second and third
term of the RHS of Eq. (5) lead to the positivity of m2

d̂− for λH of order unity. We have also

numerically verified that the masses of the various scalars remain greater than the Hubble
parameter during the last 50 − 60 e-foldings of nMHI, and so any inflationary perturbations
of the fields other than the inflaton are safely eliminated.

The 8 Goldstone bosons, associated with the modes x̂1+ and x̂2− with x = ua and e, are
not exactly massless since V̂HI,h 6= 0 – contrary to the situation of Ref. [30] where the
direction with non vanishing 〈νc

H〉 minimizes the potential. These masses turn out to be
mx0 = λmPxh/2 f . On the contrary, the angular parametrization in Eq. (11) assists us

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
http://dx.doi.org/10.5772/51888

249



to isolate the massless mode θ̂−, in agreement with the analysis of Ref. [11]. Employing
the well-known Coleman-Weinberg formula [15], we can compute the one-loop radiative
corrections to the potential in our model. However, these have no significant effect on the
inflationary dynamics and predictions, since the slope of the inflationary path is generated
at the classical level – see the expressions for ǫ̂ and η̂ below.

3.2. The inflationary observables

Based on the potential of Eq. (13) and keeping in mind that the EF canonically inflaton ĥ is
related to h via Eq. (20), we can proceed to the analysis of nMHI in the EF, employing the
standard slow-roll approximation. Namely, a stage of slow-roll nMHI is determined by the
condition – see e.g. Ref. [38, 39]:

max{ǫ̂(h), |η̂(h)|} ≤ 1,

where

ǫ̂ =
m2

P

2

(
V̂

HI,ĥ

V̂HI

)2

=
m2

P

2J2

(
V̂HI,h

V̂HI

)2

≃ 4 f 2
0 m4

P

3c2
Rh4

(25a)

and

η̂ = m2
P

V̂
HI,ĥĥ

V̂HI

=
m2

P

J2

(
V̂HI,hh

V̂HI

− V̂HI,h

V̂HI

J,h

J

)
≃ −4 f0m2

P

3cRh2
, (25b)

are the slow-roll parameters and f0 = f (〈h〉 = 2MPS) = 1 + 4cRm2
PS – see Sec. 4.1. Here we

employ Eq. (15) and the following approximate relations:

J ≃
√

6
mP

h
, V̂HI,h ≃ 4V̂HI

cRh3
f0m2

P and V̂HI,hh ≃ −12V̂HI

cRh4
f0m2

P. (26)

The numerical computation reveals that nMHI terminates due to the violation of the ǫ̂
criterion at a value of h equal to hf, which is calculated to be

ǫ̂ (hf) = 1 ⇒ hf = (4/3)1/4 mP

√
f0/cR. (27)

The number of e-foldings, N̂∗, that the scale k∗ = 0.002/Mpc suffers during nMHI can be
calculated through the relation:

N̂∗ =
1

m2
P

∫ ĥ∗

ĥf

dĥ
V̂HI

V̂
HI,ĥ

=
1

m2
P

∫ h∗

hf

dh J2 V̂HI

V̂HI,h

, (28)

where h∗ [ĥ∗] is the value of h [ĥ] when k∗ crosses the inflationary horizon. Given that

hf ≪ h∗, we can write h∗ as a function of N̂∗ as follows
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N̂∗ ≃ 3cR
4 f0

h2
∗ − h2

f

m2
P

⇒ h∗ = 2mP

√
N̂∗ f0/3cR· (29)

The power spectrum ∆
2
R of the curvature perturbations generated by h at the pivot scale k∗

is estimated as follows

∆R =
1

2
√

3 πm3
P

V̂HI(ĥ∗)3/2

|V̂
HI,ĥ

(ĥ∗)|
≃ λh2

∗
16
√

2π f0m2
P

≃ λN̂∗
12
√

2πcR
· (30)

Since the scalars listed in Table 2 are massive enough during nMHI, ∆R can be identified

with its central observational value – see Sec. 5 – with almost constant N̂∗. The resulting
relation reveals that λ is to be proportional to cR. Indeed we find

λ ≃ 8.4 · 10−4πcR/N̂∗ ⇒ cR ≃ 20925λ for N̂∗ ≃ 55. (31)

The (scalar) spectral index ns, its running as, and the scalar-to-tensor ratio r can be estimated
through the relations:

ns = 1 − 6ǫ̂∗ + 2η̂∗ ≃ 1 − 2/N̂∗, (32a)

αs =
2

3

(
4η̂2

∗ − (ns − 1)2
)
− 2ξ̂∗ ≃ −2ξ̂∗ ≃ −2/N̂2

∗ (32b)

and

r = 16ǫ̂∗ ≃ 12/N̂2
∗ , (32c)

where ξ̂ = m4
PV̂HI,hV̂

HI,ĥĥĥ
/V̂2

HI = mP

√
2ǫ̂ η̂,h/J + 2η̂ǫ̂. The variables with subscript ∗ are

evaluated at h = h∗ and Eqs. (25a) and (25b) have been employed.

4. Non-thermal leptogenesis

In this section, we specify how the SUSY inflationary scenario makes a transition to the
radiation dominated era (Sec. 4.1) and give an explanation of the origin of the observed BAU

(Sec. 4.2) consistently with the G̃ constraint and the low energy neutrino data (Sec. 4.3).
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4.1. The inflaton’s decay

When nMHI is over, the inflaton continues to roll down towards the SUSY vacuum, Eq. (9).
There is a brief stage of tachyonic preheating [40] which does not lead to significant particle
production [41]. Soon after, the inflaton settles into a phase of damped oscillations initially

around zero – where V̂HI0 has a maximum – and then around one of the minima of V̂HI0.
Whenever the inflaton passes through zero, particle production may occur creating mostly
superheavy bosons via the mechanism of instant preheating [42]. This process becomes more
efficient as λ decreases, and further numerical investigation is required in order to check the
viability of the non-thermal leptogenesis scenario for small values of λ. For this reason, we
restrict to λ’s larger than 0.001, which ensures a less frequent passage of the inflaton through
zero, weakening thereby the effects from instant preheating and other parametric resonance
effects – see Appendix B of Ref. [5]. Intuitively the reason is that larger λ’s require larger
cR’s, see Eq. (31), diminishing therefore hf given by Eq. (29), which sets the amplitude of the
very first oscillations.

Nonetheless the standard perturbative approach to the inflaton decay provides a very
efficient decay rate. Namely, at the SUSY vacuum ν

c
H and ν̄

c
H acquire the v.e.vs shown in

Eq. (9) giving rise to the masses of the (canonically normalized) inflaton δ̂h = (h − 2MPS) /J0

and RH neutrinos, ν̂
c
i , which are given, respectively, by

✭❛✮ mI =
√

2
λMPS

〈J〉 f0
and ✭❜✮ Miν̂c = 2

λiνc M2
PS

MS

√
f0

, (33)

where f0 is defined below Eq. (25b) and f̄0 = f0 + 24c2
Rm2

PS ≃ J2
0 . Here, we assume the

existence of a term similar to the second one inside ln of Eq. (7a) for ν
c
i too.

For larger λ’s 〈J〉 = J(h = 2MPS) ranges from 3 to 90 and so mI is kept independent of λ and

almost constant at the level of 1013 GeV. Indeed, if we express δ̂h as a function of δh through
the relation

δ̂h

δh
≃ J0 where J0 =

√
1 +

3

2
m2

P f 2
,h (〈h〉) =

√
1 + 24c2

Rm2
PS (34)

we find

mI ≃
√

2λMPS

f0 J0
≃ λmP

2
√

3cR
≃ 10−4mP

4.2
√

3
≃ 3 · 1013 GeV for λ &

10−4

4.2
√

6mPS

≃ 1.3 · 10−3 (35)

where we make use of Eq. (31) – note that f0 ≃ 1. The derivation of the (s)particle spectrum,
listed in Table 2, at the SUSY vaccum of the model reveals [5] that perturbative decays of

δ̂h into these massive particles are kinematically forbidden and therefore, narrow parametric

resonance [40] effects are absent. Also δ̂h can not decay via renormalizable interaction terms
to SM particles.

The inflaton can decay into a pair of ν̂
c
i ’s through the following lagrangian terms:
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LIνc
i
= −λiνc

MPS

MS

f0

J0

(
1 − 12cRm2

PS

)
δ̂hν̂c

i ν̂c
i + h.c. . (36)

From Eq. (36) we deduce that the decay of δ̂h into ν̂c
i is induced by two lagrangian terms.

The first one originates exclusively from the non-renormalizable term of Eq. (5) – as in the
case of a similar model in Ref. [30]. The second term is a higher order decay channel due to
the SUGRA lagrangian – cf. Ref. [43]. The interaction in Eq. (36) gives rise to the following
decay width

ΓIjν̂c =
c2

Ijν̂c

64π
mI

√√√√1 −
4M2

jν̂c

m2
I

with cIjν̂c =
Mjν̂c

MPS

f 3/2
0

J0

(
1 − 12cRm2

PS

)
, (37)

where Mjν̂c is the Majorana mass of the ν̂c
j ’s into which the inflaton can decay. The

implementation – see Sec. 4.3 – of the seesaw mechanism for the derivation of the
light-neutrinos masses, in conjunction with the GPS prediction m3D ≃ mt and our assumption
that m1D < m2D ≪ m3D – see Sec. 5.1 – results to 2M3ν̂c > mI. Therefore, the kinematically

allowed decay channels of δ̂h are those into ν̂c
j with j = 1 and 2. Note that the decay of the

inflaton to the heaviest of the ν̂c
j ’s (ν̂c

3) is also disfavored by the G̃ constraint – see below.

In addition, there are SUGRA-induced [43] – i.e., even without direct superpotential
couplings – decay channels of the inflaton to the MSSM particles via non-renormalizable
interaction terms. For a typical trilinear superpotential term of the form Wy = yXYZ, we
obtain the effective interactions described by the langrangian part

LIy = 6ycR
MPS

m2
P

f 3/2
0

2J0
δ̂h

(
X̂ψ̂Yψ̂Z + Ŷψ̂Xψ̂Z + Ẑψ̂Xψ̂Y

)
+ h.c. , (38)

where y is a Yukawa coupling constant and ψX , ψY and ψZ are the chiral fermions associated
with the superfields X, Y and Z. Their scalar components are denoted with the superfield
symbol. Taking into account the terms of Eq. (2) and the fact that the adopted SUSY GUT
predicts YU for the 3rd generation at MPS, we conclude that the interaction above gives rise
to the following 3-body decay width

ΓIy =
14c2

Iy

512π3
m3

I ≃
3y2

33

64π3
f 3
0

(
mI

mP

)2

mI where cIy = 6y33cR
MPS

m2
P

f 3/2
0

J0
, (39)

with y33 ≃ (0.55 − 0.7) being the common Yukawa coupling constant of the third generation
computed at the mI scale, and summation is taken over color, weak and hypercharge degrees
of freedom, in conjunction with the assumption that mI < 2M3ν̂c .
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Since the decay width of the produced ν̂
c
j is much larger than ΓI– see below – the reheating

temperature, Trh, is exclusively determined by the inflaton decay and is given by [44]

Trh =

(
72

5π
2g∗

)1/4 √
ΓImP with ΓI = ΓI1ν̂

c + ΓI2ν̂
c + ΓIy, (40)

where g∗ counts the effective number of relativistic degrees of freedom at temperature Trh.
For the MSSM spectrum plus the particle content of the superfields P and P̄ we find g∗ ≃

228.75 + 4(1 + 7/8) = 236.25.

4.2. Lepton-number and gravitino abundances

If Trh ≪ Miν̂c , the out-of-equilibrium condition [2] for the implementation of nTL is
automatically satisfied. Subsequently ν̂

c
i decay into Hu and L∗

i via the tree-level couplings
derived from the second term in the RHS of Eq. (2). Interference between tree-level and
one-loop diagrams generates a lepton-number asymmetry (per ν̂

c
j decay) ε j [2], when CP

conservation is violated. The resulting lepton-number asymmetry after reheating can be
partially converted through sphaleron effects into baryon-number asymmetry. In particular,
the B yield can be computed as

(a) YB = −0.35YL with (b) YL = 2
5

4

Trh

mI

2

∑
j=1

ΓIjν̂c

ΓI
ε j· (41)

The numerical factor in the RHS of Eq. (41❛) comes from the sphaleron effects, whereas the
one (5/4) in the RHS of Eq. (41❜) is due to the slightly different calculation [44] of Trh –
cf. Ref. [1]. In the major part of our allowed parameter space – see Sec. 5.2 – ΓI ≃ ΓIy and so
the involved branching ratio of the produced ν̂

c
i is given by

ΓI1ν̂
c + ΓI2ν̂

c

ΓI
≃

ΓI2ν̂
c

ΓIy
=

π
2
(
1 − 12cRm2

PS

)2

72c2
R

y2
33m4

PS

M2
2ν̂

c

m2
I

· (42)

For M2ν̂
c ≃

(
1011 − 1012

)
GeV the ratio above takes adequately large values so that YL is

sizable. Therefore, the presence of more than one inflaton decay channels does not invalidate
the scenario of nTL.

It is worth emphasizing, however, that if M1ν
c . 10Trh, part of the YL can be washed out

due to ν̂
c
1 mediated inverse decays and ∆L = 1 scatterings – this possibility is analyzed in

Ref. [27]. Trying to avoid the relevant computational complications we limit ourselves to cases
with M1ν̂

c & 10Trh, so as any washout of the non-thermally produced YL is evaded. On the
other hand, YL is not erased by the ∆L = 2 scattering processes [45] at all temperatures T with
100 GeV . T . Trh since YL is automatically protected by SUSY [46] for 107 GeV . T . Trh

and for T . 107 GeV these processes are well out of equilibrium provided that that mass of
the heaviest light neutrino is 10 eV. This constraint, however, is overshadowed by a more
stringent one induced by WMAP7 data [16] – see Sec. 5.1.

Open Questions in Cosmology254



The required for successful nTL Trh must be compatible with constraints on the G̃ abundance,
Y

G̃
, at the onset of nucleosynthesis (BBN). This is estimated to be [19]:

Y
G̃
≃ c

G̃
Trh with c

G̃
= 1.9 · 10−22/GeV, (43)

where we assume that G̃ is much heavier than the gauginos. Let us note that non-thermal

G̃ production within SUGRA is [43] also possible. However, we here prefer to adopt the

conservative approach based on the estimation of Y
G̃

via Eq. (43) since the latter G̃ production
depends on the mechanism of SUSY breaking.

Both Eqs. (41) and (43) yield the correct values of the B and G̃ abundances provided that no
entropy production occurs for T < Trh. This fact can be easily achieved within our setting.

The mass spectrum of the P-P̄ system is comprised by axion and saxion P− = (P̄ − P)/
√

2,

axino ψ− = (ψP̄ −ψP)/
√

2, a higgs, P+ = (P̄+ P)/
√

2, and a higgsino, ψ+ = (ψP̄ +ψP)/
√

2,
with mass of order 1 TeV and ψ denoting a Weyl spinor. The higgs and higgsinos can decay
to lighter higgs and higgsinos before domination [36]. Regarding the saxion, P−, we can
assume that its decay mode to axions is suppressed (w.r.t the ones to gluons, higgses and
higgsinos [47, 48]) and the initial amplitude of its oscillations is equal to fa ≃ 1012 GeV.
Under these circumstances, it can [47] decay before domination too, and evades [48] the
constraints from the effective number of neutrinos for the fa’s and Trh’s encountered in our
model. As a consequence of its relatively large decay temperature, the LSPs produced by
the saxion decay are likely to be thermalized and therefore, no upper bound on the saxion
abundance is [48] to be imposed. Finally, axino can not play the role of LSP due to its
large expected mass and the relatively high Trh’s encountered in our set-up which result to
a large Cold Dark Matter (CDM) abundance. Nonetheless, it may enhance non-thermally the
abundance of a higgsino-like neutralino-LSP, rendering it a successful CDM candidate.

4.3. Lepton-number asymmetry and neutrino masses

As mentioned above, the decay of ν̂c
2 and ν̂c

1, emerging from the δ̂h decay, can generate a
lepton asymmetry, εi (with i = 1, 2) caused by the interference between the tree and one-loop
decay diagrams, provided that a CP-violation occurs in hNij’s. The produced εi can be
expressed in terms of the Dirac mass matrix of νi, mD, defined in a basis (called νc

i -basis
henceforth) where νc

i are mass eigenstates, as follows:

εi = ∑
i 6=j

Im

[
(m†

DmD)
2
ij

]

8π〈Hu〉2(m†
DmD)ii

(
FS

(
xij, yi, yj

)
+ FV(xij)

)
, (44a)

where we take 〈Hu〉 ≃ 174 GeV, for large tan β and

xij :=
Mjν̂c

Miν̂c
and yi :=

Γiνc

Miν̂c
=

(m†
DmD)ii

8π〈Hu〉2
(44b)

(with i, j = 1, 2, 3). Also FV and FS represent, respectively, the contributions from vertex and
self-energy diagrams which in SUSY theories read [49]

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
http://dx.doi.org/10.5772/51888

255



FV (x) = −x ln
(

1 + x−2
)

and FS (x, y, z) =
−2x(x2 − 1)

(x2 − 1)
2 + (x2z − y)

2
· (44c)

Note that for strongly hierarchical M
ν̂

c ’s with xij ≫ 1 and xij ≫ yi, yj, we obtain the
well-known approximate result [26, 27]

FV + FS ≃ −3/x2
ij. (45)

The involved in Eq. (44a) mD can be diagonalized if we define a basis – called weak basis
henceforth – in which the lepton Yukawa couplings and the SU(2)L interactions are diagonal
in the space of generations. In particular we have

U†mDUc† = dD = diag (m1D, m2D, m3D) , (46)

where U and Uc are 3 × 3 unitary matrices which relate Li and ν
c
i (in the ν

c
i -basis) with the

ones L′
i and ν

c′
i in the weak basis as follows:

L′ = LU and ν
c′ = Uc

ν
c. (47)

Here, we write LH lepton superfields, i.e. SU(2)L doublet leptons, as row 3-vectors in family
space and RH anti-lepton superfields, i.e. SU(2)L singlet anti-leptons, as column 3-vectors.
Consequently, the combination m†

DmD appeared in Eq. (44a) turns out to be a function just
of dD and Uc. Namely,

m†
DmD = Uc†d†

DdDUc. (48)

The connection of the nTL scenario with the low energy neutrino data can be achieved
through the seesaw formula, which gives the light-neutrino mass matrix mν in terms of
miD and Miν̂c . Working in the ν

c
i -basis, we have

mν = −mD d−1
ν

c m❚D , where dν
c = diag (M1ν̂

c , M2ν̂
c , M3ν̂

c ) (49)

with M1ν̂
c ≤ M2ν̂

c ≤ M3ν̂
c real and positive. Solving Eq. (46) w.r.t mD and inserting the

resulting expression in Eq. (49) we extract the mass matrix

m̄ν = U†mνU∗ = −dDUcd−1
ν

c Uc❚dD, (50)

which can be diagonalized by the unitary PMNS matrix satisfying

m̄ν = U∗
ν
diag (m1ν

, m2ν, m3ν) U†
ν

(51)
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and parameterized as follows:

Uν =




c12c13 s12c13 s13e−iδ

−c23s12 − s23c12s13eiδ c23c12 − s23s12s13eiδ s23c13

s23s12 − c23c12s13eiδ
−s23c12 − c23s12s13eiδ c23c13




·




e−iϕ1/2

e−iϕ2/2

1




, (52)

with cij := cos θij, sij := sin θij, δ the CP-violating Dirac phase and ϕ1 and ϕ2 the two
CP-violating Majorana phases.

Following a bottom-up approach, along the lines of Ref. [26–28], we can find m̄ν via Eq. (51)
using as input parameters the low energy neutrino observables, the CP violating phases and
adopting the normal or inverted hierarchical scheme of neutrino masses. Taking also miD as
input parameters we can construct the complex symmetric matrix

W = −d−1
D m̄νd−1

D = Ucdνc Uc❚ (53)

– see Eq. (50) – from which we can extract dνc as follows:

d−2
νc = Uc†WW†Uc. (54)

Note that WW† is a 3 × 3 complex, hermitian matrix and can be diagonalized following the
algorithm described in Ref. [50]. Having determined the elements of Uc and the Miν̂c ’s we
can compute mD through Eq. (48) and the εi’s through Eq. (44a).

5. Constraining the model parameters

We exhibit the constraints that we impose on our cosmological set-up in Sec. 5.1, and
delineate the allowed parameter space of our model in Sec. 5.2.

5.1. Imposed constraints

The parameters of our model can be restricted once we impose the following requirements:

✶✳ According to the inflationary paradigm, the horizon and flatness problems of the standard
Big Bang cosmology can be successfully resolved provided that the number of e-foldings,

N̂∗, that the scale k∗ = 0.002/Mpc suffers during nMHI takes a certain value, which
depends on the details of the cosmological model. Employing standard methods [51], we

can easily derive the required N̂∗ for our model, consistently with the fact that the P − P̄
system remains subdominant during the post-inflationary era. Namely we obtain

N̂∗ ≃ 22.5 + 2 ln
VHI(h∗)

1/4

1 GeV
−

4

3
ln

VHI(hf)
1/4

1 GeV
+

1

3
ln

Trh

1 GeV
+

1

2
ln

f (hf)

f (h∗)
· (55)

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
http://dx.doi.org/10.5772/51888

257



✷✳ The inflationary observables derived in Sec. 3.2 are to be consistent with the fitting [16]
of the WMAP7, BAO and H0 data. As usual, we adopt the central value of ∆R, whereas
we allow the remaining quantities to vary within the 95% confidence level (c.l.) ranges.
Namely,

✭❛✮ ∆R ≃ 4.93 · 10−5, ✭❜✮ ns = 0.968 ± 0.024, ✭❝✮ − 0.062 ≤ as ≤ 0.018 and ✭❞✮ r < 0.24
(56)

✸✳ The scale MPS can be determined by requiring that the v.e.vs of the Higgs fields take the
values dictated by the unification of the gauge couplings within the MSSM. As we now
recognize – cf. Ref. [5] – the unification scale MGUT ≃ 2 · 1016 GeV is to be identified with
the lowest mass scale of the model in the SUSY vacuum, Eq. (9), in order to avoid any
extra contribution to the running of the MSSM gauge couplings, i.e.,

(a)
gMPS√

f0

= MGUT ⇒ mPS =
1

2
√

2cmax
R − cR

with (b) cmax
R =

g2m2
P

8M2
GUT

(57)

The requirement 2cmax
R − cR > 0 sets an upper bound cR < 2cmax

R ≃ 1.8 · 103, which
however can be significantly lowered if we combine Eqs. (55) and (28) – see Sec. 5.2.1.

✹✳ For the realization of nMHI , we assume that cR takes relatively large values – see
e.g. Eq. (17). This assumption may [52, 53] jeopardize the validity of the classical
approximation, on which the analysis of the inflationary behavior is based. To avoid
this inconsistency – which is rather questionable [11, 54] though – we have to check
the hierarchy between the ultraviolet cut-off, Λ = mP/cR, of the effective theory and

the inflationary scale, which is represented by V̂HI(h∗)
1/4 or, less restrictively, by the

corresponding Hubble parameter, Ĥ∗ = V̂HI(h∗)
1/2/

√
3mP. In particular, the validity of

the effective theory implies [52, 53]

✭❛✮ V̂HI(h∗)
1/4 ≤ Λ or ✭❜✮ Ĥ∗ ≤ Λ for ✭❝✮ cR ≥ 1. (58)

✺✳ As discussed in Sec. 4.2, to avoid any erasure of the produced YL and to ensure that the
inflaton decay to ν̂2 is kinematically allowed we have to bound M1ν̂c and M2ν̂c respectively
as follows:

(a) M1ν̂c & 10Trh and (b) mI ≥ 2M2ν̂c ⇒ M2ν̂c .
λmP

4
√

3cR
≃ 1.5 · 1013 GeV, (59)

where we make use of Eq. (35). Recall that we impose also the restriction λ ≥ 0.001 which
allows us to ignore effects of instant preheating [5, 42].

✻✳ As discussed below Eq. (2), the adopted GUT predicts YU at MGUT. Assuming negligible
running of m3D from MGUT until the scale of nTL, ΛL, which is taken to be ΛL = mI, we
end up with the requirement:

m3D(mI) = mt(mI) ≃ (100 − 120) GeV. (60)
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Parameter Best Fit ±1σ

Normal Inverted

Hierarchy

∆m2
21/10−3eV2 7.62 ± 0.19

∆m2
31/10−3eV2 2.53+0.08

−0.10 −2.4+0.10
−0.07

sin2 θ12 0.320+0.015
−0.017

sin2 θ13 0.026+0.003
−0.004 0.027+0.003

−0.004

sin2 θ23 0.49+0.08
−0.05 0.53+0.05

−0.07

δ/π 0.83+0.54
−0.64 0.07

Table 3. Low energy experimental neutrino data for normal or inverted hierarchical neutrino masses. In the second case the

full range (0 − 2π) is allowed at 1σ for the phase δ.

where mt is the top quark mass and the numerical values correspond to y33(mI) = (0.55−
0.7) – cf. Ref. [55] – found [32, 56] working in the context of several MSSM versions with
tan β ≃ 50 and taking into account the SUSY threshold corrections. As regards the lighter
generation, we limit ourselves in imposing just a mild hierarchy between m1D and m2D,
i.e., m1D < m2D ≪ m3D since it is not possible to achieve a simultaneous fulfilment of all
the residual constraints if we impose relations similar to Eq. (60) – cf. Ref. [25–27].

✼✳ From the solar, atmospheric, accelerator and reactor neutrino experiments we take into
account the inputs listed in Table 3 on the neutrino mass-squared differences ∆m2

21

and ∆m2
31, on the mixing angles θij and on the CP-violating Dirac phase, δ for normal

[inverted] neutrino mass hierarchy [23] – see also Ref. [24]. In particular, miν’s can be
determined via the relations:

m2ν =
√

m2
1ν + ∆m2

21 and



















m3ν =
√

m2
1ν + ∆m2

31, for normally ordered (NO) mν’s

or

m1ν =
√

m2
3ν +

∣

∣∆m2
31

∣

∣, for invertedly ordered (IO) mν’s

(61)

The sum of miν’s can be bounded from above by the WMAP7 data [16]

∑imiν ≤ 0.58 eV (62)

at 95% c.l. This is more restrictive than the 95% c.l. upper bound arising from the effective
electron neutrino mass in β-decay [57]:

mβ :=
∣

∣

∣∑iU
2
1iνmiν

∣

∣

∣
≤ 2.3 eV. (63)

However, in the future, the KATRIN experiment [58] expects to reach the sensitivity of
mβ ≃ 0.2 eV at 90% c.l.
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✽✳ The interpretation of BAU through nTL dictates [16] at 95% c.l.

YB = (8.74 ± 0.42) · 10−11 ⇒ 8.32 ≤ 1011YB ≤ 9.16. (64)

✾✳ In order to avoid spoiling the success of the BBN, an upper bound on Y
G̃

is to be imposed

depending on the G̃ mass, m
G̃

, and the dominant G̃ decay mode. For the conservative

case where G̃ decays with a tiny hadronic branching ratio, we have [19]

Y
G̃
.





10−14

10−13

10−12

for m
G̃
≃





0.69 TeV

10.6 TeV

13.5 TeV.

(65)

As we see below, this bound is achievable within our model only for m
G̃

& 10 TeV.
Taking into account that the soft masses of the scalars are not necessarily equal to m

G̃
, we

do not consider such a restriction as a very severe tuning of the SUSY parameter space.
Using Eq. (43) the bounds on Y

G̃
can be translated into bounds on Trh. Specifically we

take Trh ≃ (0.53 − 5.3) · 108 GeV [Trh ≃ (0.53 − 5.3) · 109 GeV] for Y
G̃
≃ (0.1 − 1) · 10−13

[Y
G̃
≃ (0.1 − 1) · 10−12].

Let us, finally, comment on the axion isocurvature perturbations generated in our model.
Indeed, since the PQ symmetry is broken during nMHI, the axion acquires quantum
fluctuations as all the almost massless degrees of freedom. At the QCD phase transition,
these fluctuations turn into isocurvature perturbations in the axion energy density, which
means that the partial curvature perturbation in axions is different than the one in photons.
The results of WMAP put stringent bounds on the possible CDM isocurvature perturbation.
Namely, taking into account the WMAP7, BAO and H0 data on the parameter α0 we find the
following bound for the amplitude of the CDM isocurvature perturbation

|Sc| = ∆R

√
α0

1 − α0
. 1.5 · 10−5 at 95% c.l. (66)

On the other, |Sc| due to axion, can be estimated by

|Sc| =
Ωa

Ωc

ĤHI

π|θI|φ̂P∗
with

Ωa

Ωc
≃ θ2

I

(
fa

1.56 · 1011 GeV

)1.175

(67)

where Ωa [Ωc] is the axion [CDM] density parameter, φ̂P∗ ∼ 1016 GeV [36] denotes the field
value of the PQ scalar when the cosmological scales exit the horizon and θI is the initial
misalignment angle which lies [36] in the interval [−π/6, π/6]. Satisfying Eq. (66) requires
|θI| . π/70 which is a rather low but not unacceptable value. Therefore, a large axion
contribution to CDM is disfavored within our model.
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5.2. Numerical results

As can be seen from the relevant expressions in Secs. 2 and 4, our cosmological set-up
depends on the parameters:

λ, λH , λH̄ , kS, g, y33, mℓν, miD, ϕ1 and ϕ2,

where mℓν is the low scale mass of the lightest of νi’s and can be identified with m1ν [m3ν] for
NO [IO] neutrino mass spectrum. Recall that we determine MPS via Eq. (57) with g = 0.7. We
do not consider cR and λiνc as independent parameters since cR is related to m via Eq. (31)
while λiνc can be derived from the last six parameters above which affect exclusively the YL

calculation and can be constrained through the requirements 5 - 9 of Sec. 5.1. Note that the
λiνc ’s can be replaced by Miν̂c ’s given in Eq. (33❜) keeping in mind that perturbativity requires

λiνc ≤
√

4π or Miν̂c ≤ 1016 GeV. Note that if we replace MS with mP in Eq. (5), we obtain a
tighter bound, i.e., Miν̂c ≤ 2.3 · 1015 GeV. Our results are essentially independent of λH , λH̄
and kS, provided that we choose some relatively large values for these so as m2

û−, m2
d̂−

and

m2
Ŝ

in Table 2 are positive for λ < 1. We therefore set λH = λH̄ = 0.5 and kS = 1 throughout

our calculation. Finally Trh can be calculated self-consistently in our model as a function of
mI, M2ν̂c ≫ M1ν̂c and the unified Yukawa coupling constant y33 – see Sec. 4.1 – for which we
take y33 = 0.6.

Summarizing, we set throughout our calculation:

kS = 1, λH = λH̄ = 0.5, g = 0.7 and y33 = 0.6. (68)

The selected values for the above quantities give us a wide and natural allowed region for the
remaining fundamental parameters of our model, as we show below concentrating separately
in the inflationary period (Sec. 5.2.1) and in the stage of nTL (Sec. 5.2.2).

5.2.1. The Inflationary Stage

In this part of our numerical code, we use as input parameters h∗, m2D ≫ m1D and cR. For
every chosen cR ≥ 1 and m2D, we restrict λ and h∗ so that the conditions Eq. (55) and (56❛)
are satisfied. In our numerical calculations, we use the complete formulas for the slow-roll
parameters and ∆R in Eqs. (25a), (25b) and (30) and not the approximate relations listed in
Sec. 3.2 for the sake of presentation. Our results are displayed in Fig. 1, where we draw the
allowed values of cR (solid line), Trh (dashed line), the inflaton mass, mI (dot-dashed line)
and M2ν̂c (dotted line) – see Sec. 4.1 – [hf (solid line) and h∗ (dashed line)] versus λ (a) [(b)]
for the m2D’s required from Eq. (64) and for the parameters adopted along the black dashed

line of Fig. 2 – see Sec. 5.2.2. The required via Eq. (55) N̂∗ remains almost constant and close
to 54.5.

The lower bound of the depicted lines comes from the saturation of the Eq. (58❝). The
constraint of Eq. (58❜) is satisfied along the various curves whereas Eq. (58❛) is valid only
along the gray and light gray segments of these. Along the light gray segments, though, we
obtain h∗ ≥ mP. The latter regions of parameter space are not necessarily excluded, since
the energy density of the inflaton remains sub-Planckian and so, corrections from quantum
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Figure 1. The allowed (by all the imposed constraints) values of cR (solid line), Trh – given by Eq. (40) – (dashed line), mI

(dot-dashed line) and M2ν̂c (dotted line) [hf (solid line) and h∗ (dashed line)] versus λ (a) [(b)] for kS = 1, λH = λH̄ = 0.5 and
y33 = 0.6. The light gray and gray segments denote values of the various quantities satisfying Eq. (58❛) too, whereas along the
light gray segments we obtain h∗ ≥ mP.

gravity can still be assumed to be small. As cR increases beyond 906, f0 becomes much larger

than 1, N̂∗ derived by Eq. (28) starts decreasing and therefore, nMHI fails to fulfil Eq. (55).

This can be understood by the observation that N̂∗, approximated fairly by Eq. (29), becomes
monotonically decreasing function of cR for cR > cmax

R
where cmax

R
can be found by the

condition

dN̂∗

dcR
≃

3h2
∗

4m2
P

(
cmax
R

− cR
)

cmax
R

= 0 ⇒ cR ≃ cmax
R , (69)

where cmax
R

is defined in Eq. (57❜) and Eq. (57❛) is also taken into account. As a consequence,
the embedding of nMHI in a SUSY GUT provides us with a clear upper bound of cR. All in
all, we obtain

0.001 . λ . 0.0412 and 1 . cR . 907 for 53.9 . N̂∗ . 54.7 (70)

When cR ranges within its allowed region, we take MPS ≃ (2.87 − 4) · 1016 GeV.

From Fig. 1-✭❛✮, we can verify our analytical estimation in Eq. (31) according to which λ is
proportional to cR. On the other hand, the variation of hf and h∗ as a function of cR – drawn
in Fig. 1-✭❜✮ – is consistent with Eqs. (27) and (29). Letting λ or cR vary within its allowed
region in Eq. (70), we obtain

ns ≃ 0.964, −6.5 .
αs

10−4
. −6.2 and 4.2 &

r

10−3
& 3.5. (71)

Clearly, the predicted αs and r lie within the allowed ranges given in Eq. (56❜) and Eq. (56❝)
respectively, whereas ns turns out to be impressively close to its central observationally
favored value – see Eq. (56❛) and cf. Ref. [12].

From Fig. 1-✭❛✮ we can conclude that mI is kept independent of λ and almost constant at
the level of 1013 GeV, as anticipated in Eq. (35). From the same plot we also remark that
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Parameters Cases

A B C D E F G

Normal Degenerate Inverted

Hierarchy Masses Hierarchy

Low Scale Parameters

m1ν/0.1 eV 0.01 0.1 0.5 1. 0.7 0.5 0.49

m2ν/0.1 eV 0.088 0.13 0.5 1. 0.7 0.51 0.5

m3ν/0.1 eV 0.5 0.5 0.71 1.1 0.5 0.1 0.05

∑i miν/0.1 eV 0.6 0.74 1.7 3.1 1.9 1.1 1

mβ/0.1 eV 0.03 0.013 0.14 0.68 0.45 0.33 0.4

ϕ1 π/2 π/2 π/2 −π/2 −π/2 −π/2 −π/4

ϕ2 0 −π/2 −π/2 π π π 0

Leptogenesis-Scale Parameters

m1D/GeV 0.4 0.3 0.8 1 0.9 0.9 0.9

m2D/GeV 9.2 3 6.5 8.6 3.95 6.6 9.2

m3D/GeV 120 100 100 120 120 110 110

M1ν̂c /1010 GeV 4.4 4.7 3.6 1.2 1.5 1.6 1.7

M2ν̂c /1012 GeV 2.7 0.6 0.65 1.5 0.9 1.5 2.8

M3ν̂c /1014 GeV 27 0.28 0.46 0.4 0.4 3.8 10

Resulting B-Yield

1011Y0
B 8.75 8.9 8.6 8.63 8.9 9. 8.76

1011YB 9.3 8.7 8.5 8.4 9.7 8.8 9.2

Resulting Trh and Y
G̃

Trh/109 GeV 1.2 0.89 0.89 0.99 0.91 0.99 1.2

1013Y
G̃

2.4 1.7 1.7 1.9 1.7 1.88 1.88

Table 4. Parameters yielding the correct BAU for various neutrino mass schemes for λ = 0.01 and cR = 220.

for λ . 0.03, Trh remains almost constant since ΓIy dominates over ΓI2ν̂c and f 3
0 ≃ 1 – see

Eq. (39). For λ & 0.03, f 3
0 ≃ 1 + 12cRm2

PS starts to deviate from unity and so, Trh increases
with cR or λ as shown in Fig. 1. The required by Eq. (64) M2ν̂c follows the behavior of the
required m2D – see Fig. 2-✭❛✮ of Sec. 5.2.2.

5.2.2. The Stage of non-Thermal Leptogenesis

In this part of our numerical program, for a given neutrino mass scheme, we take as input
parameters: mℓν, miD, ϕ1, ϕ2 and the best-fit values of the neutrino parameters listed in
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Table 3. We then find the renormalization group (RG) evolved values of these parameters
at the scale of nTL, ΛL, which is taken to be ΛL = mI, integrating numerically the complete
expressions of the RG equations – given in Ref. [29] – for miν, θij, δ, ϕ1 and ϕ2. In doing this,
we consider the MSSM with tan β ≃ 50, favored by the preliminary LHC results – see, e.g.,
Ref. [32, 56] – as an effective theory between ΛL and a SUSY-breaking scale, MSUSY = 1.5 TeV.
Following the procedure described in Sec. 4.3, we evaluate Miν̂c at ΛL. We do not consider
the running of miD and Miν̂c and therefore, we give their values at ΛL.

We start the exposition of our results arranging in Table 4 some representative values of the
parameters leading to the correct BAU for λ = 0.01 and cR = 220 and normally hierarchical
(cases A and B), degenerate (cases C, D and E) and invertedly hierarchical (cases F and G)
mν’s. For comparison we display the B-yield with (YB) or without (Y0

B) taking into account
the RG effects. We observe that the two results are more or less close with each other. In
all cases the current limit of Eq. (62) is safely met – the case D approaches it –, while mβ

turns out to be well below the projected sensitivity of KATRIN [58]. Shown are also the
obtained Trh’s, which are close to 109 GeV in all cases, and the corresponding Y

G̃
’s, which

are consistent with Eq. (65) for m
G̃
& 11 TeV.

From Table 4 we also remark that the achievement of YB within the range of Eq. (64) dictates
a clear hierarchy between the Miν̂c ’s, which follows the imposed hierarchy in the sector of
miD’s – see paragraph 6 of Sec. 5.1. This is expected since, in the limit of hierarchical miD’s,
the Miν̂c ’s can be approximated by the following expressions [25, 26]

(M1ν̂c , M2ν̂c , M3ν̂c ) ∼





(
m2

1D

m2νs2
12

,
2m2

2D
m3ν

,
m2

3Ds2
12

2m1ν

)
for NO mν’s

(
m2

1D√
|∆m31|

,
2m2

2D√
|∆m31|

,
m2

3D
2m3ν

)
for IO mν’s

(72a)

Indeed, we see e.g. that for fixed j, the Mjν̂c ’s depends exclusively on the mjD’s and M3ν̂c

increases when mℓν decreases with fixed m3D. As a consequence, satisfying Eq. (59❛) pushes
the m1D’s well above the mass of the quark of the first generation. Similarly, the m2D’s
required by Eq. (64) turns out to be heavier than the quark of the second generation. Also,
the required by seesaw M3ν̂c ’s are lower in the case of degenerate νi spectra and can be as
low as 3 · 1013 GeV in sharp contrast to our findings in Ref. [5], where much larger M3ν̂c ’s
are necessitated. An order of magnitude estimation for the derived εL’s can be achieved by
[25, 26]

ε2 ∼ − 3M2ν̂c

8π〈Hu〉2





(
m1ν

s2
12

)
for NO mν’s

m3ν for IO mν’s
(72b)

which is rather accurate, especially in the case of IO mν’s.

To highlight further our conclusions inferred from Table 4, we can fix mℓν (m1ν for NO miν’s
or m3ν for IO miν’s) m1D, m3D, ϕ1 and ϕ2 to their values shown in this table and vary m2D

so that the central value of Eq. (64) is achieved. This is doable since, according Eq. (72a),
variation of m2D induces an exclusive variation to M2ν̂c which, in turn, heavily influences
εL – see Eqs. (44a) and (45) – and YL – see Eqs. (41) and (42). The resulting contours in the
λ − m2D plane are presented in Fig. 2 – since the range of Eq. (64) is very narrow the possible
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(c)        
           m

1ν
 / eV   m

1D
 / GeV   m

3D
 / GeV     φ

1
       φ

2
       

    0.001          0.4              120           π/2       0
    0.01            0.3              100           π/2     -π/2
    0.05            0.8              100           π/2     -π/2
    0.1               1                120          -π/2       π

           m
3ν

 / eV   m
1D

 / GeV   m
3D

 / GeV      φ
1
       φ

2
       

    0.05            0.9              120          -π/2       π  
    0.01            0.9              110          -π/2       π    
    0.005          0.9              110          -π/4       0      

   

m1ν(eV) λ (10−2) m2D(GeV) M1ν̂c (1010 GeV) M2ν̂c (1012 GeV) M3ν̂c (1014 GeV)

0.001 0.1 − 1.8 5.5 − 17 4.7 1 − 9.8 32
2.4 − 4.1 17 − 10 4.7 17 − 10 32

0.01 0.1 − 2 1.5 − 13 3.5 − 6 0.26 − 8.75 0.33 − 0.4
2 − 4.1 15 − 3.4 6 − 5.3 11 − 0.84 0.42 − 0.34

0.05 0.1 − 2. 3 − 28 3.5 − 4 2.1 − 11 0.5 − 0.6
2.1 − 4.1 28 − 7.3 4 − 3.9 11 − 0.8 0.6 − 0.5

0.1 0.1 − 1.9 4 − 23 1.3 0.4 − 8 0.4 − 0.5
2.2 − 4.1 23 − 9 1.3 10 − 2 0.5 − 0.4

m3ν(eV) λ (10−2) m2D(GeV) M1ν̂c (1010 GeV) M2ν̂c (1012 GeV) M3ν̂c (1014 GeV)
0.05 0.1 − 2 2.1 − 12 1.5 − 1.6 0.28 − 7.8 0.48 − 0.56

2.1 − 4.1 13 − 4.4 1.6 8.7 − 1.2 0.57 − 0.49
0.01 0.1 − 2 2.8 − 17 2.2 0.4 − 11 5.4 − 5.6

2 − 4.1 17 − 7.3 2.2 11 − 2 5.6 − 5.4
0.005 0.1 − 1.8 5 − 17 1.8 0.7 − 10.1 12

1.8 − 4.1 17.7 − 10 1.8 10.5 − 3.5 12

Figure 2. Contours on the λ − m2D plane, yielding the central YB in Eq. (64), consistently with the inflationary requirements,

for λH = λH̄ = 0.5, kS = 1 and y33 = 0.6 and various (mℓν , m1D, ϕ1, ϕ2)’s indicated next to the graph (c) and NO [IO] miν’s

(black [gray] lines). The corresponding ranges of Miν̂c ’s are also shown in the table included.

variation of the drawn lines is negligible. The resulting Mjν̂c ’s are displayed in the table
included. The conventions adopted for the types and the color of the various lines are also
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described next to the graph (c) of Fig. 2. In particular, we use black [gray] lines for NO [IO]
miν’s. The black dashed and the solid gray line terminate at the values of m2D beyond which
Eq. (64) is non fulfilled due to the violation of Eq. (59❜).

In all cases, two disconnected allowed domains arise according to which of the two
contributions in Eq. (36) dominates. The critical point (λc, cRc) is extracted from:

1 − 12cRcm
2
PS = 0 ⇒ cRc = c

max
R

/2 ≃ 453 or λc ≃ 10−4
c

max
R

/4.2 ≃ 0.021 (73)

where we make use of Eq. (57) and Eq. (31) in the intermediate and the last step respectively.
From Eqs. (40), (41) and (42) one can deduce that for λ < λc, Trh remains almost constant;
ΓI2ν̂c /ΓI decreases as cR increases and so the M2ν̂c ’s, which satisfy Eq. (64), increase. On
the contrary, for λ > λc, ΓI2ν̂c /ΓI is independent of cR but Trh increases with cR and so the
fulfilling Eq. (64) M2ν̂c ’s decrease.

Summarizing, we conclude that our scenario prefers the following ranges for the Miν̂c ’s:

1 . M1ν̂c /1010 GeV . 6, 0.6 . M2ν̂c /1012 GeV . 20, 0.3 . M3ν̂c /1014GeV . 30, (74a)

while the m1D and m2D are restricted in the ranges:

0.3 . m1D/GeV . 1, 1.5 . m2D/GeV . 20. (74b)

6. Conclusions

We investigated the implementation of nTL within a realistic GUT, based on the PS gauge
group. Leptogenesis follows a stage of nMHI driven by the radial component of the Higgs
field, which leads to the spontaneous breaking of the PS gauge group to the SM one with
the GUT breaking v.e.v identified with the SUSY GUT scale and without overproduction of
monopoles. The model possesses also a resolution to the strong CP and the µ problems of the
MSSM via a PQ symmetry which is broken during nMHI and afterwards. As a consequence
the axion cannot be the dominant component of CDM, due to the present bounds on the
axion isocurvature fluctuation. Moreover, we briefly discussed scenaria in which the potential
axino and saxion overproduction problems can be avoided.

Inflation is followed by a reheating phase, during which the inflaton can decay into the
lightest, ν̂c

1, and the next-to-lightest, ν̂c
2, RH neutrinos allowing, thereby for nTL to occur

via the subsequent decay of ν̂c

1 and ν̂c
2. Although other decay channels to the SM particles

via non-renormalizable interactions are also activated, we showed that the production of the
required by the observations BAU can be reconciled with the observational constraints on

the inflationary observables and the G̃ abundance, provided that the (unstable) G̃ masses are
greater than 11 TeV. The required by the observations BAU can become consistent with the
present low energy neutrino data, the restriction on m3D due to the PS gauge group and the
imposed mild hierarchy between m1D and m2D. To this end, m1D and m2D turn out to be
heavier than the ones of the corresponding quarks and lie in the ranges (0.1 − 1) GeV and
(2 − 20) GeV while the obtained M1ν̂c , M2ν̂c and M3ν̂c are restricted to the values 1010 GeV,(
1011 − 1012

)
GeV and

(
1013 − 1015

)
GeV respectively.
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