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1. Introduction

The concept of the multiverse changes many of the preconceptions made in the physics
and cosmology of the last century, providing us with a new paradigm that has inevitably
influence on major philosophical ideas. The creation of the universe stops being a singled
out event to become part of a more general and mediocre process, what can be thought of
as a new “Copernican turn” in the natural philosophy of the XXI century. The multiverse
also opens the door to new approaches for traditional questions in quantum cosmology. The
origin of the universe, the problem of the cosmological constant and the arrow of time, which
would eventually depend on the boundary conditions that are imposed on the state of the
whole multiverse, challenge us to adopt new and open-minded attitudes for facing up these
problems.

It would mean a crucial step for the multiverse proposals if a particular theory could make
observable and distinguishable predictions about the current properties of our universe. That
would bring the multiverse into the category of a physical theory at the same footing as
any other. Then, once the concept of the multiverse has reached a wider acceptance in
theoretical cosmology, it is now imperiously needed to develop a precise characterization of
the concept of a physical multiverse: one for which the theory could be not only falseable
but also indirectly tested, at least in principle. Some claims have been made to that respect
[16, 17, 31], although we are far from being able to state the observability of any kind of
multiverse nowadays.

In order to see the effects of other universes in the properties of our own universe, it seems
to be essential considering any kind of interaction or correlation among the universes of the
multiverse. Classical correlations in the state of the multiverse would be induced by the
existence of wormholes that would crop up and connect different regions of two or more
universes [15, 28, 44, 84]. Quantum correlations in the form of entanglement among the
universal states provide us with a another interaction paradigm in the context of the quantum
multiverse and it opens the door to a completely new and wider vision of the multiverse.

© 2012 Pérez; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



On the one hand, together with the classical laws of thermodynamics, we can also consider
the novel laws of entanglement thermodynamics. This adds a new tool for studying the
properties of both the universe and the multiverse. Furthermore, we would expect that the
classical and the quantum thermodynamical laws were complementary provided that the
quantum theory is a more general framework from which the classical one is recovered as a
particular limiting case. Then, local entropic processes of a single universe could be related
to the thermodynamical properties of entanglement among universes [60].

On the other hand, the quantum effects of the space-time are customary restricted to the
obscure region of the Planck scale or to the neighbourhood of space-time singularities
(both local and cosmological). However, cosmic entanglement among different universes
of the multiverse could avoid such restriction and still be present along the whole history
of a large parent universe [31, 62]. Thus, the effects of inter-universal entanglement on a
single universe, and even the boundary conditions of the whole multiverse from which such
entanglement would be consequence of, could in principle be tested in a large parent universe
like ours. This adds a completely novel feature to the quantum theory of the universe.

The chapter is outlined as follows. In Sec. 2, we shall describe the customary picture in which
the universes are spontaneously created from the gravitational vacuum or space-time foam.
The universes are quantum mechanically described by a wave function that can represent,
in the semiclassical regime, either an expanding or a contracting universe. Then, it will
be introduced the so-called ’third quantization formalism’, where creation and annihilation
operators of universes can be defined and it can be given a wave function that represent
the quantum state of the multiverse. Afterwards, it will be shown that an appropriate
boundary condition of the multiverse allows us to interpret it as made up of entangled
pairs of universes.

In Sec. 3, we shall briefly summarize the main features of quantum entanglement in quantum
optics, making special emphasis in the characteristics that completely departure from the
classical description of light. In Sec. 4, we shall address the question of whether quantum
entanglement in the multiverse may induce observable effects in the properties of a single
universe. We shall pose a pair of entangled universes and compute the thermodynamical
properties of entanglement for each single universe of the entangled pair. It will be shown
that the entropy of entanglement can be considered as an arrow of time for single universes
and that the vacuum energy of entanglement might allow us to test the whole multiverse
proposal. Finally, in Sec. 4, we shall draw some tentative conclusions.

2. Quantum multiverse

2.1. Introduction

A many-world interpretation of Nature can be dated back to the very ancient Greek

philosophy1 or, in a more recent epoch, to the many-world interpretation that Giordano
Bruno derived from the heliocentric theory of Copernicus [68], in the XV century, and to
the Kant’s idea of ’island-universes’, term coined by the Prussian naturalist Alenxander von
Humboldt in the XIX century [33]. In any case, it was always a very controversial proposal

1 The interpretation was posed, of course, in a radically different cultural context. However, it is curious reading some
of the pieces that have survived from Greek philosophers like Anaximander, Heraclitus or Democritus, in relation to
a ’many-world’ interpretation on Nature.
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perhaps because the mediocre perception that it entails for our world and for the human
being itself.

As it happened historically, the controversy disappears when it is properly defined what
it is meant by the word ’world’. If Bruno meant by the word ’world’ what is now known
as a solar system, von Humbolt meant by ’island universes’ what we currently know as
galaxies. We now uncontroversially know that there exist many solar systems in billions of
different galaxies. Maybe, the controversy of the current multiverse proposals could partially
be unravelled by first defining precisely what we mean by the word ’universe’, in the physics
of the XXI century.

Since the advent of the theory of relativity, in the early XX century, we can understand by
the word ’universe’ a particular geometrical configuration of the space-time as a whole that,
following Einstein’s equations, is determined by a given distribution of energy-matter in the
universe. Furthermore, the geometrical description of the space-time encapsulates the causal
relation between material points and, thus, the universe entails everything that may have a
causal connection with a particular observer. In other words, the universe is everything we
can observe.

Being this true, it does not close the door for the observation of the quantum effects that other
universes might have in the properties of our own universe and, thus, it does not prevent
us to consider a multiverse scenario. For instance, let us consider a spatially flat space-time
endorsed with a cosmological constant. It is well-known that, for a given observer, there
is an event horizon beyond which no classical information can be transmitted or received.
Thus, two far distant observers are surrounded by their respective event horizons becoming
then causally disconnected from each other. These causal enclosures may be interpreted

as different universes within the whole space-time manifold2. However, cosmic fields are
defined upon the whole space-time and, then, some quantum correlations might be present
in the state of the field for two distant regions of the space-time, in the same way as non-local
correlations appear in an EPR state of light in quantum optics. Therefore, being two observers
classically disconnected, they may share common cosmological quantum fields allowing us,
in principle, to study the quantum influence that other regions of the space-time may have
in the properties of their isolated patches.

This is an example of a more general kind of multiverse proposals for which it can be defined
a common space-time to the universes. It includes the multiverse that comes out in the

scenario of eternal inflation [45, 46]. There are other proposals3 in which there is no common
space-time among the universes, being the most notable example the landscape of the string
theories [9, 71]. In such multidimensional theories, the dimensional reduction that gives

rise to our four dimensional universe may contain up to 10500 different vacua that can be
populated with inflationary universes [29]. Two universes belonging to different vacua share
no common space-time. However, it might well be that relic quantum correlations may
appear between their quantum states, and even some kind of interaction has been proposed
to be observable [31, 48], in principle.

Therefore, even if we have not been exhaustive in the justification of a multiverse scenario,
it can easily be envisaged that the multiverse is a plausible cosmological scenario within the
framework of the quantum theory provided that this has to be applied to the space-time as
a whole. That is the basic assumption of the present chapter.

2 This is the so-called Level I multiverse in Refs. [72, 73].
3 A more exhaustive classification of multiverses and their properties can be found in Refs. [49, 72, 73].
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2.2. Classical universes

In next sections, we shall describe the quantum state of a multiverse made up of
homogeneous and isotropic universes. Then, it is worth first noting that homogeneity and
isotropy are assumable conditions as far as we deal with large parent universes, where by
large we mean universes with a length scale which is much greater than the Planck scale
even though it can be rather small compared to macroscopic scales. At the Planck length
the quantum fluctuations of the metric become of the same order of the metric and the
assumptions of homogeneity and isotropy are meaningless. However, except for its very
early phase the universe can properly be modeled by a homogeneous and isotropic metric,
at least as a first approximation.

We will also consider homogeneous and isotropic scalar fields. This can be more
objectionable. It can be considered a good approximation after the inflationary expansion
of the universe has rapidly smoothed out the large inhomogeneities of the distribution of
matter in the universe, and it clearly is an appropriate assumption for the large scale of the
current universe. However, we should keep in mind that the study of inhomogeneities is a
keystone for the observational tests of the inflationary scenario. Similarly, they might encode
valuable information for testing the properties of inter-universal entanglement. However, as
a first approach to the problem, we shall mainly be concerned with a multiverse made up of
fully homogeneous and isotropic universes and matter fields.

Therefore, let us consider a space-time described by a closed Friedmann-Robertson-Walker
(FRW) metric,

ds2 = −N 2dt2 + a2(t)dΩ
2
3, (1)

where N is the lapse function that parameterizes the different foliations of the space-time
into space and time, a(t) is the scale factor, and dΩ

2
3 is the usual line element on S3 [39, 50, 80].

The degrees of freedom of the minisuperspace being considered are then the lapse function,
N , the scale factor, a, and n scalar fields, ~ϕ = (ϕ1, . . . , ϕn), that represent the matter content
of the universe. The total action of the space-time minimally coupled to the scalar fields can
conveniently be written as [39]

S =
∫

dtL =
∫

dtN

(

1

2

GAB

N 2

dqA

dt

dqB

dt
− V(qI)

)

, (2)

for I, A, B = 0, . . . , n, where GAB ≡ GAB(q
I), is the minisupermetric of the n + 1 dimensional

minisuperspace, with {qI} ≡ {a, ~ϕ}, and the summation over repeated indices is implicitly
understood in Eq. (2). The minisupermetric GAB is given by [39], GAB = diag(−a, a3, . . . , a3),
and the potential V(qI) by

V(qI) ≡ V(a, ~ϕ) = a3 (V1(ϕ1), . . . , Vn(ϕn))− a, (3)

where Vi(ϕi) is the potential that corresponds to the field ϕi. The classical equations of
motion are obtained by variation of the action (2). Let us for simplicity consider only one
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scalar field, ϕ. Variation of the action with respect to the lapse function, fixing afterwards
the value N = 1, gives the Friedmann equation

(

da

dt

)2

= −1 + a
2σ2

(

1

2

(

dϕ

dt

)2

+ V(ϕ)

)

≡ −1 + a
2σ2ρϕ, (4)

where ρϕ is the energy density of the scalar field, and [45] σ2 = 8π
3M2

P

, with MP ∼ 1019GeV

being the Planck mass. Variation of Eq. (2) with respect to the scalar field yields

d2 ϕ

dt2
+

3

a

da

dt

dϕ

dt
+

∂V(ϕ)

∂ϕ
= 0. (5)

Let us focus on a slow-varying scalar field, which constitutes a particularly interesting case

that can model the inflationary stage of the universe. In that case [45, 47],
d2 ϕ
dt2 ≪ 3

a

da

dt

dϕ
dt

and (
dϕ
dt
)2 ≪ V(ϕ), and V(ϕ) ≈ V(ϕ0) represents the nearly constant energy density of the

scalar field, i.e. ρϕ ≈ V(ϕ0).

A limiting case is that of a constant value of the field, ϕ̇ = 0 and ρϕ = V(ϕ0) ≡ Λ. It
effectively describes a de-Sitter space-time with a value Λ of the cosmological constant. Then,
the Friedmann equation (4) can be written as

da

dt
=
√

a2H2 − 1, (6)

where, H2 ≡ σ2
Λ. It can be distinguished two regimes. For values, a ≥ 1

H
, the real solution

a(t) =
1

H
cosh Ht, (7)

represents a universe that starts out from a value a0 = 1
H

at t = 0, and eventually follows
an exponential expansion. It corresponds to the Lorentzian regime of the universe. On the
other hand, there is no real solution of Eq. (6) for values a <

1
H

. However, we can perform a
Wick rotation to Euclidean time, τ = it, by mean of which Eq. (6) transforms into

daE

dτ
=
√

1 − a2
E

H2, (8)

whose solution,

aE(τ) =
1

H
cos Hτ, (9)

is the analytic continuation to Euclidean time of the Lorentzian solution (7). The solution
given by Eq. (9) represents an Euclidean space-time that originates at aE = 0 (for τ = − π

2H
),
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and expands to the value aE = 1
H at τ = 0. The transition from the Euclidean region to

the Lorentzian region occurs at the boundary hypersurface Σ0 ≡ Σ(a0), at t = 0 = τ. This
transition should not be seen as a process happening in time because the Euclidean time is not
actual time (it is imaginary time). On the contrary, it precisely corresponds to the appearance
of time [39] and to the appearance of the (real) universe, actually.

This is, briefly sketched, the classical picture for the nucleation of a universe from nothing
[26, 39, 77], depicted in Fig. 1, where by nothing we should understand a state of the universe
where it does not exist space, time and matter, in the customary sense4. Within that picture,
the quantum fluctuations of the gravitational vacuum provide it with a foam structure [13,
19, 25, 85] where tiny black holes, wormholes and baby universes [70] are virtually created
and annihilated (see, Fig. 2). Some of the baby universes may branch off from the parent
space-time and become isolated universes that, subsequently, may undergo an inflationary
stage and develop into a large parent universe like ours.

Figure 1. The creation of a De–Sitter universe from a De–Sitter instanton.

Figure 2. Space-time foam: some of the baby universes may branch off from the parent space-time.

2.3. Quantum state of the multiverse

Following the canonical quantization formalism, the momenta conjugated to the

configuration variables qI are given by pI ≡
δL

δ( dqI

dt )
, where L ≡ L(qI ,

dqI

dt ) is the Lagrangian of

4 However, it does not correspond to the absolute meaning of ’nothing’, in a similar way as the vacuum of a quantum
field theory is not ’empty’ (see, Ref. [77]).
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Eq. (2). The Hamiltonian then reads

H ≡ dqI

dt
pI − L = NH ≡ N

(

GAB pA pB + V(qI)
)

. (10)

The invariance of general relativity under time reparametrizations implies that the variation
of the Hamiltonian (10) with respect to the lapse function vanishes. We obtain thus the
classical Hamiltonian constraint, H = 0, which gives rise to the Friedmann equation (4).
The wave function of the universe, φ, can then be obtained by performing a canonical

quantization of the momenta, pI → p̂I ≡ −ih̄ ∂
∂qI , and applying the quantum version of

the Hamiltonian constraint to the wave function φ, i.e. Ĥφ = 0. With an appropriate choice
of factor ordering, it can be written as [39]

{

− h̄2

√
−G

∂

∂qA

(√
−G GAB ∂

∂qB

)

+ V(qI)

}

φ(qI) = 0, (11)

where GAB is the inverse of the minisupermetric GAB, with GABGBC = δA
C , and G is the

determinant of GAB. For a homogeneous and isotropic universe with a slow-varying field
the Wheeler-De Witt equation (11) explicitly yields

h̄2 ∂2φ

∂a2
+

h̄2

a

∂φ

∂a
+ (a4V(ϕ)− a2)φ = 0, (12)

where, φ ≡ φ(a, ϕ). Let us note that if we replace V(ϕ) by Λ, the wave function φ ≡ φΛ(a)
represents the quantum state of a de-Sitter universe. For later convenience, let us write Eq.
(12) as

φ̈ +
Ṁ
M φ̇ + ω2φ = 0, (13)

where, φ̇ ≡ ∂φ
∂a and Ṁ ≡ ∂M

∂a , with M ≡ M(a) = a, and, ω ≡ ω(a, ϕ) = a
h̄

√

a2V(ϕ)− 1. It
will be useful later on to recall the formal resemblance of Eq. (13) to the equation of motion
of a harmonic oscillator. The WKB solutions of Eq. (13) can be written, in the Lorentzian
region, as

φ±
WKB(a, ϕ) =

N(ϕ)
√

M(a)ω(a, ϕ)
e±iS(a,ϕ), (14)

where N(ϕ) is a normalization factor, and

S(a, ϕ) =
∫

da ω(a, ϕ) =
1

h̄

(a2V(ϕ)− 1)
3
2

3V(ϕ)
. (15)

The positive and negative signs of φ±
WKB correspond to the contracting and expanding

branches of the universe, respectively. This can be seen by noticing that, for sufficiently
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Figure 3. Boundary conditions of the universe.

large values of the scale factor, the Fourier transform of φ±
WKB(a, ϕ) is highly peaked around

the value of the classical momentum pc
a [20], i.e. φ̃±

WKB(pa, ϕ) ≈ δ(pa − pc
a). The classical

momentum reads, pc
a = −a ∂a

∂t , and quantum mechanically, for large values of the scale factor,

p̂aφ = −ih̄φ̇ ≈ ±ωφ, where the positive and negative signs correspond to the signs of φ±
WKB.

Then, ∂a
∂t ≈ ∓ω

a , where the negative sign describes a contracting universe and the positive

sign an expanding universe. Thus, the solutions φ±
WKB of the Wheeler-de Witt equation (13)

describe the contracting and expanding branches of the universe, respectively.

In order to fix the state of the universe, a boundary condition has to be imposed on the wave
function φWKB. The tunneling boundary condition [78, 79] states that the only modes that
survive the Euclidean barrier are the outgoing modes of the minisuperspace that correspond,
in the Lorentzian region, to the expanding branches of the universe (see, Fig. 3). Then, the
wave function of the universe reads

φT(a, ϕ) ≈
N(ϕ)

√

M(a)ω(a, ϕ)
e−iS(a,ϕ), (16)

with [39, 79], N(ϕ) = e
− 1

3V(ϕ) . By using the matching conditions, the wave function (16) turns
out to be given in the Euclidean region by

φT
E(a, ϕ) ≈

e
− 1

3V(ϕ)

√

M(a)ω(a, ϕ)

(

e+I(a,ϕ) + e−I(a,ϕ)
)

, (17)

where, I = iS, is the Euclidean action. The first term in Eq. (17) may diverge as the scale
factor degenerates. However, this is not a problem in terms of Vilenkin’s reasoning [78]
because the tunneling boundary condition is mainly intended for fixing the state of the wave
function on the Lorentzian region where the current probability is defined, cf. [78]. The
philosophy of the ’no-boundary’ proposal of Hartle and Hawking [24] is quite the contrary.
For these authors, the actual quantum description of the universe is given by a path integral
performed over all compact Euclidean metrics. The no-boundary condition is then imposed
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on the Euclidean sector of the wave function. In the case being considered, it is equivalent to
impose regularity conditions [22], and thus

φNB
E

(a, ϕ) ≈
N(ϕ)

√

M(a)ω(a, ϕ)
e
−I(a,ϕ), (18)

with N(ϕ) = e
+ 1

3V(ϕ) [22, 39]. In the Lorentzian sector, the wave function turns out to be
given by a linear combination of expanding and contracting branches of the universe [27],
i.e.

φT(a, ϕ) ≈
e
+ 1

3V(ϕ)

√

M(a)ω(a, ϕ)
cos S ∝

e
+ 1

3V(ϕ)

√

M(a)ω(a, ϕ)

(

e
+iS(a,ϕ) + e

−iS(a,ϕ)
)

. (19)

Both expanding and contracting branches suffer subsequently a very effective decoherence
process [21, 37] becoming quantum mechanically independent. Thus, observers inhabiting a
branch of the universe cannot perceive any effect of the quantum superposition.

2.4. Third quantization formalism

Let us now introduce the so-called ’third quantization’ formalism [70], where the creation
and the annihilation of universes is naturally incorporated in a parallel way as the creation
and annihilation of particles is naturally formulated in a quantum field theory. The third
quantization formalism consists of considering the wave function of the universe, φ(a, ~ϕ),
as a field defined upon the minisuperspace of variables (a, ~ϕ). The minisupermetric of the
minisuperspace, GAB = diag(−a, a3, . . . , a3), where Gaa = −a, has a Lorentzian signature
and it allows us to formally interpret the scale factor as an intrinsic time variable of the
minisuperspace. This has not to be confused with a time variable in terms of ’clocks and
rods’ measured by any observer. The consideration of the scale factor as a time variable
within a single universe is a tricky task (see Refs. [23, 30, 34, 38–40, 78]) that will partially be
addressed on subsequent sections.

We already noticed the formal analogy between the Wheeler-de Witt equation (13) and the
equation of motion of a harmonic oscillator. Taking further the analogy, we can find a (third
quantized) action for which the variational principle gives rise to Eq. (13), given by

(3)
S =

1

2

∫

da
(3)

L =
1

2

∫

da

(

Mφ̇2
−Mω2φ2

)

. (20)

The third quantized momentum is defined as, (3)Pφ ≡
δ (3)L

δφ̇
= Mφ̇, where (3)L is the

Lagrangian of the action (20), and the third quantized Hamiltonian then reads

(3)
H =

1

2M
P

2
φ +

Mω2

2
φ2, (21)

where M ≡ M(a) and ω ≡ ω(a, ϕ) are defined after Eq. (13). The configuration variable of
the third quantization formalism is the wave function of the universe, φ, and the quantum
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state of the multiverse is thus given by another wave function, Ψ ≡ Ψ(φ, a), which is the
solution of the (third quantized) Schrödinger equation [61, 70]

(3)
Ĥ(φ,−ih̄

∂

∂φ
, a)Ψ(φ, a) = ih̄

∂Ψ(φ, a)

∂a
. (22)

The customary interpretation of the wave function Ψ is the following [70]: let us expand the
quantum state of the multiverse, |Ψ〉, in an orthonormal basis of number states, |N〉, i.e.

|Ψ〉 = ∑
N

ΨN(φ, a)|N〉, (23)

then, |ΨN(φ, a0)|
2 gives the probability to find in the multiverse N universes with a value

a0 of the scale factor. We can consider different types of universes having different

energy-matter contents represented by the fields ~ϕ(i) of the i-universe. The wave function
of the whole multiverse is given then by a linear superposition of wave functions of the form
[61, 62]

Ψ~N
(~φ, a) = ΨN1

(φ1, a)ΨN2
(φ2, a) · · ·ΨNn

(φn, a), (24)

where, ~φ ≡ (φ1, φ2, . . . , φn) and ~N ≡ (N1, N2, . . . , Nn), with Ni being the number of universes

of type i, represented by the wave function φi ≡ φ(~ϕ(i), a). Following the canonical

interpretation of the wave function in quantum mechanics, |Ψ~N
(~φ, a0)|

2 gives the probability

to find ~N universes in the multiverse with a value of the scale factor and the scalar fields
given by, a = a0 and ~ϕ(i) = ~ϕ

(i)
0 , for the i-universe.

Let us just consider one type, i, of universes. The wave function φi can be promoted to an
operator φ̂i that can be written as

φ̂i(a, ϕ) = Ai(a, ϕ)b̂†
0,i + A

∗
i
(a, ϕ)b̂0,i, (25)

where the probability amplitudes Ai(a, ϕ) and A∗
i
(a, ϕ) satisfy the Wheeler-de Witt equation

(13), and

b̂0,i ≡

√

M0ω0

h̄

(

φ̂i +
i

M0ω0
P̂φi

)

, (26)

b̂
†
0,i ≡

√

M0ω0

h̄

(

φ̂i −
i

M0ω0
P̂φi

)

, (27)

are the customary creation and annihilation operators of the harmonic oscillator, with M0

and ω0 being the mass and frequency terms, M(a) and ω(a, ϕ), respectively, evaluated on
the boundary hypersurface Σ0 for which, a = a0 and ϕ = ϕ0. The operators b̂0,i and b̂†

0,i can
then be interpreted as the annihilation and creation operators of universes with a value of
the scale factor a0 and an energy density given by ρϕ ≈ V(ϕ0), for the case of a slow-varying
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field. The kind of universes created and annihilated by b̂†
0,i and b̂0,i, respectively, also depend

on the boundary conditions imposed on the probability amplitudes Ai(a, ϕ) and A∗
i
(a, ϕ).

Recalling the previous discussion on the boundary conditions of the universe, if the tunneling
boundary condition is imposed, then, b̂†

0,i (b̂0,i) creates (annihilates) expanding branches of

the universe. If otherwise the ’no-boundary’ proposal is chosen, b̂†
0,i (b̂0,i) creates (annihilates)

linear combinations of expanding and contracting branches.

Therefore, at least for universes with high order of symmetry, the third quantization
formalism parallels that of a quantum field theory in a curved space-time, i.e. it can formally
be seen as a quantum field theory defined on the curved minisuperspace described by the
minisupermetric GAB. The scale factor formally plays the role of the time variable and the
matter fields ~ϕ the role of the spatial coordinates. Creation and annihilation operators of
universes can properly be defined in the curved minisuperspace. However, as it happens
in a quantum field theory, different representations can be chosen to describe the quantum
state of the universes. The meaning of such representations needs of a further analysis in
terms of the boundary condition that has to be imposed on the quantum state of the whole
multiverse.

2.5. Boundary conditions of the multiverse

For a given representation, b̂†
i

and b̂i, the eigenvalues of the number operator N̂i ≡ b̂†
i
b̂i

might be interpreted in the third quantization formalism as the number of i-universes in the
multiverse, where the index i labels the different kinds of universes considered in the model.
However, in terms of the constant operators b̂0,i and b̂†

0,i defined in Eqs. (26-27), the number

of universes of the multiverse is not conserved because N̂0,i ≡ b̂†
0,i b̂0,i is not an invariant

operator, i.e.

dN̂0,i

da
≡

i

h̄
[(3)Ĥi, N̂0,i] +

∂N̂0,i

∂a
=

i

h̄
[(3)Ĥi, N̂0,i] 6= 0. (28)

For a large parent universe, i.e. for values a ≫ 1, the creation and annihilation operators can
asymptotically be taken to be the usual creation and annihilation operators of the harmonic
oscillator (21) with the proper frequency ω of the Hamiltonian, i.e.

b̂ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i +
i

M(a)ωi(a, ϕ)
P̂φi

)

, (29)

b̂
†
ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i −
i

M(a)ωi(a, ϕ)
P̂φi

)

, (30)

for a given type of i-universes. However, in terms of the asymptotic representation (29-30)
the number operator, N̂ω,i ≡ b̂†

ω,i b̂ω,i, is neither an invariant operator because

dN̂ω,i

da
≡

i

h̄
[(3)Ĥi, N̂ω,i] +

∂N̂ω,i

∂a
=

∂N̂ω,i

∂a
6= 0. (31)

It would be expected that the number of universes in the multiverse would be a property
of the multiverse independent of any internal property of a particular single universe.
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Therefore, it seems appropriate to impose the following boundary condition on the
multiverse:

The number of universes of the multiverse does not depend on the value of the scale
factor of a particular single universe.

This boundary condition imposes the restriction that the number operator N̂i for a particular
type of i-universes has to be an invariant operator5. We can then follow the theory of
invariants developed by Lewis [43] and others [11, 41, 55, 57, 67, 69, 76], and find a Hermitian
invariant operator, Îi = h̄(b̂†

i
b̂i +

1
2 ), where [43]

b̂i(a) ≡

√

1

2h̄

(

1

Ri

φ̂i + i(Ri P̂φi
− Ṙiφ̂i)

)

, (32)

b̂
†
i
(a) ≡

√

1

2h̄

(

1

Ri

φ̂i − i(Ri P̂φi
− Ṙiφ̂i)

)

, (33)

with, Ri ≡ Ri(a, ϕ), that can be written as R =
√

φ2
1,i + φ2

2,i, being φ1,i and φ2,i two

independent solutions of the Wheeler-de Witt equation (13). In the semiclassical regime,
we can use independent combinations of the solutions φWKB

+ and φWKB
− so that

Ri(a, ϕ) ≈
e
± 1

3Vi (ϕ)

√

M(a)ωi(a, ϕ)
, (34)

where the positive sign corresponding to the choice of the no-boundary proposal and the
negative sign to the tunneling boundary condition. The number operator for a particular
kind of i-universes in the representation given by Eqs. (32-33), N̂i ≡ b̂†

i
b̂i, is then an invariant

operator fulfilling the boundary condition of the multiverse and, thus, the eigenvalues Ni,
with N̂i|Ni, a〉 = Ni|Ni, a〉 and Ni 6= Ni(a), can properly be interpreted as the number of
i-universes of the multiverse.

In terms of the invariant representation, the Hamiltonian (21) takes the form

(3)
Ĥ = h̄

(

β+ (b̂†)2 + β− b̂
2 + β0 (b̂

†
b̂ +

1

2
)

)

, (35)

where,

β∗+ = β− =
1

4

{

(

Ṙ −
i

R

)2

+ ω2
R

2

}

, (36)

β0 =
1

2

(

Ṙ
2 +

1

R2
+ ω2

R
2

)

. (37)

5 We are not considering transitions from one kind of universes to another.
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The Hamiltonian (35) is formally the same Hamiltonian of a degenerated parametric
amplifier used in quantum optics [66, 82] (see also, Sec. 3). The quadratic terms are
interpreted therein as the creation and annihilation operators of pairs of entangled photons.
Similarly, we can interpret the quadratic terms in b̂† and b̂ of Eq. (35) as operators that create
and annihilate, respectively, pairs of entangled universes. In the case that the universes were
distinguishable, the Hamiltonian (35) would take the form of a non-degenerated parametric
amplifier [82]

(3)Ĥ = h̄

(

β+ b̂†
1 b̂†

2 + β− b̂1b̂2 +
β0

2
(b̂†

1 b̂1 + b̂†
2 b̂2 + 1)

)

, (38)

where the indices 1 and 2 label the two universes of the entangled pair. The distinguishability
of universes is certainly a tricky task. However, observers may exist in the two universes of
an entangled pair because the universes share similar properties and, then, the plausible
(classical and quantum) communications between these observers would make the universes
be distinguishable. Classical communications between the observers of different universes
can be conceivable by the presence of wormholes connecting the universes and quantum
communications could then be implemented by using quantum correlated fields shared by
the two observers. Therefore, it is at least plausible to pose a model of the multiverse made
up of entangled pairs of distinguishable universes.

The general quantum state of a multiverse formed by entangled pairs of de-Sitter universes
would be given by linear combinations of terms like [61, 62] (see Eq. (24))

Ψ~N
(~φ, a) = Ψ

Λ1
N1
(a, φ1)Ψ

Λ2
N2
(a, φ2) · · ·Ψ

Λn

Nn
(a, φn), (39)

where, ~φ ≡ (φ1, φ2, . . . , φn), and ~N ≡ (2N1, 2N2, . . . , 2Nn), with Ni being the number of pairs
of universes of type i, represented by the wave function φi ≡ φΛi

(a) that corresponds to the

value Λi of the cosmological constant. The wave functions, Ψ
Λi

Ni
(φi, a), in Eq. (39) are the

solutions of the third quantized Schrödinger equation

ih̄
∂

∂a
Ψ

Λi

Ni
(φi, a) = Ĥi(φ, pφ, a)ΨΛi

Ni
(φi, a), (40)

with

Ĥi = h̄

{

β
(i)
−

b̂
(i)
1 b̂

(i)
2 + β

(i)
+ (b̂

(i)
1 )†(b̂

(i)
2 )† +

1

2
β
(i)
0

(

(b̂
(i)
1 )† b̂

(i)
1 + (b̂

(i)
2 )† b̂

(i)
2 + 1

)

}

, (41)

for each kind of i-universes in the multiverse [62].

3. Quantum entanglement

3.1. Introduction

Back to the early years of the quantum development, in 1935, Schrödinger [64, 65] coined the
word ’entanglement’ to describe a puzzling feature of the quantum theory that was formerly
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posed by Einstein, Podolski and Rosen in a famous gedanken experiment [12]. Schrödinger
also realized that entanglement is precisely the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought [64]. Let us briefly show
it by following the example given in Ref. [66] (see also Ref. [82]). Let us consider the
photo-disintegration of a Hg2 molecule formed by two atoms of Hg with spin 1

2 . Before the
disintegration, the molecule is taken to be in a state of zero angular momentum so that the
composite state is given by

|Hg2〉 =
1√
2
(| ↑1↓2〉 − | ↓1↑2〉) , (42)

where 1 and 2 refer to the atoms of Hg and | ↑ (↓)〉 refers to the value + 1
2 (− 1

2 ) of
the projection of their spin along the z-axis. After the photo-disintegration, performed
with no disturbance of the angular momentum, the two atoms separate each other in
opposite directions so we can make independent measurements on them. Before doing any
measurement we do not know the particular value of the spin of each atom. However, we
do anticipatedly know that if a measurement of the spin projection is performed on the
atom 1 yielding a value + 1

2 (− 1
2 ), then, the spin projection of the atom 2 is to be − 1

2 (+
1
2 ).

Furthermore, if it is performed a different measurement of the projection of the spin of the
particle 1 along, say, the x-axis, we are determining the value of the spin projection of the
particle 2 along the same axis, too. This non-local feature of the quantum theory is known as
entanglement and the state (42) is called an entangled state.

In 1964, Bell derived certain inequalities [7, 8] that should be satisfied by any reasonable
realistic6 theory of local variables. The experiments of Aspect [3] and others [2, 63, 74, 83]
have shown that the entangled states of the quantum theory violate such inequalities.
Furthermore, these states have not only provided us with an experimental test of the
quantum postulates but they have also given rise to the development of a completely new
branch of physics, the so-called quantum information theory [32, 35, 75], which includes
interesting subjects like quantum computation, quantum cryptography, and quantum
teleportation, which are currently under a promising state of development.

It is finally worth noticing that the kinematical non-locality of the quantum theory is also
the feature that forces us to consider a wave function of the universe. As it is pointed out
in Ref. [39], if gravity is quantized, the kinematical non-separability of quantum theory demands
that the whole universe must be described in quantum terms (cf. p. 4). Every space-time region
is entangled to its environment, which is entangled to another environment and so forth,
ending up in a quantum description of the whole universe.

3.2. Squeezed and entangled states of light

Squeezed states of light [81] can be seen as a generalization of the coherent states. Let us
define the quadrature operators

X̂1 ≡ â + â† , X̂2 = i(â† − â), (43)

6 By a realistic theory we mean a theory that presupposes that the elements of the theory represent elements of physical
reality (see Ref. [12]).
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where â† and â are the usual creation and annihilation operators of the harmonic oscillator.
The operators X̂1 and X̂2 are essentially dimensionless position and momentum operators.
The uncertainty relation for ∆X1 and ∆X2 reads

∆X1∆X2 ≥ 1, (44)

where, for a coherent state, ∆X1 = ∆X2 = 1. A squeezed state is defined as the quantum
state for which one of the quadratures satisfies7

(∆Xi)
2
< 1 (i = 1 or 2). (45)

Therefore, for a squeezed state the uncertainty of one of the quadratures is reduced below
the limit of the Heisenberg principle at the expense of the increased fluctuations of the other
quadrature.

Unlike the generation of coherent states, which is associated with linear terms of the creation
and annihilation operators in the Hamiltonian, the generation of squeezed states is associated
with quadratic terms of such operators. For instance, let us consider the Hamiltonian that
represents in quantum optics a degenerated parametric amplifier [66, 82]

Ĥ = ih̄
χ

2

(

(â
†)2 − â

2
)

, (46)

where χ is a coupling constant. Then, the time evolution of the vacuum state,

|s(t)〉 = Ŝ(χ)|0〉 = e
χ

2 ((â†)2−â2)t|0〉, (47)

yields a squeezed (vacuum) state, |s(t)〉, with Ŝχ being the squeezing operator which satisfies,

Ŝ†(χ) = Ŝ−1(χ) = Ŝ(−χ). It is therefore a unitary operator. The Heisenberg equations of
motion for the quadrature amplitudes turn out to be then

dX̂1

dt
= χX̂1 ,

dX̂2

dt
= −χX̂2, (48)

with solutions given by

X̂1(t) = e
χt

X̂1(0) , X̂2(t) = e
−χt

X̂2(0). (49)

Then, for an initial vacuum state, for which ∆Xi(0) = 1, the variances of the quadratures
read

∆X1(t) = e
2χt , ∆X2(t) = e

−2χt. (50)

7 An ideal squeezed state also satisfies ∆X1∆X2 = 1
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It can clearly be seen that one of the variances (∆X2) decreases in time at the expense of the
increase of the other (∆X1), with ∆X1(t)∆X2(t) = 1. The squeezed vacuum state is therefore
an ideal squeezed state (see footnote 7).

The Hamiltonian given by Eq. (46) is associated with the generation of entangled pairs of
photons of equal frequency. For that reason, squeezed states are usually dubbed two photon
coherent states [87, 88]. The non-degenerate amplifier is a generalization of the Hamiltonian
(46) which generates entangled pairs of distinguishable photons of frequency ω1 and ω2,
respectively. In that case, the Hamiltonian reads

Ĥ = ih̄χ(â†
1 â†

2 − â1 â2), (51)

where â†
1 , â1 and â†

2, â2 are the creation and annihilation operators of modes with frequency
ω1 and ω2, respectively. The solutions of the Heisenberg equations read [82]

â1(t) = â1(0) cosh χt + â†
2(0) sinh χt, (52)

â2(t) = â2(0) cosh χt + â†
1(0) sinh χt, (53)

and the evolution of the two-mode vacuum state is now given by

|s2〉 = Ŝ2(χ)|0102〉 = e(â†
1 â†

2−â1 â2)χt|0102〉, (54)

where Ŝ2(χ) is the two mode squeeze operator.

Squeezed and entangled states are usually dubbed non-classical states [59] because they
may violate some inequalities that should be satisfied in the classical description of light.
For instance, in Fig. 4 it is depicted the typical experimental setup to test the violation of

the classical inequality g(2)(0) ≥ 1 (photon bunching [59, 82]), where g(2)(τ) is the second
order correlation function that measures the correlation between the state of the field at two
different times t and t + τ. Classically, a beam of light with an initial intensity IA is split into
two beams of equal intensities, IA1 = IA2 ≡ I. If the averaged intensity is defined by

〈I〉 =
∫

P(I)I dI, (55)

for a given positive distribution P(I), then, g(2)(0) can be written as

g(2)(0) =
〈IA1 IA2〉

〈IA1〉〈IA2〉
=

〈I2〉

〈I〉2
= 1 +

1

〈I〉2

∫
dI P(I)(I − 〈I〉)2 ≥ 1. (56)

Quantum mechanically, however, the second order correlation function is defined, for a single
mode, as [59, 82]

Open Questions in Cosmology200



g(2)(0) =
〈(a†)2a2〉
〈a†a〉2

≥ 1 − 1

〈a†a〉 . (57)

There is then room for a quantum violation of the classical inequality g(2)(0) ≥ 1. For a large

number of photons the quantum inequality (57) becomes the classical constraint g(2)(0) ≥ 1,
and light can be described classically.

Figure 4. Experimental setup for testing photon antibunching [59]: S, source of light; BS, beam splitter; PD, photodetector;

and, C, correlator.

It is worth noticing that what it is violated in an experimental setup involving squeezed
and entangled states are some classical assumptions. For instance, in the experimental setup
depicted in Fig. 4, the photon is not split into two photons by the beam splitter but it takes
either the path that reaches the photo-counter 1 or the path that reaches the photo-counter
2. The fact that the photon is not divided into two photons, as it would happen to an
electromagnetic wave, supports the consideration of the photon as a real and individual
entity. Moreover, the corpuscular nature of the photon is the postulate that Einstein assumed
in order to properly describe the photoelectric effect and it can be considered the germ of
quantum mechanics, actually.

However, such a conclusion does not imply that we can interpret the photon as a classical
particle. The double-slit experiment clearly shows that the concept of photon as a
localized particle is generally meaningless. The quantum concept of particle has rather
to be understood as a global property of the field. Their localization and the space-time
independence of different particles depend on the separability of their states. Furthermore,
the violation of the classical inequalities is associated with negative values of the probability
distributions. This can clearly be seen from Eq. (56), where a negative value of P(I) is

needed to obtain a value g(2)(0) < 1. It plainly shows that there are quantum states of light
that cannot be described classically [59].

Another test for the non-classicality of some quantum states is given by the violation of the
Bell’s inequalities. This is achieved, for a two mode state of light, whenever it is satisfied [59]

C ≡ 〈a†
1a1a†

2a2〉
〈a†

1a1a†
2a2〉+ 〈(a†

1)
2a2

1〉
≥

√
2

2
. (58)
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For the two mode squeezed operators (52-53), it can be checked that

〈a†
1a1a†

2a2〉 = N2(6x4 + 6x2 + 1) + N(6x4 + 4x2) + x2(2x2 + 1), (59)

〈(a†
1)

2a2
1〉 = N2(6x4 + 6x2 + 1) + N(6x4 + 2x2 − 1) + 2x4, (60)

where, x ≡ x(t) = sinh χt, and the mean value has been computed for initial number states,
with N1 = N2 ≡ N. For an initial vacuum state, x(0) = 0 and N = 0, then C = 1 > 0.7,
which implies a maximum violation of Bell’s inequalities8. This result is expected because the
quantum vacuum state is a highly non-local state. For a pair of entangled photons (N = 1),
it is obtained

C =
14x4 + 11x2 + 1

28x4 + 19x2 + 1
, (61)

which implies a violation of Bell’s inequalities for a value, 0.31 > sinh χt > 0. At later

times, the effective number of photons, 〈Ne f f 〉 = sinh2 χt, produced by the parametric
amplifier grows and the quantum correlations are destroyed. The radiation effectively
becomes classical, then. However, at shorter times, the two mode squeezed states violate
the Bell’s inequalities showing their non-classical behaviour.

Therefore, entangled and squeezed states can essentially be seen as non-classical states,
which is fundamentally related to the complementary principle of quantum mechanics.
Generally speaking, the classical description of light in terms of waves and particles,
separately, does not hold: i) the photon has to be considered as an individual entity (particle
description), and ii) we have to complementary consider interference as well as non-local
effects between the states of two distant photons (wave description).

3.3. Thermodynamics of entanglement

For a physical system whose quantum state is represented by a density matrix9, ρ̂(t),
whose evolution is determined by a Hamiltonian, Ĥ ≡ Ĥ(t), we can define the following
thermodynamical quantities [1, 14]

E(t) = Tr(ρ̂(t)Ĥ(t)), (62)

Q(t) =
∫ t

Tr

(

dρ̂(t′)
dt′

Ĥ(t′)
)

dt′, (63)

W(t) =
∫ t

Tr

(

ρ̂(t′)
dĤ(t′)

dt′

)

dt′, (64)

where Tr(Ô) denotes the trace of the operator Ô. The quantities E(t), Q(t), and W(t), are
the quantum informational analogue to the energy, heat and work, respectively. The first
principle of thermodynamics,

8 Let us notice that for a pure entangled state like |ψ〉 = 1√
2
(|00〉+ |11〉), 〈ψ|(a†

1)
2a2

1|ψ〉 = 0 and thus C = 1, too.
9 In this section, it turns out to be convenient to use the density matrix formalism. This can generally be found in the

bibliography (see, for instance, Refs. [14, 32, 35, 54, 75]). Let us just briefly note that for a pure state |ψ〉, the density
matrix is given by ρ̂ = |ψ〉〈ψ|, and for a mixed state, ρ̂ = ∑i λi |i〉〈i|, where λi < 1 are the eigenvalues of the density
matrix, with ∑i λi = 1, and the vectors {|i〉} form an orthonormal basis.
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dE = δW + δQ, (65)

is then directly satisfied. The quantum informational analogue to the entropy is defined
through the von Neumann formulae [14, 35, 54, 75]

S(ρ) = −Tr (ρ̂(t) ln ρ̂(t)) = −Σiλi(t) ln λi(t), (66)

where λi(t) are the eigenvalues of the density matrix, and 0 ln 0 ≡ 0. For a pure state, ρ̂n = ρ̂

and λi = δij for some value j. Then, the entropy vanishes. For a mixed state, S > 0. It can be
distinguished two terms [1] in the variation of entropy,

dS =
δQ

T
+ σ. (67)

The first term corresponds to the variation of the entropy due to the change of heat. The
second term in Eq. (67) is called [1] entropy production, and it accounts for the variation of
entropy due to any adiabatic process. The second principle of thermodynamics states that
the change of entropy has to be non-negative for any adiabatic process, i.e. σ ≥ 0.

Let us now analyze the thermodynamical properties of a two mode squeezed state, Eq. (54),
represented by the density matrix

ρ̂ = |s2〉〈s2| = Ŝ2(r)|0102〉〈0102|Ŝ
†
2(r), (68)

where the squeezing operator is given by, Ŝ2(r) ≡ e(â†
1 â†

2−â1 â2)r(t), with r(t) = χt, and |0102〉 ≡
|01〉|02〉, with |01〉 and |02〉 being the initial ground states of each single mode, respectively.
The reduced density matrix that represents the quantum state of each single mode can be
obtained by tracing out the degrees of freedom of the partner mode, i.e.

ρ̂1 ≡ Tr2ρ̂ =
∞

∑
N2=0

〈N2|ρ̂ N2〉, (69)

and similarly for ρ̂2 by replacing the indices 2 and 1. By making use of the disentangling
theorem [10, 86], the squeezing operator Ŝ2(r) can be written as

Ŝ2(r) = eΓ(t)â†
1 â†

2 e−g(t)(â†
1 â1+â†

2 â2+1)e−Γ(t)â1 â2 , (70)

where

Γ(t) ≡ tanh r(t) , g(t) ≡ ln cosh r(t), (71)

with, r(t) = χt. We can thus compute the reduced density matrix (69), yielding
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ρ̂1(t) = e−2g(t)
∞

∑
N1=0

e2N1 ln Γ(t)|N1〉〈N1| =
1

cosh2 r(t)

∞

∑
N1=0

(

tanh2 r(t)
)N1

|N1〉〈N1|. (72)

It turns out to be that ρ̂1 describes a thermal state

ρ̂1(t) =
1

Z(t)

∞

∑
N1=0

e
−

ω1
T(t) (N1+

1
2 )|N1〉〈N1|, (73)

where, Z−1 = 2 sinh ω1

2T(t)
, with a time dependent temperature of entanglement given by

T(t) =
ω1

2 ln 1
Γ(t)

, (74)

with ω1 being the frequency of the mode. It is worth mentioning that the thermal state (73) is

indistinguishable from a classical mixture [36, 56]. In that sense, it can be seen as a classical

state. However, it has been obtained from the partial trace of a composite entangled state

which is, as it has previously been shown, a quantum state having no classical analogue.

We can now compute the thermodynamical quantities given by Eqs. (62-64) and Eq. (66)

for the thermal state (73). The entropy of entanglement, i.e. the quantum entropy that

corresponds to the reduced density matrix ρ̂1, reads

Sent(t) = −Tr(ρ̂1 ln ρ̂1) = cosh2 r(t) ln cosh2 r(t)− sinh2 r(t) ln sinh2 r(t). (75)

The total energy E1 ≡ E(ρ1) yields

E1(t) = ω1(sinh2 r(t) +
1

2
) ≡ ω1(〈N(t)〉+

1

2
), (76)

where 〈N(t)〉 is an effective mean number of photons due to the squeezing effect. For a

mode of constant frequency ω1, the variation of work vanishes because

δW1 =
dω1

dt
(sinh2 r(t) +

1

2
) = 0. (77)

The variation of heat is however different from zero. It reads

δQ = ω1 sinh 2r(t)
∂r(t)

∂t
dt. (78)
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It can also be checked that

σ ≡
dSent

dt
−

1

T(t)

δQ

δt
= 0 , ∀t. (79)

Therefore, the second principle of thermodynamics provides us with no arrow of time
because the entropy production σ identically vanishes at any time. In a non-reversible
process, however, the constraint σ > 0 would give rise to the entanglement thermodynamical
arrow of time [36, 56].

4. Quantum entanglement in the multiverse

4.1. Creation of entangled pairs of universes

First, we shall present a plausible scenario for the nucleation of a pair of entangled universes.
The Wheeler-de Witt equation (12) for a de-Sitter universe with a massless scalar field reads

h̄2φ̈ +
h̄2

a
φ̇ −

h̄2

a2
φ′′ + (Λa4

− a2)φ = 0, (80)

where, φ ≡ φ(a, ϕ) is the wave function of the universe with, φ̇ ≡
∂φ
∂a and φ′ ≡

∂φ
∂ϕ , and Λ is

the cosmological constant. As it was already pointed out in Sec. 2, in the third quantization
formalism the wave function φ is promoted to an operator φ̂ that, in the case now being
considered, can be decomposed in normal modes as

φ̂(a, ϕ) =
∫

dk
(

eikϕ Ak(a)b̂†
k + e−ikϕ A∗

k (a)b̂k

)

, (81)

where, b̂k ≡ b̂k(a0) and b̂†
k ≡ b̂†

k (a0), are the constant operators defined in Eqs. (26-27), now
with the mode-dependent frequency,

ωk(a) =
1

h̄

√

Λa4 − a2 +
h̄2k2

a2
, (82)

evaluated at a0. The probability amplitudes Ak(a) and A∗
k (a) satisfy the equation of the

damped harmonic oscillator,

Äk(a) +
Ṁ

M
Ȧk(a) + ω2

k Ak(a) = 0, (83)

with, M ≡ M(a) = a, and ωk ≡ ωk(a). Let us recall that the real values of the frequency
(82) define the oscillatory regime of the wave function of the universe in the Lorentzian
region, and the complex values define the exponential regime of the Euclidean region. Let
us first consider the zero mode of the wave function, i.e. k = 0. Then, the wave function
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Figure 5. Before reaching the collapse, the instanton finds the transition hypersurface Σ
′′.

Figure 6. Creation of a pair of entangled universes from a pair of instantons.

φΛ(a) quantum mechanically describes the nucleation of a de-Sitter universe from a de-Sitter
instanton [26, 39, 77, 78] depicted in Sec. 2, with a transition hypersurface Σ0 ≡ Σ(a0) located
at a0 = 1√

Λ
(see, Fig 1).

For values of k different from zero, the quantum correction term given in Eq. (82) introduces a
novelty. For the value, km > k > 0, where k2

m ≡ 4
27h̄

2
Λ2

, there are two transition hypersurfaces

from the Euclidean to the Lorentzian region, Σ
′ ≡ Σ(a+) and Σ

′′ ≡ Σ(a−), respectively,
located at [62]

a+ ≡
1

√
3Λ

√

1 + 2 cos

(

θk

3

)

, (84)

a− ≡
1

√
3Λ

√

1 − 2 cos

(

θk + π

3

)

, (85)

where, in units for which h̄ = 1,

θk ≡ arctan
2k

√

k2
m − k2

k2
m − 2k2

. (86)

The picture is then rather different from the one depicted in Fig. 1. First, at the transition
hypersurface Σ

′ the universe finds the Euclidean region (let us notice that for k → 0, a+ → a0

and a− → 0). However, before reaching the collapse, the Euclidean instanton finds a new
transition hypersurface Σ

′′ (see Fig 5). Then, following a mechanism that parallels that
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proposed by Barvinsky and Kamenshchik in Refs. [4–6], two instantons can be matched by
identifying their hypersurfaces Σ

′′ (see Fig. 6). The instantons can thus be created in pairs
which would eventually give rise to an entangled pair of universes. Let us notice that this is
a quantum effect having no classical analog because the quantum correction term in Eq. (82)
does not appear in the classical theory.

The matching hypersurface Σ
′′ ≡ Σ

′′(a−), where a− ≡ a−(θk) is given by Eq. (85) with Eq.
(86), depends on the value k of the mode. Therefore, the matched instantons can only be
joined for an equal value of the mode of their respective scalar fields. The universes created
from such a double instanton are then entangled, with a composite quantum state given by

φI,I I =
∫

dk

(

e
ik(ϕI+ϕI I )AI,k(a)AI I,k(a) b̂

†
I,k b̂

†
I I,k + e

−ik(ϕI+ϕI I )A
∗
I,k(a)A

∗
I I,k(a) b̂I,k b̂I I,k

)

, (87)

where ϕI,I I are the values of the scalar field of each single universe, labelled by I and I I,
respectively. The cross terms like AI,k A∗

I I,k cannot be present in the state of the pair of
universes because the orthonormality relations between the modes [62]. Then, the composite
quantum state must necessarily be the entangled state represented by Eq. (87).

It is also worth mentioning that, in the model being considered, there is no Euclidean regime
for values k ≥ km and, therefore, no universes are created from the space-time foam with
such values of the mode. Then, km can be considered the natural cut-off of the model. Let
us also note that a similar behavior of the modes of the universe would be obtained for a
non-massless scalar field provided that the potential of the scalar field, V(ϕ), satisfies the
boundary condition [38, 39], V(ϕ) → 0 for a → 0.

4.2. Entangled and squeezed states in the multiverse

Entangled states, like those found in the preceding section or those appearing in the phantom
multiverse [18, 62], can generally be posed in the quantum multiverse. Furthermore, the
canonical representations of the harmonic oscillator that represent the quantum state of the
multiverse, in the model described in Sec. 2, are related by squeezed transformations [41].
Thus, squeezed states may generally be considered in the quantum multiverse.

As we saw in Sec. 3, entangled and squeezed states are usually dubbed ’non-classical’
states because they are related to the violation of classical inequalities. Such violation is
fundamentally associated to the complementary principle of quantum mechanics. In the
multiverse, squeezed and entangled states may also violate the classical inequalities [62].
However, the conceptual meaning of such violation can be quite different from that given
in quantum optics. For instance, if the existence of entangled and squeezed states would
imply a violation of Bell’s inequalities, then, it could not be interpreted in terms of locality or
non-locality because these concepts are only well-defined inside a universe, where space and
time are meaningful. In the quantum multiverse, there is generally no common space-time
among the universes and, therefore, the violation of Bell’s inequalities would be rather
related to the interdependence of the quantum states that represent different universes of
the multiverse.

Like in quantum optics [75], the violation of the classical inequalities in the multiverse
depends on the representation which is chosen to describe the quantum states of the
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universes [62]. Unlike quantum optics, we do not have an experimental device to
measure other universes rather than our own universe10. However, the extension of the
complementary principle to the quantum description of the multiverse entails two main
consequences. On the one hand, if the wave function of the universe has to be described
in terms of ’particles’, it means that in some appropriate representation we can formally
distinguish the universal states as individual entities, giving rise therefore to the multiverse
scenario. On the other hand, if it has to be complementary described in terms of waves,
then, interference between the quantum states of two or more universes can generally be
considered as well.

4.3. Thermodynamical properties of entangled universes

Let us consider a multiverse made up of homogeneous and isotropic universes with a
slow-varying scalar field ϕ, recalling that in the case for which ϕ̇ = 0 and V(ϕ0) ≡ Λ,
the model effectively represents a multiverse formed by de-Sitter universes.

Let us consider one type of universes and describe the quantum state of the multiverse in
terms of the annihilation and creation operators b̂(a) and b̂†(a) given in Eqs. (32-33). The
vacuum state of the multiverse, |0̄〉, is then defined as the eigenstate of the annihilation
operator b̂(a) with eigenvalue zero, i.e. b̂(a)|0̄〉 ≡ 0. On the other hand, observers inhabiting
a large parent universe would quantum mechanically describe the state of their respective
universes in the asymptotic representation given by Eqs. (29-30), with a ground state |0〉
defined by, b̂ω(a)|0〉 ≡ 0.

We can consider therefore two representations: the one derived from a consistent formulation
of the boundary condition of the whole multiverse, or invariant representation, given by the
operators b̂(a) and b̂†(a), and the asymptotic representation given by the operators b̂ω(a)
and b̂†

ω(a), which might be called the observer representation. They both are related by the
squeezing transformation

b̂ = µω b̂ω + νω b̂†
ω , (88)

b̂† = µ
∗
ω b̂†

ω + ν
∗
ω b̂ω , (89)

where, µω ≡ µω(a, ϕ) and νω ≡ νω(a, ϕ), are given by

µω(a, ϕ) =
1

2
√

M(a)ω(a, ϕ)

(

1

R
+ RM(a)ω(a, ϕ)− iṘ

)

, (90)

νω(a, ϕ) =
1

2
√

M(a)ω(a, ϕ)

(

1

R
− RM(a)ω(a, ϕ)− iṘ

)

, (91)

with |µω |2 − |νω |2 = 1, and R ≡ R(a, ϕ) is given, in the semiclassical regime, by Eq. (34),

R ≈
e
± 1

3V(ϕ)

√

M(a)ω(a, ϕ)
,

10 In some sense, we are the ’measuring device’ of our universe.
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where the positive sign corresponds to the choice of the no-boundary condition and the
negative sign to the tunneling boundary condition. Let us further assume that the multiverse
is in the invariant vacuum state |0̄〉. The density matrix that represents the quantum state of
the multiverse turns out to be then

ρ̂(a, ϕ) ≡ |0̄〉〈0̄| = Û †
S |0102〉〈0102|ÛS, (92)

where |0102〉 ≡ |01〉|02〉, with |01〉 and |02〉 being the ground states of a pair of entangled
universes in their respective observer representations. Similarly to Eq. (54), the squeezing
operator ÛS is given by [62]

ÛS(a, ϕ) = er(a,ϕ)b̂1 b̂2−r(a,ϕ)b̂†
1 b̂†

2 , (93)

where the squeezing parameter, r(a, ϕ), reads

r(a, ϕ) ≡ arcsinh|νω(a, ϕ)|, (94)

with νω(a, ϕ) being given by Eq. (91). We can then follow the procedure of Sec. 3.3 to
compute the reduced density matrix, ρ̂1, that represents the quantum state of one single
universe of the entangled pair. It is given then by the thermal state [62]

ρ̂1(a, ϕ) ≡ Tr2ρ̂ =
1

Z

∞

∑
N=0

e−
ω(a,ϕ)

T
(N+ 1

2 )|N〉〈N|, (95)

with, |N〉 ≡ |N〉2 and Z−1 = 2 sinh ω
2T . The two universes of the entangled pair evolve, in the

observer representation of each single universe, in thermal equilibrium with a temperature
of entanglement given by

T ≡ T(a, ϕ) =
ω(a, ϕ)

2 ln 1
Γ(a,ϕ)

, (96)

where, Γ(a, ϕ) ≡ tanh r(a, ϕ). The total energy reads

E(a) = ω(a)(〈N〉+
1

2
), (97)

where, 〈N〉 ≡ |νω |2. The variation of the quantum informational analogues to the work, W,
and heat, Q, now read

δW = δω (〈N〉+
1

2
) ≈

∂ω(a, ϕ)

∂a
(〈N〉+

1

2
) da, (98)

δQ = ω δ〈N〉 ≈ ω(a, ϕ)
∂〈N〉

∂a
da, (99)
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Figure 7. Parameter of squeezing, r (dashed line), and entropy of entanglement, Sent (continuous line), with respect to the

value of the scale factor, a.

where in the last equalities it has been taken into account that for a slow-varying field,

δω ≈ ω̇ da and δ〈N〉 ≈ ˙〈N〉 da. From Eqs. (97-99) it can be checked that the first principle of
thermodynamics, δE = δW + δQ, is directly satisfied. The entropy of entanglement, Eq. (75),
reads

Sent(a, ϕ) = |µω(a, ϕ)|2 ln |µω(a, ϕ)|2 − |νω(a, ϕ)|2 ln |νω(a, ϕ)|2, (100)

with, |µω(a, ϕ)| = cosh r(a, ϕ) and |νω(a, ϕ)| = sinh r(a, ϕ). Therefore, like in Sec. 3.3, the
second principle of thermodynamics is also satisfied because the entropy production vanishes
for any values of the scale factor and the scalar field, i.e. σ ≡ σ(a, ϕ) = 0.

4.3.1. Entropy of entanglement as an arrow of time for single universes

Let us summarize the general picture described so far. The multiverse stays in a squeezed
vacuum state which is the product state of the wave functions that correspond to the state
of pairs of entangled i-universes (see Eq. (39)), where the index i labels all the species
of universes considered in the multiverse. The multiverse stays therefore in a highly
non-classical state. Furthermore, the quantum entropy of a pure state is zero and, therefore,
there is no thermodynamical arrow of time in the multiverse. Let us recall that, in the third
quantization formalism, the scale factor was just taken as a formal time-like variable given
by the Lorentzian structure of the minisupermetric. However, the minisuperspace is not
space-time and, therefore, the scale factor has no meaning of a physical (i.e. a measurable)
time, a priori, in the multiverse. It might well be said that (physical) time and (physical)
evolution are concepts that really make sense within a single universe.

For an observer inside a universe, this is described by a thermal state which is
indistinguishable from a classical mixture (see Eq. (73), and the comments thereafter), i.e.
it is seen as a classical universe. The entropy of entanglement for a single universe is a
monotonic function of the scale factor. However, the entropy production identically vanishes
for any increasing or decreasing rate of the scale factor so that the customary formulation of
the second principle of thermodynamics does not impose any arrow of time in the universe
within the present approach. Although the universe can be seen as a classical mixture by an
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observer inside the universe, its quantum state has been obtained from a highly non-classical
state. Thus, it would not be expected that the classical constraint σ ≥ 0 would impose any
arrow of time in the model.

The second principle of entanglement thermodynamics [58] does provide us with an arrow of
time for single universes. In the quantum multiverse, it can be reparaphrased as follows: by
local operations and classical communications alone, the amount of entanglement between
the universes cannot increase. Let us recall that by local operations we mean in the multiverse
anything that happens within a single universe, i.e. everything we can observe. Therefore,
the growth of cosmic structures, particle interactions and even the presence of life in the
universe cannot increase the amount of entanglement between a pair of entangled universes
provided that all these features are due to local interactions. They should decrease the rate
of entanglement in a non-reversible universe with dissipative processes, actually.

The amount of entanglement between the pair of universes only decreases for growing values
of the scale factor (see Fig. 7). Thus, the second law of the entanglement thermodynamics
implies that the universe has to expand once it is created in an entangled pair, as seen
by an observer inside the universe. Furthermore, if the classical thermodynamics and the
thermodynamics of entanglement were related, it could be followed that the negative change
of entropy would be balanced by the creation of cosmic structures and other local processes
that increase the local (classical) entropy. The decrease of the entropy of entanglement is
larger for a small value of the scale factor. Then, the growth of local structures in the universe
would be favored in the earliest phases of the universe, as it is expected.

4.3.2. Energy of entanglement and the vacuum energy of the universe

In the model being considered, σ ≡ dS − δQ
T =0, and thus, the variation of the entropy of

entanglement is related to the quantum informational heat, Q, by

dS =
δQ

T
. (101)

Eq. (101) can be compared with the equation that is customary used to define the energy of
entanglement [42, 51–53], dEent = TdS. Then, in the case being considered, we can identify
the energy of entanglement, Eent, with the informational heat, Q, and interpret it as a vacuum
energy for each single universe of an entangled pair. It is given by the integral of Eq. (99),
with

〈N〉 ≈
9 e

± 2
3V(ϕ)

16V(ϕ)

1

a8
+ sinh2 1

3V(ϕ)
, (102)

where it has been used that, M(a) = a and ω = a
√

a2V(ϕ)− 1 ≈ a2
√

V(ϕ), in units for

which h̄ = 1. For a slow-varying field, ϕ ≈ ϕ0 and δ〈N〉 ≈ ∂〈N〉
∂a da, and therefore

δQ ≈ ω
∂〈N〉

∂a
da = −

9 e
± 2

3V(ϕ0)

2
√

V(ϕ0)
a−7da, (103)
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whose integration yields

Eent = Q(a, ϕ0) =
3

4

e
±

2
3V(ϕ0)

√

V(ϕ0)
a−6. (104)

The energy of entanglement (104) provides us with a curve that might be compared with
the evolution of the vacuum energy of the universe. From Eq. (104), it can be seen that
the vacuum energy would follow a different curve depending on whether the tunneling
condition or the no-boundary condition is imposed on the state of a single universe. The
boundary condition imposed on a single universe might therefore be discriminated from
observational data, at least in principle. However, the model being considered is unrealistic
for at least two reasons. First, after the inflationary stage the universe becomes hot [46, 47]
and the slow-roll approximation is no longer valid. Secondly, if the energy of entanglement
is to be considered as a vacuum energy, it should have been considered as a variable of the
model from the beginning. More realistic matter fields and the backreaction should be taken
into account to make a first serious attempt to observational fitting. However, the important
thing that is worth noticing is that the vacuum energy of entanglement might thus be tested
as well as the whole multiverse proposal. Furthermore, different boundary conditions would
provide us with different curves for the energy of entanglement along the entire evolution of
the universe. Therefore, the boundary conditions of the whole multiverse might be tested as
well by direct observation, which is a completely novel feature in quantum cosmology.

5. Conclusions: The physical multiverse

In this chapter, we have presented a quantum mechanical description of a multiverse made
up of large and disconnected regions of the space-time, called universes, with a high degree
of symmetry. We have obtained, within the framework of a third quantization formalism, a
wave function that quantum mechanically represents the state of the whole multiverse, and
an appropriate boundary condition for the state of the multiverse has allowed us to interpret
it as formed by entangled pairs of universes.

If universes were entangled to each other, then, the violation of classical inequalities like the
Bell’s inequalities could no longer be associated to the concepts of locality or non-locality
because there is not generally a common space-time among the universes of the quantum
multiverse. It would rather be related to the independence or interdependence of the
quantum states that represent different universes. Furthermore, the complementary principle
of quantum mechanics, being applied to the space-time as a whole, enhances us to: i) look for
an appropriate boundary condition for which universes should be described as individual
entities forcing us to consider a multiverse; and, ii) take into account as well interference
effects between the quantum states of two or more universes.

For a pair of entangled universes, the quantum thermodynamical properties of each single
universe have been computed. In the scenario of a multiverse made up of entangled pairs
of universes, the picture is the following: the multiverse may state in the pure state that
corresponds to the product state of the ground states derived from the boundary condition
imposed on the multiverse, for each type of single universes. Then, the entropy of the whole
multiverse vanishes and there is thus no physical arrow of time in the multiverse. For single
universes, however, it appears an arrow of time derived from the entropy of entanglement
with their partner universes.
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The entropy of entanglement decreases for an increasing value of the scale factor. The second
principle of thermodynamics is however satisfied because the process is non-adiabatic,
in the quantum informational sense, and the entropy production is zero. In fact, the
entropy production is zero for any increasing or decreasing rate of the scale factor, imposing
therefore no correlation between the cosmic arrow of time, which is given by expansion or
contraction rate of a single universe, and the customary formulation of the second principle
of thermodynamics. This is in contrast to what it happens inside a single universe, where
there is a correlation between the cosmic arrow of time and the entropy of matter fields
[27, 40]. Let us recall that the entropy of entanglement is a quantum feature having no
classical analogue and, thus, it is not expected that it imposes an arrow of time through the
customary, i.e. classical, formulation of the second principle of thermodynamics.

The second principle of entanglement thermodynamics, which states [58] that the entropy of
entanglement cannot be increased by any local operation and any classical communication
alone, does impose an arrow of time on single universes [60]. It should be noticed that by local

we mean in the multiverse anything that happens in a single universe. Therefore, everything
that we observe, i.e. the creation of particles, the growth of cosmic structures, and even life,
cannot make the inter-universal entanglement to grow provided that all these processes are
internal to a single universe. In an actual and non-reversible universe they should induce a
decreasing of the entropy of inter-universal entanglement, enhancing therefore the expansion
of the universe that would induce a correlation between the growth of cosmic structures and
the entanglement arrow of time.

In the model presented in this chapter, the energy of entanglement between a pair of
entangled universes provides us with a vacuum energy for each single universes. The energy
of entanglement of the universe is high in the early stage of the universes becoming very
small at later times. That behavior might be compatible with an initial inflationary universe,
for which a high value of the vacuum energy is assumed, that would eventually evolve to
a state with a very small value of the cosmological constant, like the current state of the
universe. However, it is not expected that such a simple model of the universe would fit with
actual observational tests. A more realistic model of the universes that form the multiverse,
in which genuine matter fields were considered, is needed to make a serious attempt of
observational fitting. However, the fact that inter-universal entanglement provides us with
testable properties of our universe opens the door to future developments that would make
falseable the multiverse proposal giving an observational support to the quantum multiverse.

In conclusion, the question of whether the multiverse is a physical theory or just a
mathematical construction, derived however from the general laws of physics, holds on
whether the existence of other universes may affect the properties of the observable universe.
Inter-universal entanglement is a novel feature that supplies us with new explanations for
unexpected cosmic phenomena and it might allow us to test the whole multiverse proposal.
It will be the future theoretical developments and the improved observational tests what will
make us to decide whether to adopt or deny such a cosmological scenario.
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