
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 10

A Digital Signal Processing Architecture for Soft-

Output MIMO Lattice Reduction Aided Detection

Alan T. Murray and Steven R. Weller

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51649

1. Introduction

Many wireless communication standards now include the use of multiple transmit and
receive antennas as a means of achieving increased throughput or spectral efficiency,
including LTE, WiMAX and WiFi (IEEE 802.11n). The task of a detector for a multi-input
multi-output (MIMO) communications channel is to separate the spatially mixed and
noise-corrupted data streams, and to produce reliable estimates of the transmitted bits. The
brute-force maximum-likelihood (ML) detector provides optimal error-rate performance, but
is computationally infeasible when either dense symbol constellations or large numbers of
antennas are used. Hardware implementation of ML receivers is therefore very challenging,
leading to linear detectors based on well-known approaches such as zero forcing (ZF) or
minimum mean-square error (MMSE) detection, or nonlinear methods such as successive
interference cancellation (SIC), which offer manageable receiver complexity at the expense of
highly suboptimal error-rate performance.

One powerful class of receivers which have been developed over the past decade is based on
the highly developed mathematical theory of point lattices, which are periodic arrangements
of discrete points. The basic idea is to consider the distortion introduced by the noise-free
part of a MIMO channel as a representation of a lattice, then to perform suboptimal detection
on an “improved" representation of the channel matrix based derived from a “reduced"
lattice. The suitably reduced lattice facilitates the search for the lattice point closest to the
received vector, shifting most of the computational complexity to a pre-processing step before
linear detection. Such lattice reduction aided detection (LRAD) based approaches to MIMO
receiver design have significantly closed the gap between feasible yet high-performance
MIMO detection, and optimal (but impractical) ML detection.

© 2013 Murray and Weller; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



To date, most LRAD-based MIMO detectors produce hard outputs, in which an estimate of
the most likely vector of transmitted symbols is generated. For high-performance wireless
communication systems, however, it is commonplace that the information transmitted over
the air is coded, thereby containing not only raw data, but also the redundant information
needed to perform forward error correction (FEC) at the receiver. State-of-the-art FEC codes
such as turbo codes and low-density parity-check (LDPC) codes [1], which require estimates
of the probability that a given transmitted bit was a 1 or a 0, therefore call for soft output
detectors. The extension of hard-output LRAD detectors to the soft-output case is therefore
of high practical relevance, but also recognized as a difficult problem [2, p16]. In this chapter,
we present what is believed to be the first digital signal processing (DSP) implementation of a
soft-output lattice reduction aided MIMO detector, based on an approach to MIMO detection
known as subspace LRAD (SLRAD) proposed by Windpassinger [3, 4].

The chapter is organized as follows. In Section 2 we present the wireless MIMO
system model, with an emphasis on how transmitted symbols are drawn from point sets
consistent with the lattice theoretic approach to follow. In Section 3 we formally define
lattices, and present the most celebrated algorithm for lattice reduction, known as the
Lenstra-Lenstra-Lovász (LLL) algorithm. We then show how hard-output lattice-based
detection can be used in conjunction with commonly used linear MIMO detectors in Section
4. In Section 5 we outline Windpassinger’s subspace-based approach to LRAD in which a list
of candidate symbols is produced, thereby facilitating soft-output LRAD. Finally in Section
6 we present a detailed description of our hardware implementation of a soft-output lattice
reduction aided MIMO detector.

2. System model

We consider a MIMO wireless communication system with nT transmit and nR receive
antennas. The complex baseband model for this MIMO system is

y = Hx + n, (1)

where y ∈ CnR is the received vector, H ∈ CnR×nT is the channel matrix, n ∈ CnR is the
channel noise, and x ∈ CnT is the vector of transmitted symbols, as shown in Fig. 1.

We assume that the noise n , [n1, n2, . . . , nnR ]
T contains independent and identically

distributed (i.i.d.) elements nm ∼ CN
(

0, σ
2
)

, m = 1, . . . , nR. The channel matrix H has
i.i.d. entries hm,n ∼ CN (0, 1), for m = 1, . . . , nR and n = 1, . . . , nT, where it is assumed that
there are at least as many receive antennas as transmit antennas: nR ≥ nT.

An uncorrelated Rayleigh fading propagation environment is therefore assumed in this
chapter, though it should be noted that lattice reduction aided detection receivers similar
to those presented later in this chapter have been proposed for environments in which there
is either temporal [5] or frequency-selective [6] fading.

The task of the MIMO receiver is to recover x from y, based on knowledge of both the channel
realization H and the channel noise variance σ

2.

The vector of transmitted symbols is denoted x , [x1, x2, . . . , xnT ]
T . In this chapter we

restrict attention to transmit symbols drawn from finite sets of points, known as constellations,
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Figure 1. MIMO Wireless Channel

drawn from a square grid, and in particular the quadrature phase-shift keying (QPSK)
and, 16-quadrature amplitude modulation (16-QAM) and 64-QAM constellations depicted in
Fig. 2. We do not consider non-rectangular constellations, such as 8-PSK, due to an inherent
incompatibility with the lattice-theoretic framework exploited by lattice reduction aided
detection, and also the limited applicability of non-rectangular constellations in emerging
wireless communication standards.

The symbol transmitted from the nth antenna, denoted xn, is drawn from a constellation An:

xn ∈
√

EsnAn, (2)

where the scalar Esn is the average transmitted symbol power. We define the vector Es ,

[Es1, Es2, . . . , EsnT ] so that

E

[

xx
H
]

= diag (Es) . (3)

The selection of Es depends on the particular objective of transmit power scaling and indeed
varies in practical implementations. In this chapter, to enable fair comparison between
systems employing differing modulation formats, we constrain average unity power per
information bit (Eb = 1).

The constellations considered in this chapter are formed from a subset of scaled and shifted

Gaussian integers Z[i] , {a + ib | a, b ∈ Z} [7, p. 230]:

X ,

{

a + ib +
1 + i

2
| a, b ∈ Z

}

. (4)
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(a) QPSK (b) 16−QAM (c) 64−QAM

Figure 2. The three constellations used in this chapter

In this chapter, we restrict attention to the three subsets Xn ⊂ X shown in Fig. 3, where the
introduction of the offset term in (4) maintains symmetry of each constellation with respect
to the axes. We refer to constellations formed in this manner as Gaussian integer constellations.

−3.5−2.5−1.5−0.5 0.5 1.5 2.5 3.5

−3.5

−2.5

−1.5

−0.5

0.5

1.5

2.5

3.5

(a) QPSK

|Xn| = 4

−3.5−2.5−1.5−0.5 0.5 1.5 2.5 3.5

−3.5

−2.5

−1.5

−0.5

0.5

1.5

2.5

3.5

(b) 16−QAM

|Xn| = 16

−3.5−2.5−1.5−0.5 0.5 1.5 2.5 3.5

−3.5

−2.5

−1.5

−0.5

0.5

1.5

2.5

3.5

(c) 64−QAM

|Xn| = 64

Figure 3. Three Gaussian integer constellations

The constellation An with elements αn ∈ An employed at the nth transmit antenna is:

An =
Xn√

cn
, (5)

where cn is the average energy of Xn. Dividing each element of Xn by
√

cn ensures that An

has unity average energy and is referred to as normalized constellations. For square QAM
constellations such as those in Fig. 2, cn = (|Xn| − 1) /6.

It is important to note that we deliberately allow each transmit antenna to be independently
mapped to a constellation set. In summary, the transmitted symbols xn are formed by scaling
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of the elements x̄n ∈ Xn:

xn =

√

Esn

cn
x̄n. (6)

The effect of a given channel realization H is to rotate and stretch (or contract) the axes of the
otherwise square decision regions of the optimal, maximum-likelihood (ML) receiver. The
error probability of a detector is determined by the distance of constellation points (mapped
by H) from the associated decision boundaries. The essential idea of LR-aided detectors is
to obtain a “more orthogonal” representation for the channel realization H, before detection
using a low-complexity (sub-optimal) receiver. In the following section we make these ideas
precise, drawing on the well-established mathematical literature on point lattices to formalize
what is meant by the notion of a “more orthogonal” representation, and how it can be
achieved and quantified.

3. Lattice reduction

3.1. Lattices

A complex lattice consists of all linear combinations of the set of linearly independent basis
column vectors bk, 1 ≤ k ≤ M of the basis matrix B ∈ CN×M, M ≤ N. A complex lattice
formed from basis matrix B is therefore the set of points

L(B) ,

{

M

∑
k=1

skbk | sk ∈ Z[i]

}

,

where Z[i] , {a + ib | a, b ∈ Z} is the ring of Gaussian integers [7].

The number of possible bases for a given lattice L is infinite, since any basis B̃ = BT forms
the same lattice L(B̃) = L(B) when the transformation matrix T is unimodular, i.e. det(T) =
±1 and T ∈ Z[i]M×M. Finding a basis in which the basis vectors are (roughly speaking)
reasonably short and almost orthogonal is known as lattice basis reduction, which we now
describe formally.

3.2. Lenstra-Lenstra-Lovász (LLL) algorithm

The Lenstra-Lenstra-Lovász (LLL) algorithm was originally published as a lattice reduction
algorithm operating on real-valued matrices [8]. Many works use the real decomposition
of the complex-valued MIMO transmission model [3, 9]. Lattice reduction methods can
operate on both real and complex integer lattices and in particular the LLL algorithm has
been extended for complex lattice reduction [10]. The complex LLL (CLLL) algorithm can be
summarized as follows. We make the following definitions:

• Hi is the squared Euclidean norm of the orthogonal vectors produced by the
Gram-Schmidt orthogonalization (GSO) of H

A Digital Signal Processing Architecture for Soft-Output MIMO Lattice Reduction Aided Detection
http://dx.doi.org/10.5772/51649

235



• µij is the ratio of the length of the orthogonal projection of the ith basis onto the jth

orthogonal vector and the length of the jth orthogonal vector

• Hi
L and Ti represent the values of the reduced basis and transform after the ith step of

the LLL algorithm

• Initially, HL
0 = H and T0 = InT

• k is the index of the current column of H being processed such that 2 ≤ k ≤ nT

The LLL algorithm consists of three basic steps:

1. H and µ are computed using a modified GSO procedure [11]

2. Size reduction aims to make basis vectors shorter and more orthogonal by asserting the
condition that |ℜ(µk,j)| ≤ 0.5 and |ℑ(µk,j)| ≤ 0.5 for all j < k

3. Basis vectors hk−1 and hk are swapped if a so-called swapping condition is satisfied such
that size reduction can be repeated to make basis vectors shorter

Size reduction and basis vector swapping iterates until the swapping condition is no longer
satisfied by any pair of hk−1 and hk. The resultant basis is then said to be reduced. The
swapping condition for LLL reduction, also called the Lovász condition, is:

Hk < (δ − |µk,k−1|
2)Hk−1, (7)

where δ satisfying 1
4 < δ < 1 is a factor selected to achieve an acceptable quality-complexity

trade off [8].

After each swapping step, Hk−1, Hk and some of the µi,j values needed to be updated.
Techniques can be employed to minimize the number and frequency of recalculations of H
and µ elements [11]. The LLL algorithm is detailed in Algorithm 1.

Example 3.1. Suppose δ = 3
4 and

H =

[

0.75 −0.5

0.5 −0.5

]

.

Then

H0
L =

[

0.75 −0.5

0.5 −0.5

]

and T0 =

[

1 0

0 1

]

,

and from the modified GSO

µ =

[

1.0000 0.0000

−0.7692 1.0000

]

and H =

[

0.8125

0.0192

]

.

Starting with columns 1 and 2, as |µ2,1| > 0.5, size reduction is performed on these columns adding
the first column to the second and yielding the following partially reduced matrix and corresponding
transform:
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Algorithm 1 [H, T] ⇐ LLL(H, δ)

Input: H ∈ Cn×m and δ ∈ Rn

T ⇐ In, k ⇐ 2
for j = 1 to n do

Hj =
〈

Hj, Hj

〉

end for
for j = 1 to n do

for i = j + 1 to n do

µi,j ⇐
1
Hj

(

〈

hi, hj

〉

−
j−1

∑
k=1

µH
j,kµi,kHk

)

Hi ⇐ Hi − |µi,j|
2Hj

end for
end for
while k ≤ n do

[H, T, µ] ⇐ Reduce (H, T, µ, k, k − 1) // Size Reduction
if Hk < (δ − |µk,k−1|

2)Hk−1 then // Lovász condition check
Swap columns k and k − 1 of H and T
Update H and µ where Ḣ and µ̇ denote the new values
Ḣk−1 = Hk + |µk,k−1|

2Hk−1

µ̇k,k−1 = µH
k,k−1

(

Hk−1

Ḣk−1

)

Ḣk =
(

Hk−1

Ḣk−1

)

Hk

µ̇i,k−1 = µi,k−1µ̇k,k−1 + µi,k

(

Hk

Ḣk−1

)

// i = k + 1 to n

µ̇i,k = µi,k−1 − µi,kµk,k−1 // i = k + 1 to n
µ̇k−1,j = µk,j // j = 1 to k − 2
µ̇k,j = µk−1,j // j = 1 to k − 2
k = max(2, k − 1)

else
for j = k − 2 downto 1 do

[H, T, µ] ⇐ Reduce (H, T, µ, k, j) // Size Reduction
end for
k = k + 1

end if
end while

H1
L =

[

0.75 0.25

0.5 0

]

and T1 =

[

1 1

0 1

]

,

µ =

[

1.0000 0.0000

0.2308 1.0000

]

and H =

[

0.8125

0.0192

]

.

A Digital Signal Processing Architecture for Soft-Output MIMO Lattice Reduction Aided Detection
http://dx.doi.org/10.5772/51649

237



Algorithm 2 [H, T, µ] ⇐ Reduce (H, T, µ, k, j)

if |ℜ
(

µk,j

)

| > 1
2 or |ℑ

(

µk,j

)

| > 1
2 then

c ⇐ ⌊µk,j⌉
Hk ⇐ Hk − cHj

Tk ⇐ Tk − cTj

for l = 1 to j do
µk,l ⇐ µk,l − cµj,l

end for
end if

Next the Lovász condition is checked and, since H2 < (δ − |µ2,1|
2)H1, the two columns are swapped,

yielding:

H2
L =

[

0.25 0.75

0 0.5

]

and T2 =

[

1 1

1 0

]

,

µ =

[

1.0000 0.0000

3.0000 1.0000

]

and H =

[

0.0625

0.2500

]

.

Size reduction is then performed on the columns once more; this time by subtracting three times the
first column from the second we have:

HL =

[

0.25 0

0 0.5

]

and T =

[

1 −2

1 −3

]

,

µ =

[

1.0000 0.0000

0.0000 1.0000

]

and H =

[

0.0625

0.2500

]

.

The Lovász condition (7) is now satisfied, and the algorithm terminates.

3.3. Orthogonality defect

The orthogonality of a matrix H can be quantified using the orthogonality defect, defined as
[4, §4.6.2]:

δ(H) =
∏

nT

k=1 ‖hk‖
∣

∣

∣

√

det(HHH)
∣

∣

∣

, (8)

where hk is the kth column of H, δ(H) ≥ 1 for all H and δ(H) = 1 if and only if the
columns of H are orthogonal. When the number of columns and rows of H are equal, the
denominator can be simplified to |det(H)|. From (8), matrices with correlated columns or
larger column norms will result in higher orthogonality defects. This also causes their inverse
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or generalized inverse to have larger row norms, leading to noise enhancement. As will be
shown in Section 4, matrices with a lower orthogonality defect therefore induce less noise
enhancement in ZF- or MMSE-based detectors as the probability of error, for example as
calculated in (15), can be reduced.

To illustrate the impact of lattice reduction on orthogonality defect, we generated 106

randomly chosen H ∈ C4×4, and computed the lattice reduced equivalent HL. The
orthogonality defect was calculated using (8) both before and after lattice reduction. The
results are presented in the form of cumulative distributions in Fig. 4, where the effect of
lattice reduction on orthogonality defect is clearly apparent. Lattice basis reduction has also
been shown to improve matrix conditioning [12]. It is this improvement that reduces noise
enhancement in linear detection methods and reduces the error rate of LRAD-based systems.

Numerous researchers have investigated and compared the application of various lattice
reduction algorithms for MIMO detection. In addition to the LLL algorithm, these include
Korkine–Zolotarev (KZ) [13], and Seysen’s [14] lattice reduction algorithms; see [2] and the
references therein for applications to MIMO detection. In this chapter we restrict attention
to the LLL algorithm, since numerous simulation studies suggest that lattice-reduction-aided
detection is well suited to low-complexity MIMO receivers when large constellations are used
[15, 16].
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Figure 4. Cumulative distributions of the orthogonality defect for non-reduced and reduced basis channel matrices

4. Hard detection using lattice reduction

Detectors which output an estimate of the most likely vector of transmitted symbols are said

to be hard output detectors. Hard estimates are denoted b̂ for bit vector estimates and x̂ for
symbol vector estimates. Detectors which generate not just a vector of bit estimates but also
an estimate of the probability that a given transmitted bit was a 1 or a 0 are said to be soft output
detectors. Soft output detectors provide a significant benefit when combined with channel
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coding schemes which make use of soft information, such as turbo codes or low-density
parity-check (LDPC) codes, but typically increase receiver complexity by a significant degree.

4.1. Maximum-Likelihood detection

The maximum-likelihood (ML) detector selects from the set of possible transmitted symbol
vectors x ∈ AnT the vector x̂ML which minimizes the Euclidean distance to the receive vector:

x̂ML = arg min
x∈AnT

‖y − Hx‖2. (9)

This is achieved by exhaustively examining all possible transmit vectors; see Algorithm 3.
Whilst the ML detection algorithm is conceptually simple, its complexity is exponential in
the size of the constellation and number of transmit antennas, and is therefore practical for
real-time hardware implementation only in the simplest of settings. As the optimal detector,
the performance of the the ML detector serves as a benchmark for the detection schemes of
the following sections.

Algorithm 3 ML Algorithm - [x̂, b] ⇐ MLdetect
(
H, σ

2, y
)

emin ⇐ inf
for b = 0 to 2nBPT − 1 do // 2nBPT iterations

x̂ ⇐ mod (b)

e ⇐ ‖y − Hx̂‖2 // 4nRnT + 2nR M, 4nRnT + 4nR A
if e < emin then

emin = e
x̂ml = x̂
bml = b

end if
end for

4.2. Zero Forcing estimation

The most straightforward linear detection scheme is zero forcing (ZF), also known as least
squares estimation, which works to reverse the effect of the MIMO channel matrix on the
transmitted symbols. By finding the least squares solution to (1), it is referred to as zero
forcing as the interference caused by H is forced to zero by multiplication of the received
vector y by WZF, the inverse (or generalized inverse) of the channel matrix:

x̃ZF = WZFy. (10)

We use the notation x̃ to represent an unconstrained estimate of the vector of transmitted
symbols. The likelihood that x̃ actually maps to a constellation point is negligibly small and
so the nearest valid constellations point must be found. ZF finds the estimate of the vector
of transmitted symbols x̂ZF as follows:

x̂ZF = arg min
x∈AnT

‖WZFy − x‖2, (11)
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where x̂ZF is found by independently rounding each element of x̃ to the nearest constellation
point. The vector x̂ZF can then be demodulated to find bZF, an estimate of the vector of
transmitted bits, as shown in Algorithm 4.

There are numerous methods to find the least squares solution to (1), including those that
directly calculate the matrix WZF. In this chapter, we utilize the well known Moore-Penrose
pseudoinverse:

WZF =
(

HHH
)
−1

HH . (12)

Algorithm 4 ZF Algorithm - [x̂, b] ⇐ ZFdetect
(
H, σ

2, y
)

WZF =
(
HHH

)−1
HH

x̃ ⇐ WZFy // 4nRnT M, 4nRnT A
δ ⇐ [1 + i]/2
x̂ZF ⇐ round (x̃, δ)
bZF ⇐ demod (x̂ZF)

4.3. Noise enhancement

Whilst ZF completely reverses the effects of the MIMO channel matrix, if the columns of H
are correlated, ZF will amplify or enhance the noise. By identifying that WZFH = I and
then multiplying (1) by WZF we can calculate the effective additive noise component of the
estimated vector of transmitted symbols:

x̃ZF = x + WZFn. (13)

It is intuitive that the noise existing in the unconstrained transmit symbol estimate x̃ZF is
WZFn. When the rows of WZF have a large Euclidean distance, multiplication of the received
vector leads to the additive noise component in y being amplified. We can now show how a
poorly conditioned or correlated channel matrix will result in significant noise enhancement
in ZF by examining the probability of error:

e = x̃ − x

= WZFn (14)

pe = diag
(

ǫn(eeH)
)

= σ
2diag

((
HHH

)
−1

)
(15)

Existing work [17] has looked at the statistical properties of the channel matrix, and in
particular the effect of this noise enhancement, leading to a tight analytical bound of the
performance of ZF detectors in Rayleigh fading channels.
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4.4. Minimum Mean-Square Error (MMSE) estimation

MMSE estimation acts to balance the reduction of the interference caused by H and the noise
enhancement due to correlation of the columns in H. Rather than completely remove the
effect of the MIMO channel, MMSE estimation works to find a coefficient which minimizes
the criterion:

WMMSE = arg min
W

‖Wy − x‖2. (16)

The solution to (16) is the well-known MMSE estimator, also known as the Wiener filter:

WMMSE =

(
HHH + σ

2InT

)−1
HH (17)

=

[
H

σI

]†

(18)

The shorthand notation of (18) was first proposed in [18] and is referred to as the extended

channel matrix, which in this chapter is denoted

H =

[
H

σI

]
. (19)

Similarly to ZF detection, MMSE detection finds the estimate of the vector of transmitted
symbols x̂MMSE as follows:

x̂MMSE = arg min
x∈AnT

‖WMMSEy − x‖2, (20)

where x̂MMSE is found by independently rounding each element of x̃ to the nearest
constellation point. It is well-known that as the noise term approaches zero (at high
signal-to-noise ratios), the MMSE estimator becomes equivalent to a ZF estimator.

Compared to ZF detection, MMSE results on average in less noise enhancement, as H is
better conditioned. This can be seen intuitively as a result of adding a diagonal matrix
relating to the noise variance as in (17) or alternatively due to the stacked structure of (18)
resulting in a decrease in correlation. Unlike ZF, however, MMSE does not perfectly reverse
or remove the interference of H, leading to interference between the otherwise independent
transmit antennas. As with ZF, analytical performance bounds for MMSE detectors have
been developed [17, 19] for various channel models.

Utilizing the shorthand notation of the extended channel matrix of (18), ZF detection can be
readily extended to perform MMSE detection, as shown in Algorithm 5. Note that due to
the extra rows of H as compared to H, the computational complexity of calculating WMMSE

is roughly double that of WZF.
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Algorithm 5 MMSE Algorithm - [x̂, b] ⇐ MMSEdetect
(
H, σ

2, y
)

H ⇐

[
H

σI

]

[x̂MMSE, bMMSE] ⇐ ZFdetect
(
H, σ

2, y
)

4.5. Detection using Lattice Reduction

Lattice basis reduction [20, §2.6.1] reduces the orthogonality defect, thereby reducing noise
enhancement. This is achieved by finding a closer to orthogonal set of basis vectors. This
reduced lattice basis is found by optimizing the generating matrix, which in the present
application is a MIMO channel matrix realization. This closer-to-orthogonal set is found
using elementary operations on basis vectors. Complex integer linear combinations of the
column vectors of H are taken to form the reduced matrix HL which spans the same set of
points HX

nT ≡ HLX
nT and so

HL = HT or H = HLT−1, (21)

where T is a unimodular matrix with complex integer entries and det(T) = ±1, therefore
T−1 also contains only complex integer entries.

As in [3], by finding an equivalent and closer to orthogonal set of the basis vectors, HL, noise
enhancement is reduced when quantization is performed. Importantly, as T−1 and x̄ both
contain only integer spaced entries, so does T−1x̄ and so symbol detection or quantization is
merely rounding to the grid X.

Once the lattice reduced channel matrix is found, we then calculate the pseudoinverse as
would be done in ZF or MMSE detection. LRAD therefore operates using the following
steps, which are adapted from [3] and detailed in [21]:

1. Find the reduced lattice basis

2. Use the pseudoinverse of the reduced basis to form estimates

3. Quantize estimates to X

4. Transform and bound points to constellation points

As shown in Algorithm 6, received vectors y are multiplied with the pseudoinverse of the
reduced basis HL to find a soft estimate of the vector of transmitted symbols in the reduced
domain. These symbols are then quantized to an integer grid. (Depending on the transform
generated, this integer grid may be offset by a half in both real and imaginary dimensions.)
These hard estimates are then transformed, using the transform matrix T generated by the
LR algorithm, to find an estimate of the vector of transmitted symbols. However, as these
symbols may fall outside the range of constellation points invalid constellation points are
clipped back to the nearest constellation point.
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Algorithm 6 LRAD Algorithm - [x̂, b] ⇐ LRADdetect
(
H, σ

2, y
)

[HL, T] ⇐ LR(H) // LR is a lattice reduction algorithm such as Algorithm 1
δ ⇐ T[1 + i]/2
x̃ ⇐ H̄†

L
y

x̂LRZF ⇐ T (round (x̃, δ)) // 4nT
2 M, 4nT

2 A
bZF ⇐ demod (x̂LRZF)

5. Subspace-based LRAD

5.1. Hard-output SLRAD

For hard estimation, quantization of the ZF or MMSE estimate in the transmit constellation
domain is replaced by the same quantization in the lattice reduced domain. The equivalent
for soft estimation calls for the calculation of the error induced by quantization in the lattice
reduced domain. Unfortunately, just as it is hard to ensure quantization to valid symbols in
the lattice reduced domain, it is equally hard to iterate over all possible valid symbols in the
lattice reduced domain in order to estimate each bit probability.

Whilst Zhang et al. [22] present a detailed comparison of various soft output based detectors
and proposes several powerful methods for generating soft output information, there are
some key shortcomings, and the performance of the detectors in [22] are only evaluated
using QPSK constellations. This is problematic in that a range of wireless communication
standards are moving to denser constellations, such as 16-QAM and 64-QAM. This motivates
the investigation of lattice reduction based detectors capable of producing candidate lists.

The subspace lattice reduction aided detection (SLRAD) approach of Windpassinger [3]
forms a subspace of the channel matrix H by removing a single column from the channel
matrix. This column removal allows the corresponding transmit antenna’s symbol estimate
to be constrained in order to calculate an estimate for what the other transmit antennae sent.
For each transmit antenna a number of symbols is systematically proposed and for each
proposal the set of most likely symbols transmitted on the other antennae is calculated, as
shown in Algorithm 7.

The SLRAD algorithm therefore creates a list of candidate symbols, the Euclidean distance
of each of these candidates from the origin being used to determine the most likely vector of
transmitted symbols for a hard-output detector.

Whilst performance of SLRAD is close to that of ML (see Fig. 5), the complexity is
proportional only to the sum of the size of the constellations employed on each transmit
antenna. Therefore only a modest number of candidate symbols needs to be investigated,
even for dense constellations. For example, a system with 4 transmit antennas each utilizing
64-QAM results in only 4 × 64 = 256 candidates.

5.2. Soft-output SLRAD

As a candidate-based detector, the hard-output SLRAD detector can be extended to generate
soft output information. The probability of all the candidates where a bit is one is divided
by the probability of all candidates where the bit is zero. An attractive property of subspace
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Algorithm 7 SLRAD Algorithm - [x̂, b] ⇐ SLRADdetect
(
H, σ

2, y
)

emin ⇐ inf
for k = 1 to nT do

Hs ⇐ H[1...(k−1)(k+1)...nT]
for all s in Ak do

ys ⇐ y − hks // 4nR M, 4nR A
x̂s ⇐ LRADdetect

(
Hs, ys, σ

2
)

x̂[1...(k−1)(k+1)...nT] = x̂s

ŝk = s

e ⇐ ‖y − Hx̂‖2

if e < emin then
emin = e

x̂SLR = x̂
end if

end for
end for
bSLR ⇐ demod (x̂SLR)
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Figure 5. Bit error rate (BER) Performance of ML, LRAD and SLRAD for 4 × 4 MIMO with 16-QAM
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detectors is that every bit is guaranteed to have at least one candidate where the bit is a
one and likewise a candidate where it is zero. Without this property, it is not possible to
accurately form an estimate for the ratio of the bit’s value probabilities.

Algorithm 8 Soft Output SLRAD Algorithm - [Le] ⇐ SLRADdetect-soft
(
H, σ

2, y
)

nbit ⇐ 0
dbit ⇐ 0
for k = 1 to nT do

Hs ⇐ H[1...(k−1)(k+1)...nT]
for all s in Ak do

ys ⇐ y − hks

x̂s ⇐ LRADdetect
(
Hs, ys, σ

2
)

x̂[1...(k−1)(k+1)...nT] = x̂s

ŝk = s

b ⇐ demod (x̂)

e ⇐ exp

(
−‖y−Hx̂‖2

σ
2

)

for all bits in current bit vector do
if the current bit is a ’1’ then

nbit = nbit + e

else
dbit = dbit + e

end if
end for

end for
end for
Le ⇐ log [n]− log [d]

The soft-output SLRAD algorithm is shown in Algorithm 8. This algorithm leads in a natural
fashion to the top-level data flow diagram in Fig. 6. The candidate chain block in Fig. 7
performs the following key steps (once for each submatrix of H formed by deleting one
column from H):

1. subspace candidate estimate generation;

2. lattice reduced domain quantization;

3. reversal of the lattice basis transform;

4. bounding to ensure valid constellation symbols; and

5. demodulation and Euclidean distance calculation.

6. Hardware implementation

6.1. Existing work

The first published VLSI implementation of a lattice reduction aided detector [23] is based on

Brun’s algorithm for finding integer relations [24]. Brun’s algorithm offers lower complexity

at a performance cost when compared to the commonly utilized complex LLL algorithm.
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Brun’s algorithm is criticised in [25] as it achieves inferior performance and no analytical

result has been reported to prove the level of diversity that can be achieved. This work

applies a uniform scaling factor to the elements of the same matrix or vector to ensure that

the magnitudes of the largest real and imaginary parts are as close as possible to, but smaller

than one. This pragmatic approach offers a good compromise between true floating-point

arithmetic, with its computational overhead, and a simple fixed point arithmetic with

significantly reduced dynamic range. However, it appears that no active scaling is performed

in the algorithm to prevent numeric overflow. Instead, it is claimed without substantiation

that a bound exists which is used to calculate the required number of integer bits.

The work in [26] implements a sorted QR decomposition using Householder CORDIC units

to reduce the number of LLL iterations needed. The complex LLL algorithm is used but, as

with most LLL implementations, requires the use of divisions, using the Newton–Raphson

algorithm, throughout the LLL iterations.

The work of [27] builds on [26] and discusses novel search based extensions to LRAD

introduced in [28] which generate a candidate list and therefore soft outputs. However,

the hardware implementation does not discuss this and therefore it is presumed that the

hardware implementation is hard output. Due to the time-multiplexed complex multiplier

pipeline, this approach is forced to rely on the use of priority inversion to prevent deadlocks

due to data dependencies. Analysis is not performed on the precision required and in

particular magnitude bounding is not performed which results in a large number of integer

bits being required.

In [29], the authors build on their prior work [26, 27] by offering several improvements.

This revision implements Sorted QRD to reduce the number of LLL swapping steps. Once

again, the hardware implementation is presumed to only offer hard outputs as no mention

is made of the candidate generation required to form soft outputs nor the hardware required

to calculate LLRs. Unlike the prior works, an upper bound of 4 integer bits is identified for

the elements of the R matrix which offers a significant reduction in the precision required.

Several works [30, 31] make use of systolic arrays in their implementation. This requires

careful scheduling to maximize component utilization. The former work makes use of the

Complex LLL algorithm whereas the later extends the LLL algorithm through the use of the

Siegel condition to avoid the requirement for division operations.

The field-programmable gate array (FPGA) implementation of [32] implements the

Clarkson’s algorithm variant of LLL [33]. However this implementation only considers

slower off-the-shelf FPGA components, including the use of square root and division

operations that have not been optimized. The FPGA and application-specific integrated

circuit (ASIC) implementation [34] claims to achieve a “fivefold improvement in terms of

throughput at the cost of only slightly more FPGA resources” over [26] and [32]. This

work uses CORDIC units along with a modification of the LLL algorithm by replacing the

size-reduction criterion with the reverse Siegel condition. The hard output performance of

this implementation is also enhanced by the use of soft interference cancellation (SIC), which

requires the use of the sorted QR decomposition.
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6.2. Architecture for Subspace Lattice Reduction Aided Detection

Our proposed architecture implements a soft-output lattice reduction-aided detector based
on the subspace LRAD (SLRAD) approach of Windpassinger [3, 4]. The top-level schematic
layout is shown in Fig. 8. A key feature of the detector is the separation of channel and
data processing sections, shown above and below the dashed line in Fig. 8, respectively.
Channel processing is computationally expensive, and includes the decomposition and lattice
reduction of the MIMO channel matrix H . The separation of channel and data processing
therefore enables the receiver to exploit the typically slow variation in channel gains relative
to the symbol rate, whereby the output of the computationally expensive channel processing
step is used is used in processing the data spanning multiple data frames.

The channel processing section in Fig. 8 is fed with elements hin of the estimated MIMO
channel matrix H generated by an external MIMO channel estimator (not shown), while
channel multiply and accumulator (CMAC) units perform rotations under control of the
Givens control unit. Data processing involves the subspace-based detection of incoming
received values, in addition to the calculation of soft outputs in the form of log-likelihood
ratio (LLR) values. The data processing section is fed elements of the received vector y, scaled
by automatic gain control (AGC) to ensure that analog-to-digital converters (ADCs) are not
saturated, and therefore that fixed-point inputs are within a defined range. The data multiply
and accumulate (DMAC) and detection (DET) blocks in Fig. 8 are described in Section 6.4.
The outputs of the data processing section are LLR values for the bits corresponding to each
vector of transmitted symbols x.

Unlike [26, 27], this work implements the Scaled and Decoupled QR (SDQR) Decomposition
[35]. The use of the SDQR provides a definitive bound on the required integer precision and
allows the number of fractional bits to be varied with a constant and small number of integer
bits.

6.3. Channel processing

6.3.1. Givens Control Unit

The calculation of the SDQR rotation values is performed by a Givens Control unit. This unit
is a single cycle processor which generates the Givens rotation G which zeros the element
Pj,i by rotating the jth row with the ith row of P and Φ. The Givens Control unit is capable
of a throughput of one rotation variable per cycle by calculating a Givens rotation every four
cycles. Two rotation variables are emitted in the third cycle (values G1,1 and G1,2) and fourth
cycle (values G2,1 and G2,2) of each Givens rotation calculation. The Givens Control Unit also
maintains the decoupled k values and also dynamically scales G to maintain scaling of not
only k but indirectly P and the rotated y. This processor implements the reciprocal function
required for division through the use of Newton–Raphson iterations.

6.3.2. Channel MAC (CMAC) Unit

The application of rotation operations are performed by processor units referred to as
Channel Multiply and Accumulator (CMAC) units. Each CMAC unit includes sufficient
register space to store a full column of the MIMO channel H as well as necessary intermediate
values. All input, output and stored register values are complex numbers specified using
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Figure 8. Top-level schematic layout. Channel and data processing sections are shown above and below the dashed line,

respectively

custom extensions to the VHDL fixed point math package. Arithmetic implemented includes
a complex multiplier and complex addition unit with the output of the multiplier being one
of the operands of the adder, as shown in Fig. 9.

Whilst this architecture greatly simplifies the challenge of processor unit scheduling, the
units are still unavoidably under-utilized. The CMAC units become unused once the their
corresponding column of H is fully zeroed. As a result, the CMAC unit corresponding to the
ith column of H is in use for i/nT of the SDQR execution period.

The CMAC units provide outputs which feed a multiplexer, as shown in Fig. 8. Required in
order to perform back substitution, this allows the transfer of register values between CMAC
units by feeding the output of a unit to the input of another.

6.4. Data processing

6.4.1. Data MAC (DMAC) Unit

Processor units referred to as Data Multiply and Accumulator (DMAC) units, are
implemented to apply Givens rotation operations on the received vector y. Each DMAC
unit includes sufficient register space to store a full vector of received values y as well as
necessary intermediate values.

Multiple DMAC units are implemented so that the necessary rotations required to apply a
Givens rotation to a full row of H can be performed in parallel. This avoids the need to stall
not only the Givens Control unit but also stalling of DMAC units that would otherwise need
to occur whilst each row element of H is rotated.
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Multiple DMAC units are implemented to achieve the necessary data throughput rate such
that a single rotation operation can be applied to multiple received vectors in parallel. This
builds on the presumption that the MIMO channel is approximately constant for multiple
symbol periods. Given a sufficiently static MIMO channel, any number of DMAC units can
be implemented. This allows a linear scaling of data throughput by simply adding more
DMAC units, a key design feature of the the proposed architecture.

6.4.2. H&T Register File

As well as being loaded into CMAC units, when a new H is loaded into the processor, it is
cached in the H&T register file. This is done to provide a copy of H for use when calculating
the Euclidean distance of candidate estimates. The H&T register file is also used to store
T, the lattice basis required to translate candidate estimates from the reduced basis prior to
demodulation.

6.4.3. Candidate Detection (DET)

Each DMAC unit feeds a symbol detection chain which performs candidate generation and
finally bitwise log-likelihood accumulation. This implements the data flow detailed in Fig. 7.

6.4.4. Log-likelihood ratio (LLR) Accumulator

Once a list of vectors of transmit symbol candidates has been generated, the probability of
each of these vectors needs to be generated. Many approaches exist that avoid the need to
implement the required log operations inherit in the calculation of log-likelihood ratio (LLR)
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values. We implement the shifting method Log-MAP algorithm presented in [36], which
utilizes the following piecewise linear approximation:

f (x) =































0.70 − x/2 0.00 ≤ x < 0.51

0.57 − x/4 0.51 ≤ x < 1.44

0.39 − x/8 1.44 ≤ x < 2.88

0.03 2.88 ≤ x < 4.00

0.00 4.00 ≤ x

(22)

The schematic for the LLR block is shown in Fig. 10.
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Figure 10. Log-likelihood ratio (LLR) Marginalization Schematic Layout

6.5. Processor instruction set

The overall architecture is a microcode-based system with detailed low level micro-operations
that combine to implement higher level complex machine instructions. Each component
including the Givens Control Unit, CMACs, DMACs and Detection Chains have their
own micro-operations. The benefit is the provision of a flexible architecture capable of
implementing the SLRAD algorithm, but which is also able to switch to simpler LRAD or
even ZF algorithms based on the prevailing channel conditions.

6.5.1. Control Unit Micro-operations

The bulk of the channel processing involves the execution of the four operations that generate
the Givens rotation G. The first two, C1 and C2, calculate the new values for Pj,i and kj;
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the third C3 updates ki and calculates G2,1 and G2,2; and the fourth C4 updates Pi,i and
calculate G1,1 and G1,2. The control unit also includes an operation CR which performs
the reciprocation the value kj as needed. This supports back substitution as well as part of
the LLL algorithm and is implemented using the Newton–Raphson algorithm. Finally, the
control unit also performs other operations to marshal data between channel processing and
data processing.

6.5.2. CMAC and DMAC Micro-operations

For the CMAC and DMAC units, the micro-operations, and their corresponding complex
machine instructions are detailed in Table 1. In this table, the first column lists the
micro-operation code, the third column lists the value provided on the input I of the CMAC
and DMAC units and the final two columns detail the implemented function.

Description I CMAC DMAC

Data Load

LC Load elements of H Hm,n Pm,n = I -

LD Load elements of y yx - Φx = I

Givens Rotation for SDQR and Basis Vector Swap Update

G1 Multiply by G2,1 - A = G × Pi + 0 A = G × Φi + 0

G2 Multiply by G2,2 and add - A = G × Pj + A A = G × Φj + A

G3 Multiply by G1,2 - A = G × Pj + 0; Pj = A A = G × Φj + 0; Φj = A

G4 Multiply by G2,2 and add - Pi = G × Pi + A Φi = G × Φi + A

Back Substitution

B1 Multiply Φ row by −Pj,i −Pj,i - A = G × Φi + 0

B2 Accumulate with jth row - - Φj = 1 × Φj + A

Lattice Size Reduction

R1 G = round
(

Pl,j

)

Pl,j O = Pl,j A = G × Φj + 0

R2 Get reduced row of Φ - - Φl = 1 × Φl + A

R3 G = −round
(

Pl,j

)

Px,l Px,j = G × I + Px,j -

Table 1. CMAC and DMAC Instruction Set

The CMAC and DMAC units implement the micro-operations LC and LD to perform data
load operations that load the channel matrix and received vector; G1 to G4 which implement
the Givens rotations for not only the SDQR but also the zeroing step of LLL algorithm; B1
and B2 that performs back substitution operations; and R1 to R3 which perform the LLL
column swap step.

The DMAC units require more or less the same operations as their CMAC counterparts,
however, for the case of back substitution and lattice size reduction the implementation
differs. For back substitution, the CMAC units must pass off-diagonal elements Pj,i to
the DMAC units. For lattice size reduction, the CMAC units add an integer multiple of
one column of P to another by iteratively executing R3 which passes elements between
CMAC units where the target unit performs the multiplication and addition. On the
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other hand, DMAC units are able to perform the equivalent reduction operation in the two
micro-operations R1 and R2 as lattice size reduction is performed in a row-wise fashion.

6.6. Comparisons with previously published work

The results in this section represent the first known digital signal processing architecture for a
soft-output lattice reduction aided MIMO detector. For this reason we are unable to provide a
direct comparison of our architecture with previously published work. Nevertheless, it is still
possible to compare our implementation with three state-of-the-art VLSI implementations of
hard-output LRAD-based MIMO detectors [32], [26], [34].

For nT = nR = 4, the combination of the CMAC micro-operations leads to the system latency
outlined in Table 2. This table assumes a MIMO system represented by an extended channel
matrix, requiring the zeroing of 16 elements of H. The majority of these elements require 4
cycles with the exception being the final element of each column requiring a 5th cycle due
the the extra cycle required to compute the Newton-Raphson based reciprocal. An overhead
of 12 cycles exists to load data into the processor.

For the LLL algorithm, column swap operations require 5 cycles to perform the single Givens
rotation. Size reduction requires at most 3 cycles per pass over the full matrix. As with prior
works, a simple strategy is used to fix the number of iterations of the LLL algorithm which
caps the number of swaps and size reduction passes to 3. This yields 24 cycles per subspace
or 96 cycles for the four subspaces.

Component Latency

QR decomposition 80 cycles

Subspace Generation 30 cycles

Subspace Back-substitution 16 cycles

Subspace Lattice Reduction 96 cycles

Total for SLRAD 222 cycles

Table 2. Latency of Channel Processor

To provide context for the results in Table 2, we compare in Table 3 the latency of the
proposed architecture with the latencies of three hard-output LRAD-based MIMO detectors
for a 4-input, 4-output MIMO system employing QPSK modulation.

[32] [26] [34] this work

average cycles per matrix 420 130 14 222

soft outputs? No No No Yes

Table 3. Latency comparison between the proposed architecture and three state-of-the-art implementations

While the latency of the proposed architecture compares favourably with Barbero et al.’s
solution [32], the significant performance penalty for generating soft outputs is apparent in
comparison with the results of Gestner et al. [26] and (esp.) Bruderer et al. [34]. We caution
that the results in Table 3 need to be interpreted carefully, however, since it is well known that
hard-output MIMO detectors such as [32], [26] and [34] do not facilitate high-performance
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iterative receivers involving joint detection and decoding when error-control codes such as
turbo codes and LDPC codes are employed [37], [22]. The proposed approach therefore
trades off increased latency for improved BER performance and the ability to readily deal
with dense constellations, e.g. 64-QAM.

7. Conclusion

In this chapter we have presented the first known digital signal processing implementation
of a soft-output MIMO wireless communications receiver based on lattice reduction aided
detection (LRAD). Further research is needed to provide the ASIC and FPGA synthesis
results needed to facilitate a comprehensive comparison with prior works providing only
hard outputs.
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