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Zadehian Paradigms for Knowledge Extraction 

 in Intelligent Manufacturing 
 

 

A.M.M. Sharif Ullah and Khalifa H. Harib 

 

1. Introduction     

Manufacturing is a knowledge-intensive activity. The knowledge underlying a 

specific manufacturing process or system is often extracted from a small set of 

experimental observations. To automate the knowledge extraction process 

various machine learning methods have been used (Pham & Afifi, 2005; 

Monostori, 2003). Even though such methods are used, a great deal of human 

intelligence (knowledge extractor’s judgment, preference) is required for get-

ting good results (Ullah & Khalifa, 2006). As a result, a machine learning 

method that is able to utilize human cognition as straightforwardly as possible 

seems more realistic for extracting knowledge in manufacturing. In fact, hu-

man-assisted machine learning methods are in agreement with the modern 

concept of manufacturing automation—how to support humans with com-

puters rather than how to replace humans by computers (Kals et al., 2004). 

Thus, for advanced manufacturing systems, the machine learning methods 

wherein humans and computers compliment each other and the course of 

knowleldge extraction is determine by the human cognition rather than by a 

fully automated algorethemic approach is desirable.  

Artificial intelligence community has also started to recognize the need for 

human-assisted machining learning methods (i.e., human comprehensible ma-

chine learning methods): 
 

“Humans need to trust that intelligent systems are behaving correctly, and one 

way to achieve such trust is to enable people to understand the inputs, 

outputs, and algorithms used as well as any new knowledge acquired through 

learning. As the use of machine learning increases in critical operations it is 

being applied increasingly in domains where the learning system's inputs and 

outputs must be understood, or even modified, by human operators….” (Dan 

Oblinger, AAAI Technical Report, WS-05-04, 2005.) 

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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Now the question is how to develop human comprhensible machine learning 

methods for manufacturing? One of the possibilities is to integrate Inductive-

Statistical Explanation introduced by Hempel (Hemple, 1965) and Fuzzy Set 

based computing introduced by Zadeh (Zadeh, 1965). Based on this 

contempletion this chapter is written. The strucutre of this chapter is as 

follows: Section 2 describles the Hempelian paradigm relevant to this chapter. 

Section 3 describles Zadehian paradigm relevant to this chapter. Section 4 

describes the non-monotonic nature of real-life probability which is important 

for understanding the retionale behind the cross-fertilization between 

Hempelian and Zadehian paradigms. Section 5 describes the human 

comprehesible machine learning method for extraction knowledge knoweldge 

extraction process. Section 6 describles how the proposed knowledge 

extraction process is applied for modeling and simulation of nonlinear 

behaviors in manufacturing. Section 7 describles how the proposed knoweldge 

extraction process is applied to The presented knowledge extraction method 

can be used to establish the relationship between performance measures and 

control variables a machining operations using a small set of data. Finally, the 

concuding remarks are shown. 
 

2. Hempelian Paradigm 

Carl Gustav Hempel, a philosopher of natural science (Woodward, 2003), in-

troduced two models of scientific explanation: 1) Deductive-Nomological (D-N) 

Explanation (Hempel & Oppenheim, 1948) and 2) Inductive-Statistical (I-S) Ex-

planation (Hempel, 1965, 1968). In these models it is assumed that a scientific 

explanation deals with explanan (object that explains a problem) and 

explanandum (object that needs to be explained). D-N Explanation means that 

there is a logically provable universal law (logical positivism) and a “certain” 

conclusion can be made from the law if the underlying conditions are satis-

fied—the explanan must be true and the explanandum must be the logical 

consequence of it (explanan) for all cercusmtances. The logical setting of D-N 

Explanation is as follows: 
 

( )
( )
( ) truebemustqconclusioncertain

satisfiedispcondition

qplawscientific →

 
(1)
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For example, 
 

( )
( )
( ) flycancertainlyItconclusioncertain

birdaisItcondition

flybirdlawscientific →

 (1.1)

 

In (1), p (bird) is called explanan and q (fly) is called explanandum. On the 

other hand, I-S Explanation means that there is no law-like relationship be-

tween explanan (p, bird) and explanandum (q, fly) and if one can prove that 

the probability of explanandum given explanan is very high then the 

explanandum is “most probably” the best explanation for the explanan. Note 

that in I-S Explanation the conclusion is not certain.  

The logical setting of I-S Explanation is as follows: 
 

( ) ( )
( ) [ ]
( ) qconclusionprobablemost

rpcondition

1rr,p|qPrruleyprobabilit ≈=
 

(2)

 

For example, 
 

( )
[ ]

flycanlikelymostIt

rbirdaisIt

.leastatrr,bird|flyPr 950≈=

 
(2.1)

 

I-S Explanation is more suitable model of explanation (knowledge extraction) 

for manufacturing because in manufacturing the arguments are experimental 

data-driven rather than scientific law driven.  

3. Zadehian Paradigm 

Lotfi Ashker Zadeh, a logician of human cognition, introduced some formal 

settings for dealing with uncertainty in man-machine systems. The main 

theme of his philosophy is that the human cognition has two main facets: Par-

tiality and Granularity. Partiality means tolerance to partial truth—truth value 

of a proposition or an event is not only true and false, but also partially true or 

false. Granularity means formation of granules (words or phrases) assigned 



 Manufacturing the Future: Concepts, Technologies & Visions 294

un-sharply to a set of values or attributes. To known more about Zadeh’s phi-

losophy, refer to Zadeh, 1965; 1975; 1997; 2002; 2005a, 2005b. On of the mathe-

matical entities underlying Granularity and Partiality is fuzzy number (Dubois 

& Prade, 1978). A fuzzy number A is defined by a membership function µA 

(user-defined) from real line to the interval 0 to 1 and it must satisfy the condi-

tions of normality, convexity, continuity and compactness, as follows: 
 

[ ]
( ) ( )
( ) ( )( ) ( ) ( ){ } [ ]
( )
( ) ( ) ( ){ } setcompactaisx|RxASuppscompactnes

continuoussemiuppercontinuity

,,Ry,xanyfory,xminyxconvexity

x,Rxnormality

thatsuch,R:

A

AAA

A

A

0

101

1

10

>µ∈=

−

∈λ∈µµ≥λ−+λµ

=µ∈∃

→µ

(3)

 

In semantics sense a fuzzy number A is a fuzzy subset of the real line whose 

highest membership values µA are clustered around a given real number (Du-

bois & Prade, 1978). Therefore, it is found useful in formally computing uncer-

tain quantities like “probability is at least 0.95”. Consider, for example, two 

fuzzy numbers illustrated in Fig. 1. Both fuzzy numbers define the same quan-

tity A = “probability is at least 0.95” by using two different membership func-

tions: 
 

( ) [ ] [ ]
( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−

−

→µ

01
90950

90

01
90950

90

1010

,,
..

.Pr
minmaxPr

bdefinition

,,
..

.Pr
minmaxPr

adefinition

,,:PrA

a

a

 

(3.1)
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definition (b) 

 

Figure 1. Defining probability is at least 0.95 using fuzzy numbers. 

 

The implications of these two definitions will be explained in the next section. 

4. Linguistic Likelihood 

In I-S Explanation, one is required to use classical probability (Kolmogorov, 

1933; Billingsley, 1995; Hajeck, 2003) defined by a space called probability space 

(Ω, F, Pr) wherein Ω is a non-empty set called universal set; F, know as filed, is a 

set of all subsets of Ω that has Ω as a member and that is closed under com-

plementation (with respect to Ω) and union; Pr, known as probability function, is 

a function from F to the real numbers. Pr is monotonic and follows three axi-

oms as follows: 

 

• (Axiom of Non-negativity) Pr(X) ≥0, for all X ∈F, 

• (Axiom of Normalization) Pr(Ω) = 1, 

• (Axiom of Finite Additivity) Pr(X∪Y) = Pr(X) + Pr(Y) for all X, Y ∈F 

such that X∩Y = ∅.  

 

To make sure that a value of Pr(X) follows the above mentioned axioms and 

other theorems and corollaries derived from the above axioms, the value of 

Pr(X) is determined by the following statistical procedure: 
 

( )
N

N
LimXPr X

N ∞→
=  (4)
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In (4), X is an event or proposition; N is the number of trails and NX is the 

number of trials wherein X is found to be true. In practice, it is almost impos-

sible to make infinite number of trials and determine the precise value of 

Pr(X). As a result, Pr(X) is estimated from a relatively large number of trails 

(from the relative frequency NX/N, N being a relatively large number, i.e., from 

a relatively large set of data) or from a probability distribution assuming that X 

follows a distribution (e.g., normal distribution, binomial distribution, etc.). 

Sometimes the situation is much complex—the underlying probability distri-

bution is unknown or the probability has to be estimated from a relatively 

small set of data. This is the case in most of the manufacturing situations. 

Thus, the probability is perfect, but we can’t elicit it perfectly” (O’Hagan & 

Oakley, 2004). In other words, all real-life probabilities are not monotonic (i.e., 

non-monotonic) or imprecise in nature. To deal with the non-monotonic na-

ture of probability (i.e., imprecise probabilities) a model with upper and lower 

provision is used (Walley, 1991; Walley et al., 2004; de Cooman & Zaffalon, 

2004; de Cooman et al., 2005; Lukasiewicz, 2005; Tonn, 2005) wherein a prob-

ability Pr(X) is expressed by lower provision, ( )XPr , and upper provision, 

( )XPr , i.e., Pr(X) = [ ( )XPr , ( )XPr ]. For example, consider Pr(fly | bird) = “at 

least 0.95”. Here, the lower provision ( )XPr  = 0.95 and upper provision is 

( )XPr = 1. 

If someone calculates the value of Pr(X) from a limited number of observa-

tions, then (from the sense of imprecise probability) Pr(X) should be treated in 

such a way as if it is a range rather than a single value. One of the ways to 

achieve this is to use a set of linguistic likelihoods defined by appropriate 

fuzzy numbers and translate Pr(X) into the linguistic likelihood that contains 

Pr(X) most (Ullah & Harib, 2005). The translated linguistic likelihood can then 

be used to find upper and lower provisions or other quantities that are impor-

tant from the view point of imprecise probability (Zadeh, 2002; 2005). For ex-

ample, consider that one calculates Pr(X) = 0.85 from a limited number of ob-

servations.  

This Pr(X) = 0.85 can be translated into linguistic likelihood labeled most-likely 

if the linguistic likelihoods illustrated in Figure 2 are used because µmost-

likely(0.85) is greater than µlikely(0.85) and µmost-unlikely(0.85). In fact, µmost-likely(0.85) 

= 0.833, µlikely(0.85) =0.167, and µmost-unlikely(0.85) = 0 because 
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Figure 2. Three linguistic likelihoods. 

 

Therefore, Pr(X) = 0.85 is no longer a crisp value “0.85”. It is a fuzzy number 

labeled “most-likely”. If needed, the lower and upper provisions can be calcu-

lated from “most-likely” using α-cuts: 

 

( ) ( ]{ }10,,Pr|Prlikely-most likey-most ∈αα≥µ=α . 

 

For example, if α = 0.5, then most-likelyα=0.5 = [0.75,1], i.e.,  ( )XPr  = 0.75 and 

( )XPr  = 1. Moreover, if needed, the expected value of most-likely 

 

( )
( )[ ]

( )∫

∫

µ

µ×

=
1

0

1

0

dPrPr

dPrPrPr

likely-mostE

likely-most

likely-most

= 0.860 

 

can be used to find out the average value of the imprecise probability Pr(X) = 

0.85. 
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Compared to upper and lower provisions, expected value is more robust. The 

explanation is as follows: Recall the linguistic likelihoods shown in Fig. 1. 

E(probability is at least 0.95) = 0.96 for the first definition and = 0.95 for the 

other definition, respectively. This implies that even though the definition of a 

linguistic likelihood varies from person to person, the expected value does not 

vary much (for the above two cases the expected values are 0.96 and 0.95, a 

different of 1%, only). Therefore, if the expected value of a linguistic likelihood 

is used in an inference mechanism, the inferred output will not vary much 

from person to person. In other words, an inference mechanism will become 

robust if the expected value of the linguistic likelihood of an imprecise prob-

ability is used. 

The above explanation can be summarized into the following procedure: 
 

• Determine Pr from a small set of data 

• Define a set of linguistic likelihoods, {L1,…,Ln} using appropriate fuzzy 

number in the universe of discourse [0,1]. Here, Li = {(Pr, µLi(Pr)) |Pr, 

µLi(Pr))∈[0,1]}, ∀i∈{1,…,n}. All µLi(Pr)) follow the characteristics of fuzzy 

number. 

• Translate Pr into LL ∈ {L1,…,Ln} such that µLL(Pr) > µLj(Pr), Lj ∈ 

{L1,…,Ln}-{LL}, ∀j =1,…,n. This means Pr |= LL.  

• Determine the expected value, E(LL), of LL as follow:  

 

( )
( )( )

( )( )∫
∫

µ

×µ
=

dPrPr

dPrPrPr
LLE

LL

LL . 

• Use E(LL) instead of Pr in further calculations. This means that Pr |= LL |= 

E(LL). 

5. Knowledge Extraction Process 

Based on the Hempel’s I-S Explanation and Zadeh’s fuzzy number based lin-

guistic likelihoods the logical setting for extracting knowledge from a small set 

of numerical data is proposed, as follows: 
 

( ) ( )
qlikely-mostThenpIf

likely-mostE,likely-most|p|qPr 1≈=

 (5)
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In (5), “most-likely” is a metaphor that expresses the imprecise likeliness of oc-

curring q given p. According to I-S Explanation the expected value of “most-

likely” should be near to 1. Now, if p is found to be true, the extracted knowl-

edge (i.e., the “If...Then...” rule “If p Then most-likely q”) can be used to pro-

duce output. The output is a value in the range underlying most-likely q, i.e., a 

range little longer than q constrained by the expected value of “most-likely”. 

For example, consider the arbitrary case shown in Fig. 3. As seen from Fig. 3, 

Pr(q|p) = 0.8 |= “most-likely”, according to the definition linguistic likelihoods 

illustrated in Fig. 2. 

Therefore, the rule in (5) holds for the arbitrary case shown in Fig. 3. If the in-

put is a point in the range “p”, then the output is in the range “q” for most of 

the cases and is out of the range “q” for a few cases. This means that most-

likely q = q′ is a range little longer than q or q ⊆ q′. This leads to the following 

inference mechanism: 

 

( )
( )

( )qqqy

pxGiven

qlikely-mostThenpIfExtracted

′⊆′∈

∈  (6)

 

To derive p and q from two fuzzy numbers A and B, α-cuts can be employed. 

As such, p = Aα1 and q = Bα2. In this case, q′ can be derived in the following 

manner: 

 
( )
( )
( )

( ) ( ) ( )( )
( )

α′

αα

α

αα

′∈

×α=α′

=′

=′

∈

By

likely-mostE

Umax,UminBSupp

BBDefined

AxGiven

Blikely-mostThenAIfExtracted

BB

2

22

1

21

 
(7)

 

In (7), B′ is a fuzzy number whose support spreads all over the universe of dis-

course of B and its α-cut at α2 is equal to that of B. Figure 4 depicts the infer-

ence mechanism. A seen from Fig. 4, the inferred output y is any value in the 

range B′α′, which is an α-cut of B′ at α′ = α2×E(most-likely). Since α′ < α2, B′α′ > 

Bα2. 
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Figure 3. An Arbitrary relationship between p and q 

 

 

 

 

Figure 4. The Proposed Inference Mechanism 
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6. Nonlinear Signal Modeling and Simulation 

This section shows how the proposed knowledge extraction method is applied 

to capture the dynamics of a highly nonlinear behavior Y(t) from its return 

map, i.e., a map of (Y(t),Y(t+1)). Particularly for capturing the dynamics of sur-

face roughness the following form of rules are found useful (Ullah & Harib, 

2004; 2006): 

 

If Y(t) is extremely low Then Y(t+1) is most-likely very low 

If Y(t) is very low Then Y(t+1) is most-likely very low 

If Y(t) is extremely high Then Y(t+1) is most-likely extremely high 

Here the phrase “most-likely” is metaphor for the linguistic likelihood associ-

ated with imprecise probability Pr(Y(t+1)=Statei|Y(t)=Statei) of transition from a 

state Statei to the same state after a unit interval. Figures 5 and 6 show some of 

the results and user interfaces of the software tool developed by the authors 

recently (Ullah & Harib, 2006).  

 

Figure 5 shows how a user defines the states of Y(t) (under the message Lin-

guistic Variable) and linguistic likelihoods (under the message Probability). In 

this stage the system automatically generates the return map from an input 

signal. The system then extracts the “if…then…” rules, as shown in Fig. 5. 

 

 

 

Information Setting 
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(Extracted Rules) 
 

 
(Human comprehensible rules)           (Machine comprehensible rules) 

Figure 5. Knowledge extraction from the return map of nonlinear behavior (Ullah & 

Harib, 2006) 

 

These rules can be used recurrently to simulate a surface roughness profile 

similar to the original one. For example consider the simulated surface rough-

ness profiles shown in Fig. 6 wherein two consecutive simulations are shown. 

These signals can be connected piece-wise to produce a signal similar to the 

original one. See Ullah & Harib, 2006 for other computational issues associated 

with this simulation techniques and implications of such knowledge based 

technique from the context of exchanging information of nonlinear behaviors 

from one manufacturing system to another. 
 

 

 

Figure 6. Simulated Surface Roughness (Ullah & Harib, 2006) 
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7. Knowledge Extraction for Machining Operations 

In machining of materials, machining conditions (feed (f), depth of cut (ap), 

width of cut (ae) cutting velocity (Vc), tool nose radius (rε) and others process 

parameters) should be adjusted in such a way so that the required surface fin-

ish or productivity can be ensured. The presented knowledge extraction 

method can be used to establish the relationship between process Performance 

Measures (PMs) and process Control Variables (CVs). The relationship should 

provide a recommended range (RE) of a CV to ensure an acceptable range 

(AC) of a PM. For machining, surface finish (Ra, fractal dimension of rough-

ness profile) and productivity (e.g., for turning productivity = Vc×f×ap) are two 

common machining PMs. On the other hand, CV can be defined using a func-

tion φ(Vc,f,ap,ae,rε). See Ullah & Harib 2005a; 2005b for more details. The logical 

setting proposed for extracting rules for PMs and CVs is as follows: 

 

( )( )
( )( )

( )
( )

( )
( )
( )
( ) α′

α

αα

αα

αα

αα

′∈

∈

−

−

≈−

≈−

−=¬==

∧−===

ERPMOutput

PMCVGiven

AClikelymostisPMThenREnotisCVIfExtracted

AClikelymostisPMThenREisCVIfExtracted

unlikelymostE

likelymostE

unlikelymost|RECV|ACPMPr

likelymost|RECV|ACPMPr

2

12

12

21

21

0

1
 

(8)

Based on logical setting in (8), a JAVA™ based computing tool has been devel-

oped (Ullah & Harib, 2005b) to extract rules. For example, consider the case 

shown in Fig. 7. For this particular case, the user extracts “If…Then…” rules to 

establish the relationship between surface finish (Ra) and Vc, f, and rε. The in-

terest is to set the values of Vc, f, and rε in such a way so that Ra remains rela-

tively small. Therefore, the acceptable range of Ra is set by a trapezoidal fuzzy 

number AC = (0,1,1.5,2.5) as shown in Fig. 7. The user defines CV = Vc×f×rε (in 

Fig. 7, Vc is shown by V and rε is shown by r) based on the judgement that sur-

face roughness is affected mainly by f, rε, and Vc. The data of CV and PM plot-

ted in Fig. 7 are corresponds to that of Ullah & Harib 2005b. As seen from Fig. 

7, the desired rules according to the logical setting in (8) are found when rec-

ommended range of CV, i.e., RE, is set to be a fuzzy number RE = 

(90,150,140,90). The rules are: 
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If Vc×f×rε is RE0.5 Then Ra is Absolutely Likely AC0.5 

If Vc×f×rε is not RE0.5 Then Ra is Absolutely Unlikely AC0.5 

 

Here, RE0.5 = [115,180]. According to the logical setting in (8), “Absolutely 

Likely AC0.5” = “Absolutely Likely [0.5,2]” = [0.4806,2.8944].  

This means that if someone keeps Vc×f×rε in the range of [115,180], then Ra will 

remain in the range [0.480,2.8944]. Thus, the computer comprehensible rule is 

as follows: 
 

If Vc×f×rε is [115,180] Then Ra is [0.4806,2.8944]. 

 

The above rule can be further modified so that the modified rule remains valid 

for all most all recommended input points and predicts output not in the range 

much longer than the predicted range. One of the possible modifications is as 

follows: 
 

If Vc×f×rε is Moderate Then Ra is Fine. 

 

In the modified rule, “Moderate” is a triangular fuzzy number (120,150,180). 

This implies that Supp(Moderate) = [120,180], i.e., a range that is narrowly in-

cluded in [115,180]. On the other hand, “Fine” is a trapezoidal fuzzy number 

(0,0,1,3). This implies that Supp(Fine) = [0,3], i.e., a range that narrowly in-

cludes [0.4806,2.8944]. 
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Figure 7. Knowledge Extraction for Machining of Materials 

 
Note that the linguistic likelihoods (Absolutely Likely…Absolutely Unlikely) 

are user-defined as shown in the bottom of Fig. 7. 

8. Concluding Remarks 

Zadeh’s partiality and granularity based computation has widely been applied 

in developing intelligent systems since its inception in 1965 whereas Hempel’s 

empirical positivism (i.e., I-S Explanation) remains relatively untouched. There 

is a study that shows that Hempel’s I-S Explanation underlies non-monotonic 

or default logic—a computational framework for making natural conclusion 

under evolving information (Tan, 1997). Hempel’s I-S Explanation inspired in-

ference from medical data has gained some attention (Gandjour & Lauterbach, 

2003). This chapter has added a new dimension to the application potential of 

Hempel’s I-S Explanation in intelligent systems development. Particularly it is 
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shown that cross-fertilization between Hempel’s I-S Explanation and Zadeh’s 

fuzzy number based imprecise probabilities provides the logical setting for 

human comprehensible machine learning methods that are able to extract hu-

man- and machine-friendly “If…Then…” rules from empirical facts (i.e., nu-

merical data).  

Two case studies are shown in this chapter to demonstrate the effectiveness of 

the method. In the first case study it is shown that the presented method is 

helpful in nonlinear signal modeling and simulation. Particularly, the case of 

knowledge based modeling and simulation of surface roughness (a very 

highly nonlinear behavior in manufacturing) is shown. This idea can be ex-

tended to model other nonlinear behaviors (productivity, cutting forces, cut-

ting temperature, etc.) encountered in manufacturing. Since the nonlinear be-

haviors are stored by using a small set of “If…Then” rules, the method can be 

used to exchange the information of nonlinear behaviors from one manufac-

turing system to another. 

The other case study deals with the extraction of “If…Then…” rules for ma-

chining. The goal is to get such rules that are able to predict the machining per-

formance measures (e.g., surface roughness, productivity) for a given combi-

nation of cutting conditions (feed, depth of cut, cutting velocity, tool nose 

radius, etc.). Particularly, a rule is extracted to ensure fine surface finish by 

keeping the product of cutting velocity, feed rate and tool nose radius to a 

range. The issues of how to make the rules more general is also elaborated. 

As the modern concept of manufacturing automation is “how to support hu-

mans with computers” rather than “how to replace humans by computers”, 

the presented knowledge extraction method will provide valuable hints for the 

manufacturing systems developers to develop more human- and computer-

friendly computing tools. 
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