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1. Introduction

The achievement of minimal angular divergence of a laser beam is one of the most impor‐
tant problems in laser physics since many laser applications demand extreme concentration
of radiation. Under the beam formation in the laser oscillator or amplifier with optically in‐
homogeneous gain medium and optical elements, the divergence usually exceeds the dif‐
fraction limit, and the phase surface of the laser beam differs from the plane surface.
However, even if one succeeds in realizing the close-to-plane radiation wavefront at the la‐
ser output, the laser radiation experiences increasing phase disturbances under the propaga‐
tion of the beam in an environment with optical inhomogeneities (atmosphere). These
disturbances appear with the wavefront receiving smooth, regular distortions, the trans‐
verse intensity distribution becomes inhomogeneous, and the beam broadens out.

The correction of the laser radiation phase, which is a smooth continuous spatial function,
can be performed using a conventional adaptive optical system including a wavefront sen‐
sor and a wavefront corrector. The wavefront sensor performs the measurement (in other
words, reconstruction) of the radiation phase surface; then, on the basis of these data, the
wavefront corrector (for example, a reflecting mirror with deformable surface) transforms
the phase front in the proper way. If all components of the adaptive optical system are in‐
volved in the common circuit with the feedback, then the adaptive system is known as a
closed-loop system. The adaptive correction of the wavefront with smooth distortions has a
somewhat long history and considerable advances [1, 2, 3, 4, 5, 6].

When a laser beam passes a sufficiently long distance in a turbulent atmosphere, the so-
called regime of strong scintillations (intensity fluctuations) is realized. Under such condi‐
tions the optical field becomes speckled, lines appear in the space along the beam axis where
the intensity vanishes and the surrounding zones of the wavefront attain a helicoidal
(screw) shape. If the intensity in an acnode of the transverse plane is zero, then the phase in
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this point is not defined. In view of its screw form, the phase surface in the vicinity of such
point has a break, the height of which is divisible by the wavelength. Since the phase is de‐
fined accurate to the addend that is aliquot to 2π, it is formally continuous but under a com‐
plete circling on the phase surface around the singular point one cannot reach the starting
place. The integration of the phase gradient over some closed contour encircling such singu‐
lar point results in a circulation not equal to zero, in contrast to the null circulation at the
usual smoothed-inhomogeneous regular phase distribution. The indicated properties repre‐
sent evidence of strong distortions of the wavefront – screw dislocations or optical vortices.
The vortical character of the beam is detected with ease in the experiment after the analysis
of the picture of its interference with the obliquely incident plane wave: the interference
fringes arise or vanish in the centers of screw dislocations forming peculiar “forks”.

Scintillations in the atmosphere especially decrease the efficiency of light energy transporta‐
tion and distort the information carried by a laser beam in issues of astronomy and optical
communications. Scintillation effects present special difficulty for adaptive optics, and their
correction is one of key trends in the development of state-of-the-art adaptive optical systems.

However it should be noted that the possibility to control the optical vortices (including the
means of adaptive optics) presents interest not only for atmospheric optics but for a new op‐
tical field, namely, singular optics [7, 8, 9]. The fact is that optical vortices have very promis‐
ing applications in optical data processing, micro-manipulation, coronagraphy, etc. where
any type of management of the singular phase could be required.

This chapter is dedicated to wavefront reconstruction and adaptive phase correction of a
vortex laser beam, which is generated in the form of the Laguerre-Gaussian LG0

1 laser mode.
The content of the chapter is as follows. In Section 1 we specify the origin and main proper‐
ties of optical vortices as well as some their practical applications. Section 2 is dedicated to a
short description of the origination of optical vortices in a turbulent atmosphere and corre‐
spondent problems of the adaptive optics. In Section 3 some means are given concerning the
generation of optical vortices under laboratory conditions, aimed at the formation of a “ref‐
erence” optical vortex with the maximally predetermined phase surface, and the experimen‐
tal results of such formation are illustrated. Section 4 is concerned with vortex beam phase
surface registration, based on measurements of phase local tilts using a Hartmann-Shack
wavefront sensor and a novel reconstruction technique. In Section 5 experimental results of
correction of a vortex beam are demonstrated in the conventional closed-loop adaptive opti‐
cal system including a Hartmann-Shack wavefront sensor and a bimorph deformable adap‐
tive mirror. Conclusions summarize the abovementioned research results.

2. Origin, main properties and practical applications of optical vortices

The singularity of the radiation field phase S is identified by the term “optical vortex”,
which can appear in the complex function exp{iS} representing a monochromatic light wave
[10]. The amplitude of scalar wave field A (and, correspondingly, its intensity I=|A|2) in the
point of the vortex location approaches zero. The phase of radiation S changes its value by
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2πm with the encircling the singularity point clockwise or counter-clockwise, where m is the
positive or negative integer number known as the vortex “topological charge”. In the centre
of the vortex (intensity zero point) the phase remains indefinite. Such an optical singularity
is the result of the interference of partial components of the wave field with a phase shift,
which is initial or acquired during propagation in an inhomogeneous medium. In 3D space
the points with zero intensity form zero lines. On these lines the potentiality of phase field is
violated; and the regions of “defective” (singular) phase can be considered as vortex strings
like the regions with concentrated vorticity, which are considered in the hydrodynamics of
ideal liquid. We are interested in a case where the lines of zero intensity have a predomi‐
nantly longitudinal direction, i.e. form a longitudinal optical vortex. The equiphase surface
in the vicinity of such a line has the appearance of a screw-like (helicoidal) structure, thread‐
ed on this line. In the interference pattern of the vortex wave under consideration with any
regular wave, the vortices are revealed through the appearance of so-called “forks” (i.e.,
branching of interference fringes), coinciding with zero points of the intensity.

Investigations of waves with screw wavefront and methods of their generation were report‐
ed as early as by Bryngdahl [11]. The theory of waves carrying phase singularities was de‐
veloped in detail by Nye and Berry [12, 10], prompting a series of publications dealing with
the problem (see [13, 14, 7, 8] and the lists of references therein). The term “optical vortex”
was introduced in [15]. Along with the term “optical vortex”, the phenomenon is also refer‐
red to as “wavefront screw dislocation”. The latter appeared because of similarities between
distorted wavefront and the crystal lattice with defects. The following terms are also used:
“topological defects”, “phase singularities”, “phase cuts”, and “branch cuts”.

Thus the indication of the existence of an optical vortex in an optical field is the presence of
an isolated point {r, z} in a plane, perpendicular to the light propagation axis, in which inten‐
sity I (r, z) is approaching zero, phase S (r, z) is indefinite, and integration of the phase gradi‐
ent ∇⊥S field over some closed contour Г encircling this point results in a circulation not
equal to zero:

( , ) 2 ,S z d mp^
G

Ñ =ò ρ ρÑ (1)

where dρ is the element of the contour Г.

The propagation of slowly-varying complex amplitude of the scalar wave field A in the free
space is described by the well-known quasi-optical equation of the parabolic type (see, for
example, [16]):

∂A
∂ z −

i
2k
∂2 A
∂r 2 =0, (2)

where k=2π/λ is wave number, λ is the radiation wavelength, z is the longitudinal coordi‐
nate corresponding with the beam propagation axis, r=exx+eyy is the transverse radius-vec‐
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tor. In the process of radiation propagation in the medium vortices appear, travel in space,
and disappear (are annihilated).

Laguerre-Gaussian laser beams LGn
m are related to the familiar class of vortex beams and are

used most often in experiments with optical vortices [7-9]. They are the eigen-modes of the
homogeneous quasi-optical parabolic equation (2) [17], so they do not change their form un‐
der the free space propagation and lens transformations. The correspondent solution of
equation (2) in cylindrical coordinates (r, φ, z) has the following form:

A(r , φ; z)= A0
w0
w ( r

w )m
Φm(φ)L n

m(2 r 2

w 2 )exp(− r 2

w 2 + i
zr 2

z0w
2 − i(2n + m + 1)arctg

z
z0

), (3)

The typical transverse size of the beam w in (3) is determined by the relation w2 =w0
2 [1+z2 /

z0
2] where, in its turn, w0 is the transverse beam size in the waist and z0 =kw0

2 /2 is the typical
waist length. The radial part of distribution (3) includes the generalized Laguerre polyno‐
mial

L n
m(x)=

e x

x mn !
d n

d x n (x n+me −x). (4)

In addition to an item responsible for wavefront curvature and transversely-uniform Gouy
phase, the angular factor Φm(φ) contributes to the phase part of distribution (3). The angular
part of formula (3) is represented in the form of a linear combination of harmonic functions

Φm(φ)= c1⋅Ωm(φ) + c2⋅Ω−m(φ), (5)

where Ωm(φ)=exp(imφ), φ=arctg(y/x) is the azimuth angle in the transverse plane. The c1 and
c2 constants determine the beam character and the presence of singularity in it.

Let’s consider two cases of the angular function Φm(φ) distribution from (5) at m>0. In the
first case, when c1=1 and c2=0, we have Φm(φ)=exp(imφ). The form of helicoidal phase surface
assigned by the mφ function (we do not take into account the wavefront curvature in (3) de‐
termining the beam broadening or narrowing only) in the vortex Laguerre-Gaussian laser
beam is presented in Figure 1. This phase does not depend on r at the given φ and rises line‐
arly with φ increasing. In the phase surface the spatial break of mλ (or 2πm radians) depth is
present. Under the complete circular trip around the optical axis on the phase surface it is
impossible to get to the starting point. As it has been commented above, such a shape of the
phase factor is what causes the singular, vortex behavior of the beam. The positive or nega‐
tive sign of m determines right or left curling of the phase helix.

On the optical axis, in the vortex center, the intensity is zero, resulting from the behavior of
the radial dependence of (3) and generalized Laguerre polynomial (4). The beam intensity
distribution in the transverse plane, as it is seen from (3), is axially-symmetrical (modulus of
A depends on r only) and visually represents the system of concentric rings. In the simplest
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case at n=0, m=1 (LG0
1 mode) the intensity distribution has a doughnut-like form that is

shown in Figure 2. Figure 2 also presents a picture of the interference of the given vortex
laser beam with the obliquely incident monochromatic plane wave. In the picture, fringe
branching is observed in the beam center with the “fork” formation (fringe birth) typical for
screw dislocation [7-9]. At the arbitrary m number the quantity of fringes that are born corre‐
sponds with this number, the double, triple, and other “forks” are formed. The presence of
“forks” in the interference patterns of such kind is the standard evidence of the vortex na‐
ture of the beam in the experiment.

Figure 1. Phase surface shape of a Laguerre-Gaussian beam carrying an optical vortex.

Figure 2. The intensity distribution in the Laguerre-Gaussian laser beam LGn
m and the picture of its interference with

an obliquely incident plane wave at n=0, m=1, Φm=exp(iφ).
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Figure 3. The intensity distribution in the Laguerre-Gaussian laser beam LGn
m and the picture of its interference with

an obliquely incident plane wave at n=0, m=1, Φm=sin(iφ).

Let’s consider one more case when c1=-c2=1/2i in (5), then Φm(φ)=sin(mφ). Under such condi‐
tions, according to (3) the intensity distribution has no axial symmetry depending on φ. In
Figure 3 the beam intensity distribution in the transverse plane at Φm=sinφ for n=0, m=1 is
shown. The phase portrait of the beam is also given in Figure 3. The half-period shift of in‐
terference fringes in the lower half plane as compared to the upper one demonstrates the
phase asymmetry with respect to the x axis. The fringe numbers in the lower and upper half
planes are the same, i.e. the fringe birth does not take place. It is seen that the edge rather
than screw phase dislocation occurs here since the phase distribution is step-like with a
break of π (instead of 2π!) radians. The given example of the Laguerre-Gaussian beam dem‐
onstrates that at Φm=sinφ the beam is not the vortical in nature. There is no singular point in
the beam transverse section but there is a particular line (y=0) where the intensity is zero. At
m>1 in the beam there are m such lines passing through the optical axis and dividing the
transverse beam section by 2m equal sectors. The radiation phase in each sector is uniform
and differs in π in the neighboring sectors.

Light beams with optical vortices currently attract considerable attention. This attention is
encouraged by the extraordinary properties of such beams and by the important manifesta‐
tions of these properties in many applications of science and technology.

It is known for a long time that light with circular polarization possesses an orbital moment.
For the single photon its quantity equals ±ћ, where ћ is the Planck constant. However only
relatively recently it was shown [18, 19] that light can have an orbital moment irrespective of
its polarization state if its azimuth phase dependence is of the form S=mφ where φ is azi‐
muth coordinate in the transverse cross section of the beam and m is the positive or negative
integer. The authors [18] supposed that the moment of each photon is defined by the formu‐
la L=mћ. As this phase dependence is the characteristic feature of the helical wavefront (the
form of which is presented in Figure 1) so the beam carrying the optical vortex and possess‐
ing such phase front has to own the non-zero orbital moment mћ per photon. The quantity
of m is defined by the topological charge of optical vortex.

The concept of orbital moment is not new. It is well known that multipole quantum jumps
can results in the emission of radiation with orbital moment. However, such processes are
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infrequent and correspond to some forbidden atomic and molecular transitions. However,
generating the beam carrying the optical vortex, one can readily obtain the light radiation
beam with quantum orbital moment. Such beams can be used in investigations of all kinds
of polarized light. For example, the photon analogy of spin-orbital interaction of electrons
can be studied and in general it is possible to organize the search for new optical interac‐
tions. As the m-factor can acquire arbitrary values, any part of the beam (even one photon)
can carry an unlimited amount of information coded in the topological charge. Thus the
density of information in a channel where coding is realized with the use of orbital moment
could be as high as compared with a channel with coding of the spin states of a photon. Be‐
cause only two circular polarization states of the photon are possible, one photon can trans‐
mit only one bit of information. Presently, optical vortices have generated a great deal of
interest in optical data processing technologies, namely, the coding/decoding in optical com‐
munication links in free space [20, 21], optical data processing [22], optical interconnects
[23], and quantum optics information processing [24].

The next practical application of optical vortices is optical micromanipulations and construc‐
tion of so called optical traps, i.e. areas where the small (a few micrometers) particles can be
locked in [25, 26]. Progress in the development of such traps allows the capture of particles
of low and large refraction indexes [27]. Presently, this direction of research finds further
continuation [28, 29, 30].

It is also possible to use optical vortices to register objects with small luminosity located near
a bright companion. Shadowing the bright object by a singular phase screen results in the
formation of a window, in which the dim object is seen. The optical vortex filtration of such
a kind was proposed in [31]. Using this method the companion located at 0.19 arcsec near
the object was theoretically differentiated with intensity of radiation 2×105 times greater [32].
The possibility to use this method to detect planets orbiting bright stars was also illustrated
by astronomers [33, 34]. Vortex coronagraphy is now undergoing further development [35,
36]. There are a number of examples of non-astronomical applications [37, 38].

It was proposed to use optical vortices to improve optical measurements and increase the
fidelity of optical testing [39, 40], for investigations in high-resolution fluorescence microsco‐
py [41], optical lithography [42, 43], quantum entanglement [44, 45, 46], Bose–Einstein con‐
densates [47].

Optical vortices show interesting properties in nonlinear optics [48]. For example, in [49, 50,
51] it was predicted that the phase conjugation at SBS of vortex beams is impossible due to
the failure of selection of the conjugated mode. For a rather wide class of the vortex laser
beams a novel and interesting phenomenon takes place which can be called the phase trans‐
formation at SBS. In essence there is only one Stokes mode, the amplification coefficient of
which is maximal and higher than that of the conjugated mode. In other words, the non-con‐
jugated mode is selected of in the Stokes beam. The principal Gaussian mode, which is or‐
thogonal to the laser vortex mode, is an example of such an exceptional Stokes mode. The
cause of this phenomenon is in the specific radial and azimuth distribution of the vortex la‐
ser beam. It is interesting that the hypersound vortices are formed in the SBS medium in ac‐
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cordance with the law of topologic charge conservation. The predicted effects have been
completely confirmed experimentally [52, 53, 54].

3. Optical vortices in turbulent atmosphere and the problem of adaptive
correction

In early investigations [12] it was shown that the presence of optical vortices is a distinctive
property of the so called speckled fields, which form when the laser beam propagates in the
scattering media. Experimental evidence of the existence of screw dislocations in the laser
beam, passed through a random phase plate, were obtained in [55, 56, 57] where topological
limitations were also noted of adaptive control of the laser beams propagating in inhomoge‐
neous media.

Turbulent atmosphere can be represented as the consequence of random phase screens. Un‐
der propagation in the turbulent atmosphere the regular optical field acquires rising aberra‐
tions. These aberrations manifest themselves in the broadening and random wandering of
laser beams; the intensity distribution becomes non-regular and the wavefront deviates
from initially set surface. These deformations of the wavefront can be corrected using adap‐
tive optics. To this end, effective sensors and correctors of wavefront were designed [1-6].
The problem becomes more complicated when the laser beam passes a relatively long dis‐
tance in a weak turbulent medium or if the turbulence becomes too strong. In this case opti‐
cal vortices develop in the beam; the shape of the wavefront changes qualitatively and
singularities appear.

The influence of the scintillation effects are determined (see, for example, [2, 4]) by the close‐
ness to unity of the Rytov variance

σχ
2≈0.56k 7/6 ∫

0

L

Cn
2(z)z 5/6(z / L )5/6dz, (6)

where Cn
2(z) describes the dependence of structure constant of the refractive index fluctua‐

tions over the propagation path and L is the path length. The regime of strong scintillations
is not realized when σχ

2<<1.

Figure 4 demonstrates the results of numerical simulation of propagation of a Gaussian laser
beam (λ=1 μ) in turbulent atmosphere in a model case of invariable structure constant Cn

2

=10-14 cm-2/3 for the distance of 1 km when the regime of strong scintillations is realized ac‐
cording to (6). The steady-state equation for the slowly-varying complex field amplitude A
differs from the equation (2) by the presence of the inhomogeneous term:
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∂A
∂ z −

i
2k
∂2 A
∂r 2 +

ik
2 (ε̃ −1)A=0, (7)

where ε̃ is the fluctuating dielectric permittivity of the turbulent atmosphere. In numerical
simulations we use the finite-difference algorithm of numerical solving of parabolic equa‐
tion (7) described in [58]. It is characterized by an accuracy, which considerably exceeds the
accuracy of the widespread spectral methods [59]. The amplitude error of an elementary
harmonic solution of the homogeneous equation is equal to zero, whereas the phase error is
significantly reduced and proportional to the transverse integration step to the power of six.
To take into account the inhomogeneous term of the equation, the splitting by physical proc‐
esses is employed. The effect of randomly inhomogeneous distribution of dielectric permit‐
tivity is allowed for using a model of random phase screens, which is commonly used in
calculations of radiation propagation in optically inhomogeneous stochastic media [60]. The
spatial spectrum of dielectric permittivity fluctuations is described taking into account the
Tatarsky and von Karman modifications of the Kolmogorov model [61].

The fragment of speckled distribution of optical field intensity after the propagation is
shown in Figure 4. Dark spots are seen where the intensity vanishes. As it has been noted
before, the presence of optical vortices in the beam is easily detected, based on the picture of
its interference with an obliquely incident plane wave. The correspondent picture is shown
in Figure 4 as well. In the centers of screw dislocations the fringe branching is observed, i.e.
the birth or disappearance of the fringes takes place with formation of typical “forks” in the
interferogram (compare with Figure 2). There are also zones of edge dislocations (compare
with Figure 3). The number, allocation and helicity of the vortices in the beam are random in
nature but the vortices are born as well as annihilated in pairs. If the initial beam is regular
(vortex-free), then the total topological charge of the vortices in the beam will be equal to
zero in each transverse section of the beam along the propagation path in accordance with
the conservation law of topological charge (or orbital angular moment) [7-9].

Figure 4. Optical vortices in the laser beam after atmospheric propagation: the speckled intensity distribution and the
picture of interference of the beam with the obliquely incident plane wave including “forks” denoted by light circles.
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One of the first papers dealing with the appearance of optical vortices in laser beams propa‐
gating in randomly inhomogeneous medium was published by Fried and Vaughn in 1992
[62]. They pointed out that the presence of dislocations makes registration of the wavefront
more difficult and they considered methods for solving the problem. In 1995 the authors of
Ref. [63] encountered this problem in experimental investigations of laser beam propagation
in the atmosphere. It was shown that the existence of light vortices is an obstacle for atmos‐
pheric adaptive optical systems. After that it was theoretically shown that screw dislocations
give rise to errors in the procedure of wavefront registration by the Shack-Hartmann sensor
[64, 65]. Due to zero amplitude of the signal in singular points, the information carried by
the beam becomes less reliable and the compensation for turbulent aberrations is less effec‐
tive [66]. Along with [63], the experimental investigation [67] can be taken here as an exam‐
ple where the results of adaptive correction are presented for distortions of beams
propagating in the atmosphere.

Since one of the key elements of an adaptive optical system is the wavefront sensor of laser
radiation, there is a pressing need to create sensors that are capable of ensuring the required
spatial resolution and maximal accuracy of the measurements. In this connection there is
necessity need to develop algorithms for measurement of wavefront with screw disloca‐
tions, which are sufficiently precise, efficient and economical given the computing resour‐
ces, and resistant to measurement noises. The traditional methods of wave front measurements
[1-6] in the event of the above-mentioned conditions are in fact of no help. The wavefront
sensors have been not able to restore the phase under the conditions of strong scintillations
[68]. The experimental determination of the location of phase discontinuities itself already
generates serious difficulties [69]. In spite of the fact that the construction features of algo‐
rithms of wavefront recovery in the presence of screw dislocations were set forth in a num‐
ber of theoretical papers [68, 69, 70, 71, 72, 73, 74, 75], there were not many published experimental
works in this direction. Thus, phase distribution has been investigated in different diffrac‐
tion orders for a laser beam passed through a specially synthesized hologram, designed for
generating higher-order Laguerre-Gaussian modes [76]. An interferometer with high spatial
resolution was used to measure transverse phase distribution and localization of phase singu‐
larities. The interferometric wavefront sensor was applied also in a high-speed adaptive optical
system to compensate phase distortions under conditions of strong scintillations of the coher‐
ent radiation in the turbulent atmosphere [77] as well as when modelling the turbulent path
under laboratory conditions [78]. In [77, 78] the local phase was measured, without reconstruct‐
ing the global wavefront that is much less sensitive to the presence of phase residues. The
interferometric methods of phase determination are rather complicated and require that several
interferograms are obtained at various phase shifts between a plane reference wave and a
signal wave. It is noteworthy, however, that in the adaptive optical systems [1-6] the Hartmann-
Shack wavefront sensor [79, 80] has a wider application compared with the interferometric
sensors including the lateral shearing interferometers [81, 82], the curvature sensor [83, 84, 85],
and the pyramidal sensor [86, 87]. The cause of this is just in a simpler and more reliable
arrangement and construction of the Hartmann-Shack sensor. However, there have been
practically no publications of the results of experimental investigations connected with appli‐
cations of this sensor for measurements of singular phase distributions.
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The problem of a wavefront corrector (adaptive mirror) suitable for controlling a singular
phase surface is also topical. In the adaptive optical systems [77, 78] the wavefront correctors
were based on the micro-electromechanical system (MEMS) spatial light modulators with
the large number of actuators. The results of [77, 78] shown that continuous MEMS mirrors
with high dynamic response bandwidth, combined with the interferometric wavefront sen‐
sor, can ensure a noticeable correction of scintillation. However, the MEMS mirrors are char‐
acterized by low laser damage resistance that can considerably limit applications. The
bimorph or pusher-type piezoceramics-based flexible mirrors with the modal response func‐
tions of control elements have a much higher laser damage threshold [3-5]. Recently [88] a
complicated cascaded imaging adaptive optical system with a number of bimorph piezocer‐
amic mirrors was used to mitigate turbulence effect basing, in particular, on conventional
Hartmann-Shack wavefront sensor data. Conventional adaptive compensation was obtained
in [88] which proved to be very poor at deep turbulence. The scintillation and vortices may
be one of the causes of this.

In the investigations, the results of which are described in this chapter, the development of
an algorithm of the Hartmann-Shack reconstruction of vortex wavefront of the laser beam
plays a substantial role. The creation of efficient algorithms for the wavefront sensor of vor‐
tex beams implies the experiments under modeling conditions when the optical vortices are
artificially generated by special laboratory means. Moreover, as long as the matter concerns
the creation of a new algorithm of wavefront reconstruction, it is possible to estimate its ac‐
curacy only under operation with the beam, the singular phase structure of which is known
in detail beforehand. The formation of optical beams with the given configuration of phase
singularities and their transformations is one of main trends in the novel advanced optical
branch – singular optics [7-9].

Thus, the first stage of the research sees the generation of a vortex laser beam with the given
topological charge. In our case the role of this beam is played by the single optical vortex,
namely, the Laguerre-Gaussian mode. Further, at the second stage, with the help of the
Hartmann-Shack wavefront sensor, the task of registration of the vortex beam phase surface
is solved using the new algorithm of singular wavefront reconstruction. Finally, at the third
stage, the correction of the singular wavefront is undertaken in a closed-loop adaptive opti‐
cal system, including the Hartmann-Shack wavefront sensor and the wavefront corrector in
the form of a piezoelectric-based bimorph mirror.

4. Generation of optical vortex

As it has been indicated above, to examine the accuracy of the wavefront reconstruction al‐
gorithm and its efficiency in the experiment itself a “reference” vortex beam has to be
formed with a predetermined phase surface. This is important as, otherwise, it would be im‐
possible to make sure that the algorithm recovers the true phase surface under conditions
when robust alternative methods of its reconstruction are missing or unavailable. The La‐
guerre-Gaussian vortex modes LGn

m can play the role of such “reference” optical vortices.
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To create a beam with phase singularities artificially from an initial plane or Gaussian wave,
a number of experimental techniques have been elaborated. There are many papers concern‐
ing the various aspects of generation of beams with phase singularities (see, for example,
[89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104]). Among other possibilities, we
can also refer to several methods for phase singularity creation in the optical beams based
on nonlinear effects [105, 106, 107, 108]. The generation of optical vortices is also possible in
the waveguides [109, 110, 111]. The adaptive mirrors themselves can be used for the forma‐
tion of optical vortices [112, 113]. In this chapter, though, we dwell only on a number of
ways to generate the vortex beams, which allow one to form close-to-“reference” vortices
with well-determined singular phase structure that is necessary for the accuracy analysis of
the new algorithm of Hartmann-Shack wavefront reconstruction.

One method for generation of the screw dislocations is by forming the vortex beam immedi‐
ately inside a laser cavity. The authors of [114] were the first to report that the generation of
wavefront vortices is possible using a cw laser source. It was shown in [115] that insertion of
a non-axisymmetric transparency into the cavity results in generation of a vortex beam. It
was reported in [116] that a pure spiral mode can be obtained by introducing a spiral phase
element (SPE) into the laser cavity, which selects the chosen mode. The geometry of the cavi‐
ty intended for generation of such laser beams from [116] is shown in Figure 5. Here a rear
mirror is replaced by a reflecting spiral phase element, which adds the phase change +2imφ
after reflecting. As a result of reflection, the phase of a spiral mode -imφ changes to +imφ.
The cylindrical lens inside the cavity is focused on the output coupler. This lens inverts the
helicity of the mode back to the field described by exp{-imφ} and ensures the generation of
the required spiral beam. The beam at the output passes another cylindrical lens and its dis‐
tribution becomes the same as inside the cavity. A pinhole in the cavity ensures the genera‐
tion of a spiral mode of minimal order, i.e., TEM01 mode. It should be stressed that the spiral
phase element determines the parameters of the spiral beam within the cavity so that by its
variation the parameters of the output beam can be controlled.

This method was tested with a linearly polarized CO2-laser. The reflecting spiral phase ele‐
ment was made of silicon by multilevel etching. It had 32 levels with the entire height of break
λ that corresponds to m=1. Precision of etching was about 3% and deviation of the surface from
the prescribed form was less than 20 nm. The reflecting coefficient of the element was great‐
er than 98%; the diameter and length of the laser tube were 11 mm and 65 cm, respectively.
The lens inside the cavity with focal length 12.5 cm was focused in the output concave mirror
with a radius of 3 m. An identical lens was placed outside the cavity to collimate the beam. In
Figure 6 we demonstrate the stable spiral beam obtained in the experiment [116]. The vorti‐
cal nature of the beam is proved not by demonstration of the “fork” in the interferogram but
by the doughnut-like intensity distribution in the near and the far zone.
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Figure 5. Configuration of a laser cavity intended for generation of spiral beams [116].

Figure 6. Intensity distribution of vortex beam generated in the laser cavity in near (left) and far (right) zone [116].

A ring cavity with the Dove’s prism can also be used to generate vortex beams. It was
shown [117] that modes of such a resonator are singular beams.

The next way to generate the optical vortex uses a phase (or a mode) converter. Usually it
transforms a Hermit-Gaussian mode, generated in the laser, into a corresponding Laguerre-
Gaussian mode. This method was first proposed in [118]. In the experiment the authors used
a cylindrical lens, the axis of which was placed at an angle of 45º with respect to the HG01

mode for conversion into a LG0
1 mode. The incident mode appears to the lens as a superpo‐

sition of HG01 mode parallel to the lens axis and a mode perpendicular to the axis. The mode
perpendicular to the lens axis passes through a focus, advancing the relative Gouy phase be‐
tween the two modes of π/2 as required to form the doughnut mode from uncharged HG01

and HG10 modes.

In Ref. [91] an expression was derived for an integral transformation of Hermit-Gaussian
modes into Laguerre-Gaussian modes in the astigmatic optical system, and it was shown
theoretically that passing the beam through the cylindrical lens can perform the conversion.
The theory of a π/2 mode converter and a π mode converter, produced by two cylindrical
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lenses, was described in more details in [92]. Padgett et al. describe in a tutorial paper [119]
how a range of Laguerre-Gaussian modes can be produced using two cylindrical lenses
starting from the corresponding Hermit-Gaussian modes, and present the clear examples,
showing the intensity and phase distributions obtained. The initial higher order Hermit-
Gaussian modes can be produced in the laser with intracavity cross-wires. The authors of
[96] used a similar technique with a Nd:YAG laser operating at the 100 mW level.

Even in the absence of the required initial HG10 mode in the laser emission, it is easy to produce
artificially a similar configuration by introducing a glass plate in a half of the TEM00 beam and
achieving the necessary π phase shift, and then to apply mode conversion. An example of such
doughnut beam creation was reported in [120]. The efficiency of conversion was about 50%.
It is possible to use the cylindrical lens mode converter [121] but with production of the initial
higher order Hermit-Gaussian mode, by exciting it in an actively stabilized ring cavity, match‐
ing in the Gaussian beam from their titanium sapphire laser. The efficiency was up to 40% for
the LG0

1 mode, and higher order doughnuts could also be obtained easily. The method pro‐
posed in [122] is based on the formation of a pseudo HGNM mode, propagating the Gaussian
beam of a number of edges of thin glass plates and forming the edge dislocations with the
following its astigmatic conversion into a Laguerre-Gaussian mode.

It was reported in [123] that in the event of ideal conversion, the efficiency of Hermit-Gaus‐
sian mode transformation into Laguerre-Gaussian mode is about 99.9%. The spherical aber‐
ration does not reduce the efficiency factor. Typically cylindrical lenses are not perfect and
their defects give rise to several Laguerre-Gaussian modes. The superposition of compo‐
nents can be unstable and this means a dependence of intensity on the longitudinal coordi‐
nate. If special means are not employed the precision of lens fabrication is about 5%, in this
case the efficiency of beam transformation into Laguerre-Gaussian mode is 95%. Imperfec‐
tions of 10% result in drop of efficiency down to 80%.

In [124, 54] the formation of the Laguerre-Gaussian LG0
1 or LG1

1 modes was performed at the
output of a pulsed laser-generator of Hermit-Gaussian HG01 or HG21 modes with the help of
a tunable astigmatic π/2-converter based on the so-called optical quadrupole [125]. It con‐
sists of two similar mechano-optical modules, each of which incorporates the positive and
negative cylindrical lenses with the same focal length and a positive spherical lens. The me‐
chanical configuration of each module can synchronously turn the incorporated cylindrical
lenses in the opposite directions with respect to the optical axis, which ensures its rearrange‐
ment. In the initial position the optical forces of cylindrical lenses completely compensate
each other and their axes coincide with the main axes of the intensity distribution of the la‐
ser. The distance between the modules is fixed so that the spherical lenses in different mod‐
ules are located at a focal distance from each other and form the optical Fourier transformer.

To study the phase structure of radiation, in [54] use was made of a special interferometer
scheme, where the reference beam was produced from a part of the original Laguerre–Gaus‐
sian LG0

1 or LG1
1 mode (see Figure 7). As a result, each of the modes interfered with a similar

one, but with a topological charge of the opposite sign (the opposite helicity), i.e., with LG0
-1

or LG1
-1 mode. The interference fringe density depended on the thickness of the plane-paral‐

lel plate 1 and could be additionally varied by inclining the mirrors 2 (see figure 7).
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The peculiarity of the interference of two Laguerre–Gaussian modes, having the opposite
helicity of the phase, manifests itself in the branching of a fringe in the middle of the beam
and formation of a characteristic “fork” with an additional fringe appearing in the centre, as
compared with the case of a vortex mode interfering with a plane reference wave (see Figure
2). Such branching of fringes indicates the vortex nature of the investigated beam, while the
absence of branching is a manifestation of the regular character of the beam phase surface.

Figure 8 displays the experimental distributions of intensity of the laser mode LG0
1 in far field

and its picture of interference with an obliquely incident wave in the form of LG0
-1 mode.

Figure 7. The optical scheme for registration of the phase portrait of a laser beam [54]: 1 – dividing parallel-sided
plate, 2 – mirrors, 3 – lens, 4 – CCD camera.

Figure 8. The experimental distribution of intensity and phase portrait of the laser mode LG0
1 obtained at usage of a

phase converter [54].

The invention of a branched hologram [89, 93] uncovered a relatively easy way to produce
beams with optical vortices from an ordinary wave by using its diffraction on the amplitude
diffraction grating. The idea of singular beam formation is based on the holographic princi‐
ple: a readout beam restores the wave, which has participated in the hologram recording.
Instead of writing a hologram with two actual optical waves, it is sufficient to calculate the
interference pattern numerically and, for example, print the picture in black-and-white or
grey scale. The amplitude grating after transverse scaling can, when illuminated by a regu‐
lar wave, reproduce singular beams in diffraction orders.
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Using the description of the singular wave amplitude (2), one can easily calculate the pattern
of interference of such wave with a coherent plane wave tilted by the angle γ with respect to
the z axis. The calculated interference pattern depends on the angle γ between the interfer‐
ing waves and corresponds to two well-known holographic schemes: on-axis [126] when
γ=0 and off-axis [127] holograms. The spiral hologram (or spiral zone plate) realized under
the on-axis scheme suffers from all the disadvantages inherent to the on-axis holograms,
namely, the lack of spatial separation of the reconstructed beams from the directly transmit‐
ted readout beam. Therefore the on-axis spiral holograms have not found wide application
unlike the off-axis computer-generated holograms [128].

Under interference between the plane wave and the optical vortex with unity topologic
charge the transmittance of amplitude diffraction grating varies according to

T =
1
2 1−cos(( 2πx

Λ )−arctg(
y
x )) 2

, (8)

where Λ=λ/γ is the grating period. When the basic Gaussian mode passes through the gra‐
ting and is focused by the lens, the LG0

1 and LG0
-1 modes occur in the far field in the 1st and –

1st orders of diffraction, respectively. The period of the grating should be equal to 100-200
microns to separate the orders of diffraction properly in the actual experiment.

The two simplest ways to fabricate the amplitude diffraction gratings in the form of comput‐
er-synthesized holograms are as follows. The first involves the printing of an image onto a
transparency utilized in laserjet printers. The second approach consists in photographing an
inverted image, printed on a sheet of white paper, onto photo-film. Fragments of images of
the gratings with the profile (8) obtained upon usage of the laser transparency with the reso‐
lution of 1200 ppi as well as the photo-film are shown in Figure 9 [129, 130, 131]. The usage
of the photo-film is more preferable since it gives higher quality of the vortex to be formed
and greater power conversion coefficient into the required diffraction order.

Figure 9. Magnified fragment of the amplitude grating in the experiment with laser transparency (left) and photo-
film (right).
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Figure 10. The set-up scheme for formation of the optical vortex:1 – He-Ne laser; 2 – collimator; 3 – optical plane
plate, 4 – reflecting plane mirror; 5 – amplitude grating forming the optical vortex; 6 – lens; 7 – CCD camera.

The experimental set-up scheme for formation of the optical vortex with the help of comput‐
er-synthesized amplitude grating is shown in Figure 10. The experimental set-up consists of
a system for forming the collimated laser beam (λ=0.633 μ), a Mach-Zehnder interferometer
and a registration system of the far field beam intensity and interference pattern. The system
for forming the collimated beam includes the He-Ne laser 1 and a collimator 2 consisting of
two lenses forming the Gaussian beam with a plane wave front. The Mach-Zehnder interfer‐
ometer consists of two plane plates 3 and two mirrors 4. The computer-synthesized ampli‐
tude diffraction grating 5 is inserted into one of the arms of the interferometer. The lens 6
focuses the radiation onto the screen of CCD-camera 7. When blocking or admitting the ref‐
erence beam from the second arm of the interferometer, the CCD camera registers the far
field intensity of the vortex beam or its interference pattern with the reference beam, respec‐
tively. Varying the angle between both these beams allows one to vary the interference
fringe density.

After passing the beam through the optical scheme, the central peak (0-th diffraction order)
is formed in the far-field zone. It concerns the non-scattered component of the beam that has
passed through the grating. Less intensive two doughnut-shaped lateral peaks are formed
symmetrically from the central peak. The lateral peaks represent the optical vortices and
have a topological charge equal to the value and opposite to the sign. In the 1st order of dif‐
fraction there is only 16.7 % of energy penetrating the grating in an ideal scenario. In the ex‐
periment this part of energy is equal to about 10% owing to the imperfect structure of the
grating and its incomplete transmittance.

For registration of the optical vortex it is necessary to cut off the unnecessary diffraction or‐
ders. The pictures of doughnut-like intensity distribution of the optical vortex (the lateral
peak) in far field and its interference pattern are shown in Figure 11. The rigorous proof of
that the obtained lateral peaks bear the optical vortices is the availability of typical "fork" in
the interference pattern. The formed vortex in Figure 11, as the vortices in Figures 6 and 8, is
rather different from the ideal LG0

1 mode that is seen from their comparison with Figure 2.
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Figure 11. The intensity of the lateral diffraction order in the far field and interference pattern with the plane wave in
the case of computer-synthesized amplitude diffraction grating.

Phase transparencies can be used to generate optical vortices. Application of the phase mod‐
ulator results in phase changes and, after that, in amplitude changes with deep intensity
modulation and the advent of zeros. In [132] the optical schematic was described, in which
the wave carrying the optical vortex is recorded on thick film (Bregg’s hologram) that is
used to reproduce the vortex beam. The diffraction efficiency in this schematic is about 99%.
A relatively thin transparency with thickness varied gradually in one of the half planes is
used in the other method [133]. The efficiency of this method is greater than 90%. A similar
method was proposed in [134], but a dielectric wedge was used as the phase modulator. In
general, a chain of several vortices is formed as the product of this process. The shape defor‐
mation of each vortex depends on the wedge angle and on the diameter of the beam waist
on the wedge surface. Varying the waist radius, one can obtain the required number of vor‐
tices (even a single vortex).

One more method of the optical vortex generation was proposed in [95]. In this method a
phase transparency is used, which immediately adds the artificial vortex component into the
phase profile. One such phase modulator is a transparent plate, one surface of which has a
helical profile, repeating the singular phase distribution. To obtain Laguerre-Gaussian mode
the depth of break onto the surface should be equal to mλ/(n1-n2), where n1 is the plate index
of refraction, and n2 is the medium index of refraction. If these conditions are met, the opti‐
cal vortex appears in the far field. The main difficulty of this method lies in the problems of
fabricating such a transparency. A special mask is used in the manufacture of such plates,
which is made negative relative to the spiral phase plate to be formed [135]. The mask is
made of brass and checked by the control interferometric system of high precision. After
fabrication the mask is filled with a polymer substance and covered by glass. The spiral
phase plate is formed on the glass as a result of polymerization. The transfer coefficient of
such a plate is 0.98. Publications have appeared recently concerning the generation of phase
transparencies using liquid crystals [136, 137].

We note that the manufacture of phase modulators is a special branch of optics called kino‐
form optics. At the heart of this branch lays the possibility to realize the phase control of ra‐
diation by a step-like change of the thickness or the refraction index of some structures
[138]. Light weight, small size, and low cost are the most attractive features of kinoform
phase elements, when compared with lenses, prisms, mirrors, and other optical devices. The
kinoforms can be described as optical elements performing phase modulation with a depth
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not greater than the wavelength of light. This aim is realized by jumps of the optical path
length not less than the even number of half wavelengths. These jumps form the lines divid‐
ing the kinoform into several zones. In boundaries of each zone the optical path length can
be constant (there are two levels of binary phase elements), they can change discretely (n-
level phase elements), or they can change more continuously (in an ideal phase element n
approaches infinity). With an increase of n the phase efficiency of the element increases as
well as its ability to control light properly. The application of kinoforms facilitates a reduc‐
tion in the number of optical elements in the system by combining optical properties of sev‐
eral elements into one kinoform. Thus, these optical methods offer broad potential for
anyone who wants to obtain beams with desired properties and to generate beams with op‐
tical vortices.

The fabrication of spiral (or helicoidal) phase plates techniques has progressed in recent
years [139, 140, 141]. We will describe the generation of a doughnut Laguerre-Gaussian LG0

1

mode with the help of a spiral phase plate [129, 130, 142, 143, 144] manufactured with etch‐
ing of the fused quartz substrate using kinoform technology. Quartz displays a high damage
threshold at λ=0.3-1.3 μ, high uniformity of chemical composition and refractive index n that
minimizes the laser beam distortions on passing.

The fabrication of a kinoform spiral phase plate of fused quartz is performed as follows
[142]. A quartz plate, 3 cm in diameter and 3 mm in thickness, is taken as the substrate. Both
surfaces of the substrate are mechanically polished with a nanodiamond suspension up to
the flatness better than λ/30. Special precautions are made to avoid the formation of surface
damage layer that may destabilize subsequent etching. A multi-level stepped microrelief,
imitating the continuous helicoidal profile, is fabricated using precise sequential etchings of
the surface through a photoresist mask in a mixture based on hydrofluoric acid. At every
stage, a level pattern is formed in the photoresist layer using a method of deep UV photoli‐
thography. The temperature during etching is stabilized with an accuracy of ±0.1ºC. The 16-
and 32-level spiral phase plates at m=1 and 2 have been fabricated. As the calculations show,
such stepped plates and an ideal plate with an exactly helicoidal surface give practically the
same optical vortices in the far field. As contrasted to the examples of spiral phase plates
[140], the plates [142] have a very high laser damage threshold and a working diameter of 2
cm that is larger by an order of magnitude. The high laser damage resistance of such plates
allows their use in experiments with powerful laser beams [52-54]. The general view of the
spiral phase plate is shown in Figure 12.

The 3D image of the central part of a 32-level spiral phase plate designed for λ=0.633 μ, m=1
is shown in Figure 13. As it is seen from Figure 13, upon motion around the plate axis along
a circle (perpendicular to the propeller bosses), the change of the etched profile altitude is
linear with a rather high accuracy. The total break height of the microrelief on the plate sur‐
face of 1317.5 nm agrees with the calculated value λ/(n-1)=1339.6 nm, where n is the sub‐
strate refraction index, with an accuracy about of one and a half percent. As the
measurements show, the roughness of the etched and non-etched surfaces (including the
deepest one) is approximately the same. The roughness rms of each step surface equals 1-1.5
nm, amounting to 2-3% of the height of one step of 43.2 nm.
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Figure 12. The photo-image of the 32-level spiral phase plate.

Figure 13. The image of surface in the near-axis region of the 32-level phase plate designed for λ=0.633 μ and its
profile shape under motion along the circular line.

It should be noted that a laser beam in the form of a principal Gaussian mode with a plane
wavefront that passes through a spiral phase plate maximally resembles the LG0 1 mode in
the focal plane of a lens (in far field). The part of this mode in the beam exceeds more than
90%; the residual energy is confined in general in the higher Laguerre-Gaussian modes LGn

1.
It should be noted that the proper intensity modulation of the beam incident to the plate can
additionally enhance the portion of the LG0

1 mode.

To generate a vortex beam with the help of a spiral phase plate, the experimental setup
shown in Figure 10 is used. The spiral phase plate is installed into the scheme instead of the
amplitude diffraction grating. In this case a vortex is formed in the 0th diffraction order in far
field. Figure 14 demonstrates the experimental distributions of laser intensity in the far field
and the pattern of interference of this beam with a obliquely reference plane wave. It is seen
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that the beam intensity distribution has a true doughnut-like shape. The wavefront singular‐
ity appears, as before, by fringe branching in the beam center with the forming of a “fork”
typical for screw dislocation with unity topological charge.

Figure 14. Experimental distribution of intensity of a vortex beam in far field and its interference pattern with obli‐
quely incident reference plane wave in an experiment with a kinoform spiral phase plate.

The experimental data are in good agreement with the results of numerical simulation of the
optical system, taking into account the stepped structure of spiral phase plate. The results
barely differ from the distribution shown in Figure 2. It should be noted that the vortex
quality (similarity to LG0

1 mode) is very good, caused by the high surface quality of the spi‐
ral phase plate throughout its area. This circumstance gives us grounds to believe that the
vortex wave front to be reconstructed by the Hartmann-Shack sensor has to be close to the
ideal LG0

1 wave front.

5. Wavefront sensing of optical vortex

The problem of phase reconstruction using the Shack-Hartmann technique was successfully
solved for optical fields with smooth wavefronts [145, 146, 147]. In the simplest case, to ob‐
tain the phase S(r) using the results of measurement of phase gradient projection ∇⊥  Sm(r)
on the transverse plane it is possible to employ the numeric integration of the gradient over
a contour Γ:

S (r)=S0(r) + ∫
Γ

∇⊥Sm(ρ)dρ, (9)

where r={x, y}. Since for the ordinary wave fields the phase distribution is the potential func‐
tion, the values of S(r) do not depend formally on the configuration of the integration path.
In the actual experiments, however, some errors are always present, so the potentiality of
phase is violated and the results of phase reconstruction depend on the integration path
[147]. To reduce the noise influence on the results it was proposed to consider the phase re‐
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construction as the minimization of a certain functional. The most commonly used function‐
al is the criterion corresponding to the minimum of the weighted square of residual error of
gradient of the reconstructed phase ∇⊥  S(r) and phase gradients ∇⊥  Sm(r), obtained in the
measurements:

∫
D

(W (r)⋅ (∇⊥S (r)−∇⊥Sm(r))2dr→min, (10)

where W(r)={Wx(x, y), Wн(x, y)} is the vector weighting function introduced to account for
the reliability of ∇⊥  Sm(r) measurements. This method is known as the least mean square
phase reconstruction.

The approaches to the solution of variation problem (10) are well known [146, 147] and ac‐
tually mean the solution of the Poisson equation written with partial derivatives. Allowing
for the weighting function W(r), it acquires the following form:

Wx(x, y)( ∂S
∂ x −

∂Sm
∂ x ) + Wy(x, y)( ∂S

∂ y −
∂Sm
∂ y )=0, (11)

where ∂S/∂x and ∂S/∂y are gradients of reconstructed phase, ∂Sm/∂x and ∂Sm/∂y are measured
gradients of the phase.

There are a wide variety of methods [145, 146, 147, 148] which can be used to solve the dis‐
crete variants of equation (11). For example, one can use the representation of (11) as a sys‐
tem of algebraic equations, the fast Fourier transform, or the Gauss-Zeidel iteration method
applied to the multi-grid algorithm. This group of methods is equally well adopted for the
application of centroid coordinates measured by the Shack-Hartmann sensor as input data:

{∇⊥Sm(r , z)}I =
∫∫V (r − r0)I (r0)∇⊥S(r0)dr0

∫∫V (r − r0)I (r0)dr0
, (12)

where the integration is performed over the square of the subaperture, V is a subaperture
function, and I(r0) is intensity of the input beam.

The sensing of wavefront with screw phase dislocations by the least mean square method is
not agreeable. With this technique (along with other methods based on the assumption that
phase surface is a continuous function of coordinates) it is possible to reconstruct only a
fraction of the entire phase function. As it turned out [68, 149], the differential properties of
the vector field of phase gradients help to find some similarity between this field and the
field of potential flow of a liquid penetrated by vortex strings. It is also possible to represent
this vector field as a sum of potential and solenoid components:
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where ∇⊥  Sp is the gradient of potential phase component and ∇⊥  Sc is the gradient of vor‐
tex (solenoidal) component. By using only the ordinary methods of phase reconstruction it is
possible to reproduce just the part of phase distribution that corresponds to potential com‐
ponent in (13).

However, if the quantity ∇⊥  Sc is considered as a rotor of vector potential H, namely, ∇⊥

Sc=∇×H, which is dependent only on the coordinates of optical vortices [68] then potential
phase component in (13) can be found by the least mean square method [68, 147]. By means
of a novel “hydrodynamic” approach to the properties of the vector filed of phase gradients
a new group of methods was formed [72, 150, 151], employing the discovered coordinates of
dislocations and reconstructing the potential phase component with the least mean square
method. Within another technique [74, 152] reproduction of the scalar potential is also based
on the least square method but the vortex component is calculated with Eq. (9) via a consis‐
tent rotor of vector potential. The method of matching the vortex component was proposed
in [153] and is based on the following equation:

( )( ) ( )2
/2 c zRot Sp- ^Ñ Ñ = Ñ´ ×H e (14)

where ez is the unit vector of z axis and Rot−π/2(∇⊥Sc) is operation of the rotation of each
vector on −π/2 angle. This relation is a Poisson equation which allows one to find compo‐
nents of consistent vectors of vortex phase gradient. Now it is possible to take Eq. (9) and
obtain a vortex phase component, assuming that the consistent gradients of vortex phase are
measured without errors.

The searching for dislocation located positions, which is required in algorithms of phase re‐
construction [72, 150, 151], is a sufficiently difficult problem. Because of the infinite phase
gradients in the points of zero intensity, the application of methods based on solution of (13)
[74, 152] is also not straightforward. Presently there is no such an algorithm, which guaran‐
tees the required fidelity of wavefront reconstruction in the presence of dislocations [64].
However, according to some estimations [154, 155, 156] the accurate detection of vortex co‐
ordinates and their topological charges insures the sensing of wavefronts with high preci‐
sion. Therefore we expect a future improvement in reconstruction algorithms by involving
more sophisticated methods into the consideration of gradient fields, insuring more accurate
detection of dislocation positions and their topological charges.

Analysis shows that from the point of view of experimental realization, of the considered
approaches of wavefront reconstruction the algorithm of D. Fried [74] is one of the best algo‐
rithms (with respect to accuracy, effectiveness and resistance to measurement noises) of re‐
covery of phase surface S(x, y) from its measured gradient ∇S⊥ distribution in the presence
of optical vortices. Fried’s algorithm (a noise-variance-weighted complex exponential reconstruc‐
tor) consists of three parts: reduction or simplification, solving, and reconstruction. The algo‐
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rithm designed for work in Hadjin geometry reconstructs the phase in the nodes of a
quadratic grid with the dimensions (2N+1)×(2N+1), using the phase differences between these
nodes. Obviously, to employ the algorithm we need (2N+1)×2N and 2N×(2N+1) array of phase
differences along x and y axes. The words "complex exponential" mean that the phase recon‐
struction problem is reformulated to a task of recovery of “phasors” u (the complex number
with a unity absolute value and an argument that is equal to the phase of optical field) dis‐
tribution in transverse section of the beam. Here, the analysis and transformation of differ‐
ential complex vectors (differential phasors) Δxu≡exp(iΔxφ), Δyu≡exp(iΔyφ), corresponding to
phase differences Δxφ, Δyφ between different nodes of the computational grid, are used. The
words "noise-variance-weighted" mean that the algorithm takes into account the distinctions of
measurement variance of individual differential phasors, i.e. the influence ("weight") of dif‐
ferential phasors on the recovery result is inversely proportional to their variance. This fea‐
ture of Fried’s algorithm allows us to apply it to a computational grid of arbitrary
dimension, not only to the (2N+1)×(2N+1) grid [74]; to take into account the average statistical
inequality of measurement errors of phase gradient in different areas of the beam (for exam‐
ple, on the sub-apertures of the Hartmann-Shack sensor) if the repeated characterization of
the same beam is performed; to consider a prior concept of the inequality of measurement
errors of phase gradient in these areas if the measurement of the beam characteristics is sin‐
gle.

In Fried’s algorithm the differential phasors are unit vectors. The operation of normalization
of a complex vector is applied to provide for this requirement. However, the amplitudes of
differential phasors and phasors, obtained under reduction and reconstruction, contain in‐
formation about measurement errors of phase differences in the actual experiment. Based on
this reason the algorithm in question has been modified [157, 158, 159]. The modification in‐
volves exclusion of the operation of complex vector normalization and allows an increase in
algorithm accuracy.

The experimental setup for registration of an optical vortex wavefront consists of a system for
formation of collimated laser beam, the Mach-Zehnder interferometer (as in the scheme in
Figure 10), and the additionally induced the Hartmann-Shack wavefront sensor [160, 161]. It
is shown in Figure 15. The system of formation of collimated beam includes a He-Ne laser 1
(λ=0.633 мкм) and collimator 2 composed of lenses with focal lengths 5 cm and 160 cm. The
collimator forms the reference basic Gaussian beam with a diameter of 1 cm and the plane
wave front. The Mach-Zehnder interferometer includes two optical plates 3 and two mirrors
4. The spiral phase plate 5 for formation of the optical vortex is interposed into one of the
interferometer arms. The working surface of the phase plate, with a diameter of 2 cm com‐
pletely covers the beam. After passing through the spiral phase plate the Gaussian beam turns
into an optical vortex (the LG0

1 mode) in the focal plane 8 of the lens 6, i.e. in far field, with
high conversion coefficient. Focal plane 8 of the lens 6 with focal length 700 cm is transfer‐
red (for purposes of magnification) by an objective 8 in the optically conjugated plane 8’. The
wavefront sensor consists of a lenslet array 9 situated in the plane 8’and a CCD camera 10.
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Figure 15. Experimental setup for wavefront sensing of optical vortex in far field: 1 – He-Ne laser; 2 – collimator; 3 –
optical plate; 4 – plane mirror; 5 – spiral phase plate; 6 – the lens F=6 m; 7 – the objective; 8 and 8’ - focal plane of lens
6 and its optically conjugated plane, respectively; 9 – lenslet array; 10 – CCD camera.

A technical feature of the Hartmann-Shack wavefront sensor used involves the employment
of a raster of 8-level diffraction Fresnel lenses as the lenslet array (see Figure 16). The raster
is fabricated from fused quartz by kinoform technology, similar to the aforesaid spiral phase
plate, with the minimum size of microlens d=0.1 mm and diffraction efficiency up to 90%
[162]. The accuracy of etching profile depth is not worse than 2%, the difference of the focal
spot size from the theoretical size is ~1%. The spatial resolution of the wavefront sensor and
its sensibility depend on the microlens geometry, the number of registered focal spots and
their size with respect to the CCD camera pixel size.

Figure 16. Photo image of a fragment of the lenslet array and image of surface profile of a microlens.

Under the registration of phase front the reference beam in the second arm of the interfer‐
ometer is blocked. In the beginning the wavefront sensor is calibrated by a reference beam
with plane phase front (the spiral phase plate is removed from the scheme). Then the spiral
phase plate is inserted, and the picture of focal spots correspondent to singular phase front
is registered. From the values of displacement of focal spots from initial positions, the local
tilts of wave front on the sub-apertures of lenslet array are determined.

Experiments with a different number of registration spots on the hartmannogram have been
carried out [160, 161]. When using a lenslet array with subaperture size d=0.3 mm, focal
length f=25 mm and d=0.2 mm, f=15 mm, the picture from 8×8 and 16x16 focal spots on the
CCD camera screen has been registered, respectively. The results of experimental measure‐
ments of wave front gradients are given in Figure 17 for measurement points 8×8, where the
picture of displacements of focal spots in the hartmannogram is shown. The vortex center is
situated between the sub-apertures of the array. Displacement of each spot is demonstrated
by the arrow (line segment). The arrow origin corresponds to the reference spot position
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whereas the arrow end corresponds to spot position after the insertion of a spiral phase
plate in the experimental scheme. In Figure 17 the results are also shown, which are ob‐
tained in calculation and are correspondent to the ideal LG0

1 mode with high accuracy. It is
seen from Figure 17 that the experimental and calculated pictures of spots’ displacements
agree with each other. Some local data difference is caused by the distinction between the
phase and amplitude structure of the beam incident on the phase plate in the calculation
and actual experiment, by the inaccurate location of the vortex in the optical axis assumed in
calculations and by the inevitable noises of the measurement.

Figure 17. The picture of displacements of focal spots of the hartmannogram in experiment (black arrows) and calcu‐
lation (grey arrows).

In Ref. [163] the vortex-like structure of displacements of spots in the hartmannogram was
registered for the LG0

1 and higher-order modes. As the primary information, the spot dis‐
placements can be used for deriving the Poynting vector skews (in fact, wavefront tilts), as it
was made in [163], as well as for wavefront sensing that is more nontrivial. In this chapter
we simply consider the reconstruction of singular phase surface by the Hartmann-Shack
sensor and describe the realization of this operation with the new reconstruction technique.

In Figure 18 we present the wave front surface of optical vortex reconstructed by the Hart‐
mann-Shack sensor [161, 164] with software incorporating the code of restoration of singular
phase surfaces [157-159]. Comparison of experimental data with calculated results shows
that the wave front surface is restored by the actual Hartmann Shack wavefront sensor with
good quality despite the rather small size of the matrix of wave front tilts (spots in the hart‐
mannogram). The reconstructed wave front has the characteristic spiral form with a break of
the surface about 2π. Analysis shows that the accuracy of wave front reconstruction (of
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course, from the viewpoint of its proximity to the theoretical results) is not worse than λ/20.
The accuracy of recovery of phase surface break increases at the measurement spots of
16х16. For comparison purposes in Figure 18 the result is demonstrated of the vortex wave‐
front reconstruction with the help of the standard least-squares restoration technique in the
Hartmann-Shack sensor. It is seen that the conventional approach obviously fails.

Figure 18. Experimental vortex phase surface reconstructed using modified Fried’s (left) and conventional least-
squares (right) procedure.

In Figure 19 we show the calculation results [165] of phase front reconstruction of the beam
passed through the turbulent atmosphere in the case of Cn

2=10-14 cm-2/3 after 1 km distance
propagation (see Figure 4). The modified Fried’s algorithm embedded into the Hartmann-
Shack sensor software correctly restores the complicated singular structure of the phase surface.

Figure 19. The phase surface fragment of the beam after the turbulent path reconstructed using the modified Fried’s
algorithm.
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6. Phase correction of optical vortex

Next we consider the possibility to transform the wavefronts of the vortex beam by means
of the closed-loop adaptive optical system with a wavefront sensor and a flexible deforma‐
ble wavefront corrector. We can use the bimorph [166] as well as pusher-type [167, 168] pie‐
zoceramic-based adaptive mirrors as a wavefront corrector. In the experiments a flexible
bimorph mirror [166] and the Hartmann-Shack wavefront sensor with a new reconstruction
algorithm [157-159] are employed. An attempt is made to correct the laser beam carrying the
optical vortex (namely, the Laguerre-Gaussian LG0

1 mode), i.e., to remove its singularity.
The dynamic effects are not considered, the goal is the estimation of the ability of the bi‐
morph mirror to govern the spatial features of the optical vortex. It is very interesting to de‐
termine whether the phase correction leads to full elimination of the singularity [165].

A closed-loop adaptive system intended for performance of the necessary correction of vor‐
tex wavefront is shown in Figure 20 [169]. A reference laser beam is formed using a He-Ne
laser 1, a collimator 2, and a square pinhole 3, which restricts the beam aperture to a size of
10×10 mm2. Next the laser beam passes through a 32-level spiral phase plate 5 of a diameter
of 2 cm, a fourfold telescope 6 and comes to an adaptive deformable mirror 7. It should be
noted that the laser beam with the plane phase front that passes through the spiral phase
plate maximally resembles the Laguerre-Gaussian LG0

1 mode in the far field. In Figure 20
the wavefront corrector is situated in near rather than far field but at a relatively large dis‐
tance from the spiral phase plate so that the proper vortex structure of the phase distribution
is already formed in the wavefront corrector plane.

Figure 20. The close-loop adaptive system for optical vortex correction:1 – He-Ne laser; 2 – collimator; 3 – pinhole
10×10 mm; 4, 8, 9 – optical plates; 5 -spiral phase plate; 6, 10, 15 – telescopes; 7 – deformable adaptive mirror; 11 –
lenslet array; 12, 18– CCD cameras; 13 –computer; 14 – control unit of adaptive mirror, 16 – plane mirror; 17 – lens.

The wavefront corrector (the bimorph adaptive mirror) 7 [166] is shown in Figure 21. It is
composed of a substrate of LK-105 glass with reflecting coating and two foursquare piezo‐
ceramic plates, each measuring 45x45 mm and 0.4 mm thick. The first piezoplate is rigidly
glued to rear side of the substrate. It is complete, meaning it serves as one electrode, and is
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intended to compensate for the beam defocusing if need be. The second piezoplate destined
to transform the vortex phase surface is glued to the first one. The 5x5=25 electrodes are pat‐
terned on the surface of the second piezoplate in the check geometry (close square packing).
Each electrode has the shape of a square, with each side measuring 8.5 mm. The full thick‐
ness of the adaptive mirror is 4.5 mm. The wavefront corrector is fixed in a metal mounting
with a square 45x45 mm window. The surface deformation of the adaptive mirror under the
maximal voltage ±300 V applied to any one electrode reaches ±1.5 μm.

Figure 21. The deformable bimorph mirror and the scheme of arrangement of control elements on the second piezo‐
plate.

The radiation beam reflected from the adaptive mirror 7 (see Figure 20) is directed by a
plane mirror 8 through a reducing telescope 10 to a Hartmann-Shack sensor including a
lenslet array 11 with d=0.2 mm, f=15 mm and a CCD camera 12. At the field size of 3.2 mm
there are 16x16 spots in the hartmannogram on the CCD camera screen. The planes of adap‐
tive mirror and lenslet array are optically conjugated so that the wavefront sensor recon‐
structs in fact the phase surface of the beam just in the corrector plane.

A beam part is derived by a dividing plate 9 to a CCD camera 18 for additional characteriza‐
tion (see Figure 20). In addition, the wavefront corrector 7, plates 4, 8 and rear mirror 16
form a Mach-Zehnder interferometer. On blocking the reference beam from the mirror 16,
the CCD cameras 12 and 18 simultaneously register, respectively, the hartmannogram and
intensity picture of the beam going from the adaptive mirror. Upon admission of the refer‐
ence beam from the mirror 16, the CCD camera 18 registers the interference pattern of the
beam going from the adaptive mirror with an obliquely incident reference beam. Screen of
CCD camera 18 is situated at a focal distance from the lens 17 or in a plane of the adaptive
mirror image (like the lenslet array) thus registering the intensity/interferogram of the beam
in far or near field, respectively.

The wavefront has no singularity upon removal of the spiral phase plate 5 from the scheme
in the Figure 20 and when switching off the wavefront corrector. The reference beam phase
surface in the corrector plane is shown in Figure 22a. It is not an ideal plane (PV=0.33 μ) but
it is certainly regular. Therefore the picture of diffraction at the square diaphragm 3 (see
Figure 20) roughly takes place in far field in Figure 23a.
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Figure 22. Experimental phase surface in near field: (a) reference beam and beam (b) before and (c) after correction.

Figure 23. Experimental far field intensity: (a) reference beam and beam (b) before and (c) after correction.

After inserting the spiral phase plate 5 and when switching off the adaptive mirror, the
wavefront in near field in Figure 22b acquires the spiral form with λ-break (PV=0.63 μ) so
the far-field intensity has a doughnut form (see Figure 23b). Note that the wavefront correc‐
tor software in the computer 13 is based on the singular reconstruction technique [157-159];
the conventional least-squares approach fails here. The vortex in far field is the LG0

1 mode
distorted by presence of other modes mainly because of the phase surface imperfection of
the reference beam. Note that for the task of adjusting the vortex wavefront sensing techni‐
que it was necessary to form a close-to-ideal LG0

1 mode as a "reference" optical vortex with
maximally predetermined phase surface, to determine the sensing algorithm accuracy. Here,
for the correction task, it is even more attractive to work with a distorted vortex.

In order to correct the vortex wavefront in the closed loop, the recovered phase surface in
Figure 22b is decomposed on the response functions of control elements of the deformable
mirror. The response function of a control element is the changing of the shape of the de‐
formable mirror surface upon the energizing of this control element with zero voltages ap‐
plied to the others actuators. The expansion coefficients on response functions are
proportional to voltages to be applied from control unit 14 to appropriate elements of the
deformable mirror. When applying control voltages to the adaptive mirror its surface is de‐
formed to reproduce the measured vortex wavefront maximally and thus to obtain a wave‐
front close to a plane one upon reflection from the corrector. However, each superposition of
the response functions of a flexible wavefront corrector is a smooth function, and the correc‐
tor is not able to exactly reproduce the phase discontinuity of a depth of 2π. The phase sur‐
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face after the correction in Figure 22c is close to the reference one (Figure 22a) except for a
narrow region at the break line (PV=0.5 μ). As the radiation from this part of the beam is
scattered to larger angles and its portion in the beam is relatively small, the far field intensi‐
ty picture after the correction in Figure 23c is much closer to the reference beam (Figure 23a)
rather than the vortex before correction (Figure 23b). Thus, the doughnut-like vortex beam is
focused into a beam with a bright axial spot and weaker background that radically increases
the Strehl ratio and resolution of the optical system.

The beam interferograms in near field before and after correction are shown in Figure 24.
Unlike the former, the latter contains no resolved singularities (at least, under the given
fringe density). The vortices, however, may appear under beam propagation from the adap‐
tive mirror plane as it was in the case of combined propagation of the vortex beam with a
regular beam [170]. The experimental and calculated (at the reflection of an ideal LG0

1 mode
from the actual deformed adaptive mirror surface) interferograms of a corrected beam in far
field are shown in Figure 25. Two off-axis vortices (denoted by light circles) of opposite
topological charge are seen here. The first of them is initial vortex shifted from the axis
whereas the second arises in the process of beam propagation from the far periphery of the
beam (in fact from infinity, according to the terminology of [170]).

Figure 24. Experimental pattern of interference of the beam with an obliquely incident regular wave in the near field
(left) before and (right) after correction.

Figure 25. The pattern of interference of the corrected beam with an obliquely incident regular wave in the far field in
(left) calculation and (right) experiment.
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Thus, the phase surface of the distorted LG0
1 mode is corrected in the closed-loop adaptive

optical system, including the bimorph piezoceramic mirror and the Hartmann-Shack wave‐
front sensor with the singular reconstruction technique. Experiments demonstrate the abili‐
ty of the bimorph mirror to correct the optical vortex in a practical sense, namely, to focus the
doughnut-like beam into a beam with a bright axial spot that considerably increases the Strehl
ratio and optical system resolution. Since the phase break is not reproduced exactly on the
flexible corrector surface, the off-axis vortices can appear in far field at the beam periphery.

7. Conclusions

This chapter is dedicated to research of the possibility to control the phase front of a laser
beam carrying an optical vortex by means of linear adaptive optics, namely, in the classic
closed-loop adaptive system including a Hartmann-Shack wavefront sensor and a deforma‐
ble mirror. On the one hand, the optical vortices appear randomly under beam propagation
in the turbulent atmosphere, and the correction of singular phase front presents a considera‐
ble problem for tasks in atmospheric optics, astronomy, and optical communication. On the
other hand, the controllable optical vortices have very attractive potential applications in op‐
tical data processing and many other scientific and practical fields where the regulation of
singular phase is needed. This chapter discusses the main properties and applications of op‐
tical vortices, the problem of adaptive correction of singular phase in turbulent atmosphere,
the issues of generating the “reference” laser vortex beam, its wavefront sensing and phase
correction in the widespread adaptive optical system including a Hartmann-Shack wave‐
front sensor and a flexible deformable mirror.

The vortex beam is generated with help of a spiral phase plate made of fused quartz by ki‐
noform technology. Provided that the optical quality of the spiral phase plate is good, such a
means of vortex formation seems to be more preferable as compared with other considered
methods of vortex generation with a well-determined phase surface. As a result, it becomes
possible to obtain a singular beam very close to a Laguerre-Gaussian LG0

1 mode with a well-
determined singular phase structure that is necessary for checking the accuracy of subse‐
quent wavefront reconstruction. The developed spiral phase plates are characterized by
high laser damage resistance, the good surface profile accuracy and they facilitate formation
of a high quality optical vortex.

The vortex phase surface measurement is carried out by a Hartmann-Shack wavefront sen‐
sor which is simpler in design and construction, more reliable and more widespread in vari‐
ous fields of adaptive optics when compared with other types of sensors. The commonly
accepted Hartmann-Shack wavefront reconstruction is performed on the basis of the least-
mean-square approach. This approach works well in the case of continuous phase distribu‐
tions but is completely unsuitable for singular phase distributions. Therefore a new
reconstruction technique has been developed for the reconstruction of singular phase sur‐
face, starting from the measured phase gradients. The measured shifts of focal spots in the
hartmannogram are in good agreement with the calculation results. Using new software in
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the Hartmann-Shack sensor, the reconstruction of the “reference” vortex phase surface has
been carried out to a high degree of accuracy.

The vortex laser beam (distorted LG0
1 mode) is corrected in the closed-loop adaptive system

including a Hartmann-Shack wavefront sensor with singular reconstruction technique and a
flexible bimorph piezoceramic mirror with 5х5 actuators allocated in the check geometry.
The mirror has high laser damage resistance meaning it can operate with powerful laser
beams. The purpose of the correction is to eliminate the singularity of the beam to the high‐
est degree possible. Experiments have demonstrated the ability of the bimorph mirror to
correct the optical vortex in a practical sense. As a result of phase correction, the doughnut-
like beam is focused into a beam with a bright axial spot that considerably increases the
Strehl ratio and is important for practical applications. However, since the wavefront break
cannot be reproduced exactly by a mirror with a flexible surface, the residual off-axis vorti‐
ces can appear in far field at the beam periphery.

The investigations described above consolidate the actual birth of the experimental field of
novel scientific branch – singular adaptive optics.
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