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1. Introduction 

The human brain has 100 billion neurons that are constantly humming with electrical and 
chemical activity. These individual neurons are networked into complex local and inter-
region circuits that are thought to implement functions that support life. One such circuit 
that is critical for survival is the fear circuit, the key elements of which are thought to 
include the amygdala, prefrontal cortex, and the hippocampus. Amygdala is an important 
site of plasticity in auditory fear conditioning and plays a key role in both the acquisition 
and storage of fear and extinction memories (Blair et al., 2001; LeDoux, 2000; Malkani and 
Rosen, 2000; Maren, 2001). The role of the amygdala in fear has been studied using fear 
conditioning, a training paradigm in which an organism learns to predict aversive events. 
Typically, a relatively neutral stimulus (conditioning stimulus, CS), such as a tone, light or 
an odor, is paired with an aversive one (unconditioned stimulus, US), such as a footshock. 
After only a few pairings, the previously neutral stimulus becomes aversive and can itself 
evoke an emotional reaction typically resulting in a freezing behavior. The learning 
processes underlying conditioning develop rapidly and the memory of this association 
persists for long periods of time, reflecting the biological significance of the learning 
experience for the organism. Even though there is consensus that the amygdala is a critical 
component of the mammalian fear circuit, the relevant interconnections among the 
amygdalar nuclei and their contributions to the acquisition and storage of fear and 
extinction memories are not well understood presently.  

Disruption of the fear circuit is thought to underlie the pathology of post-traumatic stress 
and of other anxiety disorders (Corcoran and Quirk, 2007). Such disruptions are also 
manifested as changes in excitability of individual neurons, as well as changes in synaptic 
strengths between neurons in specific sub-circuits, within these areas. Increasing 
understanding of brain functioning due to advances in basic neuroscience techniques and 



 
The Amygdala – A Discrete Multitasking Manager 142 

imaging modalities has led to the emergence of computational modeling as an important 
tool for studying such changes. Progress in the areas of cellular neurophysiology and 
synaptic plasticity permit the development of biologically realistic computational models 
that more closely approximate learning, both at the membrane and network levels. Such 

biologically realistic computational models have the potential to enhance our understanding of brain 

circuits with potential applicability to a range of phenomena from the neural basis of mental illness to 

the mechanism of action of drugs.  

What is a computational model?  A computational model combines different types of 
information related to a system using mathematical equations, and then describes the 
system’s response to prescribed inputs. In neuroscience, such computational models are 
typically of two types: (i) phenomenological models using connectionist (e.g., artificial 
neural network) and statistical schemes, and (ii) biophysical models which attempt to model 
the underlying biological mechanisms directly. Biophysical models are typically either at the 
intracellular level (e.g., gene interactions, pathways), cellular level (e.g., cell firing patterns, 
effect of blockers/drugs on channel conductances, etc.), or network/systems level (e.g., 
interconnected neurons in the fear circuit, the subject of this chapter), or may include a 
combination of several of these levels. 

Computational modeling is a tool that has been effectively used in a variety of disciplines to 
integrate information related to different aspects of a problem, and to provide testable 
predictions. For instance, computational modeling is presently an indispensable part of the 
design of airplanes, e.g., Boeing 777 was claimed as being the ‘first entirely computer-
designed commercial aircraft’ (Boeing 777, 2012). For an airplane, such a model would 
integrate the complex mathematical equations for air flow, engine dynamics, frame 
vibrations, and responses of the control surfaces, and then predict their effect on outputs 
such as ride quality. Computational models have now become indispensable for the airplane 
designer because they enable rapid and inexpensive evaluation of a variety of ‘what if’ 
scenarios, including the effect of design changes. It is argued that increased understanding 
of the functional organization of the brain requires integration of similar 
mathematical/statistical equations from molecular, cellular and network levels , something 
that can be facilitated by computational models (Koch and Segev, 2011). For instance, recent 
technical advances have resulted in a rapid accumulation of information on intracellular 
signaling pathways and their relationships to long-term neuronal changes (Byrne and 
Roberts, 2004). Computational techniques and tools are being developed to model such 
mechanisms with increasing accuracy and are found to be essential to generate an 
understanding of the underlying functions in such cases (Koch and Segev, 2001; Mauk, 
2000). The term ‘computational neuropharmacology’ has recently been proposed for the 
application of computational modeling to drug development, drug discovery, and the 
modeling of the mechanisms of action of psychiatric drugs (Aradi and Erdi, 2006).  

In this chapter, we review the preliminary insights related to the amygdalar fear circuit 
provided by biologically realistic computational models. Specifically, we investigate how 
sensory information might be associated within the amygdala, and how the various 
amygdalar nuclei interact to acquire and store both fear and extinction memories via long 
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term potentiation and depression of synapses. The ‘higher’ level structures such as the 
prefrontal cortex and the hippocampus are known to influence the amygdala to modulate 
such memories. However, not much is known about the underlying mechanisms presently 
and so this modulatory effect is discussed only briefly. This is followed by a discussion of 
the unique insights that computational models might add to what is already known about 
the fear circuit, and about the potential of such models to contribute to reverse engineering 
the mammalian fear circuit. This ability of computational models derives from the fact that 
they can ‘integrate’ different types of information into a self-consistent and coherent portrait 
of how fear might be learned, and, in the process, reveal presently unknown mechanisms 
and interactions associated with such learning.        

2. Auditory fear and the amygdala 

Fear is one of the few emotions that can be observed in non-primate mammalian organisms 
(LeDoux, 2000). After fear conditioning, a number of physiological manifestations can be 
observed upon re-exposure to the conditioning stimulus, including increased autonomic 
arousal, increased stress hormone release, reflex potentiation, and defensive behaviors 
(LeDoux, 2000). Extensive studies indicate that freezing is a defensive behavior and serves 
as a reliable index of fear in rodents (Blanchard and Blanchard, 1972).  

The mammalian circuit related to auditory fear and extinction has been studied by several 
researchers and, although not fully understood, consensus is emerging about the specific 
roles of the amygdalar nuclei in this circuit. In rodents, such studies typically use fear 
conditioning, which is a form of Pavlovian learning where the stimulus parameters can be 
regulated by the experimenter. Fear conditioning is a highly conserved form of behavior 
that is exhibited in both laboratory situations and in normal environments (LeDoux, 1994). 
Animals do not need to be food- or water-deprived to demonstrate fear conditioning. 

Fear conditioning protocol. A typical auditory fear conditioning session for a rodent (see fig 
1) in a cage starts with a habituation phase involving the presentation of several CS tones 
(e.g., 5 trials, with each trial consisting of a 2 sec 5 kHz pure tone (80 dB) + a varying 1-3 min 
inter-tone interval), followed by a conditioning phase where the tone is paired with shock 
US (e.g., 5 trials, where the tone co-terminates with a 0.5 mA, 0.5 s, foot shock). Testing is 
typically performed the next day using 2 CS tones. For studies that involve extinction, the 
paradigm continues to day 3 where pure tones are delivered during an extinction session 
(e.g., 30 trials with pure tones). Testing for extinction in that case takes place on day 4 (e.g., 2 
trials with pure tones). Freezing, defined as the total lack of movement except for 
respiration, is used as the measure of learning in this task (Blanchard and Blanchard, 1972). 
After conditioning, a robust and long-lasting behavioral change is produced which is 
particularly amenable to genetic and pharmacological studies. It also affords the advantage 
that detailed time courses of the sequence of events that may occur after conditioning can be 
easily generated. Thus, fear conditioning serves as a model for elucidating the crucial 
electrophysiological and biochemical mechanisms underlying learning (Wehner and 
Radcliffe, 2004).  
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Figure 1. Pathways involved in auditory fear conditioning. The tone information is delivered to LA via 
the medial division of medial geniculate body (MGN) and the shock information is delivered to LA via 
posterior intralaminar nucleus (PIN). The tone input to LA is potentiated when tone and shock are 
paired. Output from the LA projects to the central nucleus (Ce) through inter-calated cells (ITC, not 
show in the figure) and BA neurons, eliciting a fear response. LA, lateral nucleus; BA, basal nucleus; 
CN, cochlear nucleus; DH, dorsal horn of spinal cord; IC, inferior colliculus; PL: prelimbic medial 
prefrontal cortex, IL: infralimbic medial prefrontal cortex. (adapted from figure provided by J. Kim) 

Role of the amygdala. The amygdala is located within the medial temporal lobe and is 
recognized as being critical for Pavlovian fear learning. In their review article, Paré et al. 
(2004) note that  identification of pathways that mediate the expression of conditioned 
responses by way of amygdala outputs and pathways that transmit CS information from 
sensory systems to the amygdala greatly increased interest in the intra-amygdaloid 
substrates of Pavlovian fear learning. Multiple experimental modalities including field 
potential response to high frequency stimulation, patch clamp recordings, single unit 
recordings, pharmacological manipulations and transgenic approaches all implicated the 
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amygdala in the acquisition of learned fear. These findings have also been confirmed in 
humans by functional magnetic resonance imaging techniques (e.g., Buchel et al., 1998).   

 
Figure 2. Amygdalar pathways relevant to auditory fear. Tone and shock information arrive at LA via 
thalamic and cortical routes. LA projects to BA and also to ITCD and CeL. Based on our present 
understanding (Amano et al., 2011), LA projects to BA, ITCD and CeL. BA fear neurons project to CeM 
and BA extinction neurons project to ITCV (fear recall circuit in bold and extinction recall in dashed line 
type). Ce represents the amygdalar output which projects to the brainstem and other regions eliciting 
fear. ITC: inter-calated cells (subscripts D - dorsal, V-ventral); CeL/CeM: lateral/medial part of the central 
nucleus of the amygdala. 

The components of the amygdala that are critical for fear conditioning are the lateral nucleus 
(LA), the basal nucleus (BA), intercalated cells (ITC) and the central nucleus (Ce) (Maren, 
2001). Thalamic inputs conveying information about the auditory tone (conditioned 
stimulus, CS) and foot shock (unconditioned stimulus, US) arrive first at the lateral nucleus. 
LA is widely accepted to be a key site of synaptic events that contribute to fear learning 
(LeDoux, 1995; Paré et al., 2004; Sigurdsson et al., 2007). There are two main types of 
neurons within the LA and the BA: pyramidal glutamatergic projection neurons and local 
circuit -aminobutyric acid (GABA) releasing interneurons. The amygdalar nuclei LA, BA, 
Ce and the ITC clusters act in concert to store auditory fear and extinction memories, and 
these nuclei are in turn modulated by external structures such as the prefrontal cortex and 
hippocampus. In auditory fear conditioning, convergence of tone (conditioned stimulus, CS) 
and foot-shock (unconditioned stimulus, US) inputs in LA leads to potentiation of CS 
inputs, resulting in subsequent LA tone responses being larger (Quirk et al., 1995; Blair et al., 
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2001). These increased LA responses are relayed to the Ce via BA (Amano et al., 2011), and 
the intercalated (ITC) cell masses (Paré et al., 2004), eliciting fear responses via successive 
projections to brain stem and hypothalamic sites (LeDoux, 2000). As a result, rats learn to 
freeze to tones CS that predict foot shock US. 

In the rodent brain, estimates of the numbers of cells (unilateral) in the amygdalar nuclei are 
as follows: LA – 60,000; BA – 47,000; ITC – 19,000; and Ce – 37,000 (Tuunanen and Pitkanen, 
2000). The principal cell to GABAergic interneuron ratio in BLA is 80:20. The amygdalar 
nuclei are themselves not homogeneous. LA has distinct dorsal and ventral regions which 
seem to store fear memories in different ways (Repa et al., 2001). Herry et al. (2008) reported 
three subpopulations of neurons in BA whose CS responsiveness varied with fear training  
and they termed these as ‘fear,’ ‘extinction’ and ‘extinction-resistant’ cells. Fear cells acquire 
CS responses as a result of fear conditioning, but lose them following extinction training; 
extinction cells become CS responsive only following extinction training, and extinction- 
resistant cells acquire CS responses during conditioning and remain CS responsive even 
after extinction training. Also, Amano et al. (2011) have shown that the two sub-regions 
within BA, the lateral part (BL), and the medial part (BM), act in concert to express fear but 
possess a certain amount of redundancy between themselves. Similarly, there are two 
different ITC cell clusters and they are thought to contribute differentially to the expression 
of fear and extinction memories (Royer et al., 2000; Pape and Paré, 2010). The output nucleus 
Ce also has distinct sub-circuits with different functions in fear learning (Coicci et al., 2010; 
Haubensak et al., 2010). Even with these advances in understanding, a clear portrait of how 
the various amygdalar nuclei interact to acquire and store fear is still lacking. 

Once acquired, conditioned fear associations are not always expressed. Repeated 
presentation of the tone CS in the absence of the US causes conditioned fear responses to 
diminish rapidly, a phenomenon termed as fear extinction (Myers and Davis, 2007). The 
neural mechanisms of fear extinction are not well understood, and a neural analysis of 
extinction and inhibition is still in its infancy (Delamater, 2004; Quirk and Mueller, 2008). 
Some psychological theories describe extinction as an “unlearning” process due to a 
violation of the CS-US association established during acquisition of fear (Rescorla and 
Wagner, 1972). This unlearning view has been challenged by the observation that fear 
recovers spontaneously after extinction. An alternative theory proposes that extinction does 
not erase the CS-US association but instead forms a new memory that inhibits conditioned 
responding (Bouton and King, 1983; Quirk, 2002).  

Modulation by cortical structures. Fear is thought to be expressed via projections from LA 
to BA, ITC and Ce (see fig 2), and expression of this fear memory has been shown to be 
influenced by cortical structures. For instance, although LA responds transiently to 
conditioned tones, the animal continues to freeze throughout the period of a 30 second tone. 
Quirk and colleagues investigated whether the prelimbic (PL) region of the medial 
prefrontal cortex (mPFC) might be involved in sustaining freezing. In a series of 
experiments they showed how PL was critical for the expression of fear over the duration of 
the tone: Pharmacological inactivation of PL was found to abolish the expression of 
conditioned fear (Blum et al., 2006; Corcoran and Quirk, 2007), and micro-stimulation of PL 
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was found to augment conditioned fear (Vidal-Gonzalez et al., 2006); and, importantly, that 
the time course of PL  tone responses parallels the time course of conditioned fear (Burgos-
Robles et al., 2009). This finding is supported by studies examining neuronal activity with 
cFos which showed that PL activation is correlated with fear expression and extinction 
failure. 

What are the structures that might modulate the memory of auditory fear extinction? Again, 
several studies by Quirk and others reveal that the infralimbic (IL) region of mPFC 
modulates the amygdala during recall of extinction memory: activity in IL, which is adjacent 
to PL, was found to facilitate recall of extinction (Quirk et al., 2006; Quirk and Mueller, 
2008), and deficient IL activity results in failure to recall extinction (e.g., Milad and Quirk, 
2002). Burgos-Robles et al. (2009) also noted that a higher percentage of PL neurons 
responded to tones in rats showing poor recall of extinction, suggesting that these rats had 
excessive consolidation of fear memory. This led the authors to suggest that extinction 
failure might be caused by excessive activity in PL, combined with deficient activity in the 
IL, and that recall of fear and extinction memories may depend on the optimal balance of 
activity between PL and IL. 

What is the role of context in auditory fear? Since fear conditioning takes place in a chamber 
(Fig. 1b; with its own flooring, color, odor, lighting, etc. – the ‘context’), the rat subsequently 
learns to fear not only the tone but also the context. That is, after fear conditioning, it will 
express fear by freezing in the trained context, even in the absence of tone. Acquisition of 
contextual fear may involve configural or spatial learning and many lines of evidence 
support hippocampal involvement in contextual fear conditioning (Anagnostaras et al., 
1999). It is well established that contextual information gates behavioral response to 
conditioned stimuli, especially following extinction (e.g., Bouton, 2004). Contextual 
information is processed in the hippocampal formation (HPC), which plays a critical role in 
gating the response of rats to extinguished tone stimuli (Corcoran et al., 2005). The route by 
which the HPC exerts its effects is thought to be through the mPFC (Hobin et al., 2003; 
Maren and Quirk, 2004). The HPC (especially the ventral HPC) projects strongly to both PL 
and IL (e.g., Hoover and Vertes, 2007). This pathway has been hypothesized to serve a 
‘teaching’ role for IL neurons, by generating Ca-dependent bursting in IL neurons. Also, it 
has been shown that contextual fear memories formed in the absence of the baso-lateral 
amygdala (BLA which includes BA and LA; Poulos et al., 2009) or the dorsal hippocampus 
(DH; Zelikowsky et al., 2012) do not persist across time, suggesting that both the DH and 
BLA are essential components of the circuitry required for a contextual fear memory to 
become permanent (Zelikowsky et al., 2012).  

3. Modeling fear memories - A simple computational model 

Computational models have been used in the field of emotional learning and memory to 
explain behavioral responses (e.g., Grossberg and Schmajuk, 1987). Single unit recording 
data were used by Armony et al. (1995) to develop an anatomically constrained thalamo-
cortico-amygdala connectionist model of fear conditioning which associated tone inputs 
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with a specific frequency (CS) with foot shock (US). The model was trained using a modified 
Hebbian-type learning rule and was able to reproduce data related to frequency-specific 
changes of the receptive fields known to exist in the auditory thalamus and amygdala. 
However, extinction and other related phenomena were not simulated. Balkenius and 
Morén (2001) proposed a neural network model for emotional conditioning focusing on the 
amygdala and the orbitofrontal cortex and their interaction. Amygdala was the locus of 
acquisition and the orbitofrontal cortex was the site for extinction learning. The model 
simulated basic phenomena related to emotional conditioning including acquisition, 
extinction, blocking, and habituation. Vlachos et al. (2011) reported a neural network model 
that reproduced the differential recruitment of two distinct subpopulations of basal 
amygdala neurons as seen in experiments. The model revealed how the two populations 
might encode contextual specificity of fear and extinction memories. Krasne et al. (2011) 
report a model of the amygdala and hippocampus where fear conditioning and extinction 
memories are the result of neuromodulation-controlled LTP at synapses of thalamic, 
cortical, and hippocampal afferents on principal cells and inhibitory interneurons of lateral 
and basal amygdala. The model was developed using a firing rate framework and was able 
to reproduce several known features of fear learning and make testable predictions. 
Although connectionist and reduced order models provide very useful information from a 
top-down systems perspective, they do not fully incorporate the neurobiological 
information related to individual current channels and their effect on intrinsic excitability, or 
related to synaptic plasticity mechanisms, and so may be not be able to shed light on the 
underlying mechanisms to any significant level of detail. 

This chapter focuses on a class of computational models that incorporate biological realism 
(i.e., they include membrane channels, synapses and receptors) to more effectively model 
the learning brain. Such models integrate information from intracellular and cellular levels 
of neuroscience with the network/systems level to provide a coherent picture of the higher 
level functions in health and disease (e.g., behavior, symptom). Software exists presently to 
model systems in neuroscience at typically only one of the levels, either molecular, cellular, 
or network/systems level. One reason for this is the large difference in both temporal and 
spatial complexities between the levels. We focus largely on cellular and network level 
modeling in this chapter.   

Computational modeling platforms at the cellular and network levels include public domain 
software such as NEURON (Carnevale and Hines, 2006) and GENESIS (Bower and Beeman, 
2003) which are being designed for biologists, and require minimal understanding of the 
underlying mathematics. Figure 3 shows the hierarchical structure used for modeling. Such 
packages can perform simulations of models ranging from single neurons to complex 
networks representing brain circuits. Sources for biological information to develop such 
models include research articles, and databases such as CellPropDB, NeuronDB and 
ModelDB (http://neuron.duke.edu/). For example, Leblois et al. (2006) used a mathematical 
model to explain the pathology in the basal ganglia circuit with Parkinson’s disease. 
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Figure 3. Elements of a biologically realistic neuronal network. The symbol ‘I’ represents current, e.g., 
INa is the sodium current. The network comprises cells (e.g., pyramidal and interneurons), which in turn 
consist of soma and dendrites populated with the various current channels. 

Illustrative example case. Single cell models can be developed for the pyramidal cell and 
the interneuron using the software cited. The modeling process involves several steps where 
the software requires the user to define ‘LEGO’ blocks for the neuron, such as the soma or 
cell body, dendrite and axon, ‘insert’ into them specific suites of membrane channels, and 
then connect them to form networks (fig 4). Such software aim to provide an easy-to-use 
interface, making most of the mathematical details transparent to the user. The model 
parameters within all these blocks are then iteratively adjusted, within biophysical bounds, 
to match biological data such as resting potential, input resistance, and membrane potential 
responses to various current injections. After reliable single cell models are developed, they 
can be embedded into network models of regions and circuits. 
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Figure 4. Two-cell model of pyramidal cell and interneuron with ionic and synaptic channels. Each cell 
model has soma (spherical) and dendrite (cylindrical) compartments with each having the specific 
current channels shown. The Ca2+ pools involved in the learning algorithm implemented are also 
depicted. Both cells receive afferent inputs (tone CS and shock US) via AMPA/NMDA synapses. In 
addition, the interneuron receives excitatory input from the pyramidal cell and provides feed-
forward/feedback inhibition to the pyramidal cell. 

Two-cell network. Figure 4 illustrates the development of a two-cell network model showing 
how ‘memories’ can be stored in the synapses (Li et al., 2008). The first step is to develop 
single cell models using experimental data. In this example case, we use a lateral amygdala 
pyramidal cell model and a lateral amygdala interneuron model. As cited, the single cell 
properties should match those reported in biology, including the membrane potential 
responses to various current injections. Once such single cell models are developed (see Li et 
al., 2009), they can be embedded into networks. In our simple two-cell network model, both 
the pyramidal cell and the interneuron received direct afferent tone/shock (CS/US) inputs 
via synaptic connections. The pyramidal cell was inhibited by the interneuron via a GABA-
ergic synapse. The pyramidal cell, on the other hand, excited the interneuron via an 
excitatory AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) synapse. 
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Both cells received random background inputs that represent afferent connections from 
other brain areas such as prefrontal cortex and hippocampus. The frequency and strength of 
the random inputs was adjusted to obtain pyramidal cell spontaneous firing rates of less 
than 1 Hz seen in LA neurons. We implemented plasticity in all the synapses using a 
calcium-based learning rule, and then ‘trained’ the model with the fear conditioning 
protocol used in experiments (Quirk et al., 1995). Figure 5a shows the membrane potential 
responses of a pyramidal cell and interneuron for a segment of the training cycle. This 
segment consisted of two tones (500 ms each) and two shocks (100 ms each) with the second 
shock occurring during the last 100 ms of the second tone. Both tone and shock excited the 
cells, with the shock input having a stronger effect. Due to Hebbian strengthening between 
tone inputs and shock inputs, the tone input to the pyramidal cell strengthens during 
conditioning and is maintained throughout extinction. In the interneuron, on the other 
hand, tone inputs strengthen during the extinction phase, due to Hebbian pairing between 
different sets of tone inputs. This causes inhibition of pyramidal excitation and reduction in 
fear behavior. Consistent with behavioral findings, the fear memory is not lost during 
extinction, but is suppressed by LTP-like potentiation of inhibition. This is illustrated 

 
Figure 5. Response characteristics of the illustrative network model. 5a. Membrane potential responses 
for pyramidal cell (top panel) and interneuron (lower panel) to a segment of the training trial. In the 
segment the input consists of a series of two tones (green bars) and two shocks (red bars) with the 
second tone paired with the second shock. 5b. Schematic showing the connections between synaptic 
strengthening/weakening and behavior. The training protocol had four phases: SENS- unpaired 
tone/shock; COND – paired tone/shock; a gap with no tone or shock; and EXT – tone alone. 
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schematically in Fig. 5b. This unit of two cells illustrates how conditioning and extinction 
are learned in this network, i.e., conditioning is essentially the strengthening of the tone-
pyramidal synapse which increases pyramidal cell activity, and extinction is the 
strengthening of tone-interneuron, interneuron-pyramidal cell and pyramidal cell-
interneuron synapses, all of which decrease pyramidal cell activity. The concepts and 
insights illustrated by this simple two-cell network, such as potential storage sites for 
memory, translate directly to larger networks, as we discuss in the following. 

4. Reverse engineering auditory fear circuits in the amygdala 

The overall goal of the reverse engineering effort is to integrate diverse morphological and 
neurophysiological data into biologically realistic models of the various amygdalar nuclei 
(lateral nucleus, basal nucleus, intercalated cells, and the central nucleus) and then use the 
model to investigate how the different nuclei participate in the acquisition and extinction of 
auditory fear memories, and how they are modulated by cortical structures. We initiated the 
model development of the overall fear circuit using a bottom-up approach starting with the 
core unit: the lateral amygdala nucleus, LA. As the next step, we modeled the amygdala 
intercalated cell clusters, ITC. The LA and ITC models provided unique insights that are 
presently not possible to obtain via experiments.  

A. Modeling the lateral amygdala (Li et al., 2009) 

Motivation. LA is a key site of plasticity in auditory fear learning (Blair et al., 2001; LeDoux, 
2000; Malkani and Rosen, 2000; Maren, 2001). Given the central role of LA in the acquisition 
and expression of fear memory, it has been proposed that this structure may be a site of 
inhibition in extinction (e.g., Hobin et al., 2003). The motivation of the Li et al. (2009) study 
was to determine how LA might acquire and store both conditioning and extinction 
memories related to auditory fear. After a review of the development of the model, and its 
validation, we discuss the unique insights provided by the model. 

Single cell properties. There are two types of principal neurons within the LA: pyramidal-like 
glutamatergic projection neurons, and local circuit GABAergic interneurons (Faber and Sah, 
2001). The electrophysiological and morphological properties of LA neurons have been 
characterized in a number of studies (e.g., Faber et al., 2001). Also, there are several in vitro 
and in vivo recordings of LA neurons during fear conditioning and extinction (e.g., Quirk et 
al., 1995, 1997; Repa et al., 2001).  

Principal neurons in the LA exhibit a range of firing properties in response to prolonged 
current injection (Faber et al., 2001). Accordingly three types of pyramidal cells were 
modeled, types A, B, and C, where type A had strong, B had medium, and C had minimal 
frequency adaptation. The interneuron was modeled as a basket-type, fast-spiking, aspiny 
cell with each compartment containing a fast Na+ current and a delayed rectifier K+ current 
with different kinetics from those of pyramidal cells to reproduce  its much shorter spike 
duration (Durstweitz et al., 2000). Similar to pyramidal cells, interneurons can also receive 
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excitatory glutamatergic inputs from the thalamus and/or the cortex, and inhibitory inputs 
from other local interneurons. For each cell, the AMPA and the N-methyl D-aspartate 
(NMDA) channels were placed in the dendrite compartment, and the inhibitory GABAA 
channels were placed on the soma. Fig.4 provides details of typical pyramidal cell and 
interneuron models with the various ionic and synaptic channels.  

Network model and synaptic connections. The LA network model consisted of eight pyramidal 
cells and two GABAergic interneurons (fig. 6) with full connectivity (Durstewitz et al., 2000; 
Wang, 1999). Among the eight pyramidal cells, five were type A (P1–P5), two were type B (P6 
–P7), and one was type C (P8). In the network model, we were particularly interested in 
information processing in the dorsal sensory-receptive region of LA (LAd). Three of the 
pyramidal cells (P5, P7, and P8) and both the interneurons received direct tone/shock inputs; 
P3 received only tone input, and P1 and P4 received only shock input; and P2 and P6 received 
no direct afferent inputs. In this fully connected architecture, each pyramidal neuron received 
excitatory inputs from all other pyramidal cells as well as inhibitory inputs from the two 
interneurons. Both interneurons received excitatory inputs from all pyramidal cells and thus 
provided feedforward and feedback inhibition to pyramidal cells. Also the two interneurons 
inhibited each other. The synaptic delays for tone and shock inputs were set to 8 ms to 
represent the transmission delay between the start of tone and the arrival of information in the 
LA (Li et al., 1996). The synaptic delays for all intrinsic transmission were set to 2 ms.  

 
Figure 6. Biologically realistic LA network model of Li et al. (2009). Triangles 18 are pyramidal cells (5 
of type A (1-5), 2 of type B (6-7), and 1 of type C (8)); circles are interneurons (1-2). Pyramidal cells 
excited all other pyramidal cells and interneurons, but not themselves. Interneurons inhibited one 
another and every pyramidal cell. Pyramidal cells 3, 5, 7, and 8, received direct tone, while pyramidal 
cells 1, 4, 5, 7, and 8 received direct shock input. Both interneurons received direct tone and shock 
inputs. 

Excitatory glutamatergic AMPA synapses capable of strengthening (long term potentiation, 
LTP) or weakening (long term depression, LTD) with training were placed on the following 
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synapses of each cell: (i) thalamic/cortical auditory tone synapses to pyramidal cells or 
interneurons, (ii) synapses between the pyramidal cells themselves, and (iii) pyramidal cell 
to interneuron synapses. In addition, plasticity was also modeled in GABAergic inhibitory 
synapses from interneurons to pyramidal cells. The occurrence of synaptic potentiation 
versus depression was determined by intracellular calcium levels, according to the calcium 
control hypothesis. Details related to the equations can be found in Li et al. (2009). Learning 
of conditioned fear leads to changes in synaptic strength in the neural circuitry and the 
magnitude and sign of these variations are unique insights that a computational model can 
provide.  

Training protocol and background inputs. The schedule of tone and shock inputs to the model 
was based on in vivo studies (Quirk et al., 1995, 1997). We scaled down the timing of the 
auditory fear conditioning protocol by approximately two orders of magnitude so that it 
would be suitable for computational study. The simulation included a sensitization phase, a 
conditioning phase, and two extinction phases. Each tone lasted 500 ms and each shock 
lasted 100 ms, and the interval between two tones was 3.5 s. During the sensitization phase, 
10 unpaired tones and shocks were presented to the network with the shocks occurring 
randomly between the tones. Following sensitization, 10 paired tones and shocks were 
provided in the conditioning phase with shock present during the last 100 ms of the tone. In 
extinction, 30 tones were delivered to the neurons without any shock (pure tones). The gap 
between conditioning and extinction phases was 40 s and the model was tested for 
spontaneous recovery after a delay of 840 s. The second extinction phase also used 30 pure 
tones. The entire schedule lasted 1,200 s. The specific tone and shock inputs were 
represented by two separate regular spike trains delivered to the AMPA/NMDA channels in 
the cells. The firing frequency for the tone and shock inputs was set at 200 Hz to model the 
summed activity of multiple inputs in vivo. The tone inputs also included noise represented 
by random Poisson spikes with an average frequency of 2 Hz. Given that the tone starts out 
as neutral and the shock as noxious, the conductance strength encoding the shock 
information was set much higher than that representing the tone inputs.  

To achieve the low average spontaneous firing rate of ~1 Hz in the experiments modeled 
(Quirk et al., 1995), independent, Poisson distributed, random excitatory background inputs 
were delivered to all the pyramidal cells. These inputs represent unmodeled synaptic 
connections from other brain areas such as prefrontal cortex and hippocampus. Similar 
background inputs were provided to the interneurons to generate the reported spontaneous 
firing rates of ~8 Hz (Paré and Gaudreau, 1996). Simulations were performed on a personal 
computer using the software package GENESIS with the Crank-Nicholson integration 
method, and a time step of 10 s. 

Model validation. In addition to matching unit responses in the model to unit experimental 
data, the model of the ‘network’ should also reproduce experimentally observed behavior. 
Unit tone responses from the lateral amygdala of behaving animals have been reported by 
Quirk et al. (1995). Their main finding was that conditioning significantly increased the 
number of tone-elicited spikes with the greatest effects at the shortest latency following tone 
onset. These conditioned responses were reversed by extinction training. With tuning of the 
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plasticity parameters in the model, the LA network model unit tone responses successfully 
reproduced experimental data in Quirk et al. (1995). All pyramidal neurons in the model  

 

 
Figure 7. Comparison of the experimental data (Fig. 4, Quirk et al. 1997) and the model tone responses 
for the last block of 5 trials in sensitization and successive 5-trial blocks during extinction. The total 
spikes (0–50 ms) in each block of 5 trials were normalized to the responses in the 1st block of extinction 
for each cell and the mean ratio (with SE) among 4 significant conditioned pyramidal cells calculated. 
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showed clear frequency adaptation with the tone responses concentrated in the first 100 ms, 
indicating a good match with the experimental recordings. Figure 7 shows the match 
between experimental and model conditioned tone responses for the last block of five trials 
in sensitization and successive five-trial blocks during extinction. The large potentiation of 
the excitatory inputs onto pyramidal cells caused by conditioning, together with the 
potentiation of connections between several pyramidal cells leads to elevated tone responses 
in early extinction. As extinction progresses, increasing feedforward and feedback inhibition 
from the interneurons, combined with depotentiation at excitatory synapses onto pyramidal 
cells bring tone responses back to pre-conditioning levels or even lower. This provides an 
important validation for the network model. Once validated, a model can be used to 
provide insights into the underlying mechanisms, as described next. 

Insights provided by the LA model 

The Li et al. (2009) network model represents the first attempt to incorporate cellular 
neurophysiology and synaptic plasticity mechanisms into a biophysical model to investigate 
the underlying mechanisms of fear learning. The model was used to determine how the 
intrinsic and synaptic mechanisms interact in a network to shape unit tone responses. 
Computational models are unique in their ability to contribute to such insights.  

How can LA can store both fear and extinction memories? After fear conditioning, the model was 
able to ‘learn’ both fear and extinction memories. In the process, the model predicted an 
important role for inhibition via interneurons. The model identified two possible sites for 
fear memory storage in LA: the tone synapses from the auditory thalamus (or cortex) onto 
the pyramidal cells and the synapses between pyramidal cells. Hebbian pairing indicates 
that the synaptic coupling between two pyramidal cells will be strengthened as long as both 
receive strong inputs such as shocks. In contrast, the tone synaptic weight increases only 
when tone and shock are paired and decreases when tone and shock are unpaired. This 
leads to the prediction that tone synapses only store specific tone-shock associations, while 
the pyr-pyr synapses are capable of storing a generalized fear memory related to the 
occurrence of shock, e.g., related to contextual fear conditioning. The model also showed 
that the pyr-pyr synapses decayed less on average in extinction compared to the tone-pyr 
synapses. This was because of frequency adaptation of pyramidal cells resulting in lower 
incidence of Hebbian weakening. Taken together, these findings suggest that the pyr-pyr 
synapses are well suited to encode long-term fear memory in LA neurons. 

The model also suggested that the different types of principal neurons have different 
functional roles due to their distinct frequency adaptation characteristics (Faber et al., 2001). 
The cells with stronger adaptation are slower to learn fear but are able to maintain fear 
memory for a long time, whereas the cells with weaker adaptation learn fear faster, but also 
extinguish faster (Fig. 5, A and B in Li et al., 2009). This suggests that pyramidal cells with 
weaker adaptation are important for fear expression, whereas those with stronger 
adaptation are important for long-term storage of fear associations. Since about 70% of 
pyramidal cells in LA are strongly adapting, LA is well suited for long-term fear memory 
storage. 
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Considering extinction memory, the model suggests three possible sites of plasticity: the 
tone synapse at the interneuron, the inhibitory synapse from interneuron to pyramidal cell, 
and the excitatory synapse from pyramidal cell to interneuron. Model runs showed different 
decay rates of these three synapses suggesting that the first two, with large and uniform 
decay rates during the gap, may mediate short-term extinction memory, while the last, with 
smaller decay rate, could store long-term extinction memory (e.g., P1-I1 in Fig. 5C in Li et al., 
2009). However, the tone-interneuron and inter-pyramidal cell synapses potentiated much 
larger during both extinction sessions, compared to the pyramidal-interneuron synapses. 

How does the low spontaneous firing rate of pyramidal cells affect memory storage? LA cells signal 
fear and so it is logical that they have low spontaneous firing rates of around 1 Hz. But then, 
what are the implications of this low firing rate for learning? Experiments with the model 
revealed that the low rate of spontaneous firing in LA may act to preserve the fear memory 
due to decreased incidence of Hebbian weakening. The high spontaneous rates of 
interneurons, on the other hand, leads to a comparatively faster weakening of extinction 
memory stored in the interneurons synapses.  

Does ‘unlearning’ of fear also occur with extinction? It is known that extinction involves the 
formation of a new and distinct memory. However, what is not clear is whether a part of the 
fear memory is also lost during extinction trials. Such fear memory would be stored in the 
tone-pyramidal synapses. Blocking NMDA receptors in experiments would prevent 
depotentiation of the excitatory synapses onto pyramidal cells (LTD) but at the same time it 
would also block potentiation of inhibitory connections. So, experiments cannot answer this 
question presently. A model, however, can implement selective blockade of LTD only at the 
tone-pyramidal and pyramidal-pyramidal synapses by preventing Ca2+ influx via the 
NMDA channels, to separate the effects of both these phenomena. To evaluate the 
contribution of LTD, which is independent of potentiation of inhibition, a selective blockade 
of LTD showed that extinction was not complete, i.e., potentiation of inhibition alone is not 
sufficient for complete extinction. 

The LA model can be used as a test bed to investigate several other ‘what if’ scenarios that 
may be of interest but are difficult to test in experiments. Our study showed how such 
models are poised to complement experimental investigations by providing insights into 
how cellular and synaptic mechanisms contribute to implementing functions in brains. This 
is illustrated further by the model of intercalated cells discussed next. 

B. Modeling the network of amygdala intercalated cells (Li et al., 2011) 

Motivation. The amygdala intercalated cells (ITC; fig 2) are distributed along the lateral and 
medial parts of the basolateral amygdaloid complex. The more dorsally located ITC clusters 
receive glutamatergic excitatory input from LA and BA, while the medial ITC clusters 
receive GABAergic inhibition from the dorsal ITC clusters and excitation from BA; the 
medial clusters, in turn, inhibit Ce, the output station in the amygdala (Paré and Smith, 
1993a,b; Royer et al., 1999; Royer et al., 2000; Jungling et al., 2008). This strategic location of 
the medial ITC clusters, between the sensory input (BLA) and fear output (Ce) stations of 
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the amygdala, is thought to be critical for regulating classically conditioned fear responses 
(Paré et al., 2004).  

It is currently believed (Paré et al., 2004; Quirk and Mueller, 2008) that extinguished 
conditioned stimuli activate infralimbic (IL) neurons  that have glutamatergic projections to 
ITC cells and ITC cells in turn reduce conditioned fear responses by generating feedforward 
inhibition in fear output Ce neurons (Paré et al., 2004). Consistent with this, IL stimulation 
was found to dramatically reduce the responsiveness of Ce neurons to BLA inputs (Quirk et 
al., 2003). IL axons are known to target ITC cells clusters located medially (McDonald et al., 
1996), and there are inhibitory connections between (Royer et al., 2000) as well as within ITC 
cell clusters (Geracitano et al., 2007).  Additionally, three different types of short-term 
synaptic plasticity have been observed in inter-ITC connections (Geracitano et al., 2007), but 
the role of such synaptic heterogeneity is not clear. How then might IL inputs overcome the 
inter-ITC inhibition and reduce the responsiveness of Ce?  Again, it is currently difficult to 
address this question experimentally, because we lack criteria to identify ITC cells on the 
basis of their extracellularly recorded activity. So, in order to study how inter-ITC inhibitory 
connections affect their responses to IL inputs, we developed a biologically realistic model 
of the ITC network (Fig. 8). Another objective of the Li et al. (2011) study was to examine 
how the peculiar electroresponsive properties of ITC cells shape their responsiveness to 
BLA/IL inputs. ITC cells express an unusual voltage-dependent K+ conductance whose slow-
deinactivation kinetics allow them to produce a prolonged depolarizing plateau after a 
transient suprathreshold depolarization (Royer et al., 2000). This enables ITC neurons to 
transform transient excitatory inputs into a prolonged state of increased excitability with 
possibly important consequences for the regulation of conditioned fear.  

During prolonged auditory CSs, BLA principal neurons show rapidly adapting responses 
(Quirk et al., 1995, 1997; Repa et al., 2001; Herry et al., 2008), but it is not clear how such 
transient responses are converted into sustained behavioral output, since rats freeze 
throughout the duration of the tone. Also, pairing CSs with brief (300 msec) electrical IL 
stimulation reduces conditioned freezing in a temporally specific manner (Milad and Quirk, 
2002; Milad et al., 2004), again sustaining this transient input. We used the model to test 
whether bistable electroresponsive properties of ITC cells allow them to transform transient 
BLA/IL signals into a more sustained output. 

Single cell properties. Each ITC cell had two compartments representing a soma (diameter of 8 
m; length of 8 m) and a dendrite (diameter of 5 m; length of 200 m). The values for the 
specific membrane resistance, membrane capacitance, and cytoplasmic (axial) resistivity 
were, respectively, Rm = 30 K-cm2, Cm = 1.0 F/cm2, and Ra =150 -cm. The leakage reversal 
potential was set to -93 mV to match experimental measurements of their resting potential  
(–85 mV). The resulting input resistance was about 600M when measured from rest, 
consistent with experimental observations. The ITC model contained several ionic currents 
including a leakage current IL, a spike-generating sodium current INa, a potassium delayed 
rectifier current IDR, a slow deinactivating current ISD, a voltage-gated persistent muscarinic 
current IM, a hyperpolarization-activated current IH, a high-voltage activated Ca2+ current 
ICaL, and a slow Ca2+- dependent after-hyperpolarization current IsAHP. As cited, the 
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Figure 8. Structure of the model ITC network with 15 neurons each in ITCD and ITCV clusters (adapted 
from Li et al., 2011). For clarity and illustration purpose, the connectivity in the figure is partial and 
representative only. Each ITC neuron inhibits three randomly selected neurons in the same cluster. Each 
ITCD neuron also inhibits three randomly selected ITCV neurons (e.g., ITCD2 inhibits ITCV10). The 
network has five Ce output neurons that receive excitatory inputs from BA, and inhibitory inputs from 
ITCV neurons. ITCD and ITCV: Neurons 1–5 facilitating output synapses; neurons 6 10 have depressing 
output synapses, and neurons 11–15 have constant synapses. 

membrane potential and current dynamics were modeled using the standard Hodgkin-
Huxley formulation (Li et al., 2011). 

We modeled three different types of Ce neurons differing by their spike patterns, regular 
spiking, late firing, and low-threshold bursting. Each cell model had two compartments: a 
soma (diameter of 15 m; length of 15 m) and a dendrite (diameter of 5 m; length of 300 
m), and the following currents: a leakage current IL, a sodium current INa, a delayed 
rectifier IDR, a muscarinic current IM, a hyperpolarization-activated current IH, a high-
voltage-activated Ca2+ current ICaL, and a slow Ca2+-dependent after-hyperpolarization 
current IsAHP. The late firing cell contained an additional inactivating transient K+ current IA 
known to delay the onset of the action potential (Storm 1986), while the low-threshold 
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bursting cell included an additional low-threshold inactivating calcium current ICaT .The 
passive membrane properties were as follows: Rm = 30 K-cm2, Cm = 1.0 F/cm2, and Ra =150 
-cm. 

Network model and synaptic connections. The ITC network model (Fig. 8) had dorsal and 
ventral ITC modules, and a Ce module. It had 15 ITCD and 15 ITCV neurons, and five Ce 
output cells. The network received inputs from LA, BA, and IL. LA inputs projected to ITCD, 
while IL inputs projected equally to ITCD and ITCV (McDonald et al., 1996). BA inputs also 
projected to both ITCD and ITCV clusters, but with a lower density to ITCD neurons (Royer et 
al., 1999, 2000; Pape and Paré, 2010). Based on the findings of Herry et al. (2008), the BA 
inputs were divided into fear, extinction, and extinction-resistant (ER) groups. The 
extinction inputs did not project to Ce because the activation profile of extinction cells was 
opposite to the expression of fear (Herry et al., 2008). Instead, both fear and ER inputs 
projected to Ce. 

ITC neurons exhibit NMDA-dependent bidirectional synaptic plasticity (Royer and Paré, 
2002) and in a recent experimental study, the BA inputs to ITC cells were reported to show a 
three-fold potentiation during extinction training (Fig. 4 in Amano et al., 2010). Given the 
fact that the firing rate of LA neurons is significantly increased after conditioning (Quirk et 
al., 1995), it is reasonable to assume that the LA–ITCD connection is potentiated by 
conditioning. Hence, we used a threefold synaptic weight (compared with the habituation 
state) for the LA–ITCD synapses in the fear state and a threefold synaptic weight for the BA–
ITC synapses in the extinction state. For the LA–ITCD connection, the potentiated synapses 
were assumed to be partially depotentiated in the extinction state (strength reduced from 3 
to 2 for AMPA synapses only, Amano et al., 2010) based on results from a previous LA 
network model (Li et al., 2009). The BA–Ce, ITC–ITC, and ITC–Ce synaptic weights were 
assumed to be fixed. However, based on experimental findings (Geracitano et al., 2007), the 
presynaptic release probability of the ITC–ITC and ITC–Ce synapses was modifiable, and 
were split equally into facilitating, depressing, and constant types. The equations and 
specifics related to the plasticity mechanisms can be found in Li et al. (2011). 

Model runs. We determined responses of the model to a 2-sec auditory tone input (CS) during 
three different network states: habituation, following fear conditioning, and after extinction 
training. The LA and BA inputs were modeled with different degrees of spike frequency 
adaptation based on previous experimental data (Quirk et al., 1995, 1997; Faber et al., 2001; 
Herry et al., 2008) and to account for the projection from LA to BA, the firing rate of BA fear 
inputs was assumed to be dependent on LA inputs due to similar firing patterns across 
training (Quirk et al., 1995; Herry et al., 2008). The IL inputs were modeled as Poisson-
distributed spike trains with a duration of 300 msec and a mean frequency of 20 Hz (Milad and 
Quirk, 2002). In addition, Poisson-distributed random background inputs were delivered to all 
ITC and Ce neurons to achieve experimentally observed spontaneous firing rates. 

Model runs were performed on a personal computer using the software package GENESIS 
with the Crank-Nicholson integration method, and a time step of 20 msec. A simulation of 5 
sec of network activity took 15 min of CPU time. 
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Insights provided by the network model of ITC clusters 

We developed the model to investigate how the electroresponsive properties of ITC cells 
shape their responsiveness to BLA/IL inputs, and how IL inputs might overcome the inter-
ITC inhibition after extinction training and reduce the responsiveness of Ce. The model 
showed that ITC neurons could transform the transient CS-related signals arising in the BLA 
into a persistent pattern of activity. It also showed that over a wide range of stimulation 
strengths, brief IL activation can overwhelm inter-ITC inhibition and reduce the activity of 
fear output Ce neurons. Importantly, both intrinsic properties (i.e., bistability) and 
variations in the short-term synaptic dynamics of ITC neurons contributed to the 
effectiveness of IL stimulation. Similar to the LA model case discussed earlier, the ITC 
model provided several insights into the functioning of this cluster of cells and how they 
might modulate the expression of fear and extinction memories. 

Can ITC neurons help in transforming transient LA fear inputs into sustained Ce output?  The 
model showed that despite the presence of inhibitory connections between ITC cells, 
transient excitatory inputs from BLA or IL were transformed by ITC cells into a sustained 
state of increased activity via the inactivation of ISD. Although the magnitude of this 
persistent activity was affected by the strength of inter-ITC inhibitory connections, it 
remained robust for a 2.5 fold increase in inhibitory synaptic weights. This finding suggests 
that ITC cells express a form of short-term memory, inscribed in their intrinsic properties, 
allowing for persistent alterations in fear responsiveness following transient sensory signals. 
It was recently shown that prelimbic (PL) neurons transform transient amygdala inputs into 
a sustained output that drives conditioned fear responses and gates the expression of 
extinction (Burgos-Robles et al., 2009). Our model suggests that ITC activity could add to the 
role of PL in sustaining the expression of conditioned fear. While PL seems to sustain fear by 
increasing the excitatory drive onto Ce via BA, the present study suggests that ITCD neurons 
could contribute to this sustenance by increasing their inhibition on ITCV neurons, resulting 
in disinhibition of Ce. During the high fear state, strongly adaptive LA inputs were 
transformed into a sustained output by ITCD neurons, leading to persistent inhibition of 
ITCV cells and consequent sustained firing in Ce. Also, ITC neurons can support the 
expression of extinction via persistent activity in ITCV cells. In the extinction state, LA 
responses diminished and the LA–ITCD connection depotentiated, while the BA–ITC 
connection potentiated (Amano et al., 2010). Strongly adaptive BA inputs were then 
transformed into sustained firing in ITCV cells, resulting in lowered Ce responses (see fig 8 
in Li et al., 2011). 

Can IL overcome inter-ITC inhibition and reduce Ce responses? The model examined the impact 
of a brief 300 ms IL stimulation on the responsiveness of ITC cells to strongly adaptive CS-
related BLA inputs, in the high fear state. Over a wide range of strengths, IL inputs 
consistently caused a marked increase in the firing rate of ITC cells, which then inhibited Ce, 
the fear output station. Also, IL-evoked firing caused a persistent inactivation of ISD in ITC 
neurons and this extended IL’s impact beyond the 300-msec stimulation window. The 
model also demonstrated that IL stimulation given shortly after tone onset was most 
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effective in reducing Ce firing, in agreement with experimental findings (Milad et al., 2004). 
This might be due to the fact that this timing most effectively combines the direct impact of 
IL in inhibiting early Ce spikes and its indirect (after IL is turned off) impact in inhibiting Ce 
firing subsequently, via the inactivation of the slowly de-inactivating current ISD. The model 
also predicted that ITC neurons contacted by depressing synapses are more likely recruited 
by IL inputs than those contacted by facilitating or constant-type synapses. 

What is the role of synaptic heterogeneity within ITC cells? Geracitano et al. (2007) have shown 
that the synapses within the ITC region, i.e., ITC-ITC synapses, exhibit short-term 
presynaptic plasticity that is distributed equally between facilitating, depressing and 
constant types. Their experiments also show that the ITCV–Ce connections (fig. 8) have to be 
of the facilitating or constant types. Model experiments suggest that this specificity could be 
functionally relevant in the inhibitory control of Ce by IL inputs. The model, as expected, 
showed that ITCV–Ce connections of the facilitating and constant types were more effective 
in inhibiting Ce output. However, for the inter-ITC connections, pure facilitating or constant 
synapses decrease the firing rates of both ITCD and ITCV neurons when IL inputs are active, 
resulting in elevated Ce responses. Hence, depressing inter-ITC synapses, together with 
inactivation of ISD, would allow IL inputs to overcome the inter-ITC inhibition. These 
insights suggest that the specific distribution of heterogeneous short-term plasticity of the 
inter-ITC connections enables sufficiently high activity levels in ITCV cells for an efficient 
control of fear-related Ce outputs when BA and IL neurons are active. 

C. Modeling the other amygdalar nuclei, and modulation by cortical structures  

The primary structures of the fear circuit, as presently understood, include the amygdala, 
the prefrontal cortex, and the hippocampus. These structures, in turn, are themselves 
composed of different sub-circuits, with different roles in auditory fear learning. The 
amygdala, as cited, consists of several nuclei LA, BA, Ce and the ITC clusters, all acting in 
concert to store auditory fear and extinction memories, and express them later via the fear 
output station Ce. Interestingly, these individual nuclei themselves are not homogeneous. 
For instance, the dorsal and ventral regions of LA participate in fear learning in different 
ways (Repa et al., 2001); BA has different nuclei, BL and BM, which have recently been 
shown to relay fear differently to Ce (Amano et al., 2011); the two different ITC cell clusters 
associated with the fear circuit again contribute in different ways to the expression of fear 
and extinction memories (Royer et al., 2000); and the output nucleus Ce has also been shown 
recently to have very distinct sub-circuits whose specific roles as far as influencing fear 
await further investigation (Coicci et al., 2010; Haubensak et al., 2010). 

Amygdalar fear, in turn, is known to be modulated by mPFC (both PL and IL) and by the 
hippocampus, and so the expression of fear and extinction memories is also under control of 
these ‘higher’ level structures. At present, modulation of amygdalar fear by mPFC (see 
Burgos-Robles et al., 2009) is better understood in comparison to modulation by the 
hippocampus. As discussed earlier, studies related to contextual fear conditioning 
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(Fanselow, 2010), which involve the hippocampus, have been complicated by this lack of 
understanding. Hence computational models of the hippocampus and its linkages to the 
amygdala and mPFC in auditory fear may have to await progress in our understanding of 
anatomical linkages between these regions and experimental data on their interactions 
during the different phases of fear learning. 

Opportunities and challenges. There is consensus on the critical involvement of amygdala in 
the fear circuit. However, it is not presently clear how the various amygdalar nuclei with 
different internal sub-circuits act in concert to store fear and extinction memories in a 
distributed manner, and what roles they play in expressing these memories (Paré et al., 
2004). Neurobiological information continues to accumulate at an increasing rate, including 
at intracellular, cellular, circuits and behavioral levels, providing opportunities for 
integrating such information via ‘system’ level models such as the ones discussed here. Such 
models can then be used to address several interesting challenges related to the fear circuit: 
What is the distribution of tone (thalamic and cortical) and shock in the lateral amygdala? 
What are the different types of learning mechanisms in the amygdala (pre and post 
synaptic, short and long term), and what synapses do they impact? Neuromodulatory 
systems have been shown to play an important role in the fear circuit, but how are the 
receptors distributed and how do they influence intrinsic excitability and synaptic efficacy? 
What is the level of robustness and redundancy in storage and expression of fear and 
extinction memories within each structure and at the circuit level? What are the pathways 
for modulation of amygdalar fear by the prefrontal cortex and hippocampus (and possibly 
other cortical structures)?  

These are important challenges that have to be addressed in order to gain an understanding 
of the functioning of the mammalian fear circuit. As demonstrated in the discussion above, 
biologically realistic models can potentially supplement experimental modalities such as 
patch clamp recordings, single unit recordings, pharmacological manipulations and 
transgenic approaches, and assist with reverse engineering the functioning of this critical 
circuit. They also provide tremendous opportunities for research in interdisciplinary 
settings with participation of neuroscientists, electrophysiologists and computational 
experts. For instance, similar to the insights obtained for LA and ITC clusters, such 
interdisciplinary research would also aid in elucidating the roles of the various sub-circuits 
within the other nuclei, BA and Ce. After development of the individual models of these 
nuclei, they can be integrated into an overall model of the amygdalar fear circuit. The level 
of robustness and redundancy that the circuit components and the circuit as a whole 
possesses (e.g., in BA as reported by Amano et al., 2011) can then be addressed effectively by 
such models. As cited, the role of context in fear learning is not well understood at the 
present time. Thus, improved neurobiological understanding of information processing 
within the hippocampus and of the anatomical connectivity (hippocampus to mPFC and to 
the amydgala) will have to precede modeling efforts related to contextual auditory fear 
circuits. 
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Limitations. Although computational modeling is increasingly used as a tool for studying 
complex neuronal brain circuits, some general limitations should be acknowledged. 
Computational models are typically designed to answer specific questions, and so consider 
only the relevant structures and associated functions. The size of reported model networks 
incorporating biological realistic cells is typically much smaller than the actual biological 
networks at the present time (e.g., Durstewitz et al., 2000; Morgan et al., 2007). This is 
compensated for presently by careful modeling including preservation of key network 
features and by extensive parametric studies (Morgan et al., 2007). Increasing computing 
speeds and specialized architectures should enable the development of larger networks 
directly in the near future. Lack of biological data necessitates using values for parameters 
such as ionic conductances from multiple brain areas, or tuning them (e.g., synaptic 
weights) to match behavioral output. Improved characterization of the physiology including 
identification of neuronal types, connectivity (including spatial constraints and axonal 
distributions), parameter values, and learning mechanisms will help improve the fidelity of 
such models. The diversity of interneurons and the networks they form in the elements of 
the fear circuit continue to intrigue researchers, although we are beginning to understand 
the functions that they might subserve, e.g., synchronization of neuronal assemblies 
(Bissiere et al., 2011). Also, active afferents from areas omitted in the model are typically 
considered as ‘background’ input, and better characterization of such afferents under in 
vivo conditions will be needed. Finally, computational research can be most effective only if 
the neuroscientist and electrophysiologist play an active role in the model development 
process, particularly in ‘constraining’ the model, and the computational expert is  
committed to an in-depth  understanding of neurobiology. Notwithstanding such 
limitations, researchers continue to take advantage of the fact that information related to 
neurophysiology is accumulating at an increasing pace, and are developing very large scale 
biologically realistic networks (e.g., Miller, 2011; Morgan et al., 2007) to reverse engineer the 
functions implemented by  brain circuits. 

5. Summary and potential applications 

There has been a surge in interest related to the role of intra-amygdaloid structures in 
Pavlovian fear learning. Research papers have risen from an average of 25/year in the 1980s 
to 200/year in the 2000s (Paré et al., 2004). Although this has resulted in an improved 
understanding of the underlying mechanisms, it has also highlighted the complexity of the 
circuit, including possible distributed storage of fear and extinction memories in the various 
nuclei/structures, distinct mechanism of LTP/LTD at different synapses, and recruitment of 
alternative pathways providing redundancy that is probably an important trait of such a 
critical circuit. This complexity renders the understanding of the amygdalar involvement in 
fear learning a bigger challenge than previously envisaged. Furthermore, modulation of the 
amygdala by the prefrontal cortex, hippocampus and other related regions is only beginning 
to be understood. Computational modeling has the potential to play an important role in 
our efforts to unravel this complex fear circuit.  
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Insights into the functioning of the sub-circuits using computational models would also be 
useful for studying disruptions associated with the fear circuit, leading to PTSD and anxiety 
disorders. For instance, studies have shown that humans with PTSD exhibit a delay in 
acquisition of extinction as compared to controls (Rothbaum and Davis, 2003). With the 
model, one can modify parameters to predict changes in the fear circuit that could be 
correlated with a delay in acquisition of extinction. These parameters would then point to 
the changes in the circuit with PTSD and provide insights into the pathology of the illness. 
The model could also shed light on how therapeutic approaches such as cognitive 
restructuring provide a new emotional significance to a negative cognition and reduce 
physiological arousal (Debiec et al., 2006). 

Application to drug discovery research. An important future application of such models 
would be in identifying new pharmacological targets for therapeutic interventions (Li et al., 
2008). For instance, the LA computational model predicted that three types of NMDA-
glutamatergic synapses and one type of GABAergic synapse could be involved in storing 
fear and extinction memories. These predictions seem to be consistent with two recent 
experimental findings. First, a partial NMDA agonist D-cycloserine has been shown to 
facilitate extinction of fear conditioning in rats (Akirav et al., 2009; Walker et al., 2001). D-
Cycloserine was also effective in treating social anxiety disorder and acrophobia in 
combination with psychotherapy (Ressler et al., 2004). The mechanism of action of D-
Cycloserine and other drugs acting on the glutamatergic system can now be modeled both 
at receptor and cellular levels in the specific LA neurons indicated by the model. Second, 
NMDA receptors in the amygdala activate an intracellular signaling cascade leading to new 
protein synthesis. One such synthesized protein, gephyrin, clusters GABA receptors near 
the synapse, thereby increasing their inhibitory effect. The level of gephyrin goes down 
during fear conditioning, and then increases to baseline values with extinction learning 
(Quirk, 2002). The return to baseline level of gephyrin is associated with an increase in the 
surface expression of GABAA receptors, corresponding to increasing inhibitory 
neurotransmission in the amygdala (Harris et al., 1998). Drugs that impact these 
mechanisms would have a potential role for the treatment of PTSD and anxiety disorders. 
Finally, the cannabinoid receptor CB1 has been shown to modulate GABAergic neurons in 
the amygdala and facilitate extinction (Chhatwal et al., 2005). This is consistent with the 
model prediction that the inhibitory synapse from the interneuron to the pyramidal cell 
could be a site for the storage of extinction memory. With increasing availability of 
neurobiological information and easy-to-use software tools, such in silico models of brain 
circuits have the potential to become common place in drug discovery research. 
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