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1. Introduction

We live in an energy-hungry world in which industrialization and globalization have
accelerated the demand for resources that now doubles approximately every 40 years. Today,

we consume about 18 TW (18×1012 Watts) which is equivalent to 97 billion barrels of crude
oil yearly. While renewable energy sources offer an environmentally conscious alternative to
fossil fuels, they account for only about 10% of this total [64]. In parallel to the advent of
clean energy, an effort has to be made to curb consumption, which can in part be achieved by
improving system efficiency. In this Section, we will discuss in such terms why high-volume
sectors such as transportation, electricity generation, and distribution, can benefit from
SiC-based electronics.

First, it should be recognized that the adoption of a new technology will be driven mainly by
component cost and end-user benefits. Silicon carbide electronics is no exception and only
makes sense if it can deliver on these fronts. A good example is the recent introduction of
the pricier fluorescent light sources which make financial sense in the long term since they
consume a fraction of the energy of incandescent bulbs and last some 20 times longer, proving
that efficiency and reliability can justify the investment. So what are the key parameters that
influence SiC device cost and efficiency?

Cost - Substrate size and availability have benefited from the boom in LED demand as
III-nitride blue diodes can be fabricated on SiC. Indeed, the diameter of commercially
available substrates has steadily increased from the release of two inch (50 mm) wafers
in September 1997 to the recent unveiling of six inch (150 mm) wafers in August 2012
by Cree, inc., a very fast pace compared to Si evolution [100]. Also, tremendous quality
improvements have been achieved together with increased process rate and uniformity. One
of the many challenges facing SiC production has been the reduction of extended defects such
as micropipes [29, 49]. Today, substrates are virtually free of such defects, optimizing device
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Figure 1. DC efficiency of SiC-based FETs relative to Si devices at given designed blocking voltages. While commercially available

switches using NO-annealed thermal gate oxides have improved efficiency, one suggested route is the use of deposited oxides

to achieve optimum properties [109].

yield. Demand and production costs have thus progressively driven down the price of the
material, which has translated into cheaper and higher quality components for optoelectronic
and high power applications.

Efficiency - While investment costs have diminished, SiC-based devices are still more
expensive than their Si counterparts. Their efficiency is what can make them attractive
in the long run. As illustrated in Fig. 1, the energy consumption of metal-oxide
field-effect transistors (MOSFETs) can be orders of magnitude lower when using silicon
carbide as a substrate to control high blocking voltages. Industries that would benefit from
the widespread of such components include transportation, electricity distribution, grid
coupling, high-performance computing, etc. Indeed, automakers have invested heavily in
SiC research, targeting the implementation of SiC-based inverters in hybrid vehicles. To get
an idea of how single device consumption will translate into system efficiency, let’s take
the example of photovoltaic (PV) power converters. PV inverters are used to convert the
DC current from solar sources to feed it to the AC grid. They are made of power diodes
and switches. A typical residential system has a nominal power of 5 kW at 400 V AC.
Such Si-based converters can operate at over 95% efficiency but replacing Si components by
commercially available SiC Schottky diodes and power MOSFETs can cut the loss by about
50%, yielding a saving of the order of $100 a year per household [22, 23]. Moreover, they can
operate at higher temperature, so that limited cooling and volume requirements go in favor
of system prices which can indeed prove beneficial over the years for the consumer choosing
to adopt the new technology.

Further improvements in SiC device efficiency will make the case even stronger. Among
the key building blocks at the device level is the oxide/semiconductor interface. Figure 1
highlights how it affects consumption, especially at low biases. In this Chapter, we will derive
important parameters defining SiC devices from physical properties, and discuss the role
and formation of the oxide/semiconductor interface, covering thermal oxides, post-oxidation
annealing, and deposited dielectrics.
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2. Breakdown field and device efficiency

Let us compare vertical double-implanted MOSFETs (DMOSFETs) designed to control the
same bias, one Si-based, the other SiC-based, as shown in Fig. 2(b), using the constants of
Fig. 2(a). The key differences between the two materials can be traced back to the Si-Si bond
and the Si-C bond, respectively. The stronger interaction between silicon and carbon atoms
is evidenced by the shorter bond length of 1.89 Å when compared to 2.35 Å for Si-Si. The
proximity of atoms in SiC yield a more pronounced splitting of bonding and antibonding
levels, which translates into a wider band gap in the periodic crystalline structures. The
diatomic base of silicon carbide also explains the better thermal conductivity of the material
because its vibration modes, i.e. phonons, are more energetic on average, as reflected in the
Debye temperature. Ultimately, it is the phonon distribution that explains the higher critical
field of silicon carbide, ξc, that can be used to derive a key parameter impacting device
efficiency in high power electronics, the drift component of the specific ON resistance.

The breakdown field of a material is indeed not directly related to its band gap Eg. While,
to first order, the free carriers need to reach a kinetic energy of at least 3/2 Eg to induce
the cascading impact ionization phenomenon, called avalanche, that multiplies the number
of carriers and therefore the conductivity, the limiting factor in the bulk is phonon coupling
[84, 86]. If the net velocity of carriers v̄, proportional to the current, is smaller than or equal to
the thermal velocity vth =

√

3kbT/m∗, the electron-phonon system is in equilibrium because
of the ability of phonons to thermalize the carriers. In that regime, phonon scattering damps
the energy gain of free carriers whose distribution in the bands can be visualized as a Fermi
sphere slightly shifted in the direction of the electric field. However, if the field increases
and reaches ξc, the rate at which carriers gain energy becomes too high to allow equilibrium
with the lattice vibrations. Hot carriers then achieve phonon runaway. Their motion is no
longer damped and they can accelerate freely from vth to the critical speed vc ≈

√

3Eg/m∗

allowing the avalanche process to start. It is worth noting here that in thin films, an additional
constraint comes from the time the carriers take to accelerate to vc, so that ξc can become
larger than the bulk value, as illustrated in Fig. 3(a).

(b)(a)

Figure 2. (a) Properties of 4H-SiC and Si with 1015-1016 cm−2 doping at 300 K [30, 65, 66, 84, 121]. (b) Vertical power

DMOSFET.
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(b)(a)

Figure 3. (a) Hot carrier velocity saturation and dielectric breakdown [105]. (b) Field distribution in a one-sided reverse-biased

PN junction.

The critical field ξc of a semiconductor, can be used to design the most efficient device for a
given blocking voltage Vd. When a DMOSFET is in the OFF state, the positive bias applied
to the drain is entirely dropped in the N− drift region [84, 124]. Indeed, together with the P
base, it forms a reverse-biased one-sided PN junction, represented in Fig. 3(b). For a large
blocking voltage, Vd ≫ Eg/q, the extent of the depletion region on the lowly-doped side in
the step-junction approximation is

xd =

√

2ǫsVd

qNd
(1)

where Nd is the density of donor atoms in the drift region, ǫs is the permittivity of the
semiconductor, and q is the elementary charge. The peak electric field, at the boundary,
being

ξmax = 2
Vd

xd
=

√

2qNdVd

ǫs
(2)

The highest doping concentration that can sustain Vd is therefore

N∗

d = ξ2
c

ǫs

2qVd
(3)

obtained by substituting for the critical field in Eq. (2). Then, from Eqs. (1) & (3), the
minimum thickness of the drift region is given by

x∗d = 2
Vd

ξc
(4)

Accordingly, the drift region of a 4H-SiC DMOSFET can be substantially thinner and more
highly doped than a Si-based device designed to control the same bias. Neglecting the
current spread [9], the ratio of the optimal ON resistance components from the drift region
can thus be estimated by
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=
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c

µdr ǫs ξ3
c

|Si

|SiC
(5)

where µdr is the drift mobility in the bulk of the semiconductor. Plugging the respective
constants of the bulk semiconductors into Eq. (5) implies that in ideal devices the energy
dissipated using 4H-SiC would be several hundred times lower compared to the Si equivalent
for a given ON current [15].

In a real device, however, there are other components to the resistance such as the contact
resistance and the channel resistance. Here we will discuss only the channel specific
resistance which contains the contribution from the oxide/semiconductor interface of interest
in this Chapter. It can be calculated using the long channel approximation as

Rch =
Vd

Isat
P2

=
LP

nqµch
(6)

where L is the channel length, P is the channel width, or the square cell pitch, µch is the
inversion mobility, and n is the minority carrier density [9]. The total specific ON resistance
is then

Rtot = R∗
dr + Rch =

x∗d
N∗

d qµdr
+

LP

nqµch
(7)

which has the following dependence on designed blocking voltage according to Eqs. (3) &
(4)

Rtot =
4V2

d

µdrǫsξ3
c
+

LP

nqµch
(8)
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Figure 4. Schematic of the density of interface traps at the SiO2/SiC interface.
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From Eqs. (7) & (8), it can be seen that the smaller the designed blocking voltage, the smaller
the width of the necessary drift region, and the larger the contribution from the channel
resistance. In Si, that does not have a major impact in power devices because µch can be as
high as 50% of the bulk value µdr. However, SiC channels suffer from a mobility that can
be less than 1% of µdr at the native SiO2/4H-SiC interface. Therefore, interface quality can
affect performance even in the kV range and the full potential of the SiC material cannot be
reached. This is highlighted in Fig. 1, where the ratio of ON resistances was calculated using
Fig. 2(a) constants, L = 1µm, P = 10µm, n = 1015 cm−2, and the following SiC µch: 5, 50, and
500 cm2/V.s. The significance of those mobility values are discussed in the next Sections.

3. Channel mobility and interface state density

Mobility is a measure of the ease a carrier can be moved in a solid under the application of
an electric field ξ. It can be related to the speed of the carrier which is limited by scattering
events occurring at average time intervals τ. Several types of scattering processes affect
transport but the ones yielding the most frequent disturbances define the mobility value
which can be written explicitly as

1

µ
=

ξ

v̄
=

m∗

q ∑
i

1

τi
(9)

where m∗ is the effective mass, v̄ is the net drift velocity, and τi corresponds to mean
scattering times associated with various processes.

Because of the sudden termination of the semiconductor periodic lattice at the oxide interface,
the channel mobility, µch, is expected to be lower than the bulk mobility. Indeed, electrically
active levels can appear in the band gap and act as recombination centers or Coulomb
scattering centers. Moreover, the free carriers can interact remotely with charged border
states in the oxide, further reducing τCb. Other major damping mechanisms include
surface-phonon and surface-roughness scattering represented by τph and τsr, respectively. We
note that the coupling of carriers to scattering effects depends strongly on their velocity such
that Coulomb scattering dominates at low fields, while surface roughness scattering becomes
dominant at higher fields. Because of these interface phenomena, the best SiO2/Si devices
display a channel mobility of about 700 cm2/V.s, equivalent to 50% of the bulk mobility [78].
In the case of 4H-SiC however, the native oxide interface yields mobilities of about 5 cm2/V.s,
or less than 1% of the bulk value. So why is SiC so affected by the formation of a thermally
grown interface? Let us discuss it from the point of view of Coulomb scattering, so that the
question becomes: why is the density of interface traps (Dit) so much more prominent in
SiC?

First, a down side of having a wider band gap is that it is sensitive to a wider range of
defects. To first order, only the corresponding levels falling inside the band gap can be
charged and yield Coulomb scattering. Since there is no evidence that SiO2 formed on SiC
is any different from thermally oxidized silicon [99], it can contain the same type of defects,
some having energy levels affecting only SiC carriers. Let’s take the example of the oxygen
vacancy, detected by electron spin resonance (ESR) in both systems, which yields Si-Si bonds
[75, 106]. The energy split of that dimer is inversely proportional to the proximity between
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atoms. Long Si-Si bonds, i.e. bigger than 2.35 Å, can have energy levels inside both the
Si and SiC gaps. But the splitting between short Si-Si levels can be outside the silicon gap
while being electrically active at a SiO2/SiC interface [90, 130], as illustrated in Fig. 4. The
same analysis is true when comparing defect levels in the 6H- and 4H-SiC polytypes which
have energy gaps of 3 and 3.3 eV, respectively. Because their valence bands are lined up, the
conduction band of 4H-SiC is 0.3 eV higher. This is why the major defect affecting 4H-SiC,
located 0.1 eV below its conduction band, has a limited impact on 6H-SiC devices [114]. It is
interesting to note that this defect corresponds to an energy of 0.4 eV above the Si conduction
band and that a similar trap level has been observed in SiO2 on Si even though it does not
limit channel mobility [3, 4, 8].

The second reason explaining the large defect density at SiC interfaces is the oxidation
process

2 SiC + 3 O2 → 2 SiO2 + 2 CO (10)

Like silicon oxidation, it follows the Deal-Grove reaction-diffusion model, so that the thermal
oxide thickness as a function of time can be written as

x[t] = −
1
2

B

B/A
+

B

2

√

1
(B/A)2 +

4(t + t0)

B
(11)

where B/A is the linear rate constant, B is the parabolic rate constant, and t0 is an offset time
constant [45]. For details on SiC oxidation kinetics and parameters corresponding to various
orientations, pressures, and temperatures, see Refs. [43, 68, 98, 113, 122, 127, 135, 136].
But unlike Si oxidation, Eq. (10) implies the release of carbon. Because of this complex
multi-step process, a variety of atomic defects involving C can result from oxide formation if
CO molecules do not all find their way to the gas phase. [48, 71, 90]

Now that we have reviewed the impact and origin of defects at the SiO2/SiC interface,
a comprehensive picture of associated trap levels limiting inversion mobility can be put
forward, as shown in Fig. 4. Thermal oxidation of silicon carbide results in a SiCxOy

inter-layer that includes threefold and fourfold coordinated Si and C atoms [8, 44, 90, 130].
Some generate dangling bonds whose energy spreads across the band gap because it is
determined by the environment surrounding the defects. Another stable configuration
yielding a trap level in the gap is a split C interstitial. When substituting for a Si site
in the semiconductor, it can be viewed as a small C-aggregate or "C-cluster" comprising
6 atoms. A carbon-rich interface has indeed been observed by techniques such as
Rutherford backscattering (RBS) [46, 57, 89, 97], x-ray photoelectron spectroscopy (XPS)
[54, 62, 67, 77, 128], electron energy-loss spectroscopy (EELS) [33–35], Raman spectroscopy
[80], and in-situ spectroscopic ellipsometry [63]. The dominant defects however, are likely
oxide-related. Indeed, Si-Si bonds of various lengths can extend into SiO2 yielding interface
and border traps [6, 17, 50, 72, 92, 112]. As mentioned before, the majority of corresponding
bonding and antibonding states are located outside of the silicon gap but the former induce
a distribution centered between the 4H and 6H-SiC conduction bands. The slightly smaller
density of levels at lower energies is probably due to the majority of antibonding levels
residing within the valence band of SiC whose edge is common in different polytypes [1].
The combination of trap levels associated with the SiCxOy inter-layer and Si-Si bonds, yields
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the U-shaped Dit distribution. It rises sharply towards the SiC band edges because of the
Si-related defects not dominant at silicon interfaces. Therefore, the efficiency of passivation
techniques are expected to be very different at interfaces formed on the two semiconductors.

In the following Sections, we will discuss how to reduce Dit and its relationship with
mobility. Although there is extensive literature dedicated to various orientations and
polytypes, this overview is dedicated to devices fabricated on the (0001) Si-face of 4H-SiC.

4. Argon anneal

Oxidation conditions and post-oxidation annealing (POA) can affect the trap density at the
SiO2/4H-SiC interface. Both Ar anneal performed at growth temperature and re-oxidation at
lower temperatures (e.g. 900 ◦C) have indeed proven to slightly reduce the amount of deep
states [40, 129]. This can be explained by the removal of excess carbon without additional
oxide formation, as corresponding atomic configurations yield defects populating interface
states toward the middle of the gap. Since it does not reduce the density of levels close to
the conduction band edge of 4H-SiC, Ar POA alone is not sufficient to enable efficient SiC
devices. Nevertheless, it is typically used after thermal oxidation and before other annealing
schemes.

5. Hydrogen passivation

Wet oxidation of 4H-SiC also yields a small reduction of interface states with energies away
from the semiconductor band edges when compared to SiO2 formation in dry oxygen [2, 26,
55, 90, 130]. It correlates well with the effects of H2 POA. While at silicon interfaces hydrogen
annealing yields a Dit from about 1011 to 1010 cm−2eV−1 in the middle of the gap and a
mobility close to half the one of the bulk [20, 21], its impact at SiC interfaces is much less
efficient, highlighting the differences between the two semiconductors [27, 58, 96]. Molecular
hydrogen can indeed passivate Si- or C- dangling bonds, and insert long Si-Si bonds [28]. But
it does not significantly affect split carbon interstitials and slow near interface states which
populate the majority of the Dit at the 4H-SiC band edges. Like Ar annealing, wet oxidation
and/or H2 POA can be used together with other annealing techniques to optimize the trap
density throughout the semiconductor band gap.

6. Nitridation

6.1. NO annealing

In 1997, the group of Prof. Dimitrijev, at Griffitth University in Australia, demonstrated
that high temperature (1100 ◦C) nitric oxide (NO) annealing reduces the Dit at SiO2/6H-SiC
interfaces [76]. In 2000, Chung et al. published results on the effects of NO at the SiO2/4H-SiC
interface revealing that, in addition to removing deep states, it is also very efficient at
reducing the density of slow states (by a factor of ≈ 10), and yields an order of magnitude
increase in the channel mobility from about 5 to 50 cm2/V.s along the Si-face [40, 41]. This
breakthrough discovery, which originated from the joint effort between Auburn University
and Vanderbilt University, led to the adoption of the NO process by the scientific and
industrial communities as it enables the fabrication of high-quality oxide-based SiC power
devices, facilitating their commercial release (Fig. 1).
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The benefits of NO annealing have been directly correlated with the incorporation of
nitrogen, which is confined to the SiO2/SiC interface, as detected by various techniques
such as secondary ion mass spectroscopy (SIMS) [82, 106], nuclear reaction analysis (NRA)
[81], electron energy loss spectroscopy (EELS) [33], and medium energy ion scattering (MEIS)
[47, 137]. To study the impact of nitrogen, the amount incorporated can be tailored by the
NO annealing time as illustrated in Fig. 5(a). The N density is then extracted by integrating
SIMS interface peaks resulting from 1175 ◦C NO exposure of a dry thermal oxide for up
to 2 hours. The nitrogen content is found to saturate around 6 × 1014 cm−2 or about a half
monolayer coverage of the SiC surface. The nitridation kinetics result from a balance between
N incorporation and removal. Indeed, at this temperature, NO decomposes partially into N2

and O2. While 1175 ◦C is required to enable NO diffusion to the interface and subsequent
nitridation, the presence of oxygen limits its effect as interfacial nitrogen is unstable against
the slow re-oxidation occurring in parallel [37]. Moreover, additional defect formation can
also result from the presence of the excess oxygen.

Progressive reduction of the Dit across the 4H-SiC band gap corresponding to the
tailored introduction of nitrogen has been measured in metal-oxide-semiconductor capacitors
(MOSCAPs), as shown in Fig. 5(b). The density of states shows a strong correlation to the
nitrogen content and is reduced by up to an order of magnitude close to the conduction band
edge [82, 106, 108]. The sensitivity of the inversion mobility of electrons to the Dit reduction
was studied in lateral field-effect transistors containing different amounts of nitrogen at the
SiO2/4H-SiC interface. From the results depicted in Figs. 6(a) & 10, the peak field-effect
mobility is found to be inversely proportional to the density of charged states, which reveals
a Coulomb-scattering-limited transport. It is important to note that this is true even in devices
with the lowest Dit so that further defect passivation is projected to increase the mobility from
50 to more than 100 cm2/V.s, which cannot be achieved by NO POA alone as nitrogen density
becomes saturated. These conclusions are in agreement with separate mobility studies using
Hall effect measurements on nitrided samples [13, 114, 125]. Such experiments also reveal
that at higher fields, mobility becomes limited by surface-roughness scattering. Although
NO POA has been shown to yield smoother interfaces [51], it is not clear what else can be
done to further reduce that particular component.
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Figure 5. (a) SIMS Nitrogen profiles showing progressive accumulation at the SiO2/SiC interface with increasing NO annealing
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The benefits of nitrogen incorporation also extend to the reliability of SiC devices when
it comes to electron injection in the gate oxide, which is inherent to n-channel transistor
operation, as the dielectric is exposed to leakage currents and charge tunneling from the
inversion layer towards the biased gate contact [31, 32, 52, 73, 132]. While the resulting
degradation can take a long time to develop under normal operation, accelerated techniques
can be used to study device response to excess carriers penetrating the gate structure. To
best simulate actual bias conditions, electrons were injected at low oxide fields (< 2 MV/cm)
using a mercury lamp promoting carriers from the negatively-biased gate metal to the
conduction band of 4H-SiC in MOSCAPs fabricated using dry oxidation followed by various
NO annealing times [103, 106]. As shown in Fig. 7(a), the density of trapped negative
charge, extracted from the flatband voltage shift of capacitance-voltage (CV) curves, can be
plotted as a function of the integrated gate current, i.e. the injected electron density. If no
nitrogen is present at the oxide/semiconductor interface, device characteristics continuously
drift towards positive voltages. From the observation of hysteresis behavior of CV curves,
this has been correlated to electron-induced acceptor state generation at the interface [5].
However, the presence of even the smallest amount of nitrogen can suppress the degradation,
exposing the secondary component of the negative charge, the bulk electron traps in SiO2

[103], Fig. 6(b).

When it comes to positive charge trapping however, the presence of nitrogen proves to be
detrimental to device stability [73, 74]. This can be of concern even for n-channel transistors
to which a negative gate bias can be applied to ensure that it is OFF in its idle state.
Several methods have been used to accelerate hole exposure of the gate oxide such as x-ray
irradiation [52], Fowler-Nordheim tunneling, and internal photoemission [104]. Figs. 6(b)
& 7(b) show the positive trapped charge as a function of the injected hole carrier density
using such a technique with samples containing different amount of nitrogen. There is a
clear correlation between nitrogen content and oxide trap density. Because the nitrogen is
contained at the interface and the charge is stable against bias reversal, it is attributed to
near-interface traps in the SiON layer. ESR experiments have ruled out oxygen vacancies as
the main positive trap in the oxide, another indication that atomic configurations involving
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nitrogen must be at play [106]. In fact, similar conclusions have been drawn from N-induced
negative bias temperature instability (NBTI) on silicon which has been attributed to Si-N
bonds [24, 25], which also suggests that the defects must originate from the SiO2 conversion
into a nitride.

From the impact of nitrogen incorporation on Dit, electron traps, and hole traps, summarized
in Fig. 6(b), it is possible to paint a picture of what happens at the atomic level. First, it is
important to note that although the term "passivation" is often used to describe the effects
of nitrogen, the large density introduced by the NO process more likely yields a complete
reconfiguration of the interface from SiO/SiC to SiON/SiC. But for simplicity, let us look
at the effect of nitrogen on single defects. As mentioned previously, the majority of traps
at the thermally grown interface are considered to be single and split carbon interstitials,
as well as Si-Si bonds. Unlike hydrogen, nitrogen can reduce the energy of most of these
atomic configurations by substituting for threefold-coordinated carbons or by inserting
short suboxide bonds [90, 130]. While it can suppress acceptor levels close to the 4H-SiC
conduction band edge, the donor nature of nitrogen and its 5 valence electrons can then
yield states close to, or even within, the semiconductor valence band [104]. If the resulting
atomic configurations are located on the oxide side of the interface, they can therefore act as
stable hole traps. Let us take the example of a short Si-Si suboxide bond expected to have
an unoccupied state close to the 4H-SiC conduction band. When inserted by NO, it yields a
Si-NO-Si bridge and moves the trap level close the valence band. Theory suggests that the
nitrogen lone electron pair leads to a partially occupied state that is a favorable hole trap,
since giving away an electron makes the atomic configuration reduce its energy by a few eV.
As mentioned earlier, nitrogen might not discriminate between defects and stoichiometric
oxide sites as it indeed converts SiO to SiON. Therefore, the same configuration could result
from N insertion in bridging Si-O-Si, which can create trap levels where there was none
before.

In summary, the presence of nitrogen at the oxide/semiconductor interface is beneficial as it
reduces Dit, increases mobility, and suppresses electron-induced interface state generation.
But on the other hand, re-oxidation during NO POA limits the amount of N that can be
inserted, and nitrogen generates a quantity of new traps by bonding in the near-interface
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Figure 7. Effective trapped charge as a function of (a) injected electron density and (b) emitted hole density by internal

photoemission. NO POA suppresses electron-induced interface state generation but increases the amount of hole traps in the

oxide. Adapted from Refs. [103, 104]
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region of the oxide. Since we have shown that more nitrogen would increase the mobility
even further, other nitridation methods could maximize its density while confining it to the
interface boundary.

6.2. N2O and NH3

Ammonia (NH3) POA shows benefits as well in terms of Dit reduction close to the conduction
band edge of 4H-SiC [39, 53, 133]. However, it yields unnecessary incorporation of nitrogen
throughout the oxide, totalling a density ∼ 100 times larger than NO POA. This compromises
the integrity and reliability of the gate dielectric, as evidenced by the lowering of the
breakdown voltage.

Nitrous oxide (N2O) oxidation or POA also improves the properties of the
oxide/semiconductor interface, but to a lesser extent than NO [12, 37, 70, 76, 81]. This is
because it decomposes at high temperature into NO, O2, and N2. While the resulting NO
incorporates nitrogen at the 4H-SiC/SiO2 interface, the larger fraction of background oxygen
mitigates this greatly. Indeed, since incorporated N is unstable against the slow re-oxidation
occurring in parallel, N2O POA yields about an order of magnitude less nitrogen than pure
NO POA at similar process temperature. It reduces Dit by about a factor of 2 close to Ec and
leads to a peak field-effect mobility of up to ≈ 25 cm2/V.s in 4H-SiC transistors, as indicated
in Fig. 10. However, nitrous oxide is sometimes preferred over NO for safety reasons as it
comes with less demanding handling requirements.

6.3. N implants and radicals

Following the improvements induced by NO POA, other methods were developed to
introduce N at the SiO2/SiC interface. Although they may be more involved, they can
yield NO-like properties for oxide-based devices formed on 4H-SiC and bring their own
contribution to understanding the role of nitrogen.

One such nitridation technique is implantation. N+ ions can be inserted in the top
semiconductor layer that will subsequently be consumed by thermal oxidation, yielding the
presence of nitrogen at the interface. The amount of N atoms can be tuned by implantation
dose and energy. Studies have revealed that similarly to NO POA, the higher the nitrogen
density at the thermally-formed interface, the lower the Dit, and the higher the field-effect
mobility [42, 91, 93]. In fact, Poggi et al. have reported about an order of magnitude
reduction of electrically active defects close to the conduction band edge of 4H-SiC and a
room temperature field-effect mobility of up to 42 cm2/V.s in lateral nFETs fabricated on
the (0001) surface [94, 95], Fig. 10. While the progressive increase of µFE with N dose is
consistent with the reduction of Coulomb scattering, Hall mobility measurements reveal that
in devices with the higher nitrogen content, µHall decreases with temperature. This implies
that, unlike for the NO process, another dominant scattering mechanism appears following
high implant doses. This has been attributed to induced damages in SiC and residual N
interstitials left within the semiconductor [16]. Also, note that the process temperature can
be kept at or below 1100 ◦C following implantation, to avoid activation that would convert
N atoms into donors in SiC. But activation of a minority of dopants in the tail end of the
implant can never be ruled out.
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Another elegant way to introduce nitrogen is the exposure of thermal oxides to nitrogen
radicals [116, 134, 137]. It can be achieved using a remote plasma generating highly
reactive N+ ions. SIMS measurements have shown that, like NO-POA, this results in
nitrogen accumulation strictly at the interface between the oxide and the semiconductor.
One advantage being that it can potentially occur without re-oxidation, allowing for N
maximization. Studies on devices fabricated on the Si-face of 4H-SiC again show that the Dit

is reduced proportionally to the amount of incorporated nitrogen, in line with results from
NO POA. In fact, similar and even better performance in terms of peak field-effect mobility
has been demonstrated using that technique. However, prolonged plasma exposure can also
reduce the integrity of the gate oxide, implying that this promising nitridation method still
requires optimization.

7. Phosphorus

In 2009, about a decade after the introduction of NO annealing, Okamoto et al., from the Nara
Institute of Science and Technology in Japan, proposed another post-oxidation annealing
technique that significantly reduces Dit at SiO2/4H-SiC interfaces. As mentioned in the
previous section, implantation of nitrogen in SiC prior to oxidation has proved to be a
beneficial nitridation technique. Hence, Prof. Yano and his group cleverly extended this
logic to a screening method for various potential passivating species [87]. This is how
phosphorus caught their attention as oxidation of P-implanted SiC also showed a lower
density of electrically active defects than as-oxidized un-implanted interfaces. Following this
discovery, they implemented a more gentle way to introduce P at the interface in order to
avoid ion-induced damages and undesirable doping of the substrate, by flowing gas through
a POCl3 bubbler during a high temperature post-oxidation anneal.

When performed at 1000 ◦C on SiO2, grown on the Si-face of 4H-SiC, POCl3 POA leads to
a Dit below 1011 cm−2eV−1 close to Ec, or several times lower than following NO POA [88].
This is reflected in the efficiency of lateral nFETs as the peak value of the field-effect mobility
almost doubles compared to NO POA to about 90 cm2/V.s. This has been correlated with the
presence of phosphorus at the interface. Another proposed method to reach similar mobility
values is exposing a thermal oxide to P2O5 extracted from a solid phosphosilicate glass (PSG)
diffusion source [115]. Device properties following POCl3 or PSG POA are reported in Figs.
8(a), 8(b) & 10.

Note that from SIMS analysis, it is found that both POCl3 and PSG POA convert the dielectric
into a phosphosilicate by yielding phosphorus throughout the gate. This compromises the
reliability of the devices. Recently, forming a thin P-containing interfacial oxide, using POCl3
and O2, followed by dielectric deposition, was shown to reduce trapping by narrowing the
phosphorus profile [11].

The benefits of phosphorus at SiO2/SiC interfaces represent a milestone for silicon carbide
research; not only because of mobility improvements, but also because it shines light on the
nature of passivation at the atomic level. Indeed, both N and P are among the group V
elements of the periodic table, possessing similar chemistry due to their 5 valence electrons.
For example, it has fueled the discussion of the role of sub-surface SiC doping in improving
device characteristics [36]. But while the physics of N and P binding at interfaces is still being
debated, we are one step closer to a more comprehensive understanding of post-oxidation
annealing mechanisms.
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Figure 8. (a) Dit reduction compared to as-oxidized films using NO POA or a phosphorus source. Adapted from Ref.[115]. (b)

Transfer characteristics and extracted field-effect mobilities showing the efficiency of P. Adapted from Ref.[115].

8. Deposited oxides

Considering all the efforts necessary to improve the interface, boasting that silicon carbide
should be preferred over other wide band gap semiconductors because it can grow a stable
thermal oxide may no longer be a valid argument. First, the dominating trap level close to
the conduction band edge of 4H-SiC has been associated with slow near-interface defects
most likely residing inside SiO2, possibly oxygen vacancies. Second, evidence is mounting
that the oxidation process itself, which creates C-related defects at the oxide/semiconductor
interface, also yields a transition region that extends within SiC, potentially affecting
transport properties inside the inversion layer of transistors [10, 17, 19, 117].

In particular, it has been proposed by the group of Prof. Kimoto, from Kyoto University
in Japan, that thermal oxidation results in the emission of C atoms from the interface
towards the bulk of the semiconductor [61]. Indeed, deep level transient spectroscopy (DLTS)
measurements reveal a strong similarity between the effects of thermal oxidation and the
ones of C implantation in irradiated samples, as both processes yield the suppression of a
level labeled Z1/2 thought to be associated with C vacancies in silicon carbide [69, 123]. A
refined oxidation model including the kinetics of emitted atoms was then put forward by
Prof. Hijikata’s research group at Saitama University in Japan; it successfully models their
in-situ ellipsometry observations of thermal oxide growth rate on silicon carbide in both the
thin and thick film regimes [59].

Because of these drawbacks of thermal oxidation, it should not come as a surprise that using
deposited oxides has yielded encouraging results. For example, chemical vapor deposition
of a thin SiN buffer layer on the Si-face of 4H-SiC followed by SiO2 deposition and N2O
annealing, has been reported to lower the Dit and increase the field-effect mobility to above
30 cm2/V.s in lateral n-channel devices [85]. This is an improvement in efficiency compared
to gates formed thermally in N2O, highlighting the benefits of deposited dielectrics. In that
particular case, thinning the SiN layer has also proven to be key as thick oxynitride films
resulting from oxygen insertion can possess a high density of positive charges which lower
mobility and move the threshold voltage to negative values.
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8.1. Alternate dielectrics

The versatility added in device fabrication from using deposited oxides allows to explore

a variety of deposition techniques, temperatures, and most importantly the ability to use

gate materials other than SiO2. It is interesting to note that the reason for considering

alternate dielectrics is to move away from thick thermal oxides to reach higher mobility,

which is fundamentally different from the evolution of gate fabrication in silicon technology

where the motivation comes from scaling and the need for physically thicker oxides at a

given capacitance to maintain gate control while minimizing leakage, often at the expense

of mobility [56, 131]. This has led to the development and integration of materials which

possess a higher dielectric constant, or higher k, that are used in the new generations of Si

electronics. Regardless of the dichotomy, it comes at a very opportune time for SiC device

research which looks to take advantage of the acquired expertise in deposited gate dielectrics.

Another factor to consider when using high-k oxides on a wide band gap material like SiC

however, is the reduced band offsets between the semiconductor and the dielectric. The

conduction band offset relative to 4H-SiC for example goes from ≈ 3 eV with a SiO2 gate

to ≈ 1 eV with a HfO2 gate [1, 102]. This has implications in terms of leakage current

and reliability as such small barriers promote tunneling of carriers into the insulator, even

more so that SiC devices are expected to perform at high temperature, which exacerbates

the issue [105]. So if HfO2 is to be considered as a gate material, a thin SiO interlayer is

necessary to achieve reasonable leakage. Indeed, Afanas’ev et al. have demonstrated that

such structures have good interface properties, without the need for nitridation, but that it

comes at the expense of a maximum surface field of about 3 MV/cm in the semiconductor to

ensure gate integrity, dangerously close to transistor minimum requirements [7]. Ultimately,

a balancing act between SiO and HfO2 thicknesses yields a compromise between performance

and reliability [38].

But unlike Si technology, we are not aiming for the highest possible dielectric constant,

so we can somewhat move away from this compromise as long as a quality dielectric can

be obtained on SiC. A promising candidate in this respect is Al2O3; it has a dielectric

constant close to 9 and a band gap only a few tens of eV narrower than SiO2, yielding a

conduction band offset relative to 4H-SiC that is still above 2 eV. Most importantly, it does

not possess the same dominating trap level as SiO2, so that high electron mobility can be

achieved in n-channel devices. Indeed, peak field-effect mobility values measured at room

temperature on the Si-face can exceed 100 cm2/V.s [60, 79]. A key observation is again that

a thin thermal SiO or SiON layer is still required, not so much to reduce gate leakage but to

increase efficiency by providing a progressive transition between the semiconductor and the

deposited oxide. Since it acts as a passivating layer, it is no surprise that while it is needed,

the thinner it is, the better, so that a good interface can be formed while reducing the impact

of remote thermal oxide traps on channel transport properties. In practice, the stability of

a high-k material on SiO has to be considered carefully to avoid intermixing of the atomic

species during subsequent device fabrication steps. To mitigate this, a SiN barrier layer can

be used between the thermal oxide and Al2O3, blocking Al diffusion to the interface [83],

or the learning from Si technology can be extended to the use of low-temperature gate-last

processing schemes [14].
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8.2. Surface conditioning

In the previous Sections, we have shown that while moving away from a thermally-formed
gate oxide improves transport properties in 4H-SiC devices, a thin SiO transition layer still
brings a much-needed passivated interface. While this is also true for deposited dielectrics
on Si, the remarkable difference is that the thinner the thermal oxide is, the better. The next
logical step is therefore to avoid thermally-formed SiO entirely, circumventing the negative
impact of oxidation-induced defects and near-interface traps. But how can this be done so
that there is a clean transition between the SiC surface and the deposited oxide?

It all comes down to surface preparation of the semiconductor, which cannot simply end
with a wet clean since atomic ordering and bonding are paramount. A common surface
preparation technique that has been used prior to epitaxial deposition or graphene formation
on SiC might provide part of the answer. Hydrogen exposure of the (0001) face of hexagonal
SiC to high temperatures (e.g. 1350 ◦C) etches the surface, smoothing it and yielding atomic
reconstruction [18, 101, 120, 126]. However, if a gate dielectric is deposited directly on it,
there appears to be no reduction of the Dit when compared to an HF-last surface, which,
as expected, is even worse than a thermally formed interface, at least when looking at SiO2

deposition on 4H-SiC. But Shirasawa et al. observed on 6H-SiC that when high temperature
H2 exposure is directly followed by N2 exposure at the same temperature, it results in an
ordered surface terminated by a monolayer of SiN topped by a monolayer of SiO [118, 119].
These thin films have well defined band gaps, a sign of their electrical integrity, and are
estimated to be stable without the existence of dangling bonds at the SiC surface.

Our group at the Central Research Institute of Electronic Industry, located in Yokosuka,
Japan, then speculated that such a technique could be applied to 4H-SiC in order to form
an ideal seed layer for subsequent deposition [110, 111]. Indeed, this "nitrogen conditioning"
process is expected to yield an interface saturated by N atoms which are highly localized
within a monolayer, a very promising scenario since we know that maximizing nitrogen
content at the interface while limiting its presence in the oxide is key. Moreover, the single
oxide layer formed by Si-O-Si bridges bonded to the nitrogen provides the bare minimum
silicon oxide, while still offering a clean transition to a deposited layer.
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XPS and SIMS measurements confirm that a SiON layer can be formed using nitrogen
conditioning on the Si-face of 4H-SiC. More importantly, we find that the nitrogen remains
localized at the interface following 900 ◦C SiO2 deposition by CVD. N is exclusively bonded
to silicon, and no C-O, C-N, or N-O bonds are detected, which is consistent with the
structure mentioned above, and atomically cleaner than interfaces resulting from either
thermal oxidation or NO POA [77]. Electrical characterization shows that the density of
interface states of a deposited oxide is lower than the one of a thermal oxide only when
nitrogen conditioning is used, Fig. 9. While this is a notable improvement over as-deposited
oxides on a HF-last surface, even better results are expected with alternate dielectrics and
low temperature deposition methods such as atomic layer deposition (ALD). Indeed, if the
seed layer can be kept intact and a quality oxide can be deposited, this smooth and clean
interface should translate into higher inversion mobility because of reduced Coulomb and
surface-roughness scattering.

9. Summary and conclusions

In order to realize the full potential of SiC-based devices across the voltage range depicted
in Fig. 1, the quality of the oxide/semiconductor interface must be improved. Figure 10
summarizes both mobility and Dit from thermal oxide gates following the various annealing
processes described in this Chapter. Despite increasingly efficient POA processes from N2O,
to NO, to phosphorus exposure, the wide band gap and complex oxidation process yield a
large density of states that still limits the mobility in even the best oxide-based SiC transistors.
While rigourous experiments have led to that conclusion, the trend depicted in Fig. 10
shows a clear dependence between carrier transport and interface states. It suggests that the
significant increase in mobility compared to NO POA induced by PSG or POCl3 annealing is
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still hampered by trap-induced Coulomb scattering. Moreover, it is another indication that
if Dit can be decreased further, the mobility could potentially reach values well above 100
cm2/V.s.

One can then speculate whether the best properties will be obtained from passivating a
defective thermally-formed SiO2/SiC interface or using alternate dielectrics like promising
Al2O3 gate stacks that have demonstrated such high mobilities. Both of these top-down and
bottom-up approaches come with their respective challenges going from process integration
to device stability and reliability. Thermal oxide POA must optimize the density of
passivating species while limiting their presence inside the oxide, indeed Dit is inversely
proportional to the amount of nitrogen but the quantity of hole traps increases with it. As
for alternate dielectrics, benefits could arise by moving away from pre- or post-deposition
oxidation, using instead efficient surface preparation techniques.

If the steady progress made during the past couple decades is any indication, silicon carbide
research, development, and technology, have a bright future ahead.
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