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1. Introduction 

Machinability can be defined as the relative susceptibility of the work material to the 

decohesion phenomenon and chip formation, during cutting and grinding. This feature 

depends on work and tool’s material physic-chemical properties and condition, method of 

machining, as well as cutting conditions [1]. Therefore, there is no unique and unambiguous 

meaning to the term machinability. This feature, can be described by many various 

indicators. Each one of them carries out a wide variety of operations, each with a different 

criteria of machinability. A material may have good machinability by one criterion, but poor 

machinability by another [2].  

To deal with this complex situation, the approach adopted in this chapter is to divide 

machinability indicators into two groups, namely: physical and technological indicators. 

Physical machinability indicators include i.a. temperatures, cutting forces, vibrations and 

residual stresses generated during machining process, because their value have the direct 

influence on the ensemble of the remaining machining effects. Technological indicators 

include mainly machined surface texture and tool’s life (relatively tool wear). 

The most popular method for producing tungsten carbide components is by powder 

metallurgy technology. Nonetheless, for individual, small quantity production or product 

prototyping this method is too costly and time consuming. The alternative to powder 

metallurgy is Direct Laser Deposition (DLD) technology, which can be used to quickly 

produce metallic powder prototypes by a layer manufacturing method [3, 4] – Figure 1. The 

primary objective of DLD technology is the regeneration of machine parts or machine parts 

manufacturing with the improved surface layer properties, e.g. higher corrosion, erosion 

and abrasion resistance. Direct Laser Deposition is an extension of the laser cladding 

process, which enables three dimensional fully-dense prototype building by cladding 

consecutive layers on top of one another [6]. The DLD technology is increasingly being used 
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in production of functional prototypes, modify or repair components which have excellent 

hardness, toughness, corrosion and abrasion wear-resistance, e.g. machine parts for the 

automotive industry – Figure 2. In the near future DLD technology will be used in 

manufacturing of spare parts in long term space missions [7] or submarines [8]. 

 

Figure 1. Direct laser deposition technology (DLD): a) the scheme of process, b) the view of process [5] 

 

Figure 2. The application of DLD technology for the crankshafts (a, b) and parts for the automotive 

industry (c) [5] 
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Unfortunately, DLD technology has also significant disadvantage. Presently most 

components produced by DLD technology has an unsatisfactory geometric accuracy as well 

as surface roughness and requires some post-process machining to finish them to required 

tolerances [9]. Therefore, the machinability of DLD manufactured materials (e.g. tungsten 

carbide), require further and extensive studies. 

2. Machining of tungsten carbide 

Tungsten carbide has excellent physicochemical properties such as, superior strength, high 

hardness, high fracture toughness, and high abrasion wear-resistance. These properties 

impinges wide application of tungsten carbide in industry for cutting tools, molds and dies. 

On the other hand, these unique properties can cause substantial difficulties during 

machining process, which can result in low machinability. Therefore, machining of tungsten 

carbide requires the knowledge about the physical effects of the process, as well as 

appropriate selection of machining method and cutting conditions, enabling desired 

technological effects. The primary objective of post-process machining of tungsten carbide is 

to achieve satisfactory geometric and physical properties of its surface texture. 

The most popular finishing method of tungsten carbides applied in the tooling industry is 

grinding with the diamond and CBN (cubic boron nitride) wheels. However, in order to 

produce optical components made of cemented carbide (e.g. spherical mirrors) the profile 

quality requires a low surface roughness, a stringent form accuracy on the submicron scale, 

as well as a low amount of surface damage [10]. Traditional grinding with the diamond 

wheels can cause machining-induced cracks and damages to the material. To remove these 

cracks and damage and to obtain a mirror finish, lapping and polishing with fine diamond 

abrasives are usually employed. Nevertheless, these processes can cause the deterioration of 

form accuracy and increase the machining cost. 

Recently, ultraprecision grinding has been developed that substantially decreases 

subsurface damage and can precisely control the geometry of the finished surface [11, 12]. 

This kind of process is conducted on the ultraprecision CNC grinding machines, with three-

axes movements, and micro-system to deterministically generate, fine, and pre-polish a 

plano or spherical surface. Very often these machines have motors with power exceeding 

1kW and maximal rotational speeds above 80 000 rpm. The example of ultraprecision set-up 

is shown in Figure 3a. 

Tools applied in the ultraprecision grinding processes are usually selected as metal-bond 

diamond cup wheels (Figure 3b) with grit sizes between 15÷25 µm. The selected CNC 

grinding program includes two parts, i.e. stock removal and spark out. During the stock 

removal step, the grinding speed is selected in the range of 10÷15 m/s (for a small tool 

diameters it corresponds to rotational speeds up to 40 000 rpm). The vertical feed rates of the 

tool spindle are usually selected in the range of 0.05÷0.2 mm/min, and the workpiece spindle 

rotated at 1000 rpm. During the spark out phase, the workpiece is rotated with a 1000 rpm 

for about 180 rotations. 
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Figure 3. The ultraprecision grinding process of a spherical mirrors: a) set-up [10], b) schematic 

presentation of the diamond tool [12] 

Apart of grinding, recently are seen tendencies to cutting (mainly turning and milling – Figure 

4) brittle materials such as, tungsten carbide and reaction-bonded silicon carbide (RB-SiC) by a 

superhard CBN (cubic boron nitride) and PCD (polycrystalline diamond) cutters in cutting 

conditions assuring ductile cutting [13, 14]. This technique of cutting can be achieved when 

depths of cut and feeds (expressed as uncut chip thickness) are extremely low and a quotient 

of the tool cutting edge inclination angle to uncut chip thickness is greater than unity (rn/h>1). 

In milling process of tungsten carbide by CBN tools, the transition from ductile to brittle 

cutting occurs at critical depth of cut apcr. equal to approximately 4.78 µm. Machining with very 

low cutting conditions is feasible only on ultraprecision machine tools with high rigidity, 

which is substantial limitation of this technique. 

Figure 4a depicts the schematic diagram of the numerically controlled three-axis 

ultraprecision lathe used in ductile turning experiments. The lathe has two perpendicular 

hydrostatic tables along the X- and Z-axis direction, in addition to a B-axis rotary table built 

into the X-axis table. Both X-axis and Z-axis tables have linear resolutions of 1nm, and the B-

axis rotary table has an angular resolution of one ten millionths of a degree. The sample can 

be rotated with the spindle and moved along the Z-axis direction, while the cutting tool can 

be moved along the X-axis direction and also rotated around the B-axis.  

 

Figure 4. The set-up of cutting process: a) ductile turning of carbides [15], b) face milling of DLD 

tungsten carbide [16] 
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Cutters applied in the ductile cutting experiments, are made of diamond (MCD, PCD) or 

CBN (cubic boron nitride) materials. The example of turning and milling tool applied in 

carbide’s machining process is presented in Figure 5. These tools have usually negative 

geometry (rake γ angles lower than 0), and a small values of tool cutting edge inclination 

angle rn < 6 µm, which is needed to initiation of the ductile cutting. To obtain a crack free 

surface the tool feed rate f and the cutting depth ap must be very low. Their values are 

usually selected as: f ≈ 1÷75 µm/rev and ap ≈ 2÷10 µm. Cutting speeds can be selected in the 

following range: vc = 50÷600 m/min.  

 

Figure 5. Tools applied in machining of carbides: a) diamond turning tool [15], b) CBN torus end mill 

[16] 

In order to finish plane surface, made of tungsten carbide, obtained using DLD technology, 

one can apply face milling process (Figure 4b). Surfaces obtained using DLD technology 

have significantly higher roughness than ones manufactured by powder metallurgy 

technology. Therefore, cutting parameters during machining of these surfaces can be higher 

than those applied in machining of powder metallurgy surfaces, and selected as follows: 

feed per tooth fz ≈ 25÷100 µm/tooth, axial depth of cut ap = 20 µm, radial depth of cut ae = D/2 

(half of tool’s diameter). 

3. The analysis of physical machinability indicators 

In this chapter the analysis of main physical machinability indicators, such as: cutting forces 

and vibrations will be presented. The set-up of cutting forces and vibrations measurements 

during face milling process is presented in Figure 6.  

The hook up into bed of a machine piezoelectric force dynamometer was used to measure 

total cutting forces components [16]. Instantaneous force values were measured in feed force 

Ff, normal feed force FfN and thrust force Fp directions. Force dynamometer’s natural 

frequency is equal to 1672 Hz. In order to avoid disturbances induced by proximity of 

forcing frequency to gauge natural frequency, the band – elimination filter was applied. The 

acceleration of vibrations of tungsten carbide workpiece during milling was measured using 

piezoelectric accelerometer. These vibrations were measured in the same directions as 

cutting force components.  
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Figure 6. The set-up of force and vibration measurements during face milling of tungsten carbide [16] 

Figure 7 depicts the tool wear (VBc) influence on RMS values of vibrations A p  and forces F p .  

 

Figure 7. RMS values of thrust force Fp  and thrust vibrations Fp in function of tool wear VBc. Cutting 

conditions: vc = 68 m/min, vf = 180 mm/min, ap = 0.02 mm, ae = 6 mm 

On the base of conducted investigations, clear relation between progressing tool wear and 

RMS values of forces and vibrations in thrust direction (F p , A p ) can be seen. Above-

mentioned relation is expressed by the correlation coefficient R2>0.8. Tool wear growth 

induced force F p  and vibration A p  increase, which stays in agreement with investigations 

[17] related to machining of hardened steel. It was stated that in machining process of 

tungsten carbide typical abrasion wear, (characterized by VBc indicator) concentrated 

mainly on flank face can be found. This phenomenon is probably caused by a friction of 

hard carbide particles on CBN tool flank face [18]. As a result, progressing abrasion of the 

tool binder induces the growth of friction force, which in turn is related to force and 

vibration (F p , A p ) increase. It is necessary to mention that, in remaining cutting force and 

vibration directions (F f , A f ,  F f N , A f N ) no correlation with tool wear VBc was found out 

(correlation coefficient R2 was lower than 0.1). 
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In order to analyze forcing frequencies affecting cutting force components during milling 

of tungsten carbide, the FFT (Fast Fourier Transform) spectra were determined (Figure 8). 

From the Figure 8 it is resulting, that primary forcing frequency is tooth passing 

frequency zfo. Since number of teeth: z=2, the zfo frequency overlaps with the second 

harmonics of spindle speed frequency – 2fo. Therefore 2fo and zfo frequencies are 

dominant. It means that the dominative factor in FfN and Fp force time courses is milling 

process kinematics related to the cutting force generated by the each of teeth. Primary 

harmonic component zfo is accompanied by so-called „collateral bands” with the 

following values: zfo + fo and zfo – fo. They appearance is related to the occurrence of 

radial run out phenomenon. From the Figure 8 it can be also seen that frequency spectra 

of FfN and Fp force components consist of spindle speed frequency polyharmonics. Similar 

dependencies were observed for majority of investigated cutting force components 

frequency spectra. 

 

Figure 8. Frequency spectra of FfN and Fp force components 

Figure 9 compares cutting forces in function of feed per tooth obtained during milling of 

tungsten carbide and hardened X153CrMoV12 steel (with 60 HRC hardness). It was 

observed that both in milling of tungsten carbide and hardened steel, cutting forces (F f , F f N , 

F p ) are increasing monotonically with feed per tooth fz growth, what is typical dependency 

occurring in metal cutting processes. In tungsten carbide milling process, the highest force 

values appeared in thrust direction (F p ), independently of feed per tooth fz value. As it was 

mentioned before, this phenomenon is probably caused by a friction of hard carbide 

particles on CBN tool flank face, which affects tool wear increase, and hence friction and 

thrust force F p  growth (it is worth indicating that after second experimental trial tool wear 

was VBc ≈ 0.07 mm). In case of milling of hardened steel, thrust force F p  has lower values 

than those obtained during milling of tungsten carbide. This is attributed to the significantly 

lower hardness of hardened steel (in comparison to tungsten carbide), which reduces tool 

wear intensity (tool wear after second trial: VBc ≈ 0), and thus values of thrust force F p . The 

influence of work material’s hardness on the cutting force values during machining is 

described in details in [19].  

Figure 10 depicts RMS values of vibrations in function of feed per tooth fz during milling of 

tungsten carbide. 



 
Tungsten Carbide – Processing and Applications 

 

110 

 

Figure 9. RMS values of force components in function of feed per tooth fz in milling of: a) tungsten 

carbide, b) hardened steel 

 

Figure 10. RMS values of vibrations (A f , A f N , A p ) in function of feed per tooth fz in milling of tungsten 

carbide 

From the Figure 10 it can be seen, that feed per tooth fz growth induces monotonic increase 

of vibrations in all measured directions (A f , A f N , A p ). It was observed that independently of 

feed per tooth fz value, vibrations in the thrust direction A p  have the smallest values, in 

comparison to the other measured directions. The reason of this phenomenon is probably 

connected with the highest tool stiffness in the thrust direction (parallel to rotational axle). 

The highest acceleration of vibration values (independently of feed per tooth fz value) 

occurred in the feed normal direction A f N . According to research: [20, 21], it could be 

caused by the direct contact of cutter radius and tool flank face with the machined surface, 

which is the major source of forcing vibrations, and also the smallest damping ratio in the 

feed normal direction compared to the other two axes. 

In order to estimation of cutting forces in the broad range of cutting conditions, cutting force 

models can be applied. Majority of models assume that cutting force is proportional to 

sectional area of cut and the specific cutting pressures. Figure 11 depicts, empirically 

determined course of the specific cutting pressure in function of mean uncut chip thickness 

k i =f (h), in milling of tungsten carbide, while table 1 specific cutting pressure (k c , k c N , k p ) 

regression equations.  
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Figure 11. Specific cutting pressure k i  in function of mean uncut chip thickness h 

From the Figure 11 it can be seen, that mean uncut chip thickness h growth is accompanied 

by the specific cutting pressure (k c , k c N , k p ) decrease. This phenomenon stays in agreement 

with the dependency observed in metal cutting processes. Between experimental specific 

cutting pressure values and calculated ones (based on regression analysis) some divergences 

can be seen. These divergences are expressed by the correlation coefficient R2>0.87 (table 1). 

Above-mentioned divergences have disadvantageous influence on mechanistic cutting force 

model accuracy. The reason of their occurrence could be attributed to milling process 

dynamics (e.g. machine tool stiffness). 

 

Specific cutting pressure component 
Specific cutting pressure ki 

Regression equation R2 

Tangential kc = 388.9 h -0.872 0.873 

Radial kcN = 385.4 h -0.845 0.901 

Thrust kp = 644.1 h -0.798 0.915 

Table 1. Regression equations of specific cutting pressure components 

4. The analysis of technological machinability indicators 

Machined surface texture and tool wear are the essential factors determining cutting ability 

in practical applications. One of the most popular geometrical tool wear indicators is tool 

wear on the flank face designated by the VB. Its value can be measured using stereoscopic 

microscopes. The method of tool wear measurement is depicted in Figure 12. Machined 

surface texture can be examined using three and two dimensional (3D, 2D) measurements. 

3D measurements can be achieved using stationary profilometer Hommelwerke T8000 

(Figure 13). Two dimensional measurements can be made by T500 profilometer 

(Hommelwerke), equipped with T5E head and Turbo DATAWIN software. The sampling 

length lr = 0.8 mm, the evaluation length ln = 5·lr = 4.8 mm, the length of wave cut – off λc 

(cut – off) = 0.8 mm and ISO 11562(M1) filter are usually applied in the measurements. As a 

result of 2D measurements the surface profile charts are received. On the basis of surface 

profile charts the Ra and Rz parameters can be calculated using appropriate software.  
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Figure 12. Tool’s flank wear measurement 

 

Figure 13. The view of stationary profilometer Hommelwerke T8000 

Figure 14 depicts the tool wear progress in function of cutting time during face milling of 

tungsten carbide (manufactured by DLD technology) with CBN cutters. As it can be seen, 

tool wear process for each tooth is similar, i.e. there are no significant deviations of VBc 

values for respective teeth. Introducing arbitrary dullness criterion VBc = 0.2 mm, it can be 

seen that twofold cutting speed vc increase, caused almost eightfold tool life T decrease. On 

the basis of acquired data the s exponent used in Taylor`s equation (T = CT/vcs, where CT is 

constant dependent of workpiece properties) can be estimated, but it is necessary to 

emphasize that determining the s exponent from two experimental values is not very 

accurate. After consideration of the vc1, vc2, T1 and T2 the s = 2.65 was obtained. This value is 

located in the range of the s exponents characteristic for high speed milling of hardened 

steel, thus the intensity of cutting speed vc influence on tool life T in tungsten carbide milling 

is similar to those for hardened steel. Moreover the tool wear concentrates on the flank face 

of the tool (see Figure 14c). Because of this, the relations between the tool wear and both 

forces and vibrations in thrust direction were observed (see Figure 7).  
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Figure 14. a), b) Tool wear in function of cutting time ts for two investigated cutting speeds vc; c) tool wear 

comparison for exemplary dullness criterion VBc = 0.2 mm (z1, z2 – number of tooth, T1, T2 – tool life) 

Figure 15 compares the surface texture of tungsten carbide sample manufactured by DLD 

technology before and after milling. 

 

 
 

Figure 15. Surface texture of tungsten carbide manufactured by DLD technology, before and after 

machining: a) 2D surface profile, b) image of surface 
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It can be seen, that tungsten carbide sample manufactured by DLD technology has an 

unsatisfactory geometric accuracy and unreasonable surface roughness. Furthermore, from 

the surface profile and the FFT analysis (Figure 16) it is resulting, that surface texture after 

DLD process has a random character. The FFT analysis of surface profile consists also of 

constituent related to the half of the evaluation length (2.4 mm), which means that DLD 

surface profile is affected by the waviness. Therefore, it needs further finishing process. 

After milling, machined surface is much smoother and characterized by significantly lower 

values of surface roughness parameters. 

 

Figure 16. FFT analysis of surface profile after DLD process of tungsten carbide 

Figure 17 depicts 3D surface roughness charts and power density spectra (PDS) obtained 

after milling of tungsten carbide. 

It can be seen, that 3D surface topographies after milling (Figure 17) are affected by the 

cutter’s projection into the workpiece. This observation is also confirmed by the power 

density spectra which represent wavelengths of surface irregularities generated during 

machining. Surface profiles consist of wavelengths related to the feed per tooth value (fz = 

0.05 mm) which is related to the kinematic-geometric projection of cutter into the workpiece, 

and feed per revolution value (f = 0.1 mm) which can be induced due to radial run out 

phenomenon. 

Figure 18 depicts examples of profile charts and corresponding to them Ra and Rz 

parameters for various feed per tooth fz values. As it can be seen the fourfold feed per 

tooth fz increase did not make any significant qualitative and quantitative surface texture 

changes. It denotes that feed insignificantly influences surface roughness, what is not in 

full agreement with the results shown in Figures 17a and 17b. For some instances, 

characteristic kinematic-geometric projection of cutting edge into the workpiece can be 

seen, however in a wider surface roughness range, there is no typical relation. Figure 19 

depicts surface roughness parameters Ra and Rz (for vc = 68 m/min) in function of feed per 

tooth fz. 
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Figure 17. 3D surface roughness chart and corresponding Power Density Function during: a) milling 

with cutting speed vc = 68 m/min, b) milling with cutting speed vc = 150 m/min 

From these charts no influence of feed per tooth fz on surface roughness is seen, despite for fz 

= 0.1 mm/tooth. In this case the theoretic value of Rzt is comparable to real Rz value. It is 

commonly known that the increase of feed per tooth fz is accompanied by the increase of 

surface roughness. Theoretically, the lower feed is fixed, the lower surface roughness is 

generated. Nevertheless in practice, differences between theoretical and real surface 

roughness values are increasing with feed decrease. Similar conclusions can be proposed 

from cumulative Ra and Rz charts for all ap and fz combinations (see Figure 20).  

Twofold ap and fourfold fz growth caused insignificant Ra and Rz change. Therefore in 

the range of conducted research non monotonic increase of surface roughness in 

function of investigated factors was stated. 
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Figure 18. Examples of profile charts for various feed per tooth fz values: a) fz = 0.025 mm/tooth, b) fz = 

0.05 mm/tooth, c) fz = 0.075 mm/tooth, d) fz = 0.1 mm/tooth 
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Figure 19. Surface roughness Ra and Rz in function of feed per tooth fz  

 

 
 

Figure 20. Surface roughness Ra and Rz in function of feed per tooth fz and depth of cut ap 

5. Summary and conclusions 

The development of modern tool materials such as diamonds (PCD, MCD) and cubic boron 

nitrides (CBN), as well as ultraprecision and rigid machine tools enables machining of 

tungsten carbides. These materials have excellent physicochemical properties such as, 

superior strength, high hardness, high fracture toughness, and high abrasion wear-

resistance. On the other hand, these unique properties can cause substantial difficulties 

during machining process, which can result in low machinability. From the carried out 

experiments it can be seen, that during machining of tungsten carbides, excessive values of 

vibrations and intense tool wear growth can occur.  

Figure 21 depicts schemes of tungsten carbide products manufacturing processes. 
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Figure 21. The schemes of manufacturing processes of various products made of tungsten carbide: a) 

cutting insert, b) spherical surface, c) end product made by DLD technology  

The application of ductile cutting to production of cutting inserts (Figure 21a) shortens 

manufacturing process by the elimination of one partial process (e.g. polishing). However 

ductile cutting occurs only in the range of extremely low values of depths of cut and 

feeds. Therefore, this kind of process can be achieved only on very rigid and 

ultraprecision machine tools, what is substantial limitation of this method. Ultraprecision 

machine tools can be also applied to grinding of very accurate spherical surfaces. This 

process also shortens manufacturing process by the elimination of polishing or lapping 

(Figure 21b). In case of tungsten carbide products obtained by DLD (direct laser 

deposition) technology (Figure 21c), grinding or cutting (e.g. milling, turning) can be 

applied as the finishing process. However cutting enables also the shaping of 

manufactured part, by the possibility of higher cutting conditions application in 

comparison to grinding. Nevertheless, during cutting of tungsten carbide, intense tool 

wear growth can occur, and thus this process requires the selection of appropriate cutting 

conditions. 

Deliberations presented in this chapter reveal, that efficient machining process of tungsten 

carbide parts is feasible, however it requires the knowledge about the physical effects of the 

process, as well as appropriate selection of machining method and cutting conditions, 

enabling desired technological effects. 
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