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1. Introduction 

Transition metal carbides, particularly tungsten carbide, are rather attractive due to  

their physical and mechanical properties [1]. They are characterized by the high melting  

point, unusual hardness, low friction coefficient, chemical inertness, oxidation resistance,  

and excellent electric conductivity. Nowadays, highly dispersed tungsten carbide  

powders appear to be very important for production of wear-resistant parts, cutters,  

non-iron alloys, etc. 

It is well known, that fine-grained alloys demonstrate better mechanical properties in 

comparison with coarser alloys of the same composition under the same terms [2-4]. Use of 

ultrafine or nanosized powders is one of the most efficient ways to produce new materials 

with required properties. 

That is why nowadays the production technologies of nanopowders play the leading role 

among the widely used directions. 

There are several phases of tungsten carbide; the most important ones are WC and W2C [5]. 

Though W2C is unstable at T=1300°C, in most cases the mixture of WC and W2C is observed 

in the synthesis products. Precipitation of the single phase of WC is only possible in the 

narrow area of the technological parameters [6]. 

There are different ways to obtain tungsten carbide powders, and each process changes the 

characteristics of the forming product. 

Tungsten carbide powders are obtained by direct carbonization of tungsten powder. This 

process implies production of pure highly dispersed powder of metal tungsten within the 

first stage. The initial material in this case is very pure WO3, tungsten acid or ammonium 

tungstate [7-9]. 
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The second stage includes carbonization of tungsten by carbon in the graphite furnace with 

hydrogen atmosphere. Depending on the type of the furnace, atmosphere, and carbon 

content the reaction occurs according to the scheme: 

2W + C → W2C 

or 

W + C → WC. 

The obtained tungsten carbide powder has particles of the indefinite melted form, minimum 

3 – 5 μm in size and contains 5 % of W2C minimum. The reduction terms greatly influence 

the characteristics of the metal powder and forming carbide.  

Thermochemical synthesis of nano-phased tungsten carbide powders was also studied. It 

consisted of two stages [10, 11]. At first, nano-phased powders of metal tungsten were 

synthesized by reduction of various tungsten salts and chemical decomposition of vapor of 

volatile tungsten compounds. Then nano-phased tungsten carbide with the particle size of 

~30 nm was obtained by carbonization at low temperature in the medium of controlled 

active carbon-containing gas phase. 

The method suitable for tungsten carbide synthesis at low temperatures (~800°C) during 2 

hours was suggested [12]. It is based on the gas-solid reaction between a tungsten source 

(ammonium paratungstate or tungsten oxide) and carbon-containing gas phase which 

includes a mixture of H2 and CH4. 

The conventional calcination–reduction–carburization (CRC) process offers the potential to 

manufacture commercial tungsten carbide powders with median grain sizes below 0.5 μm 

(ultrafine grades) [13].  

In [14] point to that transferred arc thermal plasma method is more economical and less 

energy intensive than the conventional arc method and results in a fused carbide powder 

with higher hardness. Coatings of high wear resistance can be produced using fused 

tungsten carbide powder with WC and W2C phases, which can be economically synthesized 

by thermal plasma transferred arc method [14]. 

However, it is not economically efficient to use very pure and fine tungsten powder 

obtained from tungsten compounds at the stage of its reduction for producing a large 

quantity of tungsten carbide powder. 

The existing economical and technological restrictions make the problem of the 

development of large-scaled cheap production of ultrafine and nanosized tungsten carbide 

powders very actual. Nowadays, a promising ecologically safe method, discovered in 1967 

by academician A.G Merzhanov and his co-workers I.P. Borovinskaya and V.M. Shkiro – 

Self-propagating High-temperature Method (SHS) – is used for obtaining refractory 

compounds of high quality. This method combines a simple technology with low power 

consumption and allows obtaining products with regulated chemical and phase 
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composition and dispersion degrees. Therefore the possibility of application of SHS 

technology for preparing ultrafine and nanosized tungsten carbide powders represented 

practical interest.  

2. Experimental 

2.1. Self-propagating high-temperature synthesis (SHS) 

The new scientific direction SHS was developed at the interface of three scientific fields: 

combustion, high-temperature inorganic chemistry and materials science. SHS is an 

autowave process analogous to propagation of the combustion wave with the chemical 

reaction being localized in the combustion zone propagating spontaneously along the 

chemically active medium [15, 16]. The essence of the process is occurrence of exothermic 

reactions at temperatures developing as a result of self-heating of the substance; the 

synthesis temperature is up to 4000°C, the temperature growth rate – 103-106 K/s, the 

combustion velocity – 0.1-10 cm/s. 

Thorough fundamental investigations of the SHS process have proved that chemical 

transformation in combustion waves and product structure formation occur simultaneously 

with high velocity and at significant temperature gradients. These peculiarities of the 

process provide practically complete chemical transformation of the mixture and a specific 

structure of the combustion products. Application of SHS allows avoiding the main 

disadvantages of conventional technological processes – high power consumption, 

complicated equipment, low product output. 

The extreme terms which are characteristic of SHS of chemical compounds affect chemical 

and phase composition of the products as well as their morphology and particle size [17, 18]. 

The experiments in product quenching by special cooling methods immediately after the 

combustion front propagation have proved that “primary” product particles of 0.1-0.2 μm in 

size can be formed in the combustion front [19, 20]. 

The product structure formation during the chemical reaction was called primary structure 

formation while the structure formed in this case was called the primary structure of the 

product. The characteristic time of the chemical reaction is 10-3-10-1 s; the time of the primary 

structure formation being the same. After the chemical reaction the particle size increases as 

a result of the secondary structure formation process followed by collecting recrystallization 

[21]. The duration of the process depends on the sample cooling mode and is usually about 

some or tens seconds.  

Transformation of initial reagents to final SHS products is a complicated multiparametric 

process. There are various ways to govern it. The main types of the occurring processes are 

solid-flame combustion in the solid-solid system (one of the varieties is combustion with the 

intermediate melted layer), gas-phase SHS (chain flames, combustion of condensed systems 

with gaseous intermediate zone), combustion of solid-gas systems (filtration combustion, 

combustion of gaseous suspensions) [22]. 
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Let us consider the possibilities of these processes. 

In order to obtain ultrafine and nanosized products in the processes of solid-flame 

combustion, one must use the reagents of the same dispersion. In solid-phase systems with 

the intermediate melted layer the possibility of nano-crystal formation depends on 

crystallization and recrystallization processes, combustion heat modes and product cooling 

after the reaction. 

In the case of gas-phase SHS (gas combustion followed by a condensed product formation) 

the product elemental particles consolidate with each other and form nuclei on the surface 

of which the following reactions occur. If fast artificial cooling is used, it is possible to arrest 

the particle size growth at a required stage and obtain nanopowders by depositing the 

particles from the gas mixture. 

At gas-phase combustion the initial reagents, intermediate and final compounds remain in 

the condensed state (either liquid or solid) during the entire reaction [16, 23]. 

The SHS method has provided the possibility of obtaining a great number of compounds in 

the dispersed state (powder). Among the materials for which the technological backgrounds 

are well developed the main ones are powders of refractory compounds. They are widely 

used in industry due to their outstanding properties such as hardness, thermal stability, 

abrasive wear and resistance. 

There are several directions of the SHS technologies. The widest and well-developed type of 

SHS reactions is the synthesis reactions of refractory compounds from elements. It is 

oxygen-free combustion. Both powders and gaseous elements take part in the chemical 

reactions. Besides, some regulating additions R are introduced into the initial mixture. They 

can be synthesis products (as diluents), various inorganic and organic compounds. 

Another direction is combination of SHS with thermal reduction (SHS with a reducing 

stage) when the compounds of elements (oxides, halogenides, etrc.) and metal-reducers – 

Mg, Ca, Al, Zn, etc. are used for the synthesis. The advantages of this method are a low price 

and availability of raw materials. Besides, metallothermal powders are characterized by 

such valuable properties as high dispersion and homogeneous granulometric composition. 

The interaction of the reagents in the combustion wave occurs within two stages. The first 

one (reduction of the main metal oxide) is a metalthermal reaction. The second stage (SHS 

itself) is the interaction of the reduced metal with a non-metal followed by a refractory 

compound formation. There are a lot of secondary reactions which should be suppressed 

when optimum technological terms of the process are worked out. In the complicated 

systems of oxide – metal-reducer – carbon (hydrocarbon), carbon-containing components 

take part in carbide formation and reduction of metal oxides as well. It defines the 

requirements to the choice of the initial components ratio. 

As a result of the SHS with a reducing stage a “semiproduct” is obtained which contains the 

main compound and the secondary products which can often be metal-reducer oxides. In 

metallothermic powders the secondary product is distributed uniformly in the whole 



 
Self-Propagating High-Temperature Synthesis of Ultrafine Tungsten Carbide Powders 5 

volume of the reactive mass. So it is necessary to carry out some additional operations to 

sort out the main compound [24, 25]. 

Having analyzed the literature data, we can conclude that in the case of the development of 

the SHS technology of tungsten carbide the main attention should be paid to detection of the 

terms of nano-particle formation during the synthesis process. However, investigation of the 

separation methods of chemically pure ultrafine and nanosized compounds from the 

synthesis products and their analysis are very important too. 

2.2. Chemical dispersion 

SHS products are cakes or ingots which should be processed for obtaining powders. It can 

be achieved by either mechanical milling or chemical treatment.  

Mechanical milling (conventional milling by balls, friction milling, planetary milling) is the 

easiest method for obtaining ultrafine and nano-sized powders. It is possible to obtain fine 

powders (up to 10-20 nm), but the problems of the long duration of the process, powder 

contamination with the ball and vessel materials, high power consumption require some 

additional solution. 

One of the promising methods of obtaining nano-sized powders is the method microparticle 

dissolution. Recently, the efficiency of the dissolution processes for converting microparticle 

size to the nano-level has been confirmed. The method is based on the property of particles 

to decrease their volume uniformly due to their dissolution in acid and alkali media. But 

simultaneously the structure and the properties of the central part of the substance or phase 

remain the same [26].  

The main aim of powder application is to obtain a dense product with homogeneous 

microstructure after compaction. The common reason restricting the refractory material 

strength is existence of agglomerates in the powder [27]. So in order to make the powder 

strong, it is necessary to disintegrate or remove large solid agglomerates from the initial 

powder. In the case of ultrafine powders the agglomerates are disintegrated by dispergating 

and milling in suitable solutions. 

The influence of various solutions on the powder structure, dispersion degree and specific 

surface area has been already studied for SHS powders of boron nitride and aluminum 

nitride. 

After synthesis, the materials were mechanically disintegrated and subjected to 

thermochemical treatment in neutral, acid, and alkali media at temperatures ranging from 

20 to 100°C [28]. Such treatment is termed “chemical dispersion” of SHS products, as 

suggested by Merzhanov [29]. Chemical dispersion in a neutral medium resulted in 

increased total, outer, and inner specific surfaces. Mean grain size decreased. This implies 

that chemical dispersion provided for disintegration of the materials, as well as leading to 

formation of new channels and pores and the appearance of new defects, finally resulting in 

improved specific surface. 
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In [25] describes thoroughly the application of chemical dispersion for separating ultrafine 

and nanosized powders of boron nitride obtained by various methods under the SHS mode: 

from elements, with participation of boron and boron oxide, and from boron oxide with the 

stage of magnesium reduction. 

Possible production of tungsten carbide of ultrafine and nanosized structure by the SHS 

technology with a reducing stage with using chemical dispersion for separation of 

submicron powders was of great practical interest. 

This paper demonstrates the investigation results of the dependence of SHS tungsten 

carbide powder dispersion on the SHS process parameters and composition of the solutions 

used for chemical dispersion of the synthesis products and separation of the final product. 

The aim is producing single phase tungsten carbide with ultrafine and nanosized structure. 

2.3. Experiment description and products characterization 

The starting materials used were 99,98+%-pure WO3 with an average particle size of 10-12 

μm (commercially available material which is used in the production of hard alloys), P804-T 

furnace black less than 45 μm in particle size, and I.PF-1 magnesium powder (99.1+%) 

ranging from 0.25 to 0.50 mm in particle size. 

To mix the components and grind the SHS products, we used ball mills with steel grinding 

media. Synthesis was carried out in a 30-l SHS reactor under argon atmosphere. 

To prepare tungsten carbide, we used the exothermic reaction between tungsten oxide, 

carbon (black), and magnesium metal: 

 WО3 + Mg+ С + R → WC∙MgO∙Mg + R’+ Q   (1) 

where R is a regulating additive. 

The temperature of this process exceeds 3000°C; it can cause decomposition of the  

forming tungsten carbide. To reduce the combustion temperature, we introduced different 

additives, inert or decomposing in the combustion wave to form gaseous products. The 

unstable additives also acted as dispersants ensuring a small particle size of the SHS 

products. 

In addition to tungsten carbide and magnesia, formed in the oxidation-reduction reaction, 

X-ray diffraction revealed some amount of unreacted magnesium in the intermediate 

product and also intermediate compounds (magnesium carbides) formed in the synthesis 

(Figure 1).             

According to the chemical analysis magnesium content in water-soluble compounds (it 

should be related to forming carbides) is 0.7 – 0.9 mass %, metal magnesium (unreacted) is 

15-17 mass %. The study on the semiproduct microstructure has proved, that ultrafine 

crystallites of tungsten carbide appear to be embedded into the amorphous phase of the 

melts of magnesia and metal magnesium (Figure 2). 
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Figure 1. X-ray pattern of WC∙MgO∙Mg intermediate product. 

 

Figure 2. Microstructure of WC∙MgO∙Mg intermediate product. 

The process of chemical dispersion in various solutions is necessary for separation of the 

target products from the cakes forming during SHS and their further purification from 

admixtures with simultaneous change in the obtained powder dispersion. 

The milled cake was treated with water solutions of hydrochloric acid (1:1) or sulfuric acid 

(1:5) (acid enrichment) for tungsten carbide separation from the semiproduct. Unreacted 

metal magnesium and magnesium oxide which was formed during the synthesis process 

were dissolved. 

At first the powder was treated by chloride solutions since it is known that water solutions 

of haloid salts destroy metal magnesium. Magnesium, potassium and ammonium salts were 



 

Tungsten Carbide – Processing and Applications 8 

chosen. It was carried out in order to avoid active gas release when the milled cake was 

treated with diluted acid solutions (hydrogen release during the interaction of unreacted 

magnesium with acids) as well as to decrease acid consumption for acid enrichment of the 

synthesized product. 

For decreasing acid consumption, the pulp, consisting of WC∙MgO∙Mg semiproduct and 

some amount of magnesium chloride as a catalyst, was saturated with carbon dioxide. 

During this treatment magnesium content in the solid residue was decreased and in the 

solution it was increased. Metal magnesium is supposed to transform to solution in the 

following way: 

 Mg + 2H2O → Mg(OH)2 + H2      (2) 

 H2O + CO 2 → H2CO3      (3) 

 Mg(OH)2 + H2CO3 → Mg(HCO3)2 + 2H2O  (4) 

At first the pulp is prepared. It is suspension of the treated powder in water. Then the 

required amount of the acid equal to the stoichiometric ratio is introduced. The addition of 

water to WC∙MgO∙Mg is followed by active gas release and the solution heating though 

distilled water is not supposed to affect metal magnesium greatly due to Mg(OH)2 film 

appeared on magnesium particle surface [29]. 

It is known, that at 500°C, MgC2 can be formed; this carbide is easily disintegrated by water 

to form acetylene. As the temperature grows from 500 to 600°C, carbon is separated from 

MgC2 and Mg2C3 appears; this carbide being typical for magnesium only. Methyl acetylene 

releases during Mg2C3 hydrolysis. 

So the following reactions can occur in the water solutions: 

 Mg2C3 + 4H2O → 2Mg(OH)2+ НС=С–СН3   (5) 

 MgC2 + H2O → Mg(OH)2 + C2H2   (6) 

 Mg + H2O → Mg(OH)2 + H2  (7) 

Infrared spectroscopy was used to analyze the gases released in the reaction of 

WC∙MgO∙Mg intermediate product with chloride solutions (Table 1). 

When the intermediate products are treated with potassium chloride and ammonium 

chloride solutions, a great amount of methane, acetylene, and methyl acetylene is released. It 

proves the supposition of magnesium carbide formation during SHS. Existence of some 

amount of methane in the gaseous mixture can be explained by hydrolysis occurring on 

tungsten carbide particle surface. More gas will be released if ammonium chloride solution 

is used due to the fact that ammonia is formed during hydrolytic decomposition. 

The secondary compounds were removed completely due to the powder treatment with 

acid solutions 
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Reactive system Gas volume, cm3 

Concentration of substance  

in gas phase, mg/m3 

СН4 С2Н2 С3Н4 

WC∙MgO∙Mg +KCl+H2O 292 16.0 3.1 12.3 

WC∙MgO∙Mg+NH4Cl+H2O 405 14.8 1.4 7.2 

Table 1. Gas release at WC∙MgO∙Mg treatment with salt solutions 

 

 

Figure 3. WC∙C powder separated from WC∙MgO∙Mg semiproduct by acid enrichment 

Microstructure analyses (Figure 3) have shown, that the tungsten carbide powders resulting 

from acid enrichment represented large accumulations of fine particles of the main product 

and unreacted (free) carbon. The chromium mixture (10 g K2Cr2O7 in 100 ml H2SO4) oxidizes 

graphite and amorphous carbon at T ≤ 180°C. Preliminary research showed that the 

treatment of tungsten carbide powder with chromium mixture solution at T ≤ 180°C allowed 

removing free carbon without dissolving the main product. The carbide powders resulting 

from acid enrichment were refined with chromium mixture.  

As a result, the content of free carbon decreased from 1.0-5.0 to 0.02-0.2%, while the content 

of oxygen increased due to oxidation of tungsten carbide particle surface. Tungsten carbide 

particles appeared to be covered by acicular tungsten oxide crystals, which are easily 

dissolved in diluted alkaline solutions (Figure 4). 

The changes in the phase and elemental composition of tungsten carbide powder as a result  

of chemical dispersion in chromic acid mixture and alkaline solutions are presented in  

Table 2. 

X-ray diffraction analysis proved that the final products contained only one phase of 

tungsten carbide. Chemical dispersion in various media caused the primary agglomerates to 

disintegrate into finer structures of hexagonal tungsten carbide (Figure 5). 
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Figure 4. Microstructure of oxidized tungsten carbide powder 

 

Dispersion 

solution 
Dispersion time, h 

Weight percent 

С total Сfree Mg O Cr 

H2SO4 (1:4) 3,0 7,97 2,05 0,063 0,16  

5% K2Cr2O7 in 

H2SO4(conc) 
3,0 6,12 0,03  0,24  

Aqueous 1% 

KOH 
0,5 6,13 0,03 0,005 0,03 0,005 

Elemental analysis of WC∙MgO∙Mg semiproduct: Wtotal = 44.1 %; Ctotal = 4.1 %; Oxygen = 9.3 % Mgacid.sol. = 37.7 %; Mgmetal 

~ 15.7 %; Mgwater sol. = 0.8 % 

Table 2. Effect of chemical dispersion on the elemental composition of tungsten carbide powder 

3. Results and discussion 

The study on SHS stages and chemical dispersion has proved that the final dispersion of the 

target tungsten carbide product depends on various factors. It was established that the 

initial mixture composition and density, reactant ratio, their aggregative state in the 

combustion area, gas pressure, and the nature of regulating additives influenced the size of 

powder particles. 

When calcium chloride or hydride as well as ammonium chloride are used as  

regulating additives, the final product contains two phases WC and W2C. When the  

mixture of ammonium chloride and high-molecular polyethylene or that of metal 

magnesium and WC∙MgO∙Mg semiproduct are used, the single-phase target product is 

obtained. 
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Figure 5. X-ray pattern (a) and microstructure (b) of purified tungsten carbide powder. 

The carbon content influenced the phase composition of the product (W2C content). The 

single phase product WC is formed in the case of the following ratio of the initial 

components in the green mixture:  

33,6% WO3 + 23,0% Mg + 2,4% C + 40% (WC∙MgO∙Mg). 

The content of magnesium in the starting mixture has a substantial effect on the size of 

carbide particles: the stoichiometric amount of magnesium results in coarse powders, while 

it excess leads to a fine product (Figure 6).  

(a) 

(b)
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Figure 6. Particle size distributions in tungsten carbide powders: (a) stoichiometric amount of 

magnesium in the starting mixture, (b) excess of magnesium in the starting mixture. 

The excess of magnesium in the mixture seems to inhibit the growth of tungsten carbide 

crystals and to form a liquid phase when carbides are crystallized; the liquid phase and 

adjusting additives prevent intensive crystal growth. Introduction of WC∙MgO∙Mg into the 

green mixture also decreases the dispersion degree of the final product. Probably, the 

introduced additives as well as metal magnesium form a liquid phase under the terms of 

crystallization. Tungsten carbide ultrafine crystals contained in the introduced semiproduct 

can accelerate tungsten carbide crystallization and appear to be crystallization centers but a 

rather viscous medium prevents intensive crystal growth. Coating of tungsten carbide 

particles with liquid melt results in better stability of tungsten carbide to hydrolysis and 

oxidation after the synthesis process. 

(a)

(b)
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In studying chemical dispersion, the above results were used to analyze how the 

composition of the solutions, used to recover tungsten carbide from synthesized products, 

influenced the structure and particle size of the final tungsten carbide powders. The 

following systems were used:  

 diluted sulfuric acid (1 : 5),  

 diluted hydrochloric acid (1 : 1),  

 ammonium chloride and hydrochloric acid solutions,  

 potassium chloride and hydrochloric acid solutions. 

It was established, that the tungsten carbide particle size depends on the composition of 

solutions used at the first chemical dispersion stage: recovery of carbide from intermediate 

product (Table 3). 

 

Acid enrichment conditions 
Volume fraction, % 

≤ 300 nm, % ≤ 500 nm, % 

HCl (1:1) 61,3 87,5 

H2SO4 (1:5) 66,7 86,3 

30 %NH4Cl + HCl 81,6 96,5 

Table 3. Fraction volumes of refined tungsten carbide powders with minimum particle sizes. 

This result can be explained by the following way. Tungsten carbide is thermodynamically 

unstable and can be oxidized in the medium of water or oxygen at the room temperature 

[30]. X-ray phase analyses of tungsten carbide powder state in the humid medium show, 

that the surface of tungsten carbide particles is the first to be oxidized. The thickness of the 

oxide film increases with an increase in humidity [31]. 

In water the oxide film is entirely removed due to its dissolution and formation of tungstate-

ions by the reaction: 

 WO3+H2O→WO42-+2H+     (8)  

When the milled semiproduct is dispersed by ammonium chloride or potassium chloride 

solutions, the pH of solution changes from low acid values to high alkali ones. The 

forming medium provides acceleration of oxide film dissolution by Reaction 8 and deeper 

tungsten carbide particle hydrolysis leading to a decrease in the particle size due to 

dissolution from the surface. So, chloride application at the stage of acid enrichment 

allows obtaining tungsten carbide powder with the number of particles of less than 300 

nm in size being 80 % of the total number (Figure 7). Using suitable emulsifiers can 

disintegrate the agglomerates and separate tungsten carbide particles of less than 100 nm 

from ultrafine ones.   

Application of ultrasound in the process of chemical dispersion decreases the time of the 

process and affects the dispersion degree of the product. In the case of mechanical mixing 

refining of tungsten carbide powders with chromium mixture takes several hours. The 
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ultrasound effect decreases the time to 30 – 40 minutes. It can be explained by disintegration 

of tungsten carbide agglomerates and carbon coarse particles and acceleration of the 

reduction-oxidation reaction of chromium mixture with free carbon. 

The ultrasound effect on tungsten carbide composition and dispersion has been studied 

(Table 4). 

 

Refinement 

time 

Refinement 

temperature 

Ctotal, 

mass % 

Cfree, 

mass % 

Oxygen, 

mass % 

(non-purified 

product) 

Oxygen, 

mass % 

(purified 

product) 

30 min 145°C 5,72 0,015 1,40 0,14 

45 min 85°C 5,18 0,013 2,35 0,07 

Table 4. Ultrasound effect on tungsten carbide powder composition at final product refinement 

After refining with chromium mixture, the carbon content decreases to ~0.1 % but oxygen 

content increases greatly (in comparison with mechanical mixing) due to oxidation of 

tungsten carbide particle surface. The lower the refinement temperature and the higher time 

of ultrasound action are used, the higher dispersion of tungsten carbide powder is achieved 

(Figure 8). Under these terms the process of tungsten carbide particle surface oxidation is 

more active; therefore the particle size is actively decreased (powder A). An increase in the 

refinement temperature results in obtaining less dispersed powder B due to dissolution of 

fine particles under the strict terms of the process. 

The powder (a) consists of agglomerates of fine and coarse particles. It is possible to separate 

ultrafine and nanosized tungsten carbide particles using proper technological terms. In the 

powder (b) fine tungsten carbide particles are situated on the surface of coarser particles 

and it makes their further separation much more difficult. Therefore, the ultrasound 

application results in additional milling of tungsten carbide powders and more complete 

purification from admixtures. 

The results of the work on SHS of tungsten carbide powder with the reduction stage led to 

the development of the industrial technology of ultrafine and nanosized tungsten carbide 

powders synthesis. Figure 9 demonstrates the curve of the particle size distribution of 

tungsten carbine powder synthesized in the industrial reactor. Obviously, the product is a 

mixture of particles of different sizes. The prevailing particles are ultrafine and nanosized 

ones. 

Tungsten carbide powders synthesized by the developed technology were tested in making 

alloys and items thereof. 

We studied sinterability of fine-particle of SHS tungsten carbide powders. Table 5 compares 

the physicochemical properties and structure of WC-Co alloy prepared with the use of SHS 

tungsten carbide and the commercial alloy VK6-OM (containing tungsten carbide produced 

by a furnace process). 
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a - HCl (1:1); b – NH4Cl (30 % solution) + HCl (1:1); c - KCl (30 % solution) + HCl (1:1)  

Figure 7. Tungsten carbide powder microstructure depending on the terms of acid enrichment 

(a)

(b)

(c)
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Figure 8. Dependence of refined tungsten carbide powder microstructure on the terms of ultrasound 

treatment: A – T=85ºC; B – T=145ºC. 

 

Figure 9. Particle size distribution of tungsten carbide powder synthesized in industrial reactor. 

 

Parameters SHS WC alloy VK6-OM alloy (standard) 

Density, g/cm3 14.9 14.7 

Hardness, HRA 91 90.5 

Coercivity, A/m 270 280 

Bending strength, σ, 

kg∙f/mm2 
170 130 

Durability coefficient 1.4 1.0 

Porosity, A % 0.04 0.2 

Percentage of particles less 

than 1 μm in size 
80 % 60 % 

Table 5. Physicochemical properties of WC-Co alloys prepared by using WC-SHS and WC-furnace 

process. 

(a) (b)
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The bending strength, durability coefficient, and dispersion degree of the alloy produced 

from SHS tungsten carbide exceed those of the commercial alloy. 

As a result of the realized research, the technology of Self-propagating High-temperature 

Synthesis has been developed and is being introduced for production of ultrafine and 

nanosized tungsten carbide powder with the use of chemical dispersion for separation, 

purification and additional milling of the target product. 

Organization of industrial SHS production of submicron tungsten carbide powders 

includes: 

 development of hydrometallurgical stage of submicron tungsten carbide powder 

separation; 

 development of the production line with complete or partial automation; 

 organization of design work in modernization of non-standard equipment and in 

selection of standard additional devices; 

 preparation of the workshop for tungsten carbide semiproduct treatment (leaching, 

utilization and regeneration of wastes). 

The annual production output is 150 tons. The profitableness is up to 80 %. 

4. Conclusion 

The processes of Self-propagating High-temperature Synthesis were studied for obtaining 

nanosized powders of refractory compounds, particularly, tungsten carbide. The SHS terms 

influence crystallization of the obtained powders. Varying the SHS parameters (reactant 

ratio, regulating additives, inert gas pressure, combustion and cooling velocities) allows 

changing tungsten carbide powder morphology and particle size.  

SHS tungsten carbide powder differs from its furnace and plasmochemical analogs in 

structure and purity. The grain size can be governed during the SHS processes. Powders of 

less than 100 nm in particle size can be obtained at complete suppression of recrystallization 

in combustion products. Separation of the powders from the milled cakes by chemical 

dispersion with various solutions and choice of chemical dispersion terms (the solution 

composition, the process time and temperature) allow obtaining SHS materials with the 

nanostructure characterized by high specific surface area and particle size less than 100 nm 

with simultaneous preserving the phase and chemical composition of the product. 

As a result of the realized research, the technology of Self-propagating High-temperature 

Synthesis has been developed for production of ultrafine and nanosized tungsten carbide 

powder with the use of chemical dispersion for separation, purification and additional 

milling of the target product. The sinterability of the synthesized tungsten carbide powder 

was studied. The bending strength, durability coefficient, and dispersion degree of WC-Co 

alloy produced from SHS tungsten carbide exceed those of the commercial alloy. 

The proposed technology of ultrafine and nanosized tungsten carbide powder synthesis has 

some advantages in comparison with the available technologies: 
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 Availability of theoretically explained backgrounds for governing the reaction 

temperature and velocity and component conversion completeness, which provide the 

possibility of obtaining high quality products of the preset structure at optimum terms; 

 Low requirements to the initial mixture quality since partial self-purification of SHS 

products from admixtures takes place during the combustion process; 

 Simple equipment using various approaches of physical influence on the substance; 

 Possibility of industrial production of nanosized materials. 

Nowadays, the number of ultra-dispersed materials produced in industry is restricted. 

Development of industrial production technologies and widening of application fields of 

nanosized materials is commercially important.  
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