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1. Introduction

The subsurface initiated contact fatigue failure is one of the dominating mechanisms of

failure of moving machine parts involved in cyclic motion. Structural fatigue failure

may be of surface or subsurface origin. The analysis of a significant amount of

accumulated experimental data obtained from field exploitation and laboratory testing

provides undisputable evidence of the most important factors affecting contact fatigue [1]. It

is clear that the factors affecting contact fatigue the most are as follows (a) acting cyclic normal

stress and frictional stress (detailed lubrication conditions, surface roughness, etc.) which in

part are determined by the part geometry, (b) distribution of residual stress versus depth,

(c) initial statistical defect/crack distribution versus defect size, and location, (d) material

elastic and fatigue parameters as functions of materials hardness, etc., (e) material fracture

toughness, (f) material hardness versus depth, (g) machining and finishing operations, (h)

abrasive contamination of lubricant and residual surface contamination, (i) non-steady cyclic

loading regimes, etc. In case of structural fatigue the list of the most important parameters

affecting fatigue performance is similar. None of the existing contact or structural fatigue

models developed for prediction of contact fatigue life of bearings and gears as well as other

structures takes into account all of the above operational and material conditions. Moreover,

at best, most of the existing contact fatigue models are only partially based on the fundamental

physical and mechanical mechanisms governing the fatigue phenomenon. Most of these

models are of empirical nature and are based on assumptions some of which are not supported

by experimental data or are controversial as it is in the case of fatigue models for bearings and

gears [1]. Some models involve a number of approximations that usually do not reflect the

actual processes occurring in material.

Therefore, a comprehensive mathematical models of contact and structural fatigue failure

should be based on clearly stated mechanical principles following from the theory of elasticity,

lubrication theory of elastohydrodynamic contact interactions, and fracture mechanics. Such
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models should take into consideration all the parameters described in items (a)-(e) and

beyond. The advantage of such comprehensive models would be that the effect of variables

such as steel cleanliness, externally applied stresses, residual stresses, etc. on contact and

structural fatigue life could be examined as single or composite entities.

The goal of this chapter is to provided fracture mechanics based models of contact and

structural fatigue. Historically, one of the most significant problems in realization of such

an approach is the availability of simple but sufficiently precise solutions for the crack stress

intensity factors. To overcome this difficulty some problems of fracture mechanics will

be analyzed and their solutions will be represented in an analytical form acceptable for

the further usage in modeling of contact and structural fatigue. In particular, a problem

for an elastic half-plain weakened with a number of subsurface cracks and loaded with

contact normal and frictional stresses as well with residual stress will be formulated and

its asymptotic analytical solution will be presented. The latter solutions for the crack stress

intensity factors are expressed in terms of certain integrals of known functions. These

solutions for the stress intensity factors will be used in formulation of a two-dimensional

contact fatigue model. In addition to that, a three-dimensional model applicable to both

structural and contact fatigue will be formulated and some examples will be given. The above

models take into account the parameters indicated in items (a)-(e) and are open for inclusion

of the other parameters significant for fatigue.

In particular, these fatigue models take into account the statistical distribution of

inclusions/cracks over the volume of the material versus their size and the resultant stress

acting at the location of every inclusion/crack. Some of the main assumptions of the models

are that (1) fatigue process in any machine part or structural unit runs in a similar manner and

it is a direct reflection of the acting cyclic stresses and material properties and (2) the main

part of fatigue life corresponds to the fatigue crack growth period, i.e. fatigue crack initiation

period can be neglected. Furthermore, the variation in the distribution of cracks over time due

to their fatigue growth is accounted for which is absent in all other existing fatigue models.

The result of the above fatigue modeling is a simple relationship between fatigue life and

cyclic loading, material mechanical parameters and its cleanliness as well as part geometry.

2. Three-dimensional model of contact and structural fatigue

The approach presented in this section provides a unified model of contact and structural

fatigue of materials [1, 2]. The model development is based on a block approach, i.e. each

block of the model describes a certain process related to fatigue and can be easily replaced

by another block describing the same process differently. For example, accumulation of new

more advanced knowledge of the process of fatigue crack growth may provide an opportunity

to replaced the proposed here block dealing with fatigue crack growth with an improved one.

Two examples of the application of this model to structural fatigue are provided.

2.1. Initial statistical defect distribution

It is assumed that material defects are far from each other and practically do not interact.

However, in some cases clusters of nonmetallic inclusions located very close to each other
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are observed. In such cases these defect clusters can be represented by single defects of

approximately the same size. Suppose there is a characteristic size Lσ in material that is

determined by the typical variations of the material stresses, grain and surface geometry. It is

also assumed that there is a size L f in material such that Ld ≪ L f ≪ Lσ, where Ld is the typical

distance between the material defects. In other words, it is assumed that the defect population

in any such volume L3
f is large enough to ensure an adequate statistical representation. It

means that any parameter variations on the scale of L f are indistinguishable for the fatigue

analysis purposes and that in the further analysis any volume L3
f can be represented by its

center point (x, y, z).

Therefore, there is an initial statistical defect distribution in the material such that each defect

can be replaced by a subsurface penny-shaped or a surface semi-circular crack with a radius

approximately equal to the half of the defect diameter. The usage of penny-shaped subsurface

and semi-circular surface cracks is advantageous to the analysis because such fatigue cracks

maintain their shape and their size is characterized by just one parameter. The orientation

of these crack propagation will be considered later. The initial statistical distribution is

described by a probabilistic density function f (0, x, y, z, l0), such that f (0, x, y, z, l0)dl0dxdydz

is the number of defects with the radii between l0 and l0 + dl0 in the material volume dxdydz

centered about point (x, y, z). The material defect distribution is a local characteristic of

material defectiveness. The model can be developed for any specific initial distribution

f (0, x, y, z, l0). Some experimental data [3] suggest a log-normal initial defect distribution

f (0, x, y, z, l0) versus the defect initial radius l0

f (0, x, y, z, l0) = 0 i f l0 ≤ 0,

f (0, x, y, z, l0) =
ρ(0,x,y,z)√

2πσln l0
exp [− 1

2 (
ln (l0)−μln

σln
)2] i f l0 > 0,

(1)

where μln and σln are the mean value and standard deviation of the crack radii, respectively.

2.2. Direction of fatigue crack propagation

It is assumed that the duration of the crack initiation period is negligibly small in comparison

with the duration of the crack propagation period. It is also assumed that linear elastic

fracture mechanics is applicable to small fatigue cracks. The details of the substantiation of

these assumptions can be found in [1]. Based on these assumptions in the vicinity of a crack

the stress intensity factors completely characterize the material stress state. The normal k1

and shear k2 and k3 stress intensity factors at the edge of a single crack of radius l can be

represented in the form [4]

k1 = F1(x, y, z, α, β)σ1

√
πl, k2 = F2(x, y, z, α, β)σ1

√
πl,

k3 = F3(x, y, z, α, β)σ1

√
πl,

(2)

where σ1 is the maximum of the local tensile principal stress, F1, F2, and F3 are certain functions

of the point coordinates (x, y, z) and the crack orientation angles α and β with respect to

the coordinate planes. The coordinate system is introduced in such a way that the x- and
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y-axes are directed along the material surface while the z-axis is directed perpendicular to the

material surface.

The resultant stress field in an elastic material is formed by stresses σx(x, y, z), σy(x, y, z),
σz(x, y, z), τxz(x, y, z), τxy(x, y, z), and τzy(x, y, z). Some regions of material are subjected to

tensile stress while other regions are subjected to compressive stress. Conceptually, there is

no difference between the phenomena of structural and contact fatigue as the local material

response to the same stress in both cases is the same and these cases differ in their stress fields

only. As long as the stress levels do not exceed the limits of applicability of the quasi-brittle

linear fracture mechanics when plastic zones at crack edges are small the rest of the material

behaves like an elastic solid. The actual stress distributions in cases of structural and contact

fatigue are taken in the proper account. In contact interactions where compressive stress is

usually dominant there are still zones in material subjected to tensile stress caused by contact

frictional and/or tensile residual stress [1, 5].

Experimental and theoretical studies show [1] that after initiation fatigue cracks propagate in

the direction determined by the local stress field, namely, perpendicular to the local maximum

tensile principle stress. Therefore, it is assumed that fatigue is caused by propagation

of penny-shaped subsurface or semi-circular surface cracks under the action of principal

maximum tensile stresses. Only high cycle fatigue phenomenon is considered here. On a

plane perpendicular to a principal stress the shear stresses are equal to zero, i.e. the shear

stress intensity factors k2 = k3 = 0. To find the plane of fatigue crack propagation (i.e. the

orientation angles α and β), which is perpendicular to the maximum principal tensile stress, it

is necessary to find the directions of these principal stresses. The latter is equivalent to solving

the equations

k2(N, α, β, l, x, y, z) = 0, k3(N, α, β, l, x, y, z) = 0. (3)

Usually, there are more than one solution sets to these equations at any point (x, y, z). To get

the right angles α and β one has to chose the solution set that corresponds to the maximum

tensile principal stress, i.e. maximum of the normal stress intensity factor k1(N, l, x, y, z).
That guarantees that fatigue cracks propagate in the direction perpendicular to the maximum

tensile principal stress if α and β are chosen that way.

For steady cyclic loading for small cracks k20 = k2/
√

l and k30 = k3/
√

l are independent from

the number of cycles N and crack radius l together with equation (3) lead to the conclusion

that for cyclic loading with constant amplitude the angles α and β characterizing the plane

of fatigue crack growth are independent from N and l. Thus, angles α and β are functions of

only crack location, i.e. α = α(x, y, z) and β = β(x, y, z). For the most part of their lives fatigue

cracks created and/or existed near material defects remain small. Therefore, penny-shaped

subsurface cracks conserve their shape but increase in size.

Even for the case of an elastic half-space it is a very difficult task to come up with sufficiently

precise analytical solutions for the stress intensity factors at the edges of penny-shaped

subsurface or semi-circular surface crack of arbitrary orientation at an arbitrary location

(x, y, z). However, due to the fact that practically all the time fatigue cracks remain small and

exsert little influence on the material general stress state the angles α and β can be determined

in the process of calculation of the maximum tensile principle stress σ. The latter is equivalent

to solution of equations (3). As soon as σ is determined for a subsurface crack its normal stress
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intensity factor k1 can be approximated by the normal stress intensity factor for the case of a

single crack of radius l in an infinite space subjected to the uniform tensile stress σ, i.e. by

k1 = 2σ
√

l/π.

2.3. Fatigue crack propagation

Fatigue cracks propagate at every point of the material stressed volume V at which max
T

(k1) >

kth, where the maximum is taken over the duration of the loading cycle T and kth is the

material stress intensity threshold. There are three distinct stages of crack development:

(a) growth of small cracks, (b) propagation of well–developed cracks, and (c) explosive and,

usually, unstable growth of large cracks. The stage of small crack growth is the slowest one

and it represents the main part of the entire crack propagation period. This situation usually

causes confusion about the duration of the stages of crack initiation and propagation of small

cracks. The next stage, propagation of well–developed cracks, usually takes significantly less

time than the stage of small crack growth. And, finally, the explosive crack growth takes

almost no time.

A relatively large number of fatigue crack propagation equations are collected and analyzed

in [6]. Any one of these equations can be used in the model to describe propagation of fatigue

cracks. However, the simplest of them which allows to take into account the residual stress

and, at the same time, to avoid the usage of such an unstable characteristic as the stress

intensity threshold kth is Paris’s equation

dl
dN = g0( max

−∞<x<∞
△k1)

n, l |N=0= l0, (4)

where g0 and n are the parameters of material fatigue resistance and l0 is the crack initial

radius. Notice, that in cases of loading and relaxation such as in contact fatigue △k1 = k1.

Fatigue cracks propagate until they reach their critical size with radius lc for which k1 = K f

(K f is the material fracture toughness, i.e. to the radius of lc = (K f /k10)
2). After that their

growth becomes unstable and very fast. Usually, the stage of explosive crack growth takes

just few loading cycles.

It can be shown that the number of loading cycles needed for a crack to reach its critical radius

is almost independent from the material fracture toughness K f . This conclusion is supported

by direct numerical simulations. For the further analysis, it is necessary to determine for a

crack its initial radius l0c, which after N loading cycles reaches the critical size of lc. Solving

the initial-value problem (4) one obtains the formula

l0c = {l
2−n

2
c + N( n

2 − 1)g0[ max
−∞<x<∞

△k10]
n} 2

2−n , (5)

where l0c depends on N, x, y, and z. Obviously, for n > 2 and fixed x, y, and z the value of

l0c is a decreasing function of N. It is important to keep in mind that l0c(N, x, y, z) is minimal

where k10(x, y, z) is maximal, which, in turn, happens where the material tensile stress reaches

its maximum.

149Fracture Mechanics Based Models of Structural and Contact Fatigue



6 Will-be-set-by-IN-TECH

2.4. Crack propagation statistics

To describe crack statistics after the crack initiation stage is over it is necessary to make certain

assumptions. The simplest assumptions of this kind are: the existing cracks do not heal and

new cracks are not created. In other words, the number of cracks in any material volume

remains constant in time. Based on a practically correct assumption that the defect distribution

is initially scarce, the coalescence of cracks and changes in the general stress field are possible

only when cracks have already reached relatively large sizes. However, this may happen only

during the last stage of crack growth the duration of which is insignificant for calculation of

fatigue life. Therefore, it can be assumed that over almost all life span of fatigue cracks their

orientations do not change. This leads to the equation for the density of crack distribution

f (N, x, y, z, l) as a function of crack radius l after N loading cycles in a small parallelepiped

dxdydz with the center at the point with coordinates (x, y, z)

f (N, x, y, z, l)dl = f (0, x, y, z, l0)dl0, (6)

which being solved for f (N, x, y, z, l) gives

f (N, x, y, z, l)dl = f (0, x, y, z, l0)
dl0
dl , (7)

where l0 and dl0/dl as functions of N and l can be obtain from the solution of (4) in the form

l0 = {l
2−n

2 + N( n
2 − 1)g0[ max

−∞<x<∞
△k10]

n} 2
2−n ,

dl0
dl = {1 + N( n

2 − 1)g0[ max
−∞<x<∞

△k10]
nl

n−2
2 } n

n−2 .

(8)

Equations (7) and (8) lead to the expression for the crack distribution function f after N

loading cycles

f (N, x, y, z, l) = f (0, x, y, z, l0(N, l, y, z)){1

+N( n
2 − 1)g0[ max

−∞<x<∞
△k10]

nl
n−2

2 } n
n−2 ,

(9)

where l0(N, l, y, z) is determined by the first of the equations in (8).

Formula (9) leads to a number of important conclusions. The fatigue crack distribution

function f (N, x, y, z, l) depends on the initial crack distribution f (0, x, y, z, l0) and it changes

with the number of applied loading cycles N in such a way that the crack volume density

ρ(N, x, y, z) remains constant. Because of crack growth the crack distribution f (N, x, y, z, l)
widens with respect to l with number of loading cycles N.

2.5. Local fatigue damage accumulation

Let us design the measure of material fatigue damage. If at a certain point (x, y, z) after N

loading cycles radii of all cracks l < lc then there is no damage at this point and the material

local survival probability p(N, x, y, z) = 1. On the other hand, if at this point after N loading

cycles radii of all cracks l ≥ lc, then all cracks reached the critical size and the material at this

point is completely damaged and the local survival probability p(N, x, y, z) = 0. Obviously,
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the more fatigue cracks with larger radii l exist at the point the lower is the local survival

probability p(N, x, y, z). It is reasonable to assume that the material local survival probability

p(N, x, y, z) is a certain monotonic measure of the portion of cracks with radius l below the

critical radius lc. Therefore, p(N, x, y, z) can be represented by the expressions

p(N, x, y, z) = 1
ρ

lc∫
0

f (N, x, y, z, l)dl i f f (0, x, y, z, l0) �= 0,

p(N, x, y, z) = 1 otherwise,

ρ = ρ(N, x, y, z) =
∞∫
0

f (N, x, y, z, l)dl = ρ(0, x, y, z).

(10)

Obviously, the local survival probability p(N, x, y, z) is a monotonically decreasing function

of the number of loading cycles N because fatigue crack radii l tend to grow with the number

of loading cycles N.

To calculate p(N, x, y, z) from (10) one can use the specific expression for f determined by (9).

However, it is more convenient to modify it as follows

p(N, x, y, z) = 1
ρ

l0c∫
0

f (0, x, y, z, l0)dl0 i f f (0, x, y, z, l0) �= 0,

p(N, x, y, z) = 1 otherwise,

(11)

where l0c is determined by (5) and ρ is the initial volume density of cracks. Thus, to

every material point (x, y, z) is assigned a certain local survival probability p(N, x, y, z),
0 ≤ p(N, x, y, z) ≤ 1.

Equations (11) demonstrate that the material local survival probability p(N, x, y, z) is

mainly controlled by the initial crack distribution f (0, x, y, z, l0), material fatigue resistance

parameters g0 and n, and external contact and residual stresses. Moreover, the material

local survival probability p(N, x, y, z) is a decreasing function of N because l0c from (5) is a

decreasing function of N for n > 2.

2.6. Global fatigue damage accumulation

The survival probability P(N) of the material as a whole is determined by the local

probabilities of all points of the material at which fatigue cracks are present. It is assumed

that the material fails as soon as it fails at just one point. It is assumed that the initial crack

distribution in the material is discrete. Let pi(N) = p(N, xi, yi, zi), i = 1, . . . , Nc, where Nc

is the total number of points in the material stressed volume V at which fatigue cracks are

present. Then based on the above assumption the material survival probability P(N) is equal

to

P(N) =
Nc

∏
i=1

pi(N). (12)

151Fracture Mechanics Based Models of Structural and Contact Fatigue
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Obviously, probability P(N) from (12) satisfies the inequalities

[pm(N)]Nc ≤ P(N) ≤ pm(N), pm(N) = min
V

p(N, x, y, z). (13)

In (13) the right inequality shows that the survival probability P(N) is never greater than the

minimum value pm(N) of the local survival probability p(N, x, y, z) over the material stressed

volume V.

An analytical substantiation for the assumption that the first pit is created by the cracks from
a small material volume with the smallest survival probability pm(N) is provided in [1].
Moreover, the indicated analysis also validates one of the main assumptions of the model
that new cracks are not being created. Namely, if new cracks do get created in the process
of loading, they are very small and have no chance to catch up with already existing and
propagating larger cracks. The graphical representation of this fact is given in Fig. 1 [1]. In
this figure fatigue cracks are initially randomly distributed over the material volume with
respect to their normal stress intensity factor k1 and are allowed to grow according to Paris’
law (see (4)) with sufficiently high value of n = 6.67 − 9. In Fig. 1 the values of the normal
stress intensity factor k1 are shown at different time moments (k0 and L0 are the characteristic
normal stress intensity factor and geometric size of the solid). These graphs clearly show that
a crack with the initially larger value of the normal stress intensity factor k1 propagates much
faster than all other cracks, i.e. the value of its k1 increases much faster than the values of k1

for all other cracks, which are almost dormant. As a result of that, the crack with the initially
larger value of k1 reaches its critical size way ahead of other cracks. This event determines
the time and the place where fatigue failure occurs initially. Therefore, in spite of formula (12)
which indicates that all fatigue cracks have influence on the survival probability P(N), for
high values of n the material survival probability P(N) is a local fatigue characteristic, and
it is determined by the material defect with the initially highest value of the stress intensity
factor k1. The higher the power n is the more accurate this approximation is.

Therefore, assuming that it is a very rare occurrence when more than one fatigue
initiation/spall happen simultaneously, it can be shown that at the early stages of the fatigue
process the material global survival probability P(N) is determined by the minimum of the
local survival probability pm(N)

P(N) = pm(N), pm(N) = min
V

p(N, x, y, z), (14)

where the maximum is taken over the (stressed) volume V of the solid.

If the initial crack distribution is taken in the log-normal form (1) then

P(N) = pm(N) = 1
2

{
1 + er f

[
min

V

ln l0c(N,y,z)−μln√
2σln

]}
, (15)

where er f (x) is the error integral [8]. Obviously, the local survival probability pm(N) is a
complex combined measure of applied stresses, initial crack distribution, material fatigue
parameters, and the number of loading cycles.

In cases when the mean μln and the standard deviation σln are constants throughout the
material formula (15) can be significantly simplified

P(N) = pm(N) = 1
2

{
1 + er f

[ ln min
V

l0c(N,y,z)−μln
√

2σln

]}
. (16)

152 Applied Fracture Mechanics



Fracture Mechanics Based Models of Structural and Contact Fatigue 9

0 10 20 30 40
0.05

0.06

0.07

0.08

0.09

0.1

0.11

max(k
1
)/k

0

x/L
0

Figure 1. Illustration of the growth of the initially randomly distributed normal stress intensity factor k1

with time N as initially unit length fatigue cracks grow (after Tallian, Hoeprich, and Kudish [7]).
Reprinted with permission from the STLE.

To determine fatigue life N of a contact for the given survival probability P(N) = P∗, it is
necessary to solve the equation

pm(N) = P∗. (17)

2.7. Fatigue life calculation

Suppose the material failure occurs at point (x, y, z) with the probability 1 − P(N). That
actually determines the point where in (16) the minimum over the material volume V is
reached. Therefore, at this point in (16), the operation of minimum over the material volume
V can be dropped. By solving (16) and (17), one gets

N = {( n
2 − 1)g0[ max

−∞<x<∞
△k10]

n}−1{exp[(1 − n
2 )(μln

+
√

2σlner f−1(2P∗ − 1))]− l
2−n

2
c },

(18)

where er f−1(x) is the inverse function to the error integral er f (x). Assuming that the
material initially is free of damage, i.e., when P(0) = 1, one can simplify the latter equation.
Discounting the very tail of the initial crack distribution, one gets max

V
l0 ≤ lc. Thus, for

well–developed cracks and, in many cases, even for small cracks, the second term in (5) for
l0c dominates the first one. It means that the dependence of l0c on lc and, therefore, on the
material fracture toughness K f can be neglected. Then equation (18) can be approximated by

N = {( n
2 − 1)g0[ max

−∞<x<∞
△k10]

n}−1{exp[(1 − n
2 )(μln

+
√

2σlner f−1(2P∗ − 1))]}.

(19)
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Taking into account that in the case of contact fatigue k10 is proportional to the maximum
contact pressure qmax and that it also depends on the friction coefficient λ and the ratio of
residual stress q0 and qmax = pH as well as taking into account the relationships μln =

ln
μ2√

μ2+σ2
, σln =

√
ln [1 + ( σ

μ )
2] [1] (where μ and σ are the regular initial mean and standard

deviation) one arrives at a simple analytical formula

N = C0

(n−2)g0 pn
H
(

√
μ2+σ2

μ2 )
n
2 −1

× exp[(1 − n
2 )

√
2 ln[1 + ( σ

μ )
2]er f−1(2P∗ − 1)],

(20)

where C0 depends only on the friction coefficient λ and the ratio of the residual stress q0 and
the maximum Hertzian pressure pH . Finally, assuming that σ ≪ μ from (20) one can obtain
the formula

N = C0

(n−2)g0pn
Hμ

n
2 −1

exp[(1 − n
2 )

√
2σ
μ er f−1(2P∗ − 1))]. (21)

Also, formulas (20) and (21) can be represented in the form of the Lundberg-Palmgren formula
(see [1] and the discussion there).

Formula (21) demonstrates the intuitively obvious fact that the fatigue life N is inversely
proportional to the value of the parameter g0 that characterizes the material crack propagation
resistance. Equation (21) exhibits a usual for roller and ball bearings as well as for gears
dependence of the fatigue life N on the maximum Hertzian pressure pH . Thus, from the
well–known experimental data for bearings the range of n values is 20/3 ≤ n ≤ 9. Keeping
in mind that usually σ ≪ μ, for these values of n contact fatigue life N is practically inverse

proportional to a positive power of the mean crack size, i.e. to μ
n
2 −1. Therefore, fatigue life

N is a decreasing function of the initial mean crack (inclusion) size μ. This conclusion is valid
for any material survival probability P∗ and is supported by the experimental data discussed
in [1]. In particular, ln N is practically a linear function of ln μ with a negative slope 1 − n

2
which is in excellent agreement with the Timken Company test data [9]. Keeping in mind that
n > 2, at early stages of fatigue failure, i.e. when er f −1(2P∗ − 1) > 0 for P∗ > 0.5, one easily
determines that fatigue life N is a decreasing function of the initial standard deviation of crack
sizes σ. Similarly, at late stages of fatigue failure, i.e. when P∗ < 0.5, the fatigue life N is an
increasing function of the initial standard deviation of crack sizes σ. According to (21), for
P∗ = 0.5 fatigue life N is independent from σ, however, according to (20), for P∗ = 0.5 fatigue
life N is a slowly increasing function of σ. By differentiating pm(N) obtained from (16) with
respect to σ, one can conclude that the dispersion of P(N) increases with σ.

The stress intensity factor k1 decreases as the magnitude of the compressive residual stress q0

increases and/or the magnitude of the friction coefficient λ decreases. Therefore, in (20) and
21) the value of C0 is a monotonically decreasing function of residual stress q0 and friction
coefficient λ.

Being applied to bearings and/or gears the described statistical contact fatigue model can be
used as a research and/or engineering tool in pitting modeling. In the latter case, some of the
model parameters may be assigned certain fixed values based on the scrupulous analysis of
steel quality and quality and stability of gear and bearing manufacturing processes.
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In case of structural fatigue the Hertzian stress in formulas (20) and (21) should be replaced

the dominant stress acting on the part while constant C0 would be dependent on the ratios of

other external stresses acting on the part at hand to the dominant stress in a certain way (see

examples of torsional and bending fatigue below).

2.8. Examples of torsional and bending fatigue

Suppose that in a beam material the defect distribution is space-wise uniform and follows

equation (1). Also, let us assume that the residual stress is zero.

First, let us consider torsional fatigue. Suppose a beam is made of an elastic material with

elliptical cross section (a and b are the ellipse semi-axes, b < a) and directed along the y-axis.

The beam is under action of torque My about the y-axis applied to its ends. The side surfaces

of the beam are free of stresses. Then it can be shown (see Lurye [10], p. 398) that

τxy = − 2Gγa2

a2+b2 z, τzy = 2Gγb2

a2+b2 x, σx = σy = σz = τxz = 0, (22)

where G is the material shear elastic modulus, G = E/[2(1+ ν)] (E and ν are Young’s modulus

and Poisson’s ratio of the beam material), and γ is a dimensionless constant. By introducing

the principal stresses σ1, σ2, and σ3 that satisfy the equation σ3 − (τ2
xy + τ2

zy)σ = 0, one obtains

that

σ1 = −
√

τ2
xy + τ2

zy, σ2 = 0, σ3 =
√

τ2
xy + τ2

zy. (23)

For the case of a > b the maximum principal tensile stress σ1 = − 2Gγa2b
a2+b2 is reached at the

surface of the beam at points (0, y,±b) and depending on the sign of My it acts in one of the

directions described by the directional cosines

cos(α, x) = ∓
√

2
2 , cos(α, y) = ±

√
2

2 , cos(α, z) = 0, (24)

where α is the direction along one of the principal stress axes. For the considered case of

elliptic beam, the moments of inertia of the beam elliptic cross section about the x- and y-axes,

Ix and Iz as well as the moment of torsion My applied to the beam are as follows (see Lurye

[10], pp. 395, 399) Ix = πab3/4, Iz = πa3b/4, My = GγC, C = 4Ix Iz/(Ix + Iz). Keeping in

mind that according to Hasebe and Inohara [11] and Isida [12], the stress intensity factor k1

for an edge crack of radius l and inclined to the surface of a half-plane at the angle of π/4 (see

(24)) is k1 = 0.705 | σ1 |
√

πl, one obtains k10 = 1.41√
π

|My|
ab2 . Then, fatigue life of a beam under

torsion follows from substituting the expression for k10 into equation (19)

N = 2
(n−2)g0

{ 1.257ab2

|My| }ng(μ, σ), (25)

g(μ, σ) = (

√
μ2+σ2

μ2 )
n−2

2 exp[(1 − n
2 )
√

2 ln[1 + ( σ
μ )

2]er f−1(2P∗ − 1)}. (26)

Now, let us consider bending fatigue of a beam/console made of an elastic material with

elliptical cross section (a and b are the ellipse semi-axes) and length L. The beam is directed

along the y-axis and it is under the action of a bending force Px directed along the x-axis which

is applied to its free end. The side surfaces of the beam are free of stresses. The other end y = 0
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of the beam is fixed. Then it can be shown (see Lurye [10]) that

σx = σz = 0, σy = − Px
Iz

x(L − y),

τxz = 0, τxy = Px

2(1+ν)Iz

2(1+ν)a2+b2

3a2+b2 {a2 − x2 − (1−2ν)a2z2

2(1+ν)a2+b2 },

τzy = − Px

(1+ν)Iz

(1+ν)a2+νb2

3a2+b2 xz,

(27)

where Iz is the moment of inertia of the beam cross section about the z-axis. By introducing

the principal stresses that satisfy the equation σ3 − σyσ2 − (τ2
xy + τ2

zy)σ = 0, one can find that

σ1 = 1
2 [σy −

√
σ2

y + 4(τ2
xy + τ2

zy)], σ2 = 0,

σ3 = 1
2 [σy +

√
σ2

y + 4(τ2
xy + τ2

zy)].

(28)

The tensile principal stress σ1 reaches its maximum
4|Px|L
πa2b

at the surface of the beam at one

of the points (±a, 0, 0) (depending on the sign of load Px) and is acting along the y-axis - the

axis of the beam. Based on equations (28) and the solution for the surface crack inclined to

the surface of the half-space at angle of π/2 (see Hasebe and Inohara [11] and Isida [12]), one

obtains k10 = 4.484√
π

|Px|L
a2b

. Therefore, bending fatigue life of a beam follows from substituting

the expression for k10 into equation (19)

N = 2
(n−2)g0

{ 0.395a2b
|Px|L }ng(μ, σ), (29)

where function g(μ, σ) is determined by equation (26).

In both cases of torsion and bending, fatigue life is independent of the elastic characteristic of

the beam material (see formulas (25), (29), and (26)), and it is dependent on fatigue parameters

of the beam material (n and g0), the initial defect distribution (i.e. on μ and σ), the geometry

of the beam cross section (a and b), and its length L and the applied loading (Px or My).

In a similar fashion the model can be applied to contact fatigue if the stress field is known. A

more detailed analysis of contact fatigue is presented below for a two-dimensional case.

3. Contact problem for an elastic half-plane weakened by straight cracks

A general theory of a stress state in an elastic plane with multiple cracks was proposed in [13].

In this section this theory is extended to the case of an elastic half-plane loaded by contact

and residual stresses [1]. A study of lubricant-surface crack interaction, a discussion of the

difference between contact fatigue lives of drivers and followers, the surface and subsurface

initiated fatigue as well as fatigue of rough surfaces can be found in [1].

The main purpose of the section is to present formulations for the contact and fracture
mechanics problems for an elastic half-plane weakened by subsurface cracks. The problems
for surface cracks in an elastic lubricated half-plane are formulated and analyzed in [1]. The
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problems are reduced to systems of integro-differential equations with nonlinear boundary
conditions in the form of alternating equations and inequalities. An asymptotic (perturbation)
method for the case of small cracks is applied to solution of the problem and some numerical
examples for small cracks are presented.

Let us introduce a global coordinate system with the x0-axis directed along the half-plane
boundary and the y0-axis perpendicular to the half-plane boundary and pointed in the
direction outside the material. The half-plane occupies the area of y0 ≤ 0. Let us consider
a contact problem for a rigid indenter with the bottom of shape y0 = f (x0) pressed into
the elastic half-plane (see Fig. 2). The elastic half-plane with effective elastic modulus
E′ (E′ = E/(1 − ν2), E and ν are the half-plane Young’s modulus and Poisson’s ratio) is
weakened by N straight cracks. The crack faces are frictionless. Besides the global coordinate
system we will introduce local orthogonal coordinate systems for each straight crack of
half-length lk in such a way that their origins are located at the crack centers with complex
coordinates z0

k = x0
k + iy0

k , k = 1, . . . , N, the xk-axes are directed along the crack faces and the
yk-axes are directed perpendicular to them. The cracks are inclined to the positive direction
of the x0-axis at the angles αk, k = 1, . . . , N. All cracks are considered to be subsurface.
The faces of every crack may be in partial or full contact with each other. The indenter is
loaded by a normal force P and may be in direct contact with the half-plane or separated
from it by a layer of lubricant. The indenter creates a pressure p(x0) and frictional stress
τ(x0) distributions. The frictional stress τ(x0) between the indenter and the boundary of the
half-plane is determined by the contact pressure p(x0) through a certain relationship. The
cases of dry and fluid frictional stress τ(x0) are considered in [1]. At infinity the half-plane
is loaded by a tensile or compressive (residual) stress σ∞

x0 = q0 which is directed along the

x0-axis. In this formulation the problem is considered in [1].

Then the problem is reduced to determining of the cracks behavior. Therefore, in
dimensionless variables

(x0
n
′
, y0

n
′
) = (x0

n , y0
n)/b̃, (p0

n
′
, τ0

n
′
, p′n) = (p0

n, τ0
n , pn)/q̃,

(x′n, t′) = (xn , t)/ln, (v′n, u′
n) = (vn, un)/ṽn , ṽn =

4q̃ln

E′ ,

(k±1n
′
, k±2n

′
) = (k±1n, k±2n)/(q̃

√
ln)

(30)

the equations of the latter problem for an elastic half-plane weakened by cracks and loaded
by contact and residual stresses have the following form [1]

1∫
−1

v′
k(t)dt
t−xk

+
N

∑
m=1

δm

1∫
−1

[v′m(t)Ar
km(t, xk)− u′

m(t)B
r
km(t, xk)]dt

= πpnk(xk) + πp0
k(xk), vk(±1) = 0,

1∫
−1

u′
k(t)dt
t−xk

+
N
∑

m=1
δm

1∫
−1

[v′m(t)Ai
km(t, xk)− u′

m(t)B
i
km(t, xk)]dt

= πτ0
k (xk), uk(±1) = 0,

(31)

p0
k − iτ0

k = − 1
π

b∫
a
[p(t)Dk(t, xk) + τ(t)Gk(t, xk)]dt − 1

2 q0(1 − e−2iαk),

pnk(xk) = 0, vk(xk) > 0; pnk(xk) ≤ 0, vk(xk) = 0, k = 1, . . . , N,

(32)
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Figure 2. The general view of a rigid indenter in contact with a cracked elastic half-plane.

where the kernels in these equations are described by formulas

Akm = Rkm + Skm, Bkm = −i(Rkm − Skm),

(Ar
km, Br

km, Dr
k, Gr

k) = Re(Akm, Bkm, Dk, Gk),

(Ai
km, Bi

km, Di
k, Gi

k) = Im(Akm, Bkm, Dk, Gk),

Dk(t, xk) =
i
2

[
− 1

t−Xk
+ 1

t−Xk
− e−2iαk(Xk−Xk)

(t−Xk)2

]
,

Gk(t, xk) =
1
2

[
1

t−Xk
+ 1−e−2iαk

t−Xk
− e−2iαk(t−Xk)

(t−Xk)2

]
,

Rnk(t, xn) = (1 − δnk)Knk(t, xn) +
eiαk

2

{
1

Xn−Tk
+ e−2iαn

Xn−Tk

+(Tk − Tk)
[

1+e−2iαn

(Xn−Tk)2 +
2e−2iαn(Tk−Xn)

(Xn−Tk)3

]}
,

Snk(t, xn) = (1 − δnk)Lnk(t, xn) +
e−iαk

2

[
Tk−Tk

(Xn−Tk)2
+ 1

Xn−Tk

+
e−2iαn(Tk−Xn)

(Xn−Tk)2

]
, Knk(tk, xn) =

eiαk

2

[
1

Tk−Xn
+ e−2iαn

Tk−Xn

]
,

(33)
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Lnk(tk, xn) =
e−iαk

2

[ 1

Tk − Xn
− Tk − Xn

(Tk − Xn)2
e−2iαn

]
,

Tk = teiαk + z0
k , Xn = xneiαn + z0

n, k, n = 1, . . . , N,

where vk(xk), uk(xk), and pnk(xk), k = 1, . . . , N, are the jumps of the normal and tangential
crack face displacements and the normal stress applied to crack faces, respectively, a and b are
the dimensionless contact boundaries, δk is the dimensionless crack half-length, δk = lk/b̃, δnk

is the Kronecker tensor (δnk = 0 for n �= k, δnk = 1 for n = k), i is the imaginary unit, i =
√
−1.

For simplicity primes at the dimensionless variables are omitted. The characteristic values
q̃ and b̃ that are used for scaling are the maximum Hertzian pressure pH and the Hertzian
contact half-width aH

pH =
√

E′P
πR , aH = 2

√
RP
πE′ , (34)

where R can be taken as the indenter curvature radius at the center of its bottom.

To simplify the problem formulation it is assumed that for small subsurface cracks (i.e. for
δ0 ≪ 1, δ0 = max

1≤k≤N
δk) the pressure p(x0) and frictional stress τ(x0) are known and are close

to the ones in a contact of this indenter with an elastic half-plane without cracks. It is worth
mentioning that cracks affect the contact boundaries a and b and the pressure distribution
p(x0) as well as each other starting with the terms of the order of δ0 ≪ 1.

Therefore, for the given shape of the indenter f (x0), pressure p(x0), frictional stress functions
τ(x0), residual stress q0, crack orientation angles αk and sizes δk, and the crack positions z0

k ,
k = 1, . . . , N, the solution of the problem is represented by crack faces displacement jumps
uk(xk), vk(xk), and the normal contact stress pnk(xk) applied to the crack faces (k = 1, . . . , N).
After the solution of the problem has been obtained, the dimensionless stress intensity factors
k±1k and k±2k are determined according to formulas

k±1n + ik±2n = ∓ lim
xn→±1

√
1 − x2

n[v
′
n(xn) + iu′

n(xn)], 0 ≤ n ≤ N. (35)

3.1. Problem solution

Solution of this problem is associated with formidable difficulties represented by the
nonlinearities caused by the presence of the free boundaries of the crack contact intervals
and the interaction between different cracks. Under the general conditions solution of this
problem can be done only numerically. However, the problem can be effectively solved with
the use of just analytical methods in the case when all cracks are small in comparison with the
characteristic size b̃ of the contact region, i.e., when δ0 = max

1≤k≤N
δk ≪ 1. In this case, it can

be shown that the influence of the presence of cracks on the contact pressure is of the order
of O(δ0) and with the precision of O(δ0) the crack system in the half-plane is subjected to
the action of the contact pressure p0(x

0) and frictional stress τ0(x
0) that are obtained in the

absence of cracks. The further simplification of the problem is achieved under the assumption
that cracks are small in comparison to the distances between them, i.e.

z0
n − z0

k � δ0, n �= k, n, k = 1, . . . , N. (36)
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The latter assumption with the precision of O(δ2
0), δ0 ≪ 1, provides the conditions for

considering each crack as a single crack in an elastic half-plane while the crack faces are loaded
by certain stresses related to the contact pressure p0(x

0), contact frictional stress τ0(x
0), and

the residual stress q0. The crucial assumption for simple and effective analytical solution of
the considered problem is the assumption that all cracks are subsurface and much smaller in
size than their distances to the half-plane surface

z0
k − z0

k � δ0, k = 1, . . . , N. (37)

Essentially, that assumption permits to consider each crack as a single crack in a plane (not a
half-plane) with faces loaded by certain stresses related to p0(x

0), τ0(x
0), and q0.

Let us assume that the frictional stress τ0(x
0) is determined by the Coulomb law of dry friction

which in dimensionless variables can be represented by

τ0(x
0) = −λp0(x

0), (38)

where λ is the coefficient of friction. In (38) we assume that λ ≥ 0, and, therefore, the
frictional stress is directed to the left. It is well known that for small friction coefficients λ the
distribution of pressure is very close to the one in a Hertzian frictionless contact. Therefore,
the expression for the pressure p0(x

0) in the absence of cracks with high accuracy can be taken
in the form

p0(x
0) =

√
1 − (x0)2. (39)

Let us consider the process of solution of the pure fracture mechanics problem described by

equations (31)-(33), (35), (38), (39). For small cracks, i.e. for δ0 ≪ 1, the kernels from (32)
and (33 ) are regular functions of t, xn, and xk and they can be represented by power series in
δk ≪ 1 and δn ≪ 1 as follows

{Akm(t, xk), Bkm(t, xk)}

=
∞

∑
j+n=0;j,n≥0

(δkxk)
j(δmt)n{Akmjn, Bkmjn},

(40)

{Dk(t, xk), Gk(t, xk)} =
∞

∑
j=0

(δkxk)
j{Dkj, Gkj}. (41)

In (40) and (41) the values of Akmjn and Bkmjn are independent of δk, δm , xk , and t while the
values of Dkj(t) and Gkj(t) are independent of δk and xk. The values of Akmjn and Bkmjn are

certain functions of constants αk, αm, x0
k , y0

k , x0
m, and y0

m while the values of Dkj(t) and Gkj(t)

are certain functions of αk, x0
k , and y0

k . Therefore, for δ0 ≪ 1 the problem solution can be
sought in the form

{vk, uk} =
∞

∑
j=0

δ
j
k{vkj(xk), ukj(xk)}, pnk =

∞

∑
j=0

δ
j
0 pnkj(xk) (42)

where functions vkj, ukj, pnkj have to be determined in the process of solution. Expanding the
terms of the equations (31)-(33), and (35) and equating the terms with the same powers of δ0

we get a system of boundary-value problems for integro-differential equations of the first kind
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which can be easily solved by classical methods [1, 14]. We will limit ourselves to determining
only the first two terms of the expansions in (42) in the case of Coulomb’s friction law given
by (38) and (39). Without getting into the details of the solution process (which can be found
in [1]) for the stress intensity factors k±1n and k±2n we obtain the following analytical formulas
[1]

k±1 = cr
0 ± 1

2 δ0cr
1 + . . . i f cr

0 > 0, k±1 = 0 i f cr
0 < 0,

k±1 =
√

3δ0
9 cr

1[±7 − 3θ(cr
1)]

√
1±θ(cr

1)
1±3θ(cr

1)
+ . . . i f cr

0 = 0 and cr
1 �= 0,

k±2 = ci
0 ± 1

2 δ0cr
1 + . . . ,

cj =
1
π

1∫
−1

[p(x)D j(x) + τ(x)Gj(x)]dx +
δj0

2 q0(1 − e−2iα), j = 1, 2,

cr
j = Re(cj), ci

j = Im(cj),

(43)

where the kernels are determined according to the formulas

D0(x) =
i
2

[
− 1

x−z0 +
1

x−z0 − e−2iα(z0−z0)

(x−z0)2

]
, G0(x) =

1
2

[
1

x−z0

+ 1−e−2iα

x−z0 − e−2iα(x−z0)

(x−z0)2

]
, D1(x) =

ie−iα

2(x−z0)2

[
1 − e−2iα

− 2e−2iα(z0−z0)

x−z0

]
+ ieiα

2

[
− 1

(x−z0)2 +
e−2iα

(x−z0)2

]
, G1(x) =

e−iα

2(x−z0)2

[
1

−e−2iα − 2e−2iα(x−z0)

x−z0

]
+ eiα

2

[
1

(x−z0)2 +
e−2iα

(x−z0)2

]
,

(44)

and θ(x) is the step function (θ(x) = −1 for x < 0 and θ(x) = 1 for x ≥ 0).

3.2. Comparison of analytical asymptotic and numerical solutions for small

subsurface cracks

Let us compare the asymptotically (k±1a and k±2a) and numerically (k±1n and k±2n) obtained

solutions of the problem for the case when y0 = −0.4, δ0 = 0.1, α = π/2, λ = 0.1, and
q0 = −0.005. The numerical method used for calculating k±1n and k±2n is described in detail in
[1]. Both the numerical and asymptotic solutions are represented in Fig. 3. It follows from
Fig. 3 that the asymptotic and numerical solutions are almost identical except for the region
where the numerically obtained k+1 (x0) is close to zero. The difference is mostly caused by
the fact that the used asymptotic solution involve only two terms, i.e., the accuracy of these
asymptotic solutions is O(δ2

0) for small δ0. However, according to the two-term asymptotic
solutions the maximum values of k±1 differ from the numerical ones by no more than 1.4%.
One can expect to get much higher precision if δ0 < 0.1 and | y0 |� δ0.

Therefore, formulas (43) and (44) provide sufficient precision for most possible applications
and can be used to substitute for numerically obtained values of k±1 and k±2 .
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Figure 3. Comparison of the two-term asymptotic expansions k±1a and k±2a with the numerically
calculated stress intensity factors k±1n and k±2n obtained for y0 = −0.4, δ0 = 0.1, α = π/2, λ = 0.1, and
q0 = −0.005. Solid curves are numerical results while dashed curves are asymptotical results. (k−1n group
1, k+1n group 2, k−2n group 3, k+2n group 4) (after Kudish [15]). Reprinted with permission of the STLE.

3.3. Stress intensity factors k±1n and k±2n behavior for subsurface cracks

Some examples of the behavior of the stress intensity factors k±1n and k±2n for subsurface cracks
are presented below.

It is important to keep in mind that for the cases of no friction (λ = 0) and compressive or zero
residual stress (q0 ≤ 0) all subsurface cracks are closed and, therefore, at their tips k±1n = 0.

Let us consider the case when the residual stress q0 is different from zero. The residual stress
influence on k+1n results in increase of k+1n for a tensile residual stress q0

> 0 or its decrease

for a compressive residual stress q0
< 0 of the material region with tensile stresses. From

formulas (43), (44), and Fig. 4 (obtained for y0
n = −0.2, αn = π/2, and δn = 0.1) follows

that for all x0
n and for increasing residual stress q0 (see the curves marked with 3 and 5 that

correspond to λ = 0.1, q0 = 0.04, and λ = 0.2, q0 = 0.02, respectively) the stress intensity
factor k+1n is a non-decreasing function of q0. Moreover, if at some material point k+1n(q

0
1) > 0

for some residual stress q0
1, then k+1n(q

0
2) > k+1n(q

0
1) for q0

2 > q0
1 (compare curves marked

with 1 and 2 with curves marked with 3 and 4 as well as with curves marked with 5 and
6, respectively). Similarly, for all x0

n when the magnitude of the compressive residual stress
(q0

< 0) increases (see curves marked with 4 and 6 that correspond to λ = 0.1, q0 = −0.01 and
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Figure 4. The dependence of the normal stress intensity factor k+1n on x0
n for δn = 0.1, α = π/2,

y0
n = −0.2 and different levels of the residual stress q0. Curves 1 and 2 are obtained for q0 = 0 and

λ = 0.1 and λ = 0.2, respectively. Curves 3 and 4 are obtained for λ = 0.1, q0 = 0.04 and q0 = −0.01,
respectively, while curves 5 and 6 are obtained for λ = 0.2, q0 = 0.01 and q0 = −0.03, respectively (after
Kudish [5]). Reprinted with permission of Springer.

λ = 0.2, q0 = −0.03, respectively) and at some material point k+1n(q
0
1) > 0 for some residual

stress q0
1 then k+1n(q

0
2) < k+1n(q

0
1) for q0

2 < q0
1. Based on the fact that the normal stress intensity

factor k0+
1n is positive only in the near surface material layer, we can make a conclusion that this

layer increases in size and, starting with a certain value of tensile residual stress q0
> 0, crack

propagation becomes possible at any depth beneath the half-plane surface. For increasing
compressive residual stresses, the thickness of the material layer where k+1n > 0 decreases.

The analysis of the results for subsurface cracks following from formulas (43) and (44) shows
[1] that the values of the stress intensity factors k±1n and k±2n are insensitive to even relatively

large variations in the behavior of the distributions of the pressure p(x0) and frictional stress
τ(x0). In particular, the stress intensity factors k±1n and k±2n for the cases of dry and fluid
(lubricant) friction as well as for the cases of constant pressure and frictional stress are very
close to each other as long as the normal force (integral of p(x0) over the contact region) and
the friction force (integral of τ over the contact region) applied to the surface of the half-plane
are the same [1].

Qualitatively, the behavior of the normal stress intensity factors k±1n for different angles of
orientation αn is very similar while quantitatively it is very different. An example of that is
presented for a horizontal (αn = 0) subsurface crack in Fig. 5 and for a subsurface crack
perpendicular to the half-plane boundary (αn = π/2) in Fig 6 for p(x0) = π/4, τ(x0) =
−λp(x0), y0

n = −0.2, q0 = 0 for λ = 0.1 and λ = 0.2.
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Figure 5. The dependence of the normal stress intensity factor k+1n on the coordinate x0
n for the case of the

boundary of half-plane loaded with normal p(x0) = π/4 and frictional τ(x0) = −λp(x0) stresses,
y0

n = −0.2, αn = 0, q0 = 0: λ = 0.1 - curve marked with 1, λ = 0.2 - curve marked with 2 (after Kudish
and Covitch [1]). Reprinted with permission from CRC Press.

For the same loading and crack parameters the behavior of the shear stress intensity factor k±2n
is represented in Fig. 7 and 8. It is important to observe that the shear stress intensity factors

k±2n are insensitive to changes of the friction coefficient λ.

Fig. 5 and 6 clearly show that for subsurface cracks with angle αn = π/2 for zero or tensile

residual stress q0 the normal stress intensity factors k±1n are significantly higher (by two orders

of magnitude) than the ones for αn = 0. For αn = 0 and αn = π/2 the orders of magnitude

of the shear stress intensity factors k±2n are the same (see Fig. 7 and 8). Moreover, from these

graphs it is clear that the normal stress intensity factors k±1n are significantly influenced by the

friction coefficient λ while the shear stress intensity factors k±2n are insensitive to the value of

the friction coefficient λ.

Obviously, in the single-term approximation the behavior of k0−
1n and k0−

2n is identical to the

one of k0+
1n and k0+

2n , respectively. Generally, the difference between k0−
1n and k0+

1n as well as

between k0−
2n and k0+

2n is of the order of magnitude of δ0 ≪ 1.

3.4. Lubricant-surface crack interaction. Stress intensity factors k±1n and k±2n
Behavior

The process of lubricant-surface crack interaction is very complex and the details of the

problem formulation, the numerical solution approach, and a comprehensive analysis of the

results can be found in [1]. Therefore, here we will discuss only the most important features of

this phenomenon. It is well known that the presence of lubricant between surfaces in contact
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Figure 6. The dependence of the normal stress intensity factor k+1n on the coordinate x0
n for the case of the

boundary of half-plane loaded with normal p(x0) = π/4 and frictional τ(x0) = −λp(x0) stresses,
y0

n = −0.2, αn = π/2, q0 = 0: λ = 0.1 - curve marked with 1, λ = 0.2 - curve marked with 2 (after Kudish
and Covitch [1]). Reprinted with permission from CRC Press.

is very beneficial as it reduces the contact friction and wear and facilitates better heat transfer

from the contact. However, in some cases the lubricant presence may play a detrimental

role. In particular, in cases when the elastic solid (half-plane) has a surface crack inclined

toward the incoming high contact pressure transmitted through the lubricant. Such a crack

may open up and experience high lubricant pressure applied to its faces. This pressure creates

the normal stress intensity factor k−1n far exceeding the value of the stress intensity factors

k±1n for comparable subsurface cracks while the shear stress intensity factors for surface k−2n
and and subsurface k±2n cracks remain comparable in value. That becomes obvious from the

comparison of the graphs from Fig. 4-8 with the graphs from Fig. 10 and 9.

In cases when a surface crack is inclined away from the incoming high lubricant pressure the

crack does not open up toward the incoming lubricant with high pressure and it behaves

similar to a corresponding subsurface crack, i.e. its normal stress intensity factor k−1n in

its value is similar to the one for a corresponding subsurface crack. It is customary to see

the normal stress intensity factor for surface cracks which open up toward the incoming

high lubricant pressure to exceed the one for comparable subsurface cracks by two orders

of magnitude. In such cases the compressive residual stress has very little influence on the

crack behavior due to domination of the lubricant pressure.

The possibility of high normal stress intensity factors for surface cracks leads to serious

consequences. In particular, it explains why fatigue life of drivers is usually significantly

higher than the one for followers [1]. Also, it explains why under normal circumstances

fatigue failure is of subsurface origin [1].
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Figure 7. The dependence of the shear stress intensity factor k+2n on the coordinate x0
n for the case of the

boundary of half-plane loaded with normal p(x0) = π/4 and frictional τ(x0) = −λp(x0) stresses,
y0

n = −0.2, αn = 0, q0 = 0: λ = 0.1 - curve marked with 1, λ = 0.2 - curve marked with 2 (after Kudish
and Covitch [1]). Reprinted with permission from CRC Press.

4. Stress intensity factors and directions of fatigue crack propagation

The process of fatigue failure is usually subdivided into three major stages: the nucleation
period, the period of slow pre-critical fatigue crack growth, and the short period of fast
unstable crack growth ending in material loosing its integrity. The durations of the first
two stages of fatigue failure depend on a number of parameters such as material properties,
specific environment, stress state, temperature, etc. Usually, the nucleation period is short
[1]. We are interested in the main part of the process of fatigue failure which is due to slow
pre-critical crack growth. In these cases max (k+1 , k−1 ) < K f , where K f is the material fracture
toughness.

During the pre-critical fatigue crack growth cracks remain small. Therefore, they can be
modeled by small straight cuts in the material. For such small subsurface cracks it is sufficient
to use the one-term asymptotic approximations k±1 = k1 and k±2 = k2 for the stress intensity
factors from (43) and (44) which in dimensional variables take the form

k1 =
√

l[Yr + q0 sin2 α]θ[Yr + q0 sin2 α], k2 =
√

l[Yi − q0

2 sin 2α],

Y = 1
π

aH∫
−aH

[p(t)D0(t) + τ(t)G0(t)]dt, τ = −λp,

{Yr, Yi} = {Re(Y), Im(Y)},

D0(t) =
i
2

[
− 1

t−X + 1
t−X

− e−2iα(X−X)

(t−X)2

]
,

G0(t) =
1
2

[
1

t−X + 1−e−2iα

t−X
− e−2iα(t−X)

(t−X)2

]
, X = x + iy,

(45)
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Figure 8. The dependence of the shear stress intensity factor k+2n on the coordinate x0
n for the case of the

boundary of half-plane loaded with normal p(x0) = π/4 and frictional τ(x0) = −λp(x0) stresses,
y0

n = −0.2, αn = π/2, q0 = 0: λ = 0.1 - curve marked with 1, λ = 0.2 - curve marked with 2 (after Kudish
and Covitch [1]). Reprinted with permission from CRC Press.

where i is the imaginary unit (i2 = −1), θ(x) is a step function: θ(x) = 0, x ≤ 0 and θ(x) =
1, x > 0. It is important to mention that according to (45) for subsurface cracks the quantities
of k10 = k1l−1/2 and k20 = k2l−1/2 are functions of x and y and are independent from l.

Numerous experimental studies have established the fact that at relatively low cyclic loads
materials undergo the process of pre-critical failure while the rate of crack growth dl/dN (N
is the number of loading cycles) in the predetermined direction is dependent on k±1 and K f . A
number of such equations of pre-critical crack growth and their analysis are presented in [6].
However, what remains to be determined is the direction of fatigue crack growth.

Assuming that fatigue cracks growth is driven by the maximum principal tensile stress (see
the section on Three-Dimensional Model of Contact and Structural Fatigue) we immediately
obtain the equation

k±2 (N, x, y, l, α±) = 0, (46)

which determines the orientation angles α± of a fatigue crack growth at the crack tips. Due
to the fact that a fatigue crack remains small during its pre-critical growth (i.e. practically
during its entire life span) and being originally modeled by a straight cut with half-length
l at the point with coordinates (x, y) the crack remains straight, i.e. the crack direction is
characterized by one angle α = α+ = α−. This angle is practically independent from crack

half-length l because k±2 = k±20

√
l, where k±20 is almost independent from l for small l (see

(45)). The dependence of k±2 on the number of loading cycles N comes only through the
dependence of the crack half-length l on N. Therefore, the crack angle α is just a function of
the crack location (x, y).
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Figure 9. Distributions of the stress intensity factors k−1 (curve 1) and k−2 (curve 2) in case of a surface
crack: α = 0.339837, δ0 = 0.3, and other parameters as in the previous case of a surface crack (after
Kudish [15]). Reprinted with permission of the STLE.

In particular, according to (45) and (46) at any point (x, y) there are two angles α1 and α2 along
which a crack may propagate which are determined by the equation in dimensional variables

tan 2α = −
2y

aH∫
−aH

(t−x)T(t,x,y)dt

π
2

q0+
aH∫

−aH

[(t−x)2−y2]T(t,x,y)dt

, T(t, x, y) =
yp(t)+(t−x)τ(t)
[(t−x)2+y2]2

. (47)

Along these directions k1 reaches its extremum values. The actual direction of crack
propagation α is determined by one of these two angles α1 and α2 for which the value of
the normal stress intensity factor k1(N, x, y, l, α) is greater.

A more detailed analysis of the directions of fatigue crack propagation can be found in [1].

5. Two-dimensional contact fatigue model

In a two-dimensional case compared to a three-dimensional case a more accurate description
of the contact fatigue process can be obtained due to the fact that in two dimensions it is
relatively easy to get very accurate formulas for the stress intensity factors at crack tips [1, 5].
The rest of the fatigue modeling can be done the same way as in the three-dimensional case
with few simple changes. In particular, in a two-dimensional case of contact fatigue only
subsurface originated fatigue is considered and cracks are modeled by straight cuts with
half-length l. That gives the opportunity to use equations (45) and (47) for stress intensity
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Figure 10. Distributions of the stress intensity factors k−1 (curve 1) and k−2 (curve 2) in case of a surface
crack: α = π/6, λ = 0.1, and q0 = −0.5 (after Kudish and Burris [16]). Reprinted with permission from
Kluwer Academic Publishers.

factors k1, k2, and crack angle orientations α. The rest of contact fatigue modeling follows
exactly the derivation presented in the section on Three-Dimensional Model of Contact and
Structural Fatigue. Therefore, the fatigue life N with survival probability P∗ of a contact
subjected to cyclic loading can be expressed in the form [1, 17]

N = {( n
2 − 1)g0[ max

−∞<x<∞
k10]

n}−1{exp[(1 − n
2 )(μln

+
√

2σlner f−1(2P∗ − 1))]− l
2−n

2
c },

(48)

where er f−1(x) is the inverse function to the error integral er f (x) [8].

First, let us consider the model behavior in some simple cases. If f (0, x, y, z, l0) is a uniform
crack distribution over the material volume V (except for a thin surface layer where f = 0).
Then based on (11) it can be shown that p(N, x, y, z) reaches its minimum at the points where
k10 and the principal tensile stress reach their maximum values. This leads to the conclusion
that the material local failure probability (1 − p) reaches its maximum at the points with
maximal tensile stress. Therefore, for a uniform initial crack distribution f (0, x, y, z, l0) the
survival probability P(N) from (16) is determined by the material local survival probability at
the points at which the maximal tensile stress is attained.

However, the latter conclusion is not necessarily correct if the initial crack distribution
f (0, x, y, z, l0) is not uniform over the material volume. Suppose, k10(x, y, z) is maximal at
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the point (xm , ym, zm) and at the initial time moment N = 0 at some point (x∗, y∗ , z∗) there
exist cracks larger than the ones at the point (xm, ym , zm), namely,

lc∫
0

f dl0 |(x∗,y∗,z∗)<
lc∫
0

f dl0 |(xm,ym,zm) .

Then after a certain number of loading cycles N > 0 the material damage at point (x∗, y∗, z∗)
may be greater than at point (xm , ym, zm), where l0c reaches its maximum value. Therefore,
fatigue failure may occur at the point (x∗ , y∗, z∗) instead of the point (xm , ym, zm), and the
material weakest point is not necessarily is the material most stressed point.

If μln and σln depend on the coordinates of the material point (x, y, z), then there may be a
series of points where in formula (16) for the given number of loading cycles N the minimum
over the material volume V is reached. The coordinates of such points may change with N.
This situation represents different potentially competing fatigue mechanisms such as pitting,
flaking, etc. The occurrence of fatigue damage at different points in the material depends on
the initial defect distribution, applied stresses, residual stress, etc.

In the above model of contact fatigue the stressed volume V plays no explicit role. However,
implicitly it does. In fact, the initial crack distribution f (0, x, y, z, l0) depends on the material
volume. In general, in a larger volume of material, there is a greater chance to find
inclusions/cracks of greater size than in a smaller one. These larger inclusions represent a
potential source of pitting and may cause a decrease in the material fatigue life of a larger
material volume.

Assuming that μln and σln are constants, and assuming that the material failure occurs at the
point (x, y, z) with the failure probability 1− P(N) following the considerations of the section
on Three-Dimensional Model of Contact and Structural Fatigue from (48) we obtain formulas
(19)-(21). Actually, fatigue life formulas (20) and (21) can be represented in the form of the
Lundberg-Palmgren formula, i.e.

N = C∗
pn

H
, (49)

where parameter n can be compared with constant c/e in the Lundberg-Palmgren formula
[1]. The major difference between the Lundberg-Palmgren formula and formula (49) derived
from this model of contact fatigue is the fact that in (49) constant C∗ depends on material defect
parameters μ, σ, coefficient of friction λ, residual stresses q0, and probability of survival P∗ in
a certain way while in the Lundberg-Palmgren formula the constant C∗ depends only on the
depth z0 of the maximum orthogonal stress, stressed volume V, and probability of survival
P∗.

Let us analyze formula (21). It demonstrates the intuitively obvious fact that the fatigue life
N is inverse proportional to the value of the parameter g0 that characterizes the material
crack propagation resistance. So, for materials with lower crack propagation rate, the fatigue
life is higher and vice versa. Equation (21) exhibits a usual for gears and roller and ball
bearings dependence of fatigue life N on the maximum Hertzian pressure pH . Thus, from the
well-known experimental data for bearings, the range of n values is 20/3 ≤ n ≤ 9. Keeping
in mind that usually σ ≪ μ, for these values of n contact fatigue life N is practically inverse
proportional to a positive power of the crack initial mean size, i.e., to μn/2−1. Therefore,
fatigue life N is a decreasing function of the initial mean crack (inclusion) size μ and ln N =
−(n/2 − 1) ln μ + constant. This conclusion is valid for any value of the material survival
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Figure 11. Bearing life-inclusion length correlation (after Stover and Kolarik II[18], COPYRIGHT The
Timken Company 2012).

probability P∗ and is supported by the experimental data obtained at the Timken Company
by Stover and Kolarik II [18] and represented in Fig. 11 in a log-log scale. If P∗ > 0.5 then
er f−1(2P∗ − 1) > 0 and (keeping in mind that n > 2) fatigue life N is a decreasing function
of the initial standard deviation of crack sizes σ. Similarly, if P∗ < 0.5, then fatigue life N is
an increasing function of the initial standard deviation of crack sizes σ. According to (20), for
P∗ = 0.5 fatigue life N is independent from σ, and, according to (21), for P∗ = 0.5 fatigue
life N is a slowly increasing function of σ. By differentiating pm(N) obtained from (16) with
respect to σ, we can conclude that the dispersion of P(N) increases with σ.

From (45) (also see Kudish [1]) follows that the stress intensity factor k1 decreases as the
magnitude of the compressive residual stress q0 increases and/or the magnitude of the friction
coefficient λ decreases. Therefore, it follows from formulas (45) that C0 is a monotonically
decreasing function of the residual stress q0 and friction coefficient λ. Numerical simulations
of fatigue life show that the value of C0 is very sensitive to the details of the residual stress
distribution q0 versus depth.

Let us choose a basic set of model parameters typical for bearing testing: maximum Hertzian
pressure pH = 2 GPa, contact region half-width in the direction of motion aH = 0.249 mm,
friction coefficient λ = 0.002, residual stress varying from q0 = −237.9 MPa on the surface
to q0 = 0.035 MPa at the depth of 400 μm below it, fracture toughness K f varying between

15 and 95 MPa · m1/2, g0 = 8.863 MPa−n · m1−n/2 · cycle−1, n = 6.67, mean of crack initial
half-lengths μ = 49.41 μm (μln = 3.888+ ln(μm)), crack initial standard deviation σ = 7.61 μm
(σln = 0.1531). Numerical results show that the fatigue life is practically independent from
the material fracture toughness K f , which supports the assumption used for the derivation of
formulas (19)-(21). To illustrate the dependence of contact fatigue life on some of the model
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Figure 12. Pitting probability 1 − P(N) calculated for the basic set of parameters (solid curve) with
μ = 49.41 μm, σ = 7.61 μm (μln = 3.888 + ln(μm), σln = 0.1531), for the same set of parameters and the
increased initial value of crack mean half-lengths (dash-dotted curve) μ = 74.12 μm

(μln = 4.300 + ln(μm), σln = 0.1024), and for the same set of parameters and the increased initial value
of crack standard deviation (dotted curve) σ = 11.423 μm (μln = 3.874 + ln(μm), σln = 0.2282) (after
Kudish [17]). Reprinted with permission from the STLE.
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Figure 13. Pitting probability 1 − P(N) calculated for the basic set of parameters including λ = 0.002
(solid curve) and for the same set of parameters and the increased friction coefficient (dashed curve)
λ = 0.004 (after Kudish [17]). Reprinted with permission from the STLE.
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Figure 14. Pitting probability 1 − P(N) calculated for the basic set of parameters (solid curve) and for
the same set of parameters and changed profile of residual stress q0 (dashed curve) in such a way that at
points where q0 is compressive its magnitude is unchanged and at points where q0 is tensile its

magnitude is doubled (after Kudish [17]). Reprinted with permission from the STLE.

parameters, just one parameter from the basic set of parameters will be varied at a time and
graphs of the pitting probability 1 − P(N) for these sets of parameters (basic and modified)
will be compared. Figure 12 shows that as the initial values of the mean μ of crack half-lengths
and crack standard deviation σ increase contact fatigue life N decreases. Similarly, contact
fatigue life decreases as the magnitude of the tensile residual stress and/or friction coefficient
increase (see Fig. 4 and 13). The results show that the fatigue life does not change when the
magnitude of the compressive residual stress is increased/decreased by 20% of its base value
while the tensile portion of the residual stress distribution remains the same. Obviously, that
is in agreement with the fact that tensile stresses control fatigue. Moreover, the fatigue damage
occurs in the region with the resultant tensile stresses close to the boundary between tensile
and compressive residual stresses. However, when the compressive residual stress becomes
small enough the acting frictional stress may supersede it and create new regions with tensile
stresses that potentially may cause acceleration of fatigue failure.

μ [μm] σ [μm] N15.9 [cycles]

49.41 7.61 2.5 · 108

73.13 11.26 1.0 · 108

98.42 15.16 5.0 · 107

147.11 22.66 2.0 · 107

244.25 37.62 6.0 · 106

Table 1. Relationship between the tapered bearing fatigue life N15.9 and the initial inclusion size mean
and standard deviation (after Kudish [17]). Reprinted with permission from the STLE.

Let us consider an example of the further validation of the new contact fatigue model for
tapered roller bearings based on a series of approximate calculations of fatigue life. The
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main simplifying assumption made is that bearing fatigue life can be closely approximated
by taking into account only the most loaded contact. The following parameters have been
used for calculations: pH = 2.12 GPa, aH = 0.265 mm, λ = 0.002, g0 = 6.009 MPa−n ·
m1−n/2 · cycle−1, n = 6.67, the residual stress varied from q0 = −237.9 MPa on the surface
to q0 = 0.035 MPa at the depth of 400 μm below the surface, fracture toughness K f varied

between 15 and 95MPa · m1/2. The crack/inclusion initial mean half-length μ varied between
49.41 and 244.25 μm (μln = 3.888 − 5.498 + ln(μm)), the crack initial standard deviation
varied between σ = 7.61 and 37.61 μm (σln = 0.1531). The results for fatigue life N15.9 (for
P(N15.9) = P∗ = 0.159) calculations are given in the Table 1 and practically coincide with
the experimental data obtained by The Timken Company and presented in Fig. 19 by Stover,
Kolarik II, and Keener [? ] (in the present text this graph is given as Fig. 11). One must
keep in mind that there are certain differences in the numerically obtained data and the data
presented in the above mentioned Fig. 11 due to the fact that in Fig. 11 fatigue life is given as
a function of the cumulative inclusion length (sum of all inclusion lengths over a cubic inch of
steel) while in the model fatigue life is calculated as a function of the mean inclusion length.

It is also interesting to point out that based on the results following from the new model,
bearing fatigue life can be significantly improved for steels with the same cumulative
inclusion length but smaller mean half-length μ (see Fig. 12). In other words, fatigue life of a
bearing made from steel with large number of small inclusions is higher than of the one made
of steel with small number of larger inclusions given that the cumulative inclusion length is
the same in both cases. Moreover, bearing and gear fatigue lives with small percentage of
failures (survival probability P > 0.5) for steels with the same cumulative inclusion length
can also be improved several times if the width of the initial inclusion distribution is reduced,
i.e., when the standard deviation σ of the initial inclusion distribution is made smaller (see
Figure 12). Figures 13 and 14 show that the elevated values of the tensile residual stress are
much more detrimental to fatigue life than greater values of the friction coefficient.

Finally, the described model is flexible enough to allow for replacement of the density of the
initial crack distribution (see (1)) by a different function and of Paris’s equation for fatigue
crack propagation (see (4)) by another equation. Such modifications would lead to results on
fatigue life varying from the presented above. However, the methodology, i.e., the way the
formulas for fatigue life are obtain and the most important conclusions will remain the same.

This methodology has been extended on the cases of non-steady cyclic loading as well as on
the case of contact fatigue of rough surfaces [1]. Also, this kind of modeling approach has
been applied to the analysis of wear and contact fatigue in cases of lubricant contaminated by
rigid abrasive particles and contact surfaces charged with abrasive particles [19] as well as to
calculation of bearing wear and contact fatigue life [20].

In conclusion we can state that the presented statistical contact and structural fatigue models
take into account the most important parameters of the contact fatigue phenomenon (such
as normal and frictional contact and residual stresses, initial statistical defect distribution,
orientation of fatigue crack propagation, material fatigue resistance, etc.). The models allows
for examination of the effect of variables such as steel cleanliness, applied stresses, residual
stress, etc. on contact fatigue life as single or composite entities. Some analytical results
illustrating these models and their validation by the experimentally obtained fatigue life data
for tapered bearings are presented.
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6. Closure

The chapter presents a detailed analysis of a number of plane crack mechanics problems for
loaded elastic half-plane weakened by a system of cracks. Surface and subsurface cracks are
considered. All cracks are considered to be straight cuts. The problems are analyzed by the
regular asymptotic method and numerical methods. Solutions of the problems include the
stress intensity factors. The regular asymptotic method is applied under the assumption that
cracks are far from each other and from the boundary of the elastic solid. It is shown that
the results obtained for subsurface cracks based on asymptotic expansions and numerical
solutions are in very good agreement. The influence of the normal and tangential contact
stresses applied to the boundary of a half-plane as well as the residual stress on the stress
intensity factors for subsurface cracks is analyzed. It is determined that the frictional and
residual stresses provide a significant if not the predominant contribution to the problem
solution. Based on the numerical solution of the problem for surface cracks in the presence
of lubricant the physical nature of the "wedge effect" (when lubricant under a sufficiently
large pressure penetrates a surface crack and ruptures it) is considered. Solution of this
problem also provides the basis for the understanding of fatigue crack origination site (surface
versus subsurface) and the difference of fatigue lives of drivers and followers. New two-
and three-dimensional models of contact and structural fatigue are developed. These models
take into account the initial crack distribution, fatigue properties of the solids, and growth of
fatigue cracks under the properly determined combination of normal and tangential contact
and residual stresses. The formula for fatigue life based on these models can be reduced to a
simple formula which takes into account most of the significant parameters affecting contact
and structural fatigue. The properties of these contact fatigue models are analyzed and the
results based on them are compared to the experimentally obtained results on contact fatigue
for tapered bearings.
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