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1. Introduction 

Fatigue life estimation and crack propagation description are the most important 

components in the analysis of life span of structural components but it may require time and 

expense to investigate it experimentally. For fatigue crack propagation studying in cases 

when it is difficult to obtain detailed results by direct experimentation computer simulation 

is especially useful. Hence, to be efficient, the crack propagation and durability of 

construction or structural component software should estimate the remaining life both 

experimentally and by simulation. The critical size of the crack or critical component load 

can be calculated using material constants which have been derived experimentally and 

from the constant amplitude crack propagation curve, crack size-life data and curve using 

crack propagation software. Many works in the field of fracture mechanics prove significant 

development in the numerical analysis of test data from fatigue crack propagation tests.  

A simple stochastic crack growth analysis method is the maximum likelihood and the 

second moment approximation method, where the crack growth rate is considered as a 

random variable. A deterministic differential equation is used for the crack growth rate, 

while it is assumed that parameters in this equation are random variables. The analytical 

methods are implemented into engineering practice and are use to estimate of the statistics 

of the crack growth behavior (Elber, 1970; Forman et al., 1967; Smith, 1986). 

Though many models have been developed, none of them enjoys universal acceptance. Due 

to the number and complexity of mechanisms involved in this problem, there are probably 

as many equations as there are researchers in the field. Each model can only account for one 

or several phenomenological factors - the applicability of each varies from case to case, there 

is no general agreement among the researchers to select any fatigue crack growth model in 

relation to the concept of fatigue crack behavior (Kłysz, 2001; Paris & Erdogan, 1963; 

Wheeler, 1972; Willenborg et al., 1971). Mathematical models proposed e.g. by Paris, 
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Forman, and further modifications thereof describe crack propagation with account taken of 

such factors as: material properties, geometry of a test specimen/structural component, the 

acting loads and the sequence of these loads (AFGROW, 2002; Kłysz et al., 2010a; 

NASGRO®, 2006; Newman,  (1992); Skorupa, 1996). Application of the NASGRO equation, 

derived by Forman and Newman from NASA, de Koning from NLR and Henriksen from 

ESA, of the general form (AFGROW, 2002; NASGRO, 2006): 
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has significantly extended possibilities of describing the crack growth rate tested according 

to the standard (ASTM E647). The coefficients stand for: 

a – crack length [mm], 

N – number of load cycles, 

C, n, p, q – empirical coefficients, 

R – stress ratio, 

K – the stress-intensity-factor (SIF) range that depends on the size of the specimen, applied 

loads, crack length, K = Kmax - Kmin [ܽܲܯ√݉],  
Kth – the SIF threshold, i.e. minimum value of K, from which the crack starts to propagate: 
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or 
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where: 0a  – structural crack length that depends on the material grain size [mm], 

K0 – threshold SIF at R0, 

K1 – threshold SIF at R1, 

Cth – curve control coefficient for different values of R; equals 0 for negative R, equals 1 for 

R  0, for some materials it can be found in the NASGRO database, 

Kmax – the SIF for maximum loading force in the cycle, 

Kc – critical value of SIF, 

f – Newman's function that describes the crack closure: 
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where A0, A1, A2, A3 coefficients are equal: 
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Smax – Newman's empirical coefficients. 

Determination of the above coefficients for equation that correctly approximates test data is 

difficult and causes some singularities described below, when the Least Squares Method 

(LSM) is used.  

 

Figure 1. Fatigue crack propagation graphs: a) K=f(N); b) a=f(N) and c) da/dN=f(K) 
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The fatigue crack growth test results provide an illustration of relations such as: specimen 

stress intensity vs. number of cycles (K=f(N)), crack growth vs. number of cycles (a=f(N)); 

crack growth rate vs. stress intensity factor range (da/dN=f(K)). These experimental curves 

can be presented, for example, in the graphical form shown in Fig. 1 (for a single specimen, 

two-stage test: stage I - decreasing K test, black curve; stage II – constant amplitude test, 

blue curve). 

Specifically, the da/dN=f(K) plots can be obtained directly from the material test machine 

control software (e.g. by employing the compliance method and by using a clip gauge) or 

can be obtained by differentiating the a=f(N) curve after correlating it with K=f(N). These 

plots, for single specimen tests, as well as for tests with multiple specimens under different 

load conditions (e.g. various stress ratio R values), can be successfully described analytically 

when appropriate mathematical models and equations are employed.  

2. Test data  

Fatigue tests for structural components durability analysis can be conducted with the RCT 

(Round Compact Tension) (Fig. 2a) or with SEN (Single Edge Notch) (Fig. 2b) or other 

specimens according to the corresponding ASTM E647 standard.  

 

Figure 2. RCT & SEN specimens for fatigue crack propagation tests 

The general formula that describes the stress intensity factor is as follows: 

 ,I

P
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  (8) 

where: P – applied force, 

B, W – the specimen’s thickness and width,  

Y – the specimen’s shape function (ASTM E647, Fuchs & Stephens 1980, Murakami 1987):  

for the RCT specimen: 
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for the SEN specimen: 
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where a/W is a non-dimensional crack length. 

The compliance function to compute the crack length in the RCT specimen has the form: 
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for the SEN specimen (Bukowski & Kłysz 2003): 
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where: u – compliance described by the following formula: 
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E – Young’s modulus, 

COD – Crack Opening Displacement. 

An example of the F-COD relationship has been plotted in Fig. 3. The plot has been gained 

from the fatigue crack growth test conducted for the SEN specimen made from 

constructional steel subjected to constant amplitude loading with overloads (Bukowski & 

Kłysz, 2003). The records were taken in the course of statically applied 2-cycle overloads of 

40% order at subsequent stages of crack propagation. Load base level and overload level 

were gradually reduced as the crack growth kept increasing and after non-linearity 

(hysteresis loop) had occurred in the F-COD plot. The objective was to avoid failure of the 

specimen in a subsequent overload cycle to be able then to continue the crack-propagation 

test. Any change in the angle of inclination of the rectilinear segment of each of the 

hysteresis loops (i.e. the F/COD proportion from formula (13)) is a measure of the 

specimen’s compliance u and proves the crack length in the specimen under examination 

keeps growing. 

Results presented below come from the examination of the 2024 aluminum alloy taken from 

the helicopter rotor blades (Kłysz & Lisiecki, 2009) or from the aircraft ORLIK’s fuselage 

skins (Kłysz et al., 2010b) and are obtained for three values of test stress ratio R = 0.1; 0.5; 0.8, 

under laboratory conditions, with loading frequency 15 Hz. The crack length was measured 

with the COD clip gauge using the compliance method. The crack growth rate was 

determined using the polynomial method.  
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Figure 3. Relationship of F-COD recorded in subsequent overload cycles of fatigue crack growth test 

3. Data analysis 

Results of fatigue crack growth rate tests for 3 specimens (for R = 0.1; 0.5; 0.8) are presented 

in Fig. 4 (Lisiecki & Kłysz, 2007). 

 

Figure 4. Fatigue crack growth rates in 3 specimens for different R values – a) test data, b) results of 

approximation 

(a) (b)
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The NASMAT curve fitting algorithms use the least-squares error minimization routines in 

the log-log domain to obtain the corresponding constants using the NASMAT module 

contained within the NASGRO suite of software (NASGRO, 2006). The constants C and n, 

i.e. the main fit parameters, are determined through the minimization of the sum of squares 

of errors, where the error term corresponding to the i-th data pair (K, da/dN)i is (Forman et 

al., 2005): 
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 (14) 

Values of da/dN are determined using the method of differentiating the dependence a-N 

with the secant or the polynomial method applied (AFGROW, 2002; ASTM 647; NASGRO, 

2006). 

Generally the curve fitting of crack growth data is an iterate process that consists in using 

established values of various constants (other than C and n), specifying the data sets that 

typify the material, applying the least-squares algorithm to compute C and n, and plotting 

the data for various R values with the curve fit of each stress ratio. The process is continued 

by making slight modifications in the entered values until the best fit to the test data is 

obtained. In general fitting the NASGRO equation is really a multi-step process involving: 

- fitting or defining the threshold region;  

- fitting or defining the critical stress intensity or toughness to be used at the instability 

asymptote;  

- making initial assumptions on key parameters such as p and q;  

- performing the least squares fit to obtain C and n; and finally; 

- using engineering judgment to adjust the results for consistency and/or a desired level 

of conservatism. 

For the LSM approximation of test data, analytical description thereof, and determination of 

coefficients of approximation equations, according to which the criterion used in the 

analysis is the minimum of the square sum:  

  2
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of deviations between values of the test data yi and those of the approximated function ݕത௜. 
This method of approximation is characterized with the following properties that in some 

cases may be considered as disadvantages (Forman et al., 2005; White et al., 2005; Huang et 

al., 2005; Taheri et al., 2003): 

- in respect of the order of magnitude, value of the sum S increases as magnitudes of 

approximated values increase, e.g. if values of test data are of the order of magnitude 
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10, 1000, 1000000, with the scatter of 10%, the summed differences are of the order of 

magnitude 1, 100, 100000, and hence, dynamic changes in the total value of the sum S 

depend on values of differences – as a quadratic function it is characterized by a linear 

function of the derivative, which also means that for differences close to zero (e.g. 10-5, 

10-8, etc.) this dynamic change is much smaller than for differences of higher 

magnitudes, which influences the „flexibility” of the performed approximation; 

- if the test data significantly differ from each other in magnitude (e.g. from 1 to 100000 or 

from 10-8 to 10-2), the approximated values near the lower threshold contribute much 

less to the total sum S than approximated values near the upper threshold; this means 

that, e.g. tens or hundreds of test data with differences in magnitude of 100% from 

value 1 are less significant in performing the approximation than one or a few data 

points which differ by 1% from value 100000.  

According to the above stated example, the approximation is “asymmetric” since better 

approximation will be achieved for higher values of test data, neglecting differences around 

smaller values – an example of such approximation is shown in Fig. 4b, where one can see 

a good fit of theoretical description of 3 curves for large values of da/dN (over 10-4 mm/cycle) 

while there is an evident misfit for smallest values (below 10-5 mm/cycle). The presented 

approximation has been achieved by satisfying the LSM criterion, i.e. the minimum value of 

the sum S. When the test data are within a wide range of values, e.g. 5 orders of magnitude, 

i.e. from 10-2 to 10-7 mm/cycle, then differences between the highest values and the 

approximating function will have the largest effect on the square sum S of deviations while 

differences for small values, sometimes of 2-3 orders of magnitude, do not contribute much 

to the total sum S. 

Hence, the misfit of the approximating function for low values of da/dN, practically for 

values lower by only 1-2 orders of magnitude than the maximum values of da/dN. Within 

this range the theoretical description is rather random and has rather no effect on the value 

of the sum S, which indicates that this criterion is rather useless for this type of analysis. 

It seems reasonable to use one of the following criterion modifications, which will allow to 

remove the above stated problems: 

- changing the form of the criterion, or 

- using logarithmic values of da/dN,  

    2 2

1 1

log log log log .
n n

i i i i
i i

S y y or S y y
 
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In the present study the first variant has been examined (see section 3.3) due to the fact that 

it is more general since it does not limit itself only to positive values of predicted yi, which is 

a requirement in the second variant. In the case of crack propagation test data all the da/dN 

values are positive; therefore the second variant could also be used. 

Since the criterion for fitting the theoretical description to the test data in the form of 

equation (15) or (16), or any other, is closely connected with the number of approximated 
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points (in the case under discussion, coordinates in the graph (da/dNi,Ki)), the quality of fit 

has to depend on: 

- the distribution of the number of test points among particular curves, 

- the distribution of test points on particular curves, 

not to mention  

- the scatter of test points and accuracy of finding them. 

If the distribution of points among particular curves is not uniform, the approximation will 

show better fit to the curves with a larger number of points than to those with a smaller 

number of points – the contribution thereof to the pooled error included in the 

approximation criterion will be greater; the minimization thereof will occur around the 

larger data cluster. Similar situation occurs while fitting the description to a given 

experimentally gained curve – where the data concentration is larger, the approximation will 

be better than where there is less data, or where the data are only individual points. 

Therefore, essential to the analysis of test data and to description thereof is the regular 

distribution of the test data over the whole range to be subject to approximation. Since it is 

sometimes beyond the reach of researchers while recording the test data directly during the 

testing work, some modification or recalculation of the test data set may prove 

indispensable. 

3.1. Data set modification 

As clearly seen in Fig. 4, the number of points in the threshold and critical areas of the scope 

of the stress intensity factor K is very small, which results from the specific nature of the 

performed test and data recording.  

For crack growth rates lower than 10-6 mm/cycle the increment by 1 mm occurs after approx. 

1 million cycles, i.e. the process is a long-lasting one, and the recording of the crack-length 

increment for instance every 0.01 mm gives 100 points of test data only (while in the case of 

taking records every 0.005 mm, the number of points will be 200). The testing work for even 

lower crack growth rates is still more time- and energy-consuming. With as little crack-

length increments as these there is practically no chance that in single load cycles any 

random jump will occur in values of recorded data of the order of 0.01 or at least 0.001 mm 

(i.e. by approximately 3 – 4 orders of magnitude higher than the crack growth rate under 

examination). This provides relatively regular recording of crack lengths in the course of the 

testing work, i.e. for subsequent increments 0.01, 0.02, 0.03, … mm, etc. (even if 

measurements are taken for crack-length increments by only a fraction of a millimetre, i.e. in 

a shorter time, which means for the number of cycles lower than the above-mentioned 1 

million).   

In the range of critical crack propagation, at the crack growth rate higher than 10-3 mm/cycle, 

the recordings of the crack length increments every 0.01 mm (as above)  take place more 

frequently than every 10 cycles. For load-applying frequencies of 10 – 20 Hz this means 1 s 
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long data-recording intervals in the course of the testing work. The final several millimetres’ 

crack-length increment occurs as fast as over only several minutes of the testing work, with 

crack-length increments significantly increasing every cycle. Hence, at the testing rate 

getting as high, the number of test points remains relatively low and, because of these ever-

growing increments, lower than the above-mentioned 100 or 200 points per every 1 mm of 

the crack length.  

In the intermediate area of the graph (10-6 through 10-3 mm/cycle, i.e. covering 3 orders of 

magnitude of  the da/dN value) the above-mentioned exemplary crack-length increments 

every 0.01 mm take place on a regular basis, however, with random fluctuations typical of 

the phenomenon under examination – there are no identical data recordings after 0.01, 0.02, 

0.03, 0.04, … mm of crack-length increment, since instantaneous readings (variations) from 

the measuring sensors may cause that the data recording during the test, with the same 

recording criterion assumed, can occur for increments of, e.g. 0.01, 0.028, 0.038, 0.057, … 

mm, disturbing at the same time the regular basis of increments in the number of cycles 

between particular measurements. Fig. 5a illustrates the non-uniformity of such data-

recording practice; the arrows point to where such disturbances have occurred, and after 

which the subsequent record is taken after the higher number of cycles. This, in turn, affects 

the crack growth rate. Calculation of the da/dN derivative based on the in this way recorded 

data must also be burdened with a random scatter, Fig. 5b, larger than that resulting from 

the properties of the material under examination. 

To eliminate these incidental disturbances, the experimentally recorded time function may 

become smoothed by means of interpolation of results on the basis of any linear regression 

function (with either a straight line or a polynomial). Fig. 5c shows an example of such 

smoothening: presented with a full line is result of the 7-point regression, i.e. after having 

interpolated each point (ai;Ni), with account taken of 6 adjacent points: 3 points in front of 

and 3 points behind a given point (ai;Ni). It is evident that this smoothed  curve represents in 

a reliable (or even better, in a more reliable way) the experimentally recorded dependence 

between measured quantities. On the other hand, the above-discussed disturbances have 

been removed from particular measurements.  

Calculation of the da/dNi derivative for any point of the plot (ai;Ni) can be carried out on the 

basis of linear or polynomial regression for e.g. 5, 7, or 9 adjacent points around a given i-th 

point. Fig. 5d shows result of the 5-point linear regression (2 points in front of the (ai;Ni) 

point, the (ai;Ni) point, 2 points behind the (ai;Ni) point), of calculations of the da/dN 

derivative against the unsmoothed plot a-N. What in this case is arrived at from the equation 

for the line of regression yi = mixi + ni (and more exactly, ai = miNi + ni) is: 

  /  ’  .i i ida dN y m   (17) 

In the case of linear regression with polynomials of the 2nd (yi = mixi2+nixi+li) or 3rd 

(yi = mixi3+nixi2+lixi+ki) order, the crack growth rate is calculated from the formulae, 

respectively: 

  /  ’  2 ,i i i i ida dN y m x n    (18) 
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   2/  ’  3 2  .i i i i i i ida dN y m x n x l     (19) 

What becomes evident is a considerable scatter of calculated values of the crack growth rate 

da/dN, and for points indicated with arrows it can be stated that: 

- any measurement disturbance results in that the resulting (calculated) value of da/dN at 

one or two subsequent points  is always lower than that for the point in question, 

- the measurement disturbance is not expected to reflect the accelerated crack 

propagation, even though in the form of a local maximum, which all the more confirms  

the correctness of treating this disturbance as a random effect, 

- where the disturbance occurs in the local-maximum area, it magnifies its value; 

however, the scale of this increase may prove too large as compared to the actual crack 

growth rate.   

 

Figure 5. Calculated values of da/dN with corresponding test data a-N: 5-point linear regression, 

a) and b) – output data; c) and d) – smoothed data 

If calculations are carried out for the smoothed curve a-N (Fig. 5c), the resulting da/dN curve 

presented in Fig. 5d takes the form of a solid line. The scatter of values of the crack growth 

rate over the whole range of calculations is much smaller. The local extremes have been 

maintained, however, slightly scaled down than in Fig. 5b.   

In the case the regression used to calculate the da/dN derivative is carried out for a greater 

number of points adjacent to a given computational point,  the corresponding curves look 

(a) (b)

(c) (d)
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like in Fig. 5a (for 7-point regressions: 3 points in front of the  (ai;Ni), the point in question 

(ai;Ni) and 3 points behind the (ai;Ni)) and Fig. 5b (for 9-point regressions:  4 points in front of 

the (ai;Ni), the point in question (ai;Ni) and 4 behind the (ai;Ni)).  In all the cases the derivative 

of  da/dN  has been found from equation (17). 

 

Figure 6. Calculated values of  da/dN together with corresponding experimental data a-N:      a) 7-point 

linear regression, b) 9-point linear regression 

It is obvious that as the number of points taken into account in the regression analysis 

increases, the scatter of computational results gets reduced and the curve plotted for 

unsmoothed data (circles in Fig. 6) ever more resembles the curve plotted for smoothed data 

(solid line in Fig. 6). It is effected by the fact that the greater number of data accepted for 

regression brings the result closer to that of regression for smoothed data. There is of course 

some disadvantage: the greater number of data taken into account in regression analyses, 

the more reduced number of details referring to, e.g. local changes in value of da/dN are to 

be seen on the plotted curves. In the extreme, if all the points are subject to regression at 

once, the smoothed curve a-N would be a straight line and the da/dN curve would run 

horizontally.  Another extreme consists in that the whole curve a-N would be described with 

only one regression equation, which in turn would provide the reliable mapping of the 

whole a-N curve; the da/dN derivative could be calculated by means of differentiating this 

equation. However feasible, it seems unpractical, work-consuming, more of the ‘art for art’s 

sake’ category. Results presented in Figs 5 and 6 could be considered optimal: they provide 

good mapping of local changes in the approximated curves and do not require any 

complicated mathematical apparatus.  

Characteristic of these plots (for both the unsmoothed and smoothed data) is that the 

calculated rates da/dN may be the same for different numbers of cycles N (hence, for 

different crack lengths a and different values of K). This is the effect of more common, for 

this range of crack growth rate da/dN, occurrences of changes in the monotonicity of curves 

a-N than in threshold or critical ranges of da/dN-K. Curves plotted in Figs 5 and 6 

correspond to approx.  1-millimetre increment in the crack length (6.6 through 7.5 mm) and 

cover crack growth rates of 2 ÷ 4.10-6 mm/cycle. At the further stage of the crack growth as 

the crack length increases, the crack growth rate increases as well, and before the crack 

(a) (b)
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reaches the critical growth range the calculated values of da/dN  from the range 10-6 through 

10-3 mm/cycle will repeatedly appear in the calculations. Hence, the number of measuring 

points recorded throughout the testing work for this range of da/dN will be higher than for 

threshold or critical ranges of da/dN-K, what is to be seen also in Fig. 4.  

Moreover, in practice, the plotting of a complete crack propagation curve da/dN-K, i.e. 

starting from critical crack growth rates of 10-8 mm/cycle up to critical ones of 10-2 mm/cycle, 

is not performed in the course of one test only. This is closely related with difference in 

levels of K for the stage of the specimen’s precracking and the threshold range typical of 

the rates of 10-8 mm/cycle. The precracking usually finishes at higher values of K, since it 

cannot proceed with the threshold growth rate. The reason is that it would take much more 

time than the test itself. Therefore, the test started after the specimen’s precracking stage 

from the threshold values of the crack growth (change in the loading level from high to 

lower), would be connected with the crack growth retardation effect, which - in turn - would 

disturb test results in this area, i.e. it would not allow the researchers to gain the correct 

curve da/dN-K. Such tests are usually conducted as a two-stage effort – see Fig. 1: 

I stage – with exponentially decreasing K (K=K0e-ga), with constant relative gradient, i.e. ଵ∆௄ డ∆௄డ௔ = −݃, up  to having the left side of the plot within the threshold range. The test starts 

from the level of loads higher than those at the already completed stage of the specimen’s 

precracking, so as to eliminate the crack growth retardation effect that appears as if the test 

is started at loads lower than those at the termination of the specimen’s precracking.  

The decreasing K, starting from some suitably high value, and the crack length both cause 

that the crack growth rate becomes reduced to reach then the threshold range of the plot. At 

this stage, the a-N curve asymptotically approaches the horizontal line as the testing time 

increases. The testing time depends on the scientifically and economically justified needs of 

the researcher, although in practice this time much more depends on sensitivity of applied 

sensors, since both the level of applied loads and the crack opening size decrease for this 

range to values comparable to electric noise of the testing machine, which usually results in 

the test being automatically interrupted and the testing machine being stopped for crack 

growth rates lower than 10-8 mm/cycle. The at this stage obtained curve a-N  and the 

propagation-curve section da/dN-K may look like e.g. those presented in Fig. 7 (to be also 

seen in Fig. 1b). 

II stage – at constant amplitude load (CA test, constant amplitude test) up  to the acquisition of 

the right side within the critical range. The test is carried out at the level of loads higher than 

the level at which the stage I was completed; as the crack length increases, there is a 

systematic increase in the K, up to the moment the critical value is reached, at which the 

specimen fails. The at this stage obtained curve a-N  and the propagation-curve section 

da/dN-K may look like e.g. those presented in Fig. 7 (to be also seen in Fig. 4). 

The total result of both the stages has been presented in Fig. 8 – both the curves from Figs 6 

and 7 complement one another to full propagation-curve plot a-N and da/dN-K: 

experimentally found points in the form of circles, curves smoothed in the form of full lines. 
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It is quite clear that the mid section (range) of the da/dN-K curve contains much more 

experimentally gained points despite the same criterion for data recording in the course of 

testing work for all three ranges, and also, independently of the fact that both the curves 

overlap over some specific section common to both of them.  Furthermore, the plot presents 

the above-discussed changes in the monotonicity of how they run, independently of 

whether the calculations of the da/dN derivative have been conducted for unsmoothed or 

smoothed data – Fig. 8. 

 

Figure 7. Curves a-N and da/dN-K for the first (I) – a), b), and the second (II) test stages – c), d) 

3.2. A Method of Regular Curves Mapping (MRCM) 

Disturbances in the run, monotonicity of curves da/dN-K as well as different measuring-data 

density in particular areas of the graph do not serve well any attempts to theoretically describe 

these curves. As mentioned earlier, the least squares methods better fit regression curves to 

(a)

(b)

(c) (d)
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areas where there is more approximated points, in the case given consideration, in the middle 

ranges of the da/dN-K curves. To eliminate this effect, application of the Authors’ Method of 

Regular Curves Mapping (MRCM) to approximate the da/dN-K curves  is advisable.  

 

Figure 8. Curves a-N  and da/dN-K  and how they run at the  I and II test stages: – results for data after 

the curve has been smoothed -  a), b),  and effect of having applied the MRCM – c) 

The MRCM technique of mapping test data consists in fixing, at regular intervals (along 

axes x or y), the k number of representative points in the data set under analysis (upon the 

experimentally gained curve). The following actions are to be taken: 

a. determined are selected values of coordinates xi (or yi), for which the above-mentioned 

points will be fixed (i = 1,2, ….,k), 

b. from the curve under analysis, point x’i (or y’i) is fixed, of coordinate value closest to the 

assumed value of xi (or yi), and 2m of adjacent points – by assumption, in half these are 

(a)

(b)

(c)
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points of values lower than xi (or yi) and in half - of higher values, (m is equal to, e.g. 2, 

3, 4 or 5),  

c. a set of in this way gained data 2m+1, (x’i-m , yi-m) through (x’i+m , yi+m) (or (xi-m , y’i-m) 

through (xi+m , y’i+m)) – grouped around some selected value of xi (or yi) is subject to 

regression with any function to determine the approximated value of yi* (or xi*) 

corresponding to the selected value of xi (or yi), 

d. the point of coordinates (xi , yi*) (or (xi*, yi)) is mapped on the curve under analysis – as 

the i-th representative data item found on the basis of the assumed criteria, 

e. steps b) through d) are repeated for subsequent k number of values determined in a), 

until a set of  k number of points that  represent (map) the curve is obtained.  

The effect of the in this way performed mapping of values of da/dN, regularly distributed 

within particular intervals (orders of magnitude), in selected k = 37 points, for the curve 

shown in Fig. 8b, is presented in Fig. 8c. The points in question: 

- well represent (map) the curve under analysis,  

- are equidense distributed  within the whole range of da/dN variability,  

- do not show any more or less significant fluctuations/scatter of values resulting from, 

e.g. random measuring-data dispersions.  

 

Figure 9. Experimentally gained curves da/dN-K for 9 specimens tested at different stress ratios R a) 

and the same curves having been mapped with points using the MRCM, b) and with extrapolated 

points that ‘perform’ the mapping according to the MRCM, c) – together with approximation thereof 

with the NASGRO equation 

The set of  points that map the curve seems to give good basis, owing to the above described 

features, for analyses of theoretical description of a given, experimentally gained curve. In 

the case of nine (9) curves that correspond to tests with three (3) values of the stress ratio R – 

(a) (b) (c) 
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Fig. 9a, the result of experimentally gained data modification with the MRCM applied 

(points in the graph) is presented in Fig. 9b, together with the data approximation by means 

of the NASGRO equation, with the LSM criterion used, according to formula (15).  

The MRCM technique also enables, if need be and with scientific correctness maintained, the 

extrapolation of the mapping points beyond the range of recorded test data, i.e. into the area 

of crack growth rates lower (the threshold range) or higher (the critical range) than those 

recorded experimentally, with their tendency to change which is peculiar to those areas, on 

the basis of regression at boundary (in the graph – lower or upper) points of experimentally 

gained curves – the extrapolation result has been shown in Fig. 9c. Application of 

extrapolation to prepare data for the analytical modelling may prove advantageous in the 

case the particular experimentally gained curves show different ranges of values, and hence, 

different numbers of mapping points. After correctly performed extrapolation one can 

arrive at the situation when they are equalized, which means the same ‘power’ of each of the 

with the regression method approximated curves. 

3.3. Modifications of the LSM method criterion  

In order to eliminate the approximation misfit as shown in Fig. 1 and to improve the quality 

of approximation, modification of formula (15) takes the following form: 

 

2 2

*

1 1

1 .
n n

i i i

i ii i

y y y
S

y y 

   
     
   
   

   (20) 

The fraction in brackets in formula (13), as a relative error, is a measure of deviation 

independent of the order of magnitude of compared values (approximated and approximating 

ones), so that the contribution of all the test data is equally "strong" to the total error S, which 

should have good effect on the approximation within the whole range, since: 

- each value among test data yi has equal contribution to the sum S*, independent of its 

magnitude 10-7, 10-2, 1 or 100000 (i.e. it fits in any magnitude range) – always a deviation 

of e.g. 10-, 50-, 200-percent of approximating value will give a component of the sum S* 

equal to 0.01, 0.25, 4, respectively; 

- the criterion assures that the achieved approximation is “symmetric”, i.e. the degree of 

approximation around lower and higher values is the same; 

- disadvantages of the criterion described with formula (15) are no longer valid. 

The criterion described with formula (20) has also some specific property: if the 

approximating value equals zero (i.e. for the approximation smaller by 100%) or it is twice 

as big as the approximated value (i.e. for approximation larger by 100%), then 

independently of the approximated value the component of the sum S* will equal 1. 

In order to carry out the approximation of test data it is necessary to calculate coefficients of 

the approximating equation used to determine ݕത௜. Equation (1), after applying logarithms, 

takes the form: 
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 (21) 

and can be presented in the following general way: 

 
0 1 1 2 2 3 3.y b b f b f b f        (22) 

Coefficients bi are directly connected with C, n, p and q (b0=log(C), b1=n, b2=p, b3=-q), whereas 

functions fi depend on K and R and include all the remaining coefficients of the NASGRO 

equation. Coefficients bi of the approximating equation are calculated from the minimum 

condition of the equation (20), i.e.: 
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This leads to the following system of equations: 
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It is a system of 4 linear equations with 4 unknowns bi, which after transformation takes a 

form: 
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and is easily solved by subtracting in the following steps: 

- eliminating b0 
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what gives 3 equations of the general form: 
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what gives 2 equations of the general form: 
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Hence, coefficient b2 can be calculated from one of the formulae (29); secondly, coefficient b1 

from one of equations (27), and finally, coefficient b0 from one of equations (25). 

The in this way found coefficients of the NASGRO equation enable approximation of curves 

da/dN-K from Fig. 9 to the form shown in Fig. 10a. Considerable improvement in the 

theoretical (analytical) description for the whole range of plotted curves is evident. 

Both criteria (15) and (20) have also some disadvantage consisting in that if the 

approximating value ݕത௜ is much smaller than the approximated value yi (i.e. by 3, 5, 7 orders 

of magnitude) or simply close to zero then the component of the sum S and S* is close to the 

squared value yi (in case of (15)) or to 1 (in case of (20)), independently of how these two 

values differ from each other. 

Obviously, it is important whether the approximation and behavior of the approximating 

curve near value yi at the level of e.g. 10-6 and lower (i.e. for strongly decreasing values 

within the “threshold” range of the graph) take place at the level of 10-8, 10-12 or 10-20 (what is 

not hard to achieve for curves showing strong vertical courses on graphs plotted with the 
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logarithmic scale applied); it is much better when the possible difference between values ݕത௜ 
and yi is not too large. 

 

Figure 10. Result of approximation of curves from Fig. 9 with the NASGRO equation with the LSM 

criterion applied: a) by equation (20), b) by equation (32) 

Due to dynamic changes around value ݕത௜ equal to zero (completely monotonic, as for the 

second-degree polynomial), functions (15) and (20) are practically insensitive to that the 

approximated value equals e.g. 0.01, 10-5, 10-8 or 10-20. Hence, it is most preferable if the LSM 

approximating criterion takes such cases into account.  

Therefore, a modification is proposed to transform the criterion into the following form: 
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  (32) 

Owing to this for both large values ݕത௜ (much different from the approximated value yi) and 

small values (approaching zero) with respect to value yi, the components of the sum take 

significant values, i.e. in both cases they give a significant (although - as it can be seen -

diverse/unsymmetrical for each of the cases) contribution to the total approximation error – 

as shown in Fig. 11. In order to make the Si components of the sum (32) and the total sum S** 

as an approximation criterion reaches the minimum (not the maximum, as in Fig. 11) and 

also, when the reversal of sign takes place between the approximated value yi and the 

approximating value ݕത௜), the following form would be better: 

(a) (b)
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Figure 11. Component of the sum for the approximation criterion (32) 

 

Figure 12. Component of the sum for the approximation criterion (32a) 

 
**

1

1 1 .
n

i i

i i i

y y
S

y y

  
    
  
  

  (32a) 

Both extremes of the Si function for both positive and negative values of ݕത௜ are the minima 

shown in Fig. 12. Approximation criterion functions for (15), (20) and (32) (and their 

components) as related to approximating values ݕത௜, for: 

- different approximated values yi equal to 5; 2; 1; 0.25; 0.01; 0.00001, 

- the same range of variability of ݕത௜, i.e. (-3yi, 3yi), in order to show the ݕത௜ → 0 effect, are 

shown in Fig. 13.  
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Figure 13. Approximation criterion functions for different approximated values yi for the (-3yi, 3yi) 

interval – arrow for equation (32a) 

All advantages and disadvantages of the above presented LSM approximation criteria can 

be seen on the graphs above, in particular: 

- significant dependence of values of components of the sum S (formula (15)) on the 

approximated value yi; 
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- invariability of values of components of sums S* (formula (20)) and S** (formulae (32) 

and (32a)) on all the graphs, i.e. for any approximated value yi; 

- no response of the components of sums S and S* to the ݕത௜ → 0 effect and dynamic 

change in the components of the sum S** near value ݕത௜ = 0. 

The only curve that changes in the graphs presented in Fig. 13 is the plot for components of 

the sum S graph, i.e. for the standard form of the LSM.  

Result of approximation with criterion (32a) applied is shown in Fig. 10b – for data sets with 

no extrapolation points. The same approximation for only 1 specimen tested at different R is 

shown in Fig. 14a, and for only 2 specimens tested at different R - in Fig. 14b.  

 

Figure 14. Approximation of da/dN=f(K) data in different variants with the NASGRO equation, LSM 

modified according to formula (32a) 

Exemplary results of approximation for different test data (with slightly smaller scatter 

between individual da/dN-f(K) curves) is presented in Fig. 14.  

Favorable effects of the approximation (in comparison with results showed in Fig. 1) after 

implementation of the modified LSM criterion can easily be seen. They tend to represent all 

the test data, within the whole range of data variability, independently of their absolute 

values, independently of the number of described curves – 3 (Fig. 14a), 6 (Fig. 14b), 9 

(Fig. 10b). This effect has been achieved only by modifying the LSM criterion, since the idea 

underlying the approximation method for all the presented graphs is identical – the 

minimum of the sum of squared deviations between the approximated test data and the 

approximating values. 
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3.4. Regression of dependences in the NASGRO equation 

Approximation of curves da/dN-K substantially depends on  preset values of parameters Kc 

and Kth. Hence, it is very important whether they can be determined on the grounds of the 

test data only (if they cover the whole range of the curve, i.e. 10-7 through  10-2 mm/cycle, 

which is not always easy to reach), or whether they need any other method/way to be 

determined, e.g. formula (2), functional dependences of the type Kth = f(R) and Kc = f(R), or 

the above-mentioned extrapolation. The above-discussed results of extrapolation 

correspond to the case when both the parameters show constant values for all the 

approximated curves. The plots for the test data show, however, that they depend on the  

stress ratio R – for each of nine experimentally gained curves parameters Kth,i and Kc,i can 

be estimated and the data gained can then be used to determine dependences Kth = f(R) and 

Kc = f(R), including coefficients for equation (2).  

Formulae (2) and (2a) are special cases of a general formula of the following form: 
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Having re-arranged this formula, the following is arrived at: 
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and then: 
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which can be described with the linear-regression equation as: 
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and the corrected value of the threshold range of the stress intensity factor is: 
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Having found coefficients m0, m1, m2 of the regression equation (36) we can calculate 

coefficients of equation (33): 

 0
2 1 0,   and 10m

thC m C m K     (37) 

at the same time, value of the  Kth  function is calculated from the regression equation by 

formula:  
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So, if we have data sets (Ri, Kth,i , ai) – in the case under analysis there are 9 such sets – we 

automatically can find coefficients by formula (37), thus reducing the number of coefficients 

of the NASGRO equation to approximate the test data, which we are looking for. 

Since there is no similar dependence for the Kc, parameter, the relationship Kc = f(R) can be 

found in the same way (i.e. using the test data) from the ordinary linear regression  Kc = mo+ 

m1R and also use it to describe 9 experimentally gained curves.  

Functions Kth = f(R) and Kc = f(R) found in this way with the test data applied are shown in 

Fig. 15, whereas Fig. 16  illustrates effect of approximating curves da/dN-K in the case given 

consideration. 

 

Figure 15. Functions a) Kth = f(R) by formula (33) and b) Kc = f(R) - regression 

Evident is good fit of analytical description in both the critical and threshold ranges, 

whereas worse - in the middle section. The ad hoc accepted linear regression for the 

experimentally found relationship Kc = f(R) not too precisely describes this relationship 

(straight line in Fig. 15, correlation coefficient reaches in this case the 0.3 level). Optimisation 

of values of the Kc coefficient for R = 0.1; 0.5 and 0.8 (here denoted as Kc*)  with the LSM 

method to reach the minimum deviation error (32) results in the da/dN-K curves 

(a) (b)
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approximating courses as in Fig. 16b. The curve illustrating the  Kc* = f(R) dependence is in 

this case a broken line shown in Fig. 15b, which – easy to see – considerably strays away 

from the linear dependence. This proves that, among other things, one cannot ad hoc impose 

any form upon it. It can be assumed that for a larger number of experimentally gained 

curves, including the wider scope of values of R, the suggested method of determining the 

relationship Kc = f(R) will offer better results that better correspond to the actual dependence 

and will remain useful for approximating the da/dN-K curves. The broken-line curve, as 

that resulting from the optimisation process, may be described with, e.g. a straight line or 

a quadratic equation (as in Fig. 17) and used as a component of the theoretical (analytical) 

description of the test data with the NASGRO equation. In the case of a straight line, the 

correlation coefficient increases up to approx. 0.78 for the polynomial. Obviously, with three 

points  Kc* the correlation is complete, but if the scope of values of the asymmetry coefficient 

was greater, i.e. there would be more experimentally gained curves of different values of R 

(then the number of these points would increase), one should also expect high correlation 

for the relationship Kc = f(R). 

 

 

 
 

Figure 16. Approximation of curves da/dN-K with the NASGRO equation, modified by formula (32) 

LSM, with extrapolated mapping points according to the MRCM: a) with regression applied as in Fig. 

15, b) with optimisation for values of coefficients Kc* 
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Figure 17. Linear Kc = f(R) and polynomial Kc* = f(R) functions to optimise theoretical (analytical) 

description of curves da/dN-K 

 

 

Figure 18. Curves da/dN-K with coefficients Kth and Kc  individually fitted to each experimentally 

gained curve 
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If we use values of Kth i Kc coefficients in forms determined not with the above-mentioned 

regression and optimisation methods, but as ones individually found for each of the 

experimentally gained curves (Kth,ind i Kc,ind), the theoretical (analytical) description by 

means of the NASGRO equation - with the above-described methodology of finding other 

coefficients applied -  should give even better result, see Fig. 18.  

This variant of the theoretical (analytical) description is of only little practical importance, 

however, it shows that both the above-described methodology of analysis and the way of 

finding coefficients of the NASGRO equation result in correct description of experimentally 

found curves of fatigue-crack propagation and may be applied to this and similar categories 

of research issues. 

4. Conclusion 

Application of the Least Square Method in its classical form to determine coefficients of the 

NASGRO equation that describes fatigue crack propagation curve is ineffective, since data 

of the approximated function da/dN=f(K) take values from the range of a few orders of 

magnitude, measuring points of the curves are irregular and in different numbers 

distributed in the graph (in threshold, stable-increase, and critical ranges), and subject to 

approximation are also several curves grouped in several sets (for different values of R).  

The paper offers some techniques to modify the LSM criterion to significantly improve 

approximation results. These include:  

- modification of the approximation-method criterion,  

- smoothing of the experimentally gained curves to eliminate slight random disturbances 

resulting from, e.g. data recording process,  

- different variants of calculating the derivative da/dN, 

- regular mapping of the experimentally gained curves in the form of selected points,  

- regression for points that represent (map) the experimentally gained curves to find 

coefficients of the crack growth equation,  

- regression or optimisation of the description of partial dependences of the NASGRO 

equation as based on experimental data.   

Values of parameters to be found as well as quantitative and qualitative results of 

performed approximations and theoretical (analytical) description are affected by, among 

other things, the number of tests that produce experimental data, and configurations 

thereof.  

They provide a wider or narrower range of variability of parameters of significance that 

affect the courses of curves da/dN-K, and also enable determination of accuracy and 

repeatability of obtained results. Reliability of the theoretical (analytical) description 

increases and the description itself better characterises properties of the material under 

examination if there are tens of curves gained experimentally from tests conducted for many 

(e.g. 5, 7, or 9) levels of the stress ratio R , for a wider range thereof, e.g. 0.2 through 0.9. 



 

Applied Fracture Mechanics 226 

The proposed modification of the LSM criterion offers better fit of results of  the test data 

approximation (unachievable with the classical LSM method). These effects are as follows: 

- the provision of equal “weights” of each of the test data points in the total sum that 

determines this criterion (i.e. the sum of differences between approximated and 

approximating values) – independently of the magnitude of difference between values 

of data subject to approximation and that of difference between the approximated and 

approximating values, 

- high effectiveness while approximating  single, several, as well as a great number of 

sets/curves of test data, 

- it becomes even more precise as the test data from the same (research-testing) groups 

show smaller scatter, 

- may be used in other analyses of the same type related with test data regression, since it 

offers an all-purpose approach not related to propagation curves  da/dN-K. 
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