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1. Introduction

The development of networks of low-cost, low-power, multi-functional devices has received
increasing attention over the last ten years. These devices are small in size and able to
process data, communicate with each other, typically over a radio channel, and even sense.
Each device particpates in a self-configuring infrastureless network connected by wireless,
called ad-hoc network. Since most of the individual node in ad-hoc networks is inherently
resource constrained: limited processing speed, storage capacity, and communication range
and energy, it is impossible to achieve application requirements by individual device
or unattached devices. A number of devices within a network have to combine as an
aggregate collaborating to achieve application requirements. However, such massive devices
cooperation must be achieved by the necessary organizational structures without requiring
human intervention.

An ad-hoc network is able to arrange itself to achieve the application requirements according
to the present situations. Hence, wireless communication has to be the primary means to
enable information exchange among these devices. In a wired network like the Internet,
each router connects to a specific set of other routers, forming a routing graph. In ad-hoc
networks, each device has a radio that provides a set of communication links to nearby
devices. Multi-hop communication is expected to overcome some of the signal propagation
effects experienced in long distance wireless communication.

In a wide array of disciplines, an ad-hoc network can be intuitively casted into the format of
a graph which is a set of vertex and a set of edges that might connect pairs of the nodes. The
ad-hoc network consists of devices (vertex or nodes) and the communication links (edges)
between them. Graphs are seemingly ubiquitous in ad-hoc network field. The problems of
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designing multi-hop routing, broadcasting and organization algorithms for ad-hoc networks
have received great considerable attention [22][23][24][25][26][27]. All are tightly coupled to
the problem of the distinguished graphs. In this chapter, we discuss the routing, broadcasting
and organization algorithms and protocols that can be formulated by three types of graph.

- Connected Dominating Set: Connected dominating set is useful in the computation
of routing, broadcasting and organization for mobile ad-hoc networks. In mobile
ad-hoc networks, each device is free to move independently, and therefore change its
communications links to other devices frequently. A small connected dominating set is
used as a backbone for communications. Nodes that are not in the connected dominating
set communicate by passing messages through neighbors that are in this set.

- Disjoint Sets: Disjoint sets are used in the implementation of energy efficent routing and
organization, e.g., scheduling nodesąő status between running and sleeping, as well as
in the aspect of fault tolerant routing. In mobile ad-hoc networks, several disjoint sets
every pair of which have no nodes in common can gurantee multiple choices of message
passing paths and nodes organization.

- Minimum Spanning Subgraph and Steiner Minimum Tree: Mininum spanning subgraph
and Steiner minimum tree represent a spanning subgraph or a tree with the lowest total
costs. The generation of subgraphs and Steiner trees has applications in mobile ad-hoc
routing and organization design. Several varieties of the minimum spanning subgraph
problem and steiner tree problem are proposed for the sake of describing the issues on the
fault tolerant, topology control and constrained routing protocol design in mobile ad-hoc
networks.

Most of these problem are either NP-hard. Several approximate and near-approximate
algorithms are proposed to solve these issues based on the combinatorial optimization and
graph theory. In real mobile ad-hoc networks, there are some restricted conditions to be
achieved in various applications, which will make the problems more difficult to solve. In
this chapter, we attempt to give a preliminary review of the design and implementation of
the heursitic or approxiamte algorithms on routing, broadcasting and organization by using
the combinatorial optimization and graph theory. Note that we only focused on the three
problems, all of which were our previous research works. The interested reader is also
referred to some excellent works on other topics of combinatorial optimization and graph
theory[20][21].

The organization of this chapter is as follows. In Section 2, we give some basic definitions
of graph theory that appear in ad-hoc network formulation. We also give the notations
used throughout this chapter. In Section 3, we provide the main ideas and approaches of
formulating the ad-hoc network issues into several versions of connected dominating set
problems. We present our previous research works of proposed algorithms and results
related to graph theory. Then in Section 4, we consider the ad-hoc network issues which
can be formulated to find disjoint sets. We also present a method of converting disjoint sets
issues to network flow and combinatorial optimization problems. In Section 5, we present the
minimum spanning subgraph and minimum steiner tree problem applied in fault-tolerant
algorithm design. Finally, Section 6 concludes this chapter.
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2. Basic definitions and notations

An ad-hoc network topology could be represented by a graph G that is an ordered triple
(V(G), E(G); C(G)) or G(V, E; C) consisting of a nonempty set V of vertices v1, v2, ..., vn,
and a set E of edges, and C is the set of weights on the nodes or the edges. Generally, an
edge denotes that the two nodes belong to it can communicate. Therefore,E = {(vi, vj) :
dist(vi, vj) ≤ ri}, where dist is the Euclidean distance function and ri represents the
transmission range of node i. The edge (vi, vj) denotes vi is able to communicate with
vj. An unweighted graph G is also presented as (V(G), E(G)) or G(V, E).

The graph G could be a directed graph if the network is heterogeneous that nodes have
various transmission ranges, or be an undirected graph if any two nodes can communicate
with each other where an edge (vi, vj) indicates that there must be an edge (vi, vj) existing
in E. The weight on a node or an edge could denote the metrics of the network. In a
power aware application, the weight might be the remaining power of a node. It might be a
vector containing transmission speed and power consumption on an edge for the application
that aims to find an energy-efficient delay-constraint routing path. In some applications, the
weights on all nodes or edges are the same, e.g, in a fault tolerant network that needs achieve
no requirement except finding routing paths between two nodes.

A graph H is a subgraph of G (written H ⊆ G) if V(H) ⊆ V(G) and E(H) ⊆ E(G). An
induced subgraph of G, G[V′], contains a vertex set V′, where V′ is a nonempty subset of
V(G), and an edge set E′, where E′ ⊆ E(G) that have both ends in V′. The induced subgraph
G[V(G)\V′] is denoted by G − V′. If V′ = {v}, we write G − v. Similarly, an edge-induced
subgraph of G, G[E′], contains a vertex set V′ and an edge set E′, where E′ is a nonempty
subset of E(G) and ends of edges in E′ belong to V′. The spanning subgraph of G with
edge set E(G)\E′ is written simply as G − E′. The graph obtained from G by adding a set of
edges E′ is denoted by G + E′. If E′ = {e}, we write G − e and G + e instead of G − {e} and
G + {e}.

Let G1 and G2 be subgraphs of G. G1 and G2 are disjoint if they have no vertex in common,
and edge-disjoint if they have no edge in common. The union G1 ∪ G2 of G1 and G − 2 is the
subgraph with the vertex set V(G1) ∪ V(G2) and the edge set E(G1) ∪ E(G2); if G1 and G2

are disjoint, their union can be also denoted by G1 + G2.

The degree of a vertex v in G, d(v), is the number of edges of G incident with v. δ(G) and
∆(G) represent the minimum and the maximum degrees of vertices of G respectively.

A path in G is a finit non-null sequence P = v0e1v1e2v2...ekvk, whose terms are alternately
vertices and edges, such that, for l ≤ i ≤ k, the ends of ei are vi−1 and vi. In addition, the
vertices v0, v1, ..., vk are distinct, P is called a path. Usually, denote the section vivi+1vj of the
path P = v0v1...vk by P[vi, vj]. Two vertices u and v of G are connected if there is a P[u, v] in
G. u and v are directly connected or adjacent if (u, v) ∈ E(G). Connection is an equivalence
relation on the vertex set V(G). Therefore, there is a partition of V(G) into nonempty subsets
V1, V2, ..., Vk such that every pair of the vertices u and v is connected if and only if both u and
v belong to the same set Vi. The subgraphs G[V1], G[V2], ..., G[Vk] are called the components
of G. If G has exactly one component, G is connected; otherwise, G is disconnected.

A flow network is a directed graph G(V, E; C, f , s, t), where every edge (u, v) ∈ E has a
non-negative capacity c(u, v), f is a flow function f : V × V → ℜ+, s is a source and t is a
sink. A flow network must contain the properties for all nodes u and v: (1) The flow along an
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edge (u, v) cannot exceed its capacity f (u, v) ≤ c(u, v); (2) The flow to a node is zero, except
for the source s, which produces flow, and the sink, which consumes flow, ∑

w∈V
f (u, w) = 0,

where u 6= s or t.

3. Connected Dominating Set

A Connected Dominating Set (CDS) of an ad-hoc network is a subset of nodes in the
network, where the nodes in CDS are responsible for maintaining routing information, and
other nodes have to rely on these nodes in CDS for transmission. Exploring CDS problem
is frequently used to model the problem of computing a minimum number on the set.
CDS plays a very important role in routing, broadcasting and connectivity management
in wireless ad-hoc and sensor networks where there is no pre-defined physical backbone
infrastructure to support routing and topology control that makes routing-related tasks or
hierarchical organizations are very complicated.

The CDS problem can be formulated as follows: a graph G(V, E), a Dominating Set(DS) ia a
subset U ⊆ V such that for every vertex v ∈ V, either v ∈ V, or there exists an edge (u, v) ∈ E
and u ∈ U. If the induced subgraph G[U] is connected, then U is called a CDS. The CDS
problem is to find a CDS with minimum size. In this chapter, we will give three classes of
this problem. Minimum Connected Dominating Set, which is the complementary problem of
all CDS related problems, finds a set with minimum number of nodes to construct a virtual
backbone or elect cluster heads in practice. Minimum Weighted Connected Dominating
Set, where the graph is weighted on node that represents energy, cost, or neighbor size in
real applications, finds the minimum sum of the weighted nodes to achieve better power
consumption requirement. Fault Tolerant Connected Dominating Set finds a minimum set
of nodes such that it remains a connected dominating set after any part of nodes leave, to
guarantee the stability and robust of a backbone or a cluster-based network upon the node
failure that occurs frequently in ad-hoc networks.

3.1. Minimum Connected Dominating Set

It is well-known that to find a Minimum Connected Dominating Set (MCDS) in a general
graph is NP-complete. In wireless ad-hoc and sensor networks, if all nodes are homogeneous,
Unit Disk Graph (UDG) is used to represent their geometrical structures. A UDG can
be formally defined as follows: Given an undirected graph G(V, E), each vertex v has a
transmission range with radius 1. Two vertices u and v adjacent if their Euclidean distance is
less than or equal to 1. Clark et al. [1] show that computing MCDS is also NP-hard in UDG,
and a lot of approximation algorithms for MCDS can be found in the literature.

To find an approximated MCDS, the most popular method is as follows. Firstly, find a
maximal independent set(MIS) in given graphs. Given a graph G(V, E), an Independent
Set(IS) is a subset I ⊂ V such that for any two vertex u, v ∈ I, they are not adjacent, say,
(u, v) /∈ E. An IS is called a Maximal Independent Set if any other arbitrary vertex is added
to this set, the new set will not be an IS any more. Compared with CDS, MIS is much easier
to be constructed. Usually, we use mis(G) to denote the size of the constructed MIS. The
second step is to make this MIS connected. We donote the number of the added vertices in
this step by conn(G). Let mcds(G) be the size of minimum CDS. Then, the approximation
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ratio for such algorithm is

mis(G) + conn(G)

mcds(G)
=

mis(G)

mcds(G)
+

conn(G)

mcds(G)

3.1.1. CDS in UDG

For the connecting part, the best-known algorithm is a Steiner tree based algorithm with
conn(G) ≤ 3mcds(G) till now[7]. On the other hand, for selecting MIS part, there exist
many results. Let M be the set of MCDS. Based on the geometry structure on UDG, if we
increaseV\M from 1 to 0.5, then we can construct a new graph G′. It is easy to see that all
the disks in V are located insides the area formed by M. Then we can get a conclusion that
the sum of maximum area for MIS should be less than the area of MCDS, which is a rough

bound for
mis(G)

mcds(G)
.The following theorem gives this bound.

Theorem1.[2] The rough bound for mis(G) and mcds(G) is

mis(G) ≤ 3.748mcds(G) + 5.252

Next, because the above result is rough, we analyzed the relationship between mis(G) and
mcds(G) more specifically. Firstly, we used Voronoi Division to divide the whole area into
some small Voronoi cell. The following Fig.1. gives an example. We also analyzed the area
for each kind of polygons under densest situations. Then we can have a better bound for

mis(G)
mcds(G)

.

Figure 1. An example of Voronoi cell.

Theorem2.[2]mis(G) ≤ 3.453mcds(G) + 4.839

Finally, we apply graph theory to consider the problem. By modifying the Voronoi division
3-regularization and combining classical Euler’s Formula, we obtain the following result.

Theorem3.[2]mis(G) ≤ 3.399mcds(G) + 0.0790k + 4.874, where k is the number of the holes in the
whole area.
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By these theoritical results, if we use two-step method to find a CDS, the size of the CDS is at
most 6.4 times optimal solution. Now, we go back to Theorem 3, it has a parameter k. Then,
the future work of this problem is to decide the parameter k. There exists litter rusults about
it and the following theorem gives a basic solution.

Theorem4.[2]For any unit disk graph G, let MCDS be a minimum connected dominating set. To
form a hole, there need at least 6 connect vertices in MCDS.

3.1.2. CDS in UBG

UDG is widely used to abstract the homogeneous wireless networks. However, sometimes,
this assumption is far from the reality. In this case, to abstract homogeneous wireless
networks in three-dimensional space, Unit Ball Graphs (UBGs) model is used. Since UDGs
are special instances of UBGs in which the altitude of every node is the same, every NP-hard
problem in UDGs is also NP-hard in UBGs. Naturally, MCDS in a UBGs is still NP-hard.

Like the CDS problem on UDGs, we use two-step method to find an approximated MCDS.

The first step is to construct a MIS and to give a bound for
mis(G)

mcds(G)
on UBGs. Recall the

famous Gregory-Newton Problem concerning about kissing number, the kissing number
k(S3) = 12, that is, there all at most 12 independent unit balls that can simultaneously touch
the surface of one unit ball. Based this result, there is a trivial bound mis(G) ≤ 11mcds(G) +
1. In order to get a better result, we consider the problem: how many independent unit
balls can simultaneously touch the surface of two adjacent unit balls. Through some accurate
computation, we obtain the following lemma.

Lemma 1.The number of independent nodes in the union of two adjacent unit balls is at most 22.

Since the result in Lemma 1 is better than kissing number, we can improve the above ratio.

Theorem 5.[5]mis(G) ≤ 10.917mcds(G) + 1.083

Let M be a MIS in a UBG such that for any partition (M1, M2) of M, dist(M1, M2) = 2. Next,
we present two differernt greedy algorithms to connect M and give the approximation ratios.

Algorithm 1.[10]Greedy Algorithm for CDS on UBGs.
1: H = G[M], that is, H is the subgraph of G induced by M;
2: WHILE H is disconnected DO

3: Choose the vertex v which connected the maximum component of H;
4: M = M ∪ v and H = G[M];
5:END WHILE

6:RETURN M;

Theorem 6.[10]The Algorithm 1 outputs a CDS in the unit ball graph G. And the size is up-bounded
by (13 + ln10)opt + 1, where opt is the size of MCDS.

Before introducing the Algorithm 2, some useful notations are presented. For any vertex x,
let N(x) be the set of vertices adjacent to x. For any vertex set U, let N(U) = (∪x∈U N(x))\U
and Mv,U be the set of vertices which is adjacent to v and belong to M\U.

Algorithm 2.[5]CDS Computation Algorithm on UBGs
1: U = r, and M′ = M − r
2: WHILE M′ 6= ∅ DO
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3: Choose the vertex v such that Mv,U = max{|Mx,U | |x ∈ N(U)};
4: U = U ∪ v ∪ Mv,U and M′ = M′\Mv,U ;
5:END WHILE

6:RETURN U;

Theorem 7.[5]The Algorithm 2 outputs a CDS in the unit ball graph G. And |U| ≤ 14.937opt +
1.083.

Using above two algorithms, we can get an approximated CDS in any UBG G with linear
performance.

3.1.3. Multi-hop CDS in UDG

If we further consider the architecture of wireless networks, we can separate the network
into many clusters and the selected CDS are cluster heads and gateways. Each node will
send message to its local cluster head, and information is exchanged among those cluster
heads through more steady and responsible channels, which makes the whole network more
reliable.

For a CDS,each cluster is really small, including nodes only one hop away from the
corresponding cluster head. Therefore, some researchers enlarged the size of clusters, such
that the super cluster head can be at most d-hop away from the nodes within its dominating
range. The set of such super cluster head is called d-CDS. Given a graph G, an d-CDS is a
subset U ⊂ Vsuch that for any vertex v ∈ V\U, there exists a path form vto some vertex of
U with length at most d. Furthermore, the subgraph induced by U is connected. d-hop CDS
problem is also NP-complete for general graphs and UDGs. The Fig.2. gives an example for
2-CDS (TCDS).

 black and gray vertices form a   of 
Figure 2. The black and gray vertices form a TCDS of G with three subgraphs C1,C2, C3.

As the CDS problem, approximation algorithms for d-CDS problem usually divide into two
steps. The first step, find a d-DS (usually d-MIS) in the graph. The second step, connect the
d-DS into d-CDS. A TCDS algorithm can be generalized to d-CDS algorithm directly. Table 1
shows the local variables presented in Algorithm 3.

Then, we presented a distributed approximation algorithm forTCDS problem.
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Name Explanation

level Number of hops from root to this node. The rootąŕs level=0.

id The ordering number of this node.

rank The list of neighbors within 2 hops ordered by (level, id).

color Totally for colors, black, brown, grey and white.

blacklist The path from one black node to another black node which
actives it.

Table 1. Local Variables in Algorithm 3.

Algorithm 3.[3]4-Coloring Algorithm for TCDS.
Phase 1

1. Choose an arbitrary root r, set r’s level as 0 and build a spanning tree T for r, such that each node
will get its level information.
2. Each node exchange information to get a rank list, which records its neighbors within 2-hops.
Phase 2

1. Root r colors itself as black, and broadcasts a black message with its id.
2. When a node receives a black message, it broadcasts a brown message with path as (id1, id2), where
id1 is the sender’s id and id2 is the receiver’s id. Besides, if this node is white or grey, mark itself as
brown.
3. When a node receives a brown message with (id1, id2), it broadcasts a grey message with a path as
(id1, id2, id3), where id3 is the receiver’s id. If it is a white node, mark itself as grey.
4. When a node receives a grey message, if the node has been colored before, it will transfer this GREY
message as T-grey message with sender’s id. If the node is white, it gives labels to its colored neighbors
in rank list. After update, if every of its lower-level neighbors have been colored already, record path
as blacklist, mark itself as black, and broadcast a black message with its id.
5. When a white node receives a T-grey message with an id, it gives label to corresponding neighbor
with same id in rank list as colored neighbor.
6. If a leaf node has been colored, it transmits a colored message to its parent. If a node has been colored
and it receives colored message from all its children, it sends a colored message to its parent. Phase 2
will terminate until the root receives colored messages from all its children.
Phase 3

1. All black nodes join themselves into TCDS list, and send Join message with blacklist.
2. When receive a Join message, if a node’s id is in blacklist, mark itself into TCDS set, and transmit
this message until it reaches the black node with the first id in this list. The algorithm will terminate
when all the nodes in blacklist has been inserted into TCDS set.

Using the same method in CDS problem on UDG to analysis the algorithm, we can obtain
the approximation ratio of Algorithm 3.

Theorem 8.[3]The Algorithm 3 outputs a TCDS in the UDG G with time complexity O(n) and
message complexity O(nlgn). Furthermore, the result from Phase 2 has size at most 5.807opt +
17.152, and Algorithm 3 has approximation ratio 17.421.

Algorithm 3 can be easily modified into a distributed algorithm for d-hop CDS problem on
UDG with approximation ratio 0.225r3 + 1.337r2 + 0.585r, where r = d + 0.5. Hence, for any
UDG and any fixed parameter d, we can get a d-hop CDS with constant approximation ratio.
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3.2. Node-Weighted Connected Dominating Set

The Node-Weighted Connected Dominating Set (NWCDS) problem is a generalization of the
CDS problem. Given a graph G(V, E) with node weight function f : V → R+, the NWCDS
problem is to find a CDS of G such that its total weight is minimum. For convenience, the
weight function f such that f (V) ≥ 1 is normalized for any vertex v in G. If the weights on
all vertices are the same, the NWCDS problems are equal to the CDS problem. Hence, the
NWCDS problems are also NP-complete on general graphs and UDGs.

To deal with this problem, we firstly considered the Min-Weight Chromatic Disk Cover
(MWCDC) problem and used dynamic program to obtain a polynomial algorithm for
MWCDC. Then, comparing the two problems and studying the relationship between them,
we had the Lemma 2.

Lemma 2.[11]If there exists an ρ-approximation algorithm for the MWCDC and for any fixed ε, there
is a polynomial (4ρ + ε)-approximation algorithm for the NWDS.

Based on Lemma 2 and the exact algorithm for MWCDC, we can get a (4 +
ε)-approximation algorithm for NWDS. Then, using the (1 + ε) -approximation algorithm
for the Node-Weighted Steiner tree (WST) problem to connect the NWDS, we can obtain an
approximation algorithm for NWCDS on UDG.

Theorem 9.[11]There is a (5 + ε)-approximation algorithm for the MWCDS by using a
node-weighted Steiner tree to interconnect all nodes of the MWDS.

3.3. Fault-Tolerant Connected Dominating Set

In wireless ad-hoc and sensor networks, nodes are mobile and thus the topology of such
networks can be changed frequently. As a result, a virtual backbone (VB) induced by aCDS
can be broken easily and thus it should be re-computed repeatedly. Hence, to construct
a fault-tolerance VB is important. Here, a k-connected m-dominating set is introduced as
a generalized abstraction of a fault tolerant VB. Given a graph G(V, E), a subset U ⊂ V
is a m-dominating set (m-DS) if for any vertex v ∈ V\U,v has at least m neighbors in U .
Furthermore, if U is k-connected, we call U is a k-connected m-dominating set ((k, m)-CDS).

To obtain a (k, m)-CDS, the main idea is as follows. The first step is to get a basic CDS, that
is, (1, 1)-CDS. Next, add m− 1 MISs in the rest graph to make the (1, 1)-CDS into (1, m)-CDS.
Finally, by adding some new vertices to increase the connectivity of the CDS, the (k, m)-CDS
is obtained. The first and second steps are easy to complete, but the final step is very hard
for k ≥ 3. When k = 2, there are some approximation algorithms, and the best one is given
by Shang et. al. [8] with approximation ratio 5 + 25

m for 2 ≤ m ≤ 5 and 11 for m > 5.

In the following, we introduce a (3, m)-CDS approximation algorithm. The key idea about
this algorithm is to become the "bad-points" in the (2, m)-CDS to good. Given a 2-connected
graph G, a vertex v is called a "good-point" if G − v is also 2-connected; otherwise, v is called
a "bad-point". Based on above definition, we can get Lemma 3.

Lemma 3.[4]A 2-connected graph without any bad-point is 3-connected.

Algorithm 4.[4]Algorithm for (3, 3)-CDS on UDGs.
1: Computer a C2,3, and Set Y = C2,3;
2: WHILE Y has bad-points DO
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3: Choose an arbitrary bad-point v and Set B = Y;
4: Construct the leaf-block tree T of B − {v} with blocks {B1, B2, ..., Bs} and cut-vertices
{c1, c2, ..., ct};
5: WHILE there exist a non cut-vertex w in some block Bi and a cut-vertex cj such that (w, cj) is a
saparetor of Y DO

6: Set B = Bi and v = cj;
7: Construct the leaf-block tree T of B − {v} with blocks {B1, B2, ..., Bs} and cut-vertices
{c1, c2, ..., ct};
8: END WHILE

9: Find a path H to make a bad-point cj ∈ {c1, c2, ..., ct} to be a good-point such that all other new
vertices of H are good;
10: Set Y = Y ∪ H;
11: END WHILE

12: RETURN Y;

Theorem 10.[4]The Algorithm 4 output a (3, 3)-CDS with approximation ratio 520/3.

Easy to see, if we start the Algorithm 4 with a C2,m with m ≥ 3, the algorithm will return a
(3, m)-CDS. And we can get the following result.

Theorem 11.[4]There exists a constant ratio approximation algorithm for (3, m)-CDS problem in
UDG for any m.

As above, given a UDG and an integer m, we can get a (3, m)-CDS as a fault-tolerance VB
with constant ratio.

4. Disjoint Sets

Disjoint Sets (DS) of an ad-hoc network is a collection of disjoint sets of nodes that each set
is capable of achieving application requirements. For instance in a wireless sensor network
where coverage is an important demand, the Connect Disjoint Set divides the nodes into a
number of disjoint sets, such that every set completely covers all the target points. Connected
Disjoint Set problem is frequently used to formulate the problem into finding a maximum
number of sets.

DS problem plays an important role in ad-hoc networks, especially in wireless sensor
networks. Disjoint Set Covers (DSC) problem is one of the classical problems that aims
to determine a maximum number of disjoint covers, where every cover is a set of sensors
which together monitor all the target points. It can be formulated as a graph, and solved
by combinatorial optimization method-mixed integer programming. Besides, we studied
further to find maximum disjoint sets for maintaining not only coverage but also connectivity.
This class of Disjoint Set problem could be used for node scheduling methods to conserve
energy, topology control methods to tolerant failure, and routing protocol design.

The disjoint set covers (DSC) problem was addressed by M. Cardei and D.Z. Du [12] in
order to solve the problem of energy efficiency for surveillance of a set of targets. Let T =
{t1, t2, ..., tm} be a set of m targets. Each node covers a subset of targets. A collection of
nodes S = {s1, s2, ..., sn} are defined as that each set Si = {ti1

, ti2
, ..., til

} if node Si covers
targets ti1

, ti2
, ..., til

. DSC problem aims to find a maximum number of disjoint sets of nodes,
where every set is able to cover all the targets. They presented a heuristic algorithm based on
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the flow network since the DSC problem was proved NP-complete. First, a bipartite directed
graph G(V, E) is constructed with the vertex set V = S ∪ T and sitij

∈ E with a capacity 1 if
and only if tij

∈ si. Then, draw k copies of G, namely G1, G2, ..., Gk, where k is the maximum
number of disjoint sets. A vertex si in G, is presented S1i, S2i, ..., ski in G1, G2, ..., Gk. A source
node S n the flow network is constructed. For each si in S, a vertex soi is created to connect
s with an edge with the capacity equals to the degree of si in G. Also, edges connecting soi
with sji are constructed with the capacity equals to the degree of si in G. A vertex Xi is is
created to connect every vertex tij

in Gi with a capacity 1. Two ends Y1 and Y2 are created
in the flow network. Each vertex Xi is connected to Y2 with a capacity m. Every vertex tij

is connected to Y1 with a capacity n. The DSC problem turns to a maximum-flow problem
that is to maximize the flow received in Y2. Finally, the DSC problem was formulated and
computed by using the mixed integer programming (MIP) heuristic.

We considered not only the coverage optimization, but also the connectivity issue.
We proposed the Multiple Disjoint Sets with Maintaining Coverage and Connectivity
(MDS-MCC) problem [13] that given a wireless network with w sinks (or base stations) and n
nodes each of which has its respective transmission range and sensing range, and m targets
in territory, determine a maximum number of disjoint sets of nodes such that (1) all nodes of
each set together cover the whole m targets; (2) for every node in each set, it is connected to
a sink via nodes within the same set.

We presented two graph-based models to formulate the MDS-MCC problem.

Model 1:Given integers n, m and w, a directed graph G = (V, E; f ), where R = {vn+1, ..., vn+w ⊂
V} is a set of sinks, and T = {t1, t2, ..., tm} is a set of targets. Find the maximum integer k such that
there exist pairwise disjoint subgraphs H1, H2, ..., Hk of G\R, and for each supergraph H′

i (V
′
i , E′

i) of
Hi, where V′

i = V(Hi)∪ R and E′
i = {(vi, vj) : (vi, vj) ∈ E, vi, vj ∈ V′

i }, satisfying (1) f (V′
i ) = T;

(2) for each vjinV(Hi), vj is connected to a vertex u ∈ R. f (v) is a labeling function that denotes the
set of targets node covers.

f (vi) =

{

{tj : tj ∈ si}, i ≤ n

∅, i > n

And f (V′) = ∪v∈V ′ f (v) where V′ ⊆ V, f (H) = ∪v∈V(H) f (v) where H ⊆ G.

Model 2: Given integers n, m and w, a directed graph G = (V, E), where R = {vn+1, ..., vn+w} ⊂
V is a set of sinks, and T = {t1, t2, ..., tm} is a set of targets. Find the maximum integer k such
that there exist pairwise disjoint subgraphs H1, H2, ..., Hk of G\(R ∪ T), and for each tj ∈ T, tj is

connected to u in each supergraph H′
i (V

′
i , E′

i) of Hi, where V′
i = V(Hi) ∪ R ∪ T, E′

i = {(vi, vj) :

(vi, vj) ∈ E, vi, vj ∈ V′
i } and u ∈ R.

All sinks can be reduced to only one node r called root by using Lemma 4. Therefore, given
either the graph G = (V, E; f ) based on Model 1 or the graph G = (V, E) based on Model 2,
the corresponding reduced graph can be constructed as Gr = (Vr, Er; f , r) or Gr = (Vr, Er; r)
where Vr = {v1, v2, ..., vn, r}, the first n vertex are the nodes, and r is root. There is no more
changes expect that an edge in E from a node to a sink becomes an edge in Er from the node
to the root. If a node is connected to more than one sink, only one edge is added in Gr.

Lemma 4.[13]A node is connected to a sink if and only if it is connected to the root in the
corresponding reduced graph.
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(a) Original Network Topology Graph G (b) Reduced Graph Gr of G

(c) Constructed Graph based on Model 1 (d) Constructed Graph based on Model 2

Figure 3. Example of original network topology (a) and its corresponding reduced graph (b). (c) and (d) shows the constructed

graph based on the Model 1 and Model 2 respectively.

We found that MDS-MCC problem is NP-complete. Two algorithms, heuristic and network
flow were proposed to solve MDS-MCC based on the two models. Heuristic algorithm was
designed to find the maximal number of disjoint subgraphs of G based on Model 1. The
algorithm first initializes that H = ∅, which presents the set of vertex having been found.
Then the algorithm finds out all the paths whose ends belongs to H and put the vertex in
these paths into H until H covers all of the targets. The algorithm deletes the redundant
nodes from H when H still covers all of the targets after delete it. The algorithm finds one
subgraph H and repeats to find other subgraphs.

Algorithm 5.[15]Heuristic Algorithm for MDS-MCC.
1:Construct reduced graph Gr = (Vr, Er; f , r) from G = (V, E; f ) and T;
2:k=0;
3:WHILEstill has the subgraph of G that covers all the targets DO

4: k = k + 1;
5: Hk = {r};
6: WHILE | f (Hk)| łm DO

7: PS = {v0v1...ve : ve ∈ Hk, vi ∈ Vr − Hk, f (vj) ⊆ f (Hk), f (v0) /∈ f (HK)};
8: Select one path P ∈ PS;
9: Hk = P ∪ Hk;
10: END WHILE

11: Delete redundant nodes from Hk;
12: Gr = Gr\Hk;
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13:END WHILE

14:RETURN H1, H2, ..., Hk

In Model 2, the problem is converted to find the maximal k disjoint sets such that there exists
a path from every target node t to the root node r for each set. For any two paths from
a target node t to the root r belonging to any two disjoint sets, the two paths are disjoint.
Therefore, there are k pairwise disjoint paths from t to r.

The network flow algorithm first finds a set of paths Pi = {p1
i , p2

i , p3
i , ..., pi

i, } for every target
node ti to r such that any two paths are disjoint. We converted the problem of obtaining
the related paths with maximum li from ti to r to the maximum flow problem like DSC. We
presented a method to construct the flow network from the network of Model 2. An example
is shown in Fig.4. The problem that finds the maximum number of paths is converted to
solve the problem of computing the maximum flow from s to Y2. For each copy in the flow
network, the flow network algorithm chooses the vertex for each disjoint result set if the flow
from the vertex v0 j to the vertex vi j is greater than 0.

Algorithm 6.[13]Network Flow Algorithm for MDS-MCC.
1:Construct Gr = (Vr, Er; r) from (G = (V, E)) and T;
2:FOR EACH ti ∈ T DO

3: Find li pairwise disjoint paths, p1
i , p2

i , ..., pi
i, from ti to r;

4:END FOR

5:Find the maximum k pairwise disjoint sets H1, H2, ..., Hk such that each set Hi = ∪m
j=1{V(P

ij

j )−

{tj,r}};
6:RETURN H1, H2, ..., Hk;

A special case was studied in wireless sensor networks that each node covers at most one
target. We assumed there are m targets that each is exactly monitored by k sensor nodes.
There must be k disjoint sets each of which completely covers all the targets and is connected
to one of sinks. And k is the theoretical maximum number.

Theorem 12.[14]Given integers n and m, a directed graph G = (V, E; f , r) and a target set T =
{t1, t2, ..., tm}.A1, A2, ..., Am be m disjoint sets with |Ai| = k, where Ai ⊂ V(G). If k = 2 and
G is (m + max{1, m − 4})-connected, or k ≥ 3 and G is (m(k − 1) + 1)-connected, then there
exist k connected subgraphs H1, H2, ..., Hk, satisfying (1) f (Hi) = T; (2) for each vj ∈ V(Hi), vj is
connected to r.

5. Minimum Spanning Subgraph and Minimum Steiner Tree

The minimum spanning subgraph is used to reduce the cost of algorithms in underlying
wireless ad-hoc networks that are modeled as graphs. For instance, a spanning tree is used
as a backbone to reduce the cost of broadcast, or to cluster the hierarchical structure. A
spanning tree of a graph is a subgraph that is a tree and connects all the vertices together.
Many research works on ad hoc related networks exploited minimum spanning subgraph
to design energy-efficient distributed protocols, multicast routing protocols, fault tolerant
topology control protocols and etc. To construct spanning subgraph has the advantage of
low time and message complexity.

The Steiner tree problem is superficially similar to the minimum spanning tree problem.
The minimum Steiner tree problem is a problem in combinatorial optimization, which may
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(a) Network Topology (b) Constructed Flow Network

Figure 4. [13] Example of converting the network topology based on Model 2 to a constructed flow network.

be formulated in a number of settings, with the common part being that it is required to
find the shortest interconnect for a given set of objects. Most of the Steiner Tree problems
are NP-complete. Similar with spanning tree, Minimum Steiner Tree problem has been
applied to design minimum energy broadcasting protocols, delay constrained protocols,
range assignment topology control protocols in ad hoc networks.

5.1. Minimum Spanning Tree and Subgraph

Given a graph G(V, E; C), a spanning tree of G is a subgraph that is a tree and connects
all the vertices together. A minimum spanning tree (MST) is the spanning tree with the
minimum total weight in all spanning trees. There are many extended concepts of MST. The
k-minimum spanning tree (k-MST) is the tree that spans some subset of k vertices in the graph
with minimum weight. A set of k-smallest spanning trees is a subset of k spanning trees
such that no spanning tree outside the subset has smaller weight. The Euclidean minimum
spanning tree is a spanning tree of a graph with edge weights corresponding to the Euclidean
distance between vertices that are points in the plane. The degree constrained minimum
spanning tree is a minimum spanning tree with each vertex v is connected to no more than
d(v) other vertices. If the graph G is not connected, the graph has minimum spanning forest.
Similarly, a minimum spanning subgraph is the spanning subgraph with the minimum total
weight in all spanning subgraphs.

M. Cardei et al. [16] addressed the topology control issue of power assignment in ad-hoc
networks by using minimum spanning subgraph techniques. They aimed to minimize
the total transmission power assigned for all nodes while building k-vertex fault tolerant
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communication paths from each node to the sinks. They modeled the network topology
with an undirected weighted graph. The issue was formulated as that given a directed graph
G and a root r, find a directed spanning subgraph of G such that: (1) the sum of the weight of
the edges is minimized, (2) there are k-vertex disjoint paths between r and every vertex in G.
The FT algorithm [18] was applied to solve this problem optimally to reach k-approximate.

We addressed the issue of k-vertex fault-tolerant many-to-many routing power assignments
in ad-hoc networks [17] that given an ad-hoc network consisting of n nodes with the various
transmission ranges. For each node Vi, it can adjust the transmission ranges up to its
maximum value Rmax. Determine the power pi of node Vi such that 1) there exist k-vertex
disjoint data routing paths between any pair of nodes; 2) the total power consumed over all
sensor nodes is minimized, namely ∑ n

i=1 pi is minimized.

A directed weighted graph G(V, E; C) was represented to model the network topology, where
V = {v1, v2, ..., vn} is the set of nodes and E = {(vi, vj) : dist(vi, vj) ≤ Rmax} is the set of
edges. For each edge (u, v) ∈ E, there exists a weight C(u, v) associated with it. C(u, v)
represents the power consumption needed by u to communicate with v. It aimed to construct
a minimum k-vertex connected subgraph of G by finding a set of power assignments for each
node.

Two algorithms were proposed to find such minimum k-vertex connected subgraph of G
by using spanning subgraph technology. The first algorithm produces a k-vertex connected
spanning subgraph and assigns to each vertex the minimum transmission range to reach all
of its neighbors. The algorithm removes the edges in decreasing order of their weights if and
only if the graph keeps k-vertex connected after the removal. Theorem 13 guarantees that
the final remaining subgraph is k-vertex connected. The algorithm assigns the transmission
power to each node according to the subgraph.

Theorem 13.[17] A graph G(V, E) is a k-vertex connected directed graph. If (u, v) ∈ E and there are
at least k + 1 disjoint paths from u to v, namely λ(u, v) = k + 1, G − (u, v) is a k-vertex connected
graph.

Algorithm 7.[17] Heuristic Algorithm for k-vertex fault-tolerant power assignments.
1:Sort all edges in E in decreasing order of the weights;
2:FOR EACH edge (u, v) in the sorted order DO

3: IF λ(u, v) = k + 1 THEN

4: G = G − (u, v);
5: END IF

6:END FOR

7:FOR i = 1 TO n DO

8: pi = max{C(vi, vj) : (vi, vj) ∈ E};
9:END FOR

Another algorithm is an O(
√

n/ε)-approximation algorithm [17] by using the solution of
the minimum-cost k-vertex connected spanning subgraph problem proposed by Cheriyan
k-vertex connected, for any ε > 0 and k ≤ (1 − ε)n.

5.2. Minimum Steiner Tree

Steiner tree problem (STP) is a classical combinatorial optimization problem. This problem
has a lot of versions. The graph version of STP is that: Given a edge-weighted graph G =
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(V, E; C) with edge-weight function C : E → ℜ+ and a subset U ⊂ V called a terminal
set, the STP is to find a subtree T of G interconnecting the terminal set U with minimum
total weight. The graph version of STP is NP-complete and the best approximation ratio is

ρ = 1 + ln 3
2 = 1.55 till now [28].

We considered a variant of STP – Node-Weighted Steiner Tree (NWST) problem, that is, the
weight function is from vertex set to positive real set now. Given a node-weighted graph
G = (V, E; C) with node-weight function C : V → ℜ+ and a subset U ⊂ V called a terminal
set, the STP is to find a subtree T of G interconnecting the terminal set U with minimum
total weight. As an application, NWST can be used on NWCDS problem to interconnect the
node-weighted dominating set.

To deal with the NWST problem, the first idea is to convert this problem to classical STP.
We constructed a new graph G′ with the same vertex set, edge set and terminal set. The
difference is the weighted function of G′ is on edges.

Algorithm 8.[9]Approximation Algorithm for NWST on UDGs
1:Construct an edge-weighted graph G′ = (V, E; C′) with the same vertex set, edge set and terminal
set of G;
2:FOR EACH edge u, v in graph G′

DO

3: Assign the weight of this edge C′(u, v) = (C(u) + C(v))/2;
4:END FOR

5:T = SMT(G′, U), where SMT(G′, U) is the best-known approximation algorithm on graph G′

and terminal U;
6:RETURN T;

Theorem 14.[9]Algorithm 8 is a 2.5ρ-approximation for node-weighted Steiner tree problem in unit
disk graph.

Furthermore, we should give a theoretical result, to show that the NWST has polynomial-time
approximation scheme (PTAS) on UDGs if the terminal set U is c-local, that is, in the
minimum node-weighted spanning tree for U, the Euclid distance of the longest edge is
at most some constant c. A PTAS is a family of approximation algorithm with ration 1 + ε

for any ε > 0.

The main idea of the PTAS for NWST is based on the partition and shifting strategy. Firstly,
we partitioned the whole area containing all vertices into some small cells. Then, we divided
every cell into interior area and boundary area. Secondly, for each cell, we constructed a local
optimal Steiner forest on terminal vertices in the interior area of this cell. Then, we combined
all these forests to obtain a local optimal Steiner forest. Thirdly, we added all the crossing
edges to get a Steiner tree on terminal set R. We call the resulting graph Gp for a specific
partition P. In order to get a better node-weighted Steiner tree, we shifted the partition and
choose the minimum output among all of partitions.

Theorem 15.[6]Node-weighted Steiner tree problem has PTAS on unit disk graphs.

6. Conclusion

Many problems in mobile ad-hoc networks can be formulated by using graph theory.
However, in real ad-hoc network applications, there are many constraints that make the
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issues difficult to be tractable. The methods that might convert these practical issues
into graph-based problems are important for the design and implementation of routing,
broadcasting and organization algorithms. In this chapter, we present three essential
graph-based issues casted from practicle ad-hoc network issues: Connected Dominating Set,
Disjoint Sets, and Minimum Spanning Subgraph and Minimum Steiner Tree. Theoritical
analysis are described to verify the correctness of these proposed algorithms that are either
heuristics or approximationg.

While much efforts have been made to solve the graph-based issues, still much progress
needs to be done. For instance, some clustering issues in ad-hoc networks can be casted
into graph labeling or graph coloring problem that assigns of labels to the nodes subject
to certain constraints. In other mobile ad-hoc applications, many problems involve graph
classification, graph subsumption, and even the description and implementation of graph
data structure, querying and database. More approaches for ad-hoc network applications
should be discussed from the aspectes of the applicability and the utility by using graph
theory.
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