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1. Introduction

Restoration of  perfusion and reoxygenation of  ischemic  tissues  restores  aerobic  metabo‐
lism and supports  postischemic  functional  recovery  but  also  generates  significant  dam‐
age related to the ischemia/reperfusion (I/R) phenomenon. At the level of a blood vessel,
lesions of  I/R are mainly characterized by the perturbation of  vasomotion and endothe‐
lial dysfunction. Moreover, despite the fact that ischemia occurs in a sterile environment,
reperfusion  induces  a  significant  activation  of  innate  and  adaptive  immune  responses:
massive  reactive  oxygen  species  (ROS)  production;  activation  of  pattern-recognition  re‐
ceptors or toll-like receptors (TLRs); activation of complement, coagulation, cytokine and
chemokine production; and inflammatory cell trafficking into the diseased organ.1 I/R ac‐
tivates different  programs of  cell  death (necrosis,  apoptosis  or  autophagy-associated cell
death)  and generates  a  systemic inflammatory response that  lasts  several  days and that
can lead, in some cases, to multi-organ failure and death. [2-4]

2. Posthypoxic blood vessel motricity and posthypoxic endothelial
dysfunction

Blood vessels, and especially endothelium located at the blood-organ interface, are partic‐
ularly susceptible to ischemia-reperfusion injuries. Endothelial stunning or the loss of en‐
dothelial  functions  during  reperfusion  contributes  to  IR  injuries  and  compromises  the
postischemic recovery. [5-7]

The basal vascular tone is a continual balance between vasoconstrictors and vasodilators
acting on the blood vessel. Vascular smooth muscle cells (VSMCs) and endothelium play
pivotal roles in this control.
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Posthypoxic vasoconstriction, in response to vasoconstrictors, and endothelium-independ‐
ent vasodilation, induced by direct vasodilators (direct action on VSMCs), are slightly af‐
fected  by  I/R,  demonstrating  the  relative  resistance  of  VSMCs.  [8]-[10]  In  contrast,
endothelium-dependent  dilatation  is  deeply  affected.  Despite  the  fact  that  endothelial
cells seem relatively more resistant than other cells types (cardiomyocytes, neurons, renal
tubular  cell),  I/R modifies  their  phenotype:  diminution of  their  anticoagulant  properties,
increased vascular permeability,  increased leukoadhesivity and establishment of a proin‐
flammatory state in the endovascular milieu.

The production of some bioactive agents decreases (e.g., prostacyclin, nitric oxide), while that
of others increases during I/R (e.g., endothelin, thromboxane A2). [1],[11]-[16] These endothe‐
lial modifications are called endothelial dysfunction and are widely described in human and
animals studies.[15],[17]-[21] IR-related endothelial dysfunction is mainly characterized by the
loss of NO availability and seems to be related to the reperfusion more than to ischemia. [10]
In normal situations, NO acts in numerous pathways: direct vasodilation, indirect vasodilation
by inhibiting the influences of vasoconstrictors (e.g., inhibiting angiotensin II and sympathetic
vasoconstriction), inhibiting platelet adhesion to the vascular endothelium (anti-thrombotic
effect), inhibiting leukocyte adhesion to vascular endothelium (anti-inflammatory effect), and
inhibiting smooth muscle hyperplasia by scavenging superoxide anion (anti-proliferative
effect). The diminution of NO concentration jeopardizes these functions.

Multiple hypotheses have been proposed to explain postischemic endothelial dysfunction:
massive ROS production by mitochondria, activation of immune cells, activation of xanthine
oxidase and NADPH2 oxidase by the ceramide/sphingosine kinase pathway, the depletion of
dihydrobiopterin (an essential cofactor of nitric oxide synthase), increased arginine consump‐
tion in other intracellular pathways, the production of chemokines and cytokines (tumor
necrosis factor-alpha (TNF-α), interleukin-1, -6, and -8) or the activation of the complement
system (C3a fraction, C5b-9 fraction). [21]-[31]

In normoxic conditions, the endothelium permits only restricted diffusion. During hypoxia, the
modifications of the cytoskeleton of endothelial cells, induced by hypoxia and low intracellular
cyclic adenosine monophosphate phosphate (cAMP) concentration, increase vascular permea‐
bility, leading to capillary leakage and perivascular interstitial edema.[1] Complement system
activation, leukocyte endothelial adhesion and platelet-leukocyte aggregation increase after re‐
perfusion.[1],[32] A clinical example is the acute respiratory failure with hypoxia and pulmona‐
ry edema observed in several surgeries. Acute respiratory distress syndrome is caused by heart
failure but also by a disruption of the alveolar-capillary barrier.[33]-[36]

3. The inflammatory response

Ischemia-reperfusion induces a vigorous inflammatory reaction including activation of the
complement system; activation of the innate and adaptive immune systems; increased ROS,
cytokine, chemokine and other proinflammatory metabolite production; and activation of
programmed cell death. If inflammation concerns mainly ischemic organs, its effects will
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extend to the whole body and, particularly, the organs with a high capillary density, such as
lung, brain and kidney. [1],[12],[37],[38]

3.1. Activation of the complement system

Reperfusion injury is characterized by autoimmune responses, including natural antibodies
recognizing neoantigens and subsequent activation of the complement system (auto-im‐
munity). 1 Locally produced and activated, the complement system amplifies inflammation
during ischemia and reperfusion through complement-mediated recognition of damaged
cells and anaphylatoxin release. The anaphylatoxins C3a, C4a and C5a lead to the recruit‐
ment and stimulation of immune cells, which promotes cell-cell interactions by increasing
the expression of adhesion molecules (vascular cell adhesion molecule-1, ICAM-1, E-selectin
and P-selectin) on the surface of the endothelial cells and neutrophils. [12],[39] Moreover,
C5a is a chemotactic factor that directly stimulates leukocytes to synthesize and secrete cyto‐
kines such as interleukin (IL)-1, IL-6, monocyte chemoattractant protein-1 (MCP-1) and
TNF-α. iC3b is implicated in neutrophil-endothelium interactions. C5b-9, known as the final
cytolytic membrane attack complex complement, is a powerful chemotactic agent that caus‐
es direct lesions to the endothelial cells, stimulates the endothelial production of IL-8,
MCP-1, and ROS and inhibits endothelium-dependent vasodilatation. [12],[39]

3.2. Cell-cell interactions during reperfusion

3.2.1. Neutrophil–endothelium interaction

During reperfusion, neutrophils play a central part in the inflammatory response and in the
genesis of the I/R injuries. Activated neutrophils produce high amounts of cytokines, che‐
mokines, and ROS in the vascular lumen but also in the parenchyma that directly contacts
cells. These neutrophils and endothelial cells activated by cytokines (e.g., IL-6, TNF-α, IL-8,
IL-1β) and other proinflammatory mediators (e.g., platelet-activating factor, ROS) promote a
close interaction between these cell types that will result in a significant concentration of ac‐
tivated neutrophils in the interstitium. [1],[13],[15],[17],[32],[40]-[43] This complex process
can be summarized in four steps: chemoattraction, weak neutrophil adhesion to the endo‐
thelium, followed by a stronger adhesion and, finally, neutrophil migration (Figure 1). Three
families of sarcoplasmic adhesion molecules are implicated in the neutrophil-endothelium
interaction: selectins, β2-integrins and immunoglobulins.

• Chemoattraction:

Upon reperfusion, the endothelium, parenchyma and resident immune cells (mainly macro‐
phages and neutrophils) release cytokines such as IL-1, TNF-α and chemokines, inducing the
production of selectins by endothelial and immune cells. Circulating leukocytes are concen‐
trated towards the site of injury by the concentration gradient of chemokines.

• Rolling adhesion

Endothelial L-selectin interacts with the P-selectin and the E-selectin-specific ligand-1 (ESL-1)
expressed by neutrophils. [44],[45] The activation of TLR-2, ROS production, the complement
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system and thrombin and a high intracellular calcium concentration promotes the expression
of endothelial P-selectin from the Weibel–Palade bodies. Its peak of expression occurs 10–20
min after the beginning of reperfusion.[40],[46] P-selectin interacts with P-selectin glycoprotein
ligand-1 (PSGL-1) expressed by neutrophils. These interactions are weak and reversible,
providing transitory neutrophil adherence, slowing down leukocytes and allowing them to
“roll” along the endothelial surface. During this rolling motion, transitory bonds are formed
and broken between selectins and their ligands. This phase prepares the neutrophils and the
endothelium for the following stage.

• Tight adhesion

At the same time, chemokines released by endothelial and immune cells activate the rolling
neutrophils. Stimulated by ROS, platelet-activating factor (PAF), IL-1, TNF-α and leukotriene
B4 (LTB4), neutrophils present CD11a/CD18, CD11b/CD18 and CD11c/CD18 from intracellu‐
lar granules. These sarcoplasmic proteins interact with the iC3a fraction of the complement
system and ICAM-1, an endothelial protein whose expression is reinforced by TNF-α and IL-1.
[47],[48] This interaction switches from a low-affinity link to a high-affinity state and firmly
attaches the neutrophil to the surface of the endothelial cell, despite the shear forces of the
blood flow.

Figure 1. Ischemia–reperfusion-induced neutrophils accumulation in the interstitium is a mechanism described in
three phases implicating specific complementary proteins. CD11b/CD18, sarcoplasmic neutrophil integrin; CO2, car‐
bon dioxide; ESL-1, E-selectin-specific ligand-1; I/R, ischemia– reperfusion; O2, oxygen; PECAM, platelet–endothelial
cell adhesion molecule-1; PSGL-1, P-selectin glycoprotein ligand-1; Rec IL-8, neutrophil IL-8 receptor; ROS, reactive
oxygen species; TNF-α, tumour necrosis factor-a; WPB, Weibel–Palade body.
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• Migration into the interstitium or diapedesis

Intercellular adhesion molecule-1 (ICAM-1) and platelet-endothelium adhesion molecule-1
(PECAM-1) are sarcoplasmic adhesion molecules belonging to the superfamily of the immu‐
noglobulins. They are implicated in the transfer of neutrophils towards the interstitium,
termed diapedesis. Leukocytes extravasation comprises many stages, which are not fully
understood. Nevertheless, it seems that PECAM-1, found on neutrophil and endothelial cell
membranes, is necessary for diapedesis. [1],[49] It interacts with several sarcoplasmic pro‐
teins of neutrophils. The cytoskeleton of the neutrophil is reorganized to allow the projec‐
tion of pseudopodia between endothelial cells. This transfer is facilitated by inflammatory
mediators, the CD11/CD18–ICAM-1 interaction and ROS, which combine to decrease the ex‐
pression of cadherin and induce the phosphorylation vascular endothelial-cadherin and cat‐
enin, components of the intercellular junctions. [50]-[53] There is controversy concerning the
mechanisms underlying this transfer through the basal membrane of the endothelium. Once
into the interstitium, the neutrophil migrates along a chemotactic gradient towards the site
of injury, where it causes considerable damage.

The neutrophil-related injuries in the interstitium are mainly related to the massive ROS
production, proteases from the intracellular neutrophilic granules and the metabolites of
arachidonic acid (PAF and LTB4). PAF and LTB4 are powerful chemoattractants that stimu‐
late neutrophil degranulation. The neutrophil granules contain proteases, collagenases, ela‐
stases, lipoxygenases, phospholipases and myeloperoxidases that digest the protein network
of the extracellular matrix. For example, elastase digests substrates such as collagen types III
and IV, immunoglobulins, fibronectin and proteoglycans. Several cells, such as cardiomyo‐
cytes, stimulated by IL-6, express ICAM-1. The neutrophil binds to its receptor and empties
its granules directly near the cell. [54],[55]

3.2.2. Neutrophil-platelet interaction

The role of platelets in ischemia-reperfusion injuries is unclear. However, it seems that they
participate directly and indirectly in posthypoxic endothelial injury. [32],[56] Platelets affect
neutrophil activation by releasing thromboxane A2, platelet-derived growth factor, seroto‐
nin, lipoxygenase products, proteases and adenosine. During reperfusion, approximately
25% of the fixed platelets are directly bound to the endothelium and the remaining 75% to
neutrophils linked to the endothelium. [32],[57] This platelet-neutrophil interaction potenti‐
ates the neutrophils’ capacity to produce superoxide and platelet-activating factor. [58],[59]
Moreover, the neutrophil-platelet aggregates contribute to the no-reflow phenomenon and
jeopardize the quality of the microcirculation. 60

3.3. Reactive oxygen species or oxygen free radicals

Reactive oxygen species, such as superoxide anion (O2 −•), hydrogen peroxide (H2O2) and
hydroxyl radical (OH−), are highly reactive and able to oxide all cellular constituents, includ‐
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ing proteins, DNA, phospholipids and other biological structures. During reperfusion, PAF,
TNF-α, IL-6, IL-1β, granulocyte-macrophage colony-stimulating factor, complement fraction
C5a and the ROS themselves stimulate endothelial and neutrophil ROS production. [49],
[61],[62] On the other hand, ROS activate nuclear factor-κB, promote cytokine production
(e.g., TNF-α, IL-6, PAF), and induce the synthesis and expression of endothelial and leuko‐
cyte adhesion molecules. [15],[41],[63]

In the reperfused tissue, the principal sources of ROS are neutrophil NADPH-oxidase, xan‐
thine oxidase, mitochondria and the arachidonic acid pathways. [64]-[66] The massive ROS
production quickly exceeds the capacity of cellular defense systems (catalase, superoxide
dismutase, glutathione peroxidase and vitamins C and E). ROS directly cause much struc‐
tural damage, increase the susceptibility to the opening of the mitochondrial permeability
transition pore, activate immune and endothelial cells and induce apoptosis. [67]

ROS can also be produced by monoamine oxidase (MAO) of the outer mitochondrial mem‐
brane. MAO transfers electrons from amine compounds with oxygen to produce hydrogen
peroxide. [68] p66Shc, a cytosolic adaptor protein for tyrosine kinase receptors that has been
implicated in signal transduction, translocates to the mitochondrial matrix during reperfu‐
sion and oxidizes the reduced cytochrome c, which generates oxygen peroxide. [67],[69]

3.4. Ischemia-reperfusion-induced apoptosis

Reperfusion is vital for the functional recovery of an ischemic organ but also initiates the
apoptosis pathways. [70],[71] Apoptosis is an active mechanism of cellular death, is geneti‐
cally programmed, consumes energy, requires the expression or activation of specific en‐
zymes, and can be induced by the oxidative stress of reperfusion. Reperfusion-induced
apoptosis occurs in many organs, including heart, brain, kidney and liver. The reperfusion
of an organ can induce apoptosis in other, distant organs. For example, reperfusion of a low‐
er limb or the small bowel can induce apoptosis of cardiomyocytes or lung cells, respective‐
ly. [72],[73] The TNF-α production by the reperfused organ seems to play a crucial part in
the induction of apoptosis. [70],[74]-[76] TNF-α initiates a receptor-dependent death path‐
way by activating downstream caspases. [70],[76],[77] Other causes of reperfusion-induced
apoptosis are also important: mitochondrial depolarization, high intracellular calcium,
mPTP opening and the release of some mitochondrial proteins into the cytoplasm, such as
cytochrome c. When this protein is released from mitochondria into the cytoplasm, it inter‐
acts with apoptotic protease activating factor-1 (Apaf-1) and ATP to form the apoptosome, a
large oligomeric protein complex that can activate caspase 9, which activates the caspase-de‐
pendent apoptosis pathway.

Endothelial cell apoptosis precedes and influences the apoptosis of the subjacent parenchymal
cells. For example, a reduction in endothelial apoptosis decreases the apoptosis of subjacent
cardiomyocytes. This suggests that signals emanating from the endothelium during apoptosis
can induce or reinforce that of the cardiomyocytes.
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4. Integration of different aspects of ischemia-reperfusion

4.1. Blood vessel

According to the level of the vascular system considered (small arteries, capillaries and post‐
capillary veins), the repercussions of I/R are identical, but the clinical pictures differ.

4.1.1. At the arteriolar level

The principal manifestation of I/R in arterioles is a loss of the vasodilatation-dependent en‐
dothelium and the appearance of spasms. [78] Widespread endothelial lesions decrease the
production of nitric oxide and do not counterbalance the arterioles’ tendency toward vaso‐
constriction. This tendency is highlighted in several tissues, such as skeletal muscle, heart,
lung and brain. [79]-[82] The combined effects of IR and inflammation on arteriolar vasomo‐
tricity are well documented. The increase in the contractile response of the pulmonary and
mesenteric microcirculation after cardiac surgery predisposes the patient to the develop‐
ment of pulmonary shunt or mesenteric ischemia, particularly during the administration of
vasopressive drugs in the postextracorporeal circulation. [83 ],[84]

4.1.2. At the capillary level

The posthypoxic recovery of an organ depends on the quality of its microcirculation and the re‐
sultant nutrient delivery and gaseous exchange. However, the microcirculation is the site of a
paradoxical phenomenon called “no reflow”, characterized by a major reduction in the capilla‐
ry density. Despite the reestablishment of complete blood flow, an incomplete and heterogene‐
ous  perfusion  of  microcirculation  persists.  [85],[86]  The  capillaries  are  blocked  by  the
parenchymatous and endothelial edema and the adhesion of the neutrophils and platelets to the
surface of the endothelium, aided by the reduction in the production of nitric oxide. [15],[81],
[85]-[87] Increased ROS and the depletion of ATP modify the cytoskeleton and the intercellular
junctions, contributing to the loss of liquid from the vascular bed towards the interstitium. [88],
[89] The phenomenon of no reflow persists several weeks after reperfusion. [85]

4.1.3. At the postcapillary vein level

The postcapillary veins are the sites of the inflammatory reaction. The margination and ex‐
travasation of the leukocytes are facilitated by the slower blood flow. Venous blood, arriving
from the reperfused zones, is rich in proinflammatory mediators and activated neutrophils.
These cause lesions both directly and indirectly through their interactions with platelets.
[15],[90] Endothelial lesions prevent the intravascular oncotic pressure from recovering the
excess liquid from the interstitium, thereby increasing the edema and contributing to the
phenomenon of “no reflow”.

4.2. Organs

In  pulmonary  transplantation  surgery,  I/R-induced lung injury  is  characterized  by  non‐
specific alveolar damage, lung edema and hypoxemia. The most severe form may lead to
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primary  graft  failure  and  remains  a  significant  cause  of  morbidity  and  mortality  after
lung transplantation.[91] Pulmonary microvascular permeability appears to have a bimo‐
dal pattern, peaking at 30 min and 4 h after reperfusion. [92] Mechanical ventilation, car‐
diopulmonary  bypass  during  cardiac  surgery  and  lung  resection  can  also  induce
apoptosis and I/R-induced lung injury. [93]-[96]

Perioperative  acute  renal  failure  is  associated  with  a  high  incidence  of  morbidity  and
mortality.  According to the type of surgery,  IR injuries in the kidney are direct or indi‐
rect.  [97]  For example,  acute renal  failure is  the most  important  complication of  remote
tissue damage following abdominal aortic surgery. [98] I/R induces renal tubular injuries
and contributes to the decrease of glomerular filtration. Recent data suggest that 13% of
patients with acute kidney injury (AKI) evolve to end-stage renal disease within 3 years.
In the case of patients with preexisting renal disease,  the progression to end-stage renal
disease rises to 28% within the same period. [98] These results suggest that AKI predis‐
poses to chronic renal complication. I/R reduces blood vessel density and promotes renal
fibrosis. The mechanisms mediating vascular loss are not clear but may be related to the
lack of effective vascular repair responses. [99]

In cardiac surgery and in myocardial ischemia, cell death following I/R has features of
apoptosis and necrosis. The loss of cardiomyocytes, which can hibernate in “no reflow” zones,
and stunning, led by free radicals and calcium overload, explain the contractile posthypoxic
dysfunction. The stunned cardiomyocytes can take several hours and days to recover.
Intracellular ionic perturbation favors ventricular arrhythmias, such as ventricular fibrillation,
ventricular tachycardia or ventricular extrasystole. [10 ]0 During ischemia, cardiomyocytes
express ICAM-1. Neutrophils bind to this receptor and empty the contents of their granules
onto the cells. [54],[55]

The mechanisms of I/R-induced brain injury have many similar aspects compared with those
of I/R-induced myocardial injury. Many mediators and cytokines upregulated by I/R, such as
bradykinin, purine nucleotides, nitric oxide and ROS, increase blood–brain barrier permea‐
bility and induce cerebral edema. [10 ]1 Although leukocyte infiltration into the ischemic brain
increases cerebral damage, leukocyte accumulation in the microcirculation reduces reperfu‐
sion and increases the “no reflow” phenomenon.

The indirect repercussions of I/R on organs remote from the reperfused site are much more
insidious. Neutrophils, complement activation, and massive production of cytokines and
chemokines install a proinflammatory state that affects the functioning of other organs. During
abdominal aortic surgery, I/R injuries are not only limited to the lower extremities but also
cause damage to remote organs such as the lungs, kidneys, heart and bowel. [36],[97],[102-
[104] Lung injuries following abdominal aortic aneurysm surgery are characterized by
progressive hypoxemia, pulmonary hypertension, decreased lung compliance and nonhydro‐
static pulmonary edema, consistent with adult respiratory distress syndrome. [36],[103] In
comparison with surgery, endovascular abdominal aortic aneurysm repair decreases I/R and
I/R-induced-intestinal mucosal, renal and pulmonary dysfunction. [104]
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