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1. Introduction

DNA methylation is best known for its role in gene silencing through a methyl group (CH3)
being added to the 5' carbon of cytosine bases (giving 5-methylcytosine) in the promoters of
genes leading to supression of transcription [1]. However this is far from the whole story.

De novo methylation, which involves the addition of a methyl group to unmodified DNA, is
described as an epigenetic change because it is a chemical modification to DNA not a change
brought about by a DNA mutation. Unlike mutations, methylation changes are potentially
reversible. Epigenetic changes also include changes to DNA-associated molecules such as
histone modifications, chromatin-remodelling complexes and other small non-coding RNAs
including miRNAs and siRNAs [2]. These changes have key roles in imprinting (gene-ex‐
pression dependent on parental origin), X chromosome inactivation and heterochromatin
formation among others [3-5].

DNA methylation leading to silencing is a very important survival mechanism used on re‐
petitive sequences in the human genome, which come from DNA and RNA viruses or from
mRNA and tRNA molecules that are able to replicate independently of the host genome.
Such elements need to be controlled from spreading throughout the genome, by being si‐
lenced through CpG methylation, as they cause genetic instability and activation of onco‐
genes [6-10]. Such elements can be categorised into three groups: SINEs (Small Interspersed
Nuclear Elements), LINEs (Long Interspersed Nuclear Elements) and LTRs (Long Terminal
Repeats) [6,11-13]. Repetitive sequences are recognised by Lymphoid-Specific Helicase
(LSH) also known as the ‘heterochromatin guardian’ [14,15], which additionally acts on sin‐
gle-copy genes [16].
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DNA methylation generally occurs when a cytosine is adjacent 5’ to a guanine, called a CpG di‐
nucleotide. Such dinucleotides are spread all over the genome and over 70% of CpGs are me‐
thylated. Clusters of CpGs, called CpG Islands (CGI), consist of stretches of 200–4000bp that are
60 to 70% G/C rich, found in TATAless promoters and/or first exons of genes [17-19].

In the human genome almost 50% of transcription start sites (TSS) [20], and about 70% of all
genes contain CGIs [21,22]. CGIs present in the promoters or first exons of ubiquitously ex‐
pressed housekeeping and tightly regulated developmental genes are usually hypomethy‐
lated, irrispective of transcription activity [1,19,21,23-29] and become silenced when they are
hypermethylated [20]. On the contrary, promoters of some tissue-specific genes, with low
CpG density, are commonly methylated without loss of transcription activity [21,26,30].

Many active promoters were shown to contain a low percentage of methylation (4 - 7%) in‐
dicating that supression through DNA hypermethylation is density-dependent [21]. The op‐
posite was shown for the cAMP-responsive element (CRE)-binding sites, which are found in
the promoters of numerous tissue-specific genes, including hormone-coding and viral genes
[31]. Methylation of the CpG at the centre of the CRE sequence inhibits transcription, by in‐
hibiting transcription factor binding, indicating that methylation at specific CpG sites can
contribute to the regulation of gene expression [32].

Low-density gene body methylation has been observed in actively transcribed genes and is
implicated in reducing ‘transcriptional noise’ – the inappropriate gene transcription from al‐
ternative start sites or in cells where it is meant to be silenced [33]. Moreover it is thought to
inhibit antisense transcription, to direct RNA splicing and to have a role in replication tim‐
ing [34-37]. Methylation is thought to play a role in transcriptional elongation, termination
and splicing regulation due to higher CpG methylation in exons compared to introns [38,39]
and the transacription start and termination regions lacking methylation [40,41].

CpG dinucleotides are not the only sequences that can be methylated, although non-CpG
methylation was thought to be infrequent until the methylome of embryonic stem (ES) cells
revealed that such non-CpG methylation, generally occuring in a CHG and CHH context,
constitues 25% of total methylated sites in the genome [40]. Non-CpG methylation was also
reported in some genes from mouse ES cells [42,43]. The distribution of such non-CG meth‐
ylation was high in gene bodies and low in promoters and regulatory sequences with almost
complete loss during differentiation [40].

DNA methyltransferases (DNMTs) are enzymes that catalyse the addition of methyl groups
to cytosine residues in DNA. Mammals have three important DNMTs: DNMT1 is responsi‐
ble for the maintenance of existing methylation patterns following DNA replication, while
DNMT3a and DNMT3b are de novo methyltransferases [1,44-46]. As a result of DNA replica‐
tion, fully methylated DNA becomes hemi-methylated and DNMT1 binds hemi-methylated
DNA to add a methyl group to the 5′ carbon of cytosines [2].

Overall, most DNA methylation changes can be observed invariantly in all tissues [47].
However, the small portion of tissue-specific methylation has a profound effect on cellular
activity including cell differentiation, disease and cancer [48-53].

Methylation - From DNA, RNA and Histones to Diseases and Treatment4



DNA methylation shows different effects on gene expression, brought about by an interplay of
several different mechanisms, which can be grouped into three categories [2,54]: i. effects on di‐
rect transcription factor binding at CpG dinucleotides; ii. binding of specific methylation-rec‐
ognition factors (such as MeCP1 and MeCP2) to methylated DNA; iii. changes in chromatin
structure.

2. Methylation in development and aging

Key stages in development make use of methylation to switch on/off and regulate gene ex‐
pression. DNA methylation was shown to be essential for embryonic development through
homozygous deletion of the mouse Mtase gene which leads to embryonic lethality [52].
Germline cells show 4% less methylation in CGI promoters, including almost all CGI pro‐
moters of germline-specific genes, compared to somatic cells [21].

Immediately after fertilisation but before the first cell division, the paternal DNA undergoes
active demethylation throughout the genome [55-58]. After the first cell cycle, the maternal
DNA undergoes passive demethylation as a result of a lack of methylation maintenance af‐
ter mitosis [56,59], and this genome-wide demethylation continues, except for the imprinted
genes, until the formation of the blastocyst [60,61].

After implantation, the genome (except for CGIs) undergoes de novo methylation [54]. Active
demethylation subsequently occurs during early embryogenesis [62] with tissue-specific
genes undergoing demethylation in their respective tissues, creating a methylation pattern
which is maintained in the adult, giving each cell type a unique epigenome. [54].

Somatic cells go through the process of aging as they divide and replicate. Aging is charac‐
terised by a genome-wide loss and a regional gain of DNA methylation [63]. CGI promoters
present an increase in DNA methylation in normal tissues of older individuals at several
sites throughout the genome [64,65]. This causes genomic instability and deregulation of tis‐
sue-specific and imprinted genes as well as silencing of tumour suppressor genes (control‐
ling cell cycle, apoptosis or DNA repair) through hypermethylation of promoter CGIs [5,66].

The age-related change in methylation was shown in a genome-wide CGI methylation study
comparing small intestine (and other tissues) from 3-month-old and 35-month-old mice,
which presented linear age-related increased methylation in 21% and decreased methylation
in 13% of tested CGIs with strong tissue-specificity [67]. Furthermore, human intestinal age-
related aberrant methylation was shown to share similarities to mouse [67]. Although the
majority of CGIs methylated in tumours are also methylated in a selection of normal tissues
during aging, particular tumours exhibit methylation in specific promoters and are thus said
to display a CpG island methylator phenotype (CIMP) [65].

Aging appears to exhibit common methylation features with carcinogenesis and in fact these
processes share a large number of hypermethylated genes such as ER, IGF2, N33 and MyoD in
colon cancer, NKX2-5 in prostate cancer and several Polycomb-group protein target genes,
which suggests they probably have common epigenetic mechanisms driving them [68-70].
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3. Methylation in carcinogenesis

DNA methylation can either affects key genes which act as a driving force in cancer forma‐
tion or else be a downstream effect of cancer progression [71,72]. According to the widely
accepted ‘two-hit’ hypothesis of carcinogenesis [73], loss of function of both alleles for a giv‐
en gene, such as a tumour suppressor gene, is required for malignant transformation. The
first hit is typically in the form of a mutation while the second hit tends to be due to aberrant
methylation leading to gene suppression. While in familial cancers only one allele needs to
be aberrantly methylated to result in carcinogenesis [74,75], both alleles have to be silenced
by methylation in non-familial cancers [76,77]. Interestingly, cancer cells appear to use
DNMT3b in addition to DNMT1 to maintain hypermethylation [78,79].

Hypermethylation and suppression of promoter CGIs through de novo methylation is well-
documented for numerous cancer, affecting mostly general but occasionally tumour-specific
genes [3,4,66,80,81]. A study of over 1000 CGIs from almost 100 human primary tumours de‐
duced that on average 600 CGIs out of an estimated 45,000 spread throughout the genome
were aberrantly methylated in cancers. It was shown that while some CGI methylation pat‐
terns were common to all test tumours, others were highly specific to a specific tumour-
type, implying that the methylation of certain groups of CGIs may have implications in the
formation, malignancy and progression of specific tumour types [82].

CGI shores (the 2kb region at the boundary of CGIs) are methylated in a tissue-specific man‐
ner to regulate gene expression but become hypermethylated in cancer [83-85]. Methylation
boundaries flanking the CGIs in the E-cad and VHL tumour suppressor genes were found to
be over-ridden by de novo methylation, resulting in transcription supression and consequen‐
tially oncogenesis [86]. On the other hand, the location and function of non-CG methylation
in cancer is still mostly unknown [87-88].

Aberrant methylation has been linked to cancer cell energetics. Most cancer cells exhibit the
Warburg effect i.e. produce energy mainly through a high level of glycolysis followed by
lactic acid fermentation in the cytosol even under aerobic conditions, rather than through a
low level of glycolysis followed by oxidative phosphorylation in the mitochondria as is the
case in normal cells [89].

In one study it was found that fructose-1,6-bisphosphatase-1 (FBP1), which reduces glycoly‐
sis, is down-regulated by the NF-κB pathway partly through hypermethylation of the FBP1
promoter [90]. It was proposed that NF-κB could interact with co-repressors such as Histone
deacetylases 1 and 2 (HDAC1 and HDAC2) to suppress gene expression [91,92] and subse‐
quently the HDACs could interact with DNMT1, which gives hypermethylation of the pro‐
moter resulting in gene silencing [93-96].

In another study it was proposed that environmental toxins bring about oxidative-stress
which affects genome-wide methylation by activating the Ten-Eleven Translocation (TET)
proteins (which convert methylcytosine to 5-hydroxymethylcytosine) and chromatin modi‐
fying proteins which interfere with oxidative phoshphorylation [97].
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4. Effect of CpG methylation on transcription factor binding

The methylation of CpGs in transcription factor binding sites in general leads to transcrip‐
tion suppression and gene silencing by directly inhibiting the binding of specific transcrip‐
tion factors. Transcription factors that have CpGs in their recognition sequences and are
thus methylation-sensitive include AP-2 [98-100], Ah receptor [101], CREB/ATF [32,100,102],
E2F [103], EBP-80 [104], ETS factors [105], MLTF [106], MTF-1 [107], c-Myc, c-Myn [108-109],
GABP [110], NF-κB [111-100], HiNF-P [112] and MSPF [113].

There are also some transcription factors that are not sensitive to methylation e.g. Sp1, CTF
and YY1 [100]. Thus methylation does not hinder binding of gene-specific transcription fac‐
tors, but rather prevents the binding of ubiquitous factors, and subsequently transcription,
in cells where the gene should not be expressed [102].

A model of CpG de novo methylation through over-expression of DNMT1 revealed that de‐
spite the overall increase in CGI methylation, there was a differential response of specific
sites. The vast majority of CGIs were resistant to de novo methylation, while seven novel se‐
quence patterns proved to be particularly susceptible to aberrant methylation [114]. This es‐
sentially means that the sequence in itself plays a role in the methylation state of CGIs. The
result of this study implies that specific CGI patterns have an intrinsic susceptibility to aber‐
rant methylation, which means that the genes regulated by promoters containing such CGIs
are more susceptible to de novo methylation and could lead to various cancers depending on
the genes involved [114].

Various studies have identified three main groups of transcription factors as being impor‐
tant in human cancer: steroid receptors (e.g. oestrogen receptors in breast cancer and andro‐
gen receptors in prostate cancer), resident nuclear factors (always in the nucleus e.g. c-JUN)
[115,116] and latent cytoplasmic factors (translocated from the cytopasm to the nucleus after
activation e.g. STAT proteins) [115].

Resident nuclear proteins are proteins ubiquitously present in the nucleus irrespective of cell
type which include bZip proteins e.g. c-JUN, c-FOS, ATFs, CREBs and CREMs, the cEBP fami‐
ly, the ETS proteins and the MAD-box family [117]. The different families vary greatly in over‐
all structure and interaction profiles but have the common functional feature of promoting
transcription by co-operating with other transcription factors through tandem recognition se‐
quences in promoters as well as by interacting with co-activator proteins [116,118-124]. Resi‐
dent nuclear transcription factors drive carcinogenesis by direct over-expression or as highly
active fusion proteins e.g. MYC acting with MAX [125-127]. The two families of resident nucle‐
ar transcription factors that are most prominent in human cancers are the ETS family proteins
and proteins composing the AP-1 transcription complexes. ETS family proteins are of particu‐
lar interest because they promote transcription of a wide range of genes by providing a DNA-
binding domain through fusion with other proteins or by mutation [123,128,129].

Latent cytoplasmic proteins are found in the cytoplasm of cells and rely on protein−protein in‐
teraction at the cell surface to produce a cascade which activates them as they are directed to the
nucleus where they affect transcription by binding to activation sites in the promoters of indu‐
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cible genes and interacting with transcription initiation factors. They can be activated either di‐
rectly by tyrosine or serine kinases at the cell surface or by complex processes which include
kinases along the pathway [117]. STATs (signal transducers and activators of transcription) are
activated by JAK (a tyrosine kinase family) which is activated by various receptors [130,131].

5. Protection mechanisms against methylation

It has been generally accepted that methylation-resistant CGIs are associated with broad ex‐
pression or housekeeping genes while the majority of methylation-prone CGIs are associat‐
ed with tissue-specific and thus restricted-expression genes [132]. Exceptions to this pattern
have also been found, including WNT10B, NPTXR and POP3. Thus the hypothesis that ac‐
tive transcription has an indirect protective effect against aberrant methylation of CGIs
[1,133] has been repeatedly proven to be valid though not absolute [114].

A number of mechanisms have been put forward to explain the relationship between aber‐
rant de novo methylation and cancer. One hypothesis proposed that an initial random meth‐
ylation event is selected for as proliferation progresses [80]. Another hypothesis proposed
the recruitment of DNA methyltransferases to methylation-sensitive sequences by cis-acting
factors [134,135], histone methyltransferases such as G9a [136,137], or EZH2 [138]. Yet an‐
other hypothesis proposed the loss of chromatin boundaries or the absence of ‘protective’
transcription factors, leading to the spread of DNA methylation in CGIs [139].

The most recent hypothesis proposes the protective character of co-operative binding of
transcription factors in maintaining CGIs unmethylated [140]. CGIs showed an unexpected
resistance to de novo methylation when DNMT1 was over-expressed. The general pattern
that emerged was that most de novo methylated CGIs were characterised by an absence of in-
tandem transcription factor binding sites and an absence of bound transcription factors.
Thus protection from de novo methylation requires the presence of tandem transcription fac‐
tor binding sites that are stably co-bound by at least one general transcription factor, with
the second factor being either a general or a tissue–specific transcription factor. Among the
most prominent transcription factors found to be linked with aberrant methylation were
GABP, SP1, NFY, NRF1 and YY1 [140].

This study re-confirmed that methylation-resistant CGIs were bound by combinations of
ubiquitous transcription factors which regulated genes of basic cellular functions, while
methylation-prone CGIs were mostly associated with development, differentiation and cell
communication, which are frequently regulated by tissue–specific transcription factors [140].

6. Specificity protein 1 (Sp1)

Sp1 is an Sp/KLF (Krüppel-like factor) family member containing a zinc-finger DNA-bind‐
ing domain [141]. Many KLF proteins regulate cellular proliferation and differentiation
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[142-145], and play a role in malignancy e.g. Sp1 has been shown to be the key factor in epi‐
thelial carcinomas [146,147].

Multiple Sp1 binding sites are found in the CGI-promoters of housekeeping genes [148,149] as
well as CGIs downstream of the TSS [150]. Sp1 sites in gene promoters have been shown to pro‐
tect CGIs from de novo methylation and maintain expression of downstream genes [151,153]
e.g. Sp1-binding site protect the APRT gene from de novo methylation in humans and mice
[154,155]. However, Sp1 binding is not methylation-sensitive [151,156,157] and resistance to de
novo methylation by DNMT1 is not correlated to the frequency of Sp1 sites in CGIs [114].

Sp1 co-operates with the GABP complex to activate genes which include the folate receptor
b [158], CD18 [159], utrophin [141,160], heparanase-1 [161], the pem pd homeobox gene
[162], the mouse thymidylate synthase promoter [163] and mouse DNA polymerase alpha
primase with E2F [164,165].

7. GA-Binding Protein (GABP)

GABP is a transcription factor composed of two distinct subunits: GABPα and GABPβ.
GABPα, also known as Nuclear Respiratory Factor 2 (NRF-2) or Adenovirus E4 Transcrip‐
tion Factor 1 (E4TF1-60), is a member of the E26 Transformation-Specific (ETS) family of
proteins [166-169]. However unlike other ETS factors GABPα forms an obligate heteromeric
protein complex with GABPβ [170-172]. Together they generally form a heterotetramer con‐
sisting of 2α and 2β subunits [173,174] and the presence of sites for GABP binding contain‐
ing 2 tandem ETS consensus motifs has been reported [175]. On the other hand, single
GABP binding sites tend to combine with another site that recognises a different transcrip‐
tion factor e.g. NRF-1, Sp1 or YY1 [175]. GABP is able to recruit co-activators such as PCG1
and p300/CBP that create a chromatin environment favouring transcription [176,177].

GABPα (like all other ETS factors) binds to purine-rich sequences containing a 5’- GGAA/
T-3’ core by means of a highly conserved DNA-binding domain made up of an 85 amino
acid sequence rich in tryptophan which forms a winged-helix-turn-helix structure, charac‐
teristic of the ETS protein family near its carboxy terminal [166,167,170,172,178-181]. The do‐
main through which GABPα binds to the ankyrin repeats of GABPβ is found just
downstream of the DNA-binding domain [167,168]. GABPα also has another two domains,
the helical bundle pointed (PNT) domain found in its mid-region, which consists of five α-
helices [182,183] and the On-SighT (OST) domain near the amino-terminus (residues
35−121), which folds as a 5-stranded β-sheet crossed by a distorted helix and contains two
predominant clusters of negatively-charged residues, which might be used to interact with
positively-charged proteins [184].

The role of GABP is very versatile and its ability to co-operate with other transcription fac‐
tors gives it a key role in transcription regulation. GABP and PU.1 compete for binding to
the promoter of the b2-integrin gene, yet co-operate to increase gene transcription [185].
GABP also acts as a repressor of mouse ribosomal protein gene transcription [186], appa‐
rently by interfering with the formation of the transcriptional initiation complex [187].
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GABP is a methylation-sensitive transcription factor [110] and its modulation is best seen in the
transactivation of  the Cyp2d-9 promoter  for  the male-specific  steroid 16a-hydroxylase in
mouse liver where GABP does not bind to the promoter when the CpG site at -97 is methylated
[187]. Interestingly, CpG sites located at -93 and -85, outside of the GABP recognition sequence
in the Thyroid Stimulating Hormone Receptor (TSHR) gene promoter when methylated, affect
the binding of GABP to the promoter, leading to a reduction in basal transcription [187].

8. Therapeutic applications

As more such data is accumulated, it presents methylation as a very interesting and promis‐
ing tumour-specific therapeutic target especially since the lack of methylation of CGIs in
normal cells makes it a safe therapy. Demethylation is known to reactivate the expression of
many genes silenced in cultured tumour cells [82]. While high doses of DNMT inhibitors
can inhibit DNA synthesis and eventually lead to cell death by cytotoxicity, administration
of low doses of these drugs over a prolonged period has a therapeutic effect [188-191]. In
fact, the United States Food and Drug Administration has approved the DNMT inhibitors,
5-azacytidine and its derivative 5-aza-2′-deoxycytidine (decitabine), for therapy of patients
with solid tumours, myelodysplastic syndrome (which can lead to the development of acute
leukemia) and myelogenous leukemia [192].

5-azacitidine acts by becoming phosphorylated and being incorporated into RNA, where it
suppresses RNA synthesis and produces a cytotoxic effect [3,193]. It is converted by ribonu‐
cleotide reductase to 5-aza-2'-deoxycytidine diphosphate and subsequently phosphorylated.
The triphosphate form is then incorporated into DNA in place of cytosine. The substitution
of the 5' nitrogen atom in place of the carbon, traps the DNMTs on the substituted DNA
strand and methylation is inhibited [194].

Several more stable analogues such as arabinofuranosyl-5-azacytosine [195], pseudo-isocyti‐
dine [196], 5-fluorocytidine [196], pyrimidone [197] and dihydro-5-azacytidine [198] have
been tested, and others are undergoing clinical trials [199,200].

Targetting overactive transcription factors is another interesting tumour-specific therapeu‐
tic  strategy.  Many human cancers appear to have a small  number of  specific  overactive
transcription factors which are valid candidate targets to at least control further malignan‐
cy and metastasis. Such tumour-specific transcription factors are ideal targets because they
are  less  numerous  and more  significant  than other  possible  protein  targets  in  the  tran‐
scription activation pathway.

However it is not a simple task to target transcription factors in a controlled manner particu‐
larly if attempting to inhibit the interaction of DNA-binding proteins with their recognition
sequences [201,202]. Inhibition of a DNA-binding transcription factor can alternatively be
done in one of two ways: lowering the overall level of intracellular transcription factor
through siRNA or directing methylation to the recognition sequence of the DNA-binding
protein. Both options are extremely difficult to carry out in vivo even if their in vitro counter‐
part has proven to be successful.
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9. Conclusion

Research into DNA methylation, particularly at CGIs has come a long way and it is now
known that gene silencing, albeit essential, is not the only purpose of methylation processes.
In particular, the interactions of transcription factors with promoters have been shown to
modulate the function of genes through their methylation-sensitivity and may thus be re‐
garded as viable targets for therapeutics. Unfortunately the biochemical mechanisms and
principles required to successfully inhibit protein–protein interactions require further study
and clarification [203-206]. Additionally, delivery systems for such cellular treatments also
need further study and improvement. However as more focus is put on molecular medicine
and with the shift towards personalised medicine, there will surely be significant advances
in protein-targetting treatments.
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