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1. Introduction

There is a wide range of models, both stochastic and deterministic, for the spread of an
epidemic. Usually, when the population is constituted of a large number of individuals,
a deterministic model is useful as a first approximation, and random variations can be
neglected. As an alternative, a stochastic model could be more appropriate for describing
the epidemic, but it is less tractable and its mathematical analysis is usually possible only
when the population size is very small. However, most populations are not large enough to
neglect the effect of statistical fluctuations, nor are they small enough to avoid cumbersome
mathematical calculations in the stochastic model. In these cases, it uses to be convenient to
take into account both types of models and their relationship. The interplay between ordinary
differential equations and Markovian counting processes has been widely investigated in
the literature. Major references on this subject can be found in [11, 20–22]. Concerning
the deterministic epidemic models, those using ordinary differential equations in their
formulation have received special attention and a great number of epidemics is modeled by
means of Markovian counting processes. For example, some epidemic models known as SIR,
SI, SIS, and others derived from these ones, use differential equations and Markovian counting
processes in their formulations. Furthermore, stochastic models based on Markovian counting
processes and differential equations are mainly used to carry out the statistical analysis of the
model parameters. The Mathematical Theory of Infectious Diseases by Bailey [2] represents
a classical reference containing a presentation and analysis of these models. However a more
recent book by Andersson and Britton [1] entitled Stochastic Epidemic Models and their
Statistical Analysis is a more appropriate reference according to the point of view of this
chapter. The spread of these epidemics is developed in a closed population, which is divided
into three individual compartments, i.e. susceptible, infective and removed cases; different
types of transitions can occur among these three groups of individuals. These models include
the stochastic and deterministic versions of the Kermack and McKendrick model [19] and the
SIS epidemic model, among others. Moreover, a number of variations of these models has
been widely studied. Modeling of epidemics by continuous-time Markov chains has a long
history; thus, it seems pertinent to cite the works by [4–6, 18, 24, 28].
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Also, an epidemic can be modeled by means of discrete-time. This is the case of the classical
Reed-Frost model, which is a Markovian discrete-time SIR epidemic model. However, this
modeling has two differences with the corresponding one based on counting processes. First,
its latent period is assumed constant and equal to the time unit. Secondly, there are no
deterministic counterpart based on differential equations as it is the case of an epidemic
modeled by means of a Markovian counting process. Another type of population modeling,
which is applied to metapopulations, has been introduced by some authors such [9, 10, 27]
and other references therein. These researchers derive an approximation that preserves the
discrete time structure and reduces the complexity of the models. Probably, these results could
be applied to epidemic models and asymptotic inference on the parameters of these models,
could be carried out.

This chapter is a compendium of two works by the author, whose references are [12, 13].
A wide class of discrete-time stochastic epidemic models is introduced and analyzed from
a statistical point of view. Just as some models based on ordinary differential equations
involve a natural alternative through Markovian counting processes, this class includes a
counterpart based on differential equations. Unlike those epidemic models where transitions
occur at random times, our proposal involves the advantage of being suitable for epidemics
that cannot be observed for a long period of time, as in some epidemics where observations are
done at previously determined times. This is the main reason for preferentially considering
these kind of stochastic models instead of those based on continuous time. It is expected
the smaller the periods of time between transitions and the bigger the population, the more
similar the stochastic and deterministic models would become. Indeed, one of the main aims
of this paper is to prove such a similarity. As a second aim, we are highly interested in
carry out statistical analysis on the parameters of the modeling. For this purpose, martingale
estimators for the parameters involve in the modeling are derived and their asymptotic
normality is proved.

Since the results stated here do not assume a distribution for the process modeling the
epidemic, it is not possible to derive a likelihood ratio and hence maximum likelihood
estimators cannot be obtained. Even, in many cases when the process representing the model
is Markovian, the maximum likelihood estimators cannot be obtained in a closed form, which
makes difficult to carry out statistical inference on the parameter of the model. As pointed
out in [7], likelihood functions corresponding to epidemic data are often very complicated.
In these cases, parameter estimation based on martingale estimators use to be an appropriate
alternative to work out this difficulty. This method arises as a natural way of estimation when
no distribution in the model is assumed or, when the maximum likelihood estimators cannot
be obtained in a closed form.

This chapter is organized as follows. The general form of the model and two preliminary
lemmas are introduced in Section 2. Section 3 contains brief definitions of some typical
models included in the biomathematical literature. The deterministic counterpart of the
general model along with its relationships with it is presented in Section 4. Indeed, the
convergence of the stochastic model to the deterministic one and the asymptotic behavior
of the corresponding fluctuations are proved. Moreover, in Section 4 a version of the SIS
epidemic model is presented and numerical simulations are carried out. The parameter
estimators are defined in Section 5, and their asymptotic normality is proved. The General
Epidemic Model along with the statistical analysis on the parameters is stated in Section 6.
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Results of Section 5 are applied here to some hypothesis tests. Section 7 is devoted to some
numerical simulations. Finally, Section 8 contains some conclusions.

2. Modeling and preliminaries

2.1. Discrete-time modeling

The model which we introduce here is defined as follows: a community of individuals divided
into three different compartments is considered, namely, susceptible, infective and removed
individuals.

Suppose the size population is n, and for each t ≥ 0, Sn(t), In(t) and Rn(t) represent,
respectively, the number of susceptible, infective and removed individuals at time t. Since it is
assumed the population size is constant, then for each t ≥ 0, should be Sn(t)+ In(t)+ Rn(t) =
n. These processes are observed at discrete-time instants which are defined by the sequence
{tn

k }k∈N, where for each k ∈ N, tn
k = kΔ/n, (Δ > 0), i.e. each time subinterval has length

Δ/n. Let (Ω,F , IP) be a probability space. In the sequel, all stochastic processes and random
variables are defined on this probability space and for a stochastic process Z, we denote
ΔZ(tn

k ) = Z(tn
k )− Z(tn

k−1).

Let M⊤ denote the transpose of a matrix M and Xn = (Sn, In, Rn)⊤. Transitions of
individuals among the three compartments are determined by m increasing stochastic
processes Zn

1 , . . . , Zn
m, and the number of individuals in each compartment is obtained, for

each t ≥ 0, by means of
Xn(t) = Xn(0) + AZn(t), (1)

where Zn(t) = (Zn
1 (t), . . . , Zn

m(t))
⊤ and A is a 3 × m-incidence matrix.

It is assumed Zn
1 , . . . , Zn

m take values in the set of non-negative integer numbers, have
right-continuous trajectories and start at zero, i.e. Zn

1 (0) = · · · = Zn
m(0) = 0. Let F n

k be
the σ-field σ(Zn(tn

1 ), . . . , Zn(tn
k )) generated by Zn(tn

1 ), . . . , Zn(tn
k ). The stochastic processes

Zn
1 , . . . , Zn

m increase according to m density dependent transition rates, which are defined by
means of m non-negative functions a1, . . . , am, respectively. The domain of these functions is
and open set of R

3 containing the 3-simplex E = {(u, v, w)⊤ ∈ [0, 1]3 : u + v + w = 1} and it
is assumed the following condition holds:

(C) For each k ∈ N, ΔZn
1 (t

n
k ), . . . , ΔZn

m(t
n
k ) are F n

k−1−conditionally independent and satisfy

IE(ΔZn
i (t

n
k )|F n

k−1) = ai(χ
n(tn

k−1)), (i ∈ {1, . . . , m}),

where χn(t) = (σn(t), ιn(t), ρn(t))⊤, σn(t) = Sn(t)/n, ιn(t) = In(t)/n and ρn(t) = Rn(t)/n.

A wide variety of stochastic models for epidemics satisfy condition (C). It is important to point
out this condition does not determine the law or distribution of χn, i.e. there could be two or
more processes satisfying this condition, though they have different transition probabilities.
This fact enables this condition to be applied to a wide class of models, since in order to verify
condition (C), the distribution of the process need not be known. Actually, a stochastic process
satisfying condition (C) need not be Markovian. Nevertheless, some Markov chains, having
density dependent transition rates, satisfy condition (C) and hence they may be included in
our setting.
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2.2. Two preliminary lemmas

In what follows, [a] stands for the integer part of a real number a and for each i = 1, . . . , m,

we denote Ln
i (t) = ∑

[nt]
k=1 ξn

k (i)Δtn and Ln(t) = (Ln
1 (t), . . . , Ln

m(t))
⊤, (t ≥ 0), where ξn

k (i) =
ΔZn

i (t
n
k )− ai(χ

n(tn
k−1)) and Δtn = 1/n. From Condition (C), it is obtained that, by defining

Gn
t = F n

[nt]
, Ln = {Ln(t); t ≥ 0} is an m-dimensional martingale with respect to {Gn

t ; t ≥ 0}.

Through this chapter, for each i = 1, . . . , m, vn
i (t) and 〈Ln

i 〉 stand for the random variable

vn
i (t) =

1

n

[nt]

∑
k=1

IE(ξn
k (i)

2|F n
k−1)

and the predictable quadratic variation of Ln
i , respectively.

Lemma 2.1. For each t ≥ 0, Ln
1 (t), . . . , Ln

m(t) are Gn
t−-conditionally independent random variables

and, the predictable quadratic variation matrix of Ln is given by

〈Ln〉(t) = 1

n

⎛
⎜⎜⎜⎜⎝

vn
1 (t) · · · 0

...
. . .

...

0 · · · vn
m(t)

⎞
⎟⎟⎟⎟⎠

, (t ≥ 0).

Proof. For t ≥ 0, the Gn
t−-conditional independence of Ln

1(t), . . . , Ln
m(t) follows from

Assumption (C) and it is clear that for each i = 1, . . . , m, the predictable quadratic variation

of Ln
i is given by 〈Ln

i 〉(t) = 1
n2 ∑

[nt]
k=1 IE(ξn

k (i)
2|F n

k−1). Hence 〈Ln
i 〉(t) = vn

i (t)/n, (t ≥ 0), which
concludes the proof.

In the sequel, for each d ∈ N, ‖ · ‖ stands for the Euclidean vector norm in R
d.

Lemma 2.2. Let T > 0 and suppose for each i = 1, . . . , m, { 1
n vn

i (T)}n∈N converges in probability to
zero, as n goes to ∞. Then, {sup0≤t≤T ‖Ln(t)‖}n∈N converges in probability to zero.

For each T > 0 and each i = 1, . . . , m, { 1
n vn

i (T)}n∈N converges in probability to zero, as n
goes to ∞.

Proof. From Theorem 1 in [26], for any ǫ, η > 0 we have

IP( sup
0≤t≤T

‖Ln(t)‖2
> ǫ) ≤ 1

ǫ

m

∑
i=1

IE(〈Ln
i 〉(T) ∧ η) + IP(

m

∑
i=1

〈Ln
i 〉(T) > η)

and hence, Lemma 2.1 implies

IP( sup
0≤t≤T

‖Ln(t)‖2
> ǫ) ≤ mη

ǫ
+ IP(

m

∑
i=1

1

n
vn

i (T) > η).

By assumption this lemma follows.
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3. Some epidemic models

Most of the typical models involved in the biomathematical literature have a version which
belongs to the model class defined in this approach. Some of them are included below.

3.1. The general epidemic model

A deterministic version of this model based on differential equations, was introduced by [19],
while the article by [18] was a pioneer in the stochastic version based on counting processes.
This model has received the most attention in the literature, and its analysis can be found in
[2], [1] and [23]. Two type of transitions are possible for any individual, from susceptible to
infected and from infected to removed individuals. Thus under the perspective of this work,
the modeling of this epidemic must satisfy (1) with

A =

⎛
⎜⎝

−1 0

1 −1

0 1

⎞
⎟⎠ and Zn =

(
Zn

1

Zn
2

)
.

Transitions from susceptible to infected and from infected to removed cases are described
by Zn

1 and Zn
2 , respectively, and the functions defining their transition rates are given by

a1(u, v, w) = βuv and a2(u, v, w) = γv, where β and γ are two parameters denoting the
infection and removal rates. This model is also known as SIR model.

3.2. The SIRS Model

This is a slight modification of the preceding model. Besides the transitions determined by
Zn

1 and Zn
2 in the SIR model, a transition from removed to susceptible case is allowed and

determined by an increasing stochastic process Zn
3 , where its transition rate is defined by

a3(u, v, w) = δw. In this case, some of the removed cases may become susceptible to be
infected again. The incidence matrix defining this model is given by

A =

⎛
⎜⎝

−1 0 1

1 −1 0

0 1 −1

⎞
⎟⎠ .

3.3. The SIS Model

One of the simplest epidemic models is the SIS model, which uses to be suitable for
infections resulting from bacteria such as gonorrhea, malaria, etc. In this case, only transitions
from susceptible to infected individuals are allowed, as well as transitions from infected
to susceptible individuals. According to the approach of this study, two transitions are
allowed, and determined by Zn

1 and Zn
2 with transition rates defined by a1(u, v, w) = βuv

and a2(u, v, w) = γv, respectively. In this case, the incidence matrix is

A =

⎛
⎜⎝

−1 1

1 −1

0 0

⎞
⎟⎠ .

Notice the compartment corresponding to removed cases is considered having no individuals.

257Discrete-Time Stochastic Epidemic Models and Their Statistical Inference
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3.4. The modified SIR model

This is a modification of the general epidemic model and aims to AIDS modeling. As in the
general epidemic model, two transitions Zn

1 and Zn
2 define the model with transition rates

given by a1(u, v, w) = βuv/(u + v) and a2(u, v, w) = γv, respectively. As before, β and γ
correspond to the model parameters. Some references concerning the deterministic version of
this model are, for instance, [16, 17], while the stochastic version based on Markovian counting
processes was introduced by [4]. The incidence matrix is defined as in the SIR model, i.e.

A =

⎛
⎜⎝

−1 0

1 −1

0 1

⎞
⎟⎠ .

In general, as much in the SIR as the modified model, the transition rate due to infection is
proportional to the susceptible density and the fraction of infected individuals with respect to
individuals in circulation. Consequently, in the SIR model this fraction is v/(u + v + w) = v,
while in an epidemic where to be removed is equivalent to be dead or out of circulation, this
fraction is v/(u + v). In modeling AIDS, removed cases are presumed to be so ill with AIDS
that they no longer take part in transmission.

4. The deterministic counterpart

In this section, we examine the relationship between the model we are introducing here and
an associated ordinary differential equation, which we call its deterministic counterpart.

Let F(x) = Aa(x), where a(x) = (a1(x), . . . , am(x))⊤, (x ∈ E), and consider the following
ordinary differential equation:

dχ

dt
(t) = F(χ(t)), χ(0) = χ0, (2)

where χ0 = (σ0, ι0, ρ0)
⊤ ∈ E is the initial condition.

In order to obtain existence and uniqueness of the solution to (2), it will be assumed the
following usual Lipchitz condition holds:

(L) ‖F(x)− F(y)‖ ≤ K‖x − y‖,

for all x, y ∈ E, where K is a positive constant.

4.1. Comparison between the stochastic and deterministic models

The theorem below stated the consistency of the stochastic model with respect to the
deterministic one and we will use it to study the asymptotic behavior of the estimators for
the parameters of the model.

Theorem 4.1. Let χ be the unique solution to (3) and assume conditions (C) and (L) are satisfied.
Moreover, suppose the following two conditions hold:

(4.1.1) The sequence of initial conditions {χn(0)}n∈N converges in probability to χ0 = (σ0, ι0, ρ0)
⊤,

as n goes to ∞.

258 Stochastic Modeling and Control
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(4.1.2) For each T > 0 and each i = 1, . . . , m, { 1
n vn

i (T)}n∈N converges in probability to zero, as n
goes to ∞.

Then, {χn}n∈N converges in probability uniformly over compact subsets of R+ to χ, i.e. for each
T > 0, {sup0≤t≤T ‖χn(t)− χ(t)‖}n∈N converges in probability to zero, as n goes to ∞.

Proof. Since, for each i = 1, . . . , m, △Zn
i (t

n
k ) = ai(χ

n(tn
k−1)) + ξn

k (i), we have

Zn
i (t) = n

[nt]

∑
k=1

ai(χ
n(tn

k−1))△tn + n
[nt]

∑
k=1

ξn
k (i)△tn

= n
∫ t

0
ai(χ

n(u))du − (nt − [nt])ai(χ
n(t)) + nLn

i (t),

and

χn(t) = χn(0) +
∫ t

0
F(χn(u))du + ALn(t) +

(nt − [nt])

n
F(χn(t)).

Hence

χn(t)− χ(t) = χn(0)− χ(0) +
∫ t

0
[F(χn(u))− F(χ(u))]du + ALn(t)− ǫn(t), (3)

where ǫn(t) = (nt−[nt])
n F(χn(t)).

For any matrix B, let us denote |||B||| = sup‖x‖=1 ‖Bx‖. Fix T > 0 and let

gn(t) = sup
0≤s≤t

‖χn(s)− χ(s)‖, (t ∈ [0, T]).

From (3) and (L), for each t ≥ 0, we have

gn(t) ≤ αn + K
∫ t

0
gn(u)du,

where αn = gn(0) + sup0≤t≤T ‖ALn(t)‖ + O(1/n). Since {gn(0)}n∈N converges in
probability to zero and sup0≤t≤T ‖ALn(t)‖ ≤ |||A||| sup0≤t≤T ‖Ln(t)‖, Lemma 2.1 and
Gronwall’s inequality imply {gn(T)}n∈N converges in probability to zero. This completes
the proof.

Remark 4.1. By Chebishev’s inequality, Condition (4.1.2) is satisfied whenever the following stronger
condition holds: For each T > 0 and each i = 1, . . . , m,

lim
n→∞

IE(〈Ln(i)〉(T)) = 0. (4)

The following result aims to the problem of finding approximate confident bands for the
solution to (2). Before stating it, for each x ∈ E, let D(F)(x) denote the Jacobian matrix of
F at x = (x1, x2, x3)

⊤, that is,

D(F)(x) =

⎛
⎜⎝

∂F1
∂x1

(x) ∂F1
∂x2

(x) ∂F1
∂x3

(x)
∂F2
∂x1

(x) ∂F2
∂x2

(x) ∂F2
∂x3

(x)
∂F3
∂x1

(x) ∂F3
∂x2

(x) ∂F3
∂x3

(x)

⎞
⎟⎠ .

In the sequel, {Yn}n∈N is the sequence defined as Yn =
√

n(χn − χ).

259Discrete-Time Stochastic Epidemic Models and Their Statistical Inference
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Theorem 4.2. Let {Yn}n∈N be the sequence defined as Yn =
√

n(χn − χ) and suppose the following
three conditions hold:

(4.2.1) For each i, j = 1, 2, 3, the partial derivative
∂Fi

∂xj
(x) exists and it is continuous at x in an open

set containing E.

(4.2.2) For each ǫ > 0 and each i = 1, . . . , m, { 1

n

n

∑
k=1

IE(ξn
k (i)

2I{|ξn
k (i)|>ǫ

√
n}|F n

k−1)}n∈N converges

in probability to zero.

(4.2.3) {Yn(0)}n∈N converges in distribution to a three-variate random vector η.

(4.2.4) For each t ≥ 0 and each i = 1, . . . , m, {vn
i (t)}n∈N converges in probability to vi(t), where for

each i = 1, . . . , m, vi : [0, ∞[→ R is an increasing continuous function such that vi(0) = 0.

Then, {Yn}n∈N converges in law to the solution Y satisfying the following stochastic differential
equation:

dY(t) = D(F)(χ(t))Y(t)dt+ dM(t), Y(0) = η, (5)

where M is a continuous martingale with predictable quadratic variation given by the matrix

〈M〉(t) = A · Diag(v1(t), . . . , vm(t)) · A⊤

and Diag(v1(t), . . . , vm(t)) stands for the diagonal matrix with entries v1(t), . . . , vm(t) at its
diagonal.

Proof. Let Mn =
√

nALn. By making use of Corollary 12, Chapter II in [29], (4.2.2) and
(4.2.4) imply that {√nLn}n∈N converges in law to a continuous martingale Q with predictable
quadratic variation 〈Q〉 given by 〈Q〉(t) = Diag(v1(t), . . . , vm(t)). Consequently, {Mn}n∈N

converges in law to a continuous martingale M = AQ with predictable quadratic variation
〈M〉 given, for each t ≥ 0, by 〈M〉(t) = A · Diag(v1(t), . . . , vm(t)) · AT.

From (3), we have

Yn(t) = Yn(0) +
∫ t

0
D(F)(θn(s))Yn(s) ds + Mn(t)− Un(t), (6)

where θn(s) is between χn(s) and χ(s), and Un(t) =
√

nǫn(t) = (nt−[nt])√
n

F(χn(t)).

Put C1 = supx∈E ‖D(F)(x))‖ and let C2 > 0 such that supt≥0 ‖Un(t)‖ ≤ C2. We have

sup
0≤u≤t

‖Yn(u)‖ ≤ ‖Yn(0)‖+ C1

∫ t

0
sup

0≤u≤s
‖Yn(u)‖ds + sup

0≤u≤t
‖Mn(u)‖+ C2.

Consequently, from a standard application of the Gronwall inequality, we obtain

sup
0≤u≤t

‖Yn(u)‖ ≤ (‖Yn(0)‖+ sup
0≤u≤t

‖Mn(u)‖+ C2) eC1t . (7)

Since {Yn(0)}n∈N and {sup0≤t≤1 ‖Mn(t)‖}n∈N are sequences converging in distribution,
Theorem 6.2 in [8] implies

lim
a→∞

sup
n∈N

IP(‖Yn(0)‖ > a) = 0, (8)

260 Stochastic Modeling and Control
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and, from (18), for each ǫ > 0 and any t ≥ 0,

lim
δ→0

sup
n∈N

IP( sup
0≤u≤t

‖Yn(u)‖ > ǫ/δ) = 0, (9)

In order to prove the convergence in law of {Yn}n∈N , fix T > 0 and let us define the modulus
of continuity ωD

T : D([0, T], R
3)×]0, ∞[→ R as

ωD
T (x, δ) = inf

{ti}
max
0<i≤r

sup
ti−1≤s,t<ti

‖x(s)− x(t)‖,

where the infimum extends over the finite sets {ti} of points satisfying
{

0 = t0 < t1 < · · · < tr = T,

ti − ti−1 > δ, i = 1, . . . , r.

Here, D([0, T], R
3) stands for the Skorohod space of all functions from [0, T] into R

3, which
are right continuous and left-hand limited.

From (6) we have

ωD
T (Y

n, δ) ≤ δC1 sup
0≤t≤T

‖Yn(t)‖+ ωD
T (Mn, δ) + 2C2/

√
n. (10)

Since {Mn}n∈N converges in law to M, it follows from Theorem 15.2 by [8] that for each ǫ > 0,
limδ→0 supn∈N

IP(ωD
T (Mn, δ) > ǫ) = 0. Hence, from (9) and (10), for each ǫ > 0, we have

lim
δ→0

sup
n∈N

IP(ωD
T (Y

n, δ) > ǫ) = 0. (11)

Conditions (8) and (11) imply the sequence {Yn}n∈N satisfies the hypotheses of Theorem 15.2
in [8] and hence, the sequence of probabilities measures {IP(Yn ∈ ·)}n∈N is tight. This fact,
along Theorem 6.1 in [8], imply that for the convergence in law, {Yn}n∈N is relatively compact.
Let Y be a process and {Ynk}k∈N a subsequence of {Yn}n∈N such that {Ynk}k∈N converges
in law to Y. Since {supt≥0 ‖Un(t)‖}n∈N converges to zero, it follows from (6), (4.2.1) and
Theorem 4.1 that

Y(t) = Y(0) +
∫ t

0
D(F)(χ(s))Y(s)ds + M(t).

Moreover, since {Yn(0)}n∈N converges in distribution to η and Y(0) equals η in distribution,
we have Y is a solution to (5). Finally, uniqueness of solutions to (5) implies {Yn}n∈N

converges in distribution to Y, which concludes the proof.

Remark 4.2. By Itô’s rule, the unique solution to (5) is given by

Y(t) = Ψ(t)

[
η +

∫ t

0
Ψ(s)−1 dM(s)

]
, 0 ≤ t ≤ 1,

where Ψ is the unique solution to the matrix differential equation

Ψ′(t) = D(F)(χ(t))Ψ(t), Ψ(0) = identity matrix.

The stochastic process {Y(t); t ≥ 0} allows us to give confidence bands for the deterministic
model defined by the solution χ to (2). In Section 6 such band is constructed for the SIS
epidemic model, where some simulations are carried out.
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4.2. Numerical simulations for the SIS epidemic model

In this section, our attention is focused on the SIS epidemic model. As explained in
Subsection 3.3, it is assumed that only susceptible and infective individuals are in a closed
homogeneously mixing population. Let σ(t) and ι(t) be the densities of susceptible and
infective individuals, respectively. The deterministic model is defined by the following system
of ordinary differential equations:

dσ
dt (t) = −βσ(t)ι(t) + γι(t)

dι
dt (t) = βσ(t)ι(t)− γι(t).

Since for each t ≥ 0, σ(t) + ι(t) = 1, this model is completely determined by the ordinary
differential equation:

dι

dt
(t) = β(1 − ι(t))ι(t)− γι(t),

which, given ι(0) = ι0 ∈]0, 1[, has the unique solution

ι(t) =

⎧
⎪⎨
⎪⎩

ι0
ι0 βt+1 if β = γ

ι0(β−γ) e(β−γ)t

β−γ+ι0β(e(β−γ)t−1)
if β �= γ.

(12)

The relative removal-rate, see for instance [2] and [3], is defined as τ = γ/β, where γ and
β represent the removal and infection rates, respectively. We note that ι(t) → 0 as t → ∞ if
τ ≥ 1, while ι(t) → 1− τ > 0 as t → ∞ if τ < 1. For this reason, n(1− τ) is called the endemic
level of the process.

Let σn(t) and ιn(t) be the densities of susceptible and infective individuals in the stochastic
version of the SIS epidemic model. According to our setting, σn and ιn are defined as

σn(t) = σn(0) + 1
n (Z

n
2 (t)− Zn

1 (t))

ιn(t) = ιn(0) + 1
n (Z

n
1 (t)− Zn

2 (t)),

where IE(ΔZn
1 (t

n
k )|F n

k−1) = βσ(tn
k−1)ι(t

n
k−1) and IE(ΔZn

2 (t
n
k )) = γι(tn

k−1).

Let us assume nιn(0) = [nι0]. From Theorem 4.1, {ιn}n∈N converges uniformly in probability
to ι, over compact subsets of R+, whenever ι(0) = ι0. It is worth noting 1 − τ is an
asymptotically stable equilibrium state for the deterministic model and not for the stochastic
model. However, it is expected ιn(t) is close to this value due to Theorem 4.1, for a large
enough n. In Figure 1, the deterministic and stochastic models, for β = 3, γ = 1, ι0 =
(1 − τ)/2 and n = 1, 000, are compared. Let yn =

√
n(ιn − ι). It follows from Theorem 4.2

that {yn}n∈N converges in law to y, the solution to the following Langevin equation:

dy(t) = (β − γ − 2βι(t))y(t) dt +
√

β(1 − ι(t))ι(t) + γι(t)dW(t), ι(0) = 0,

where W is a one dimensional standard Brownian motion. From Remark 4.2, the solution to
this equation is

y(t) =
∫ t

0
b(u) e

∫ t

u
a(s)ds dW(u), (13)
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Figure 1. Comparing the deterministic and stochastic models.

where a(s) = β−γ− 2βy(s) and b(u) =
√

β(1 − y(u))y(u) + γy(u). Hence, y(t) has a normal
distribution with mean zero and variance

Var(y(t)) =
∫ t

0
b(u)2 e2

∫ t

u
a(s)ds du.

Suppose τ < 1 and the process nιn starts close to the endemic level, i.e. ι0 = 1 − τ.
Consequently, ι(t) = 1 − τ for all t ≥ 0, and (13) becomes

y(t) =
√

2γ(1 − γ/β)
∫ t

0
e−(β−γ)(t−u) dW(u).

In this case, a simple expression for the variance of y(t) can be obtained and a confidence
interval for ι(t) derived. Indeed, for each t ≥ 0, y(t) has normal distribution with mean zero
and variance

Var(y(t)) =
γ

β
(1 − e−2(β−γ)t).

Since for each t > 0 Var(y(t)) ≤ τ < 1, ιn(t) differs from ι(t) at most wα/2

√
τ/n with an

approximate probability equals 1 − α.

In Figure 2, a simulation of ιn is carried out for β = 3, γ = 1 and n = 10, and we note in this
case random fluctuations are important to be neglected.

For α ∈]0, 1[, [u−
α,n(t), u+

α,n(t)] is a confidence interval for ι(t), with an approximate confidence
level 1 − α, where

u±
α,n(t) = ιn(t)± wα/2

√
Var(y(t))/n, (14)

1 − Φ(wα/2) = α/2 and Φ is the cumulative distribution function of a standard normal
random variable. The random bounds given by (14) allow to construct (nonuniform)
confidence bands for the solution ι given by (12). In turn, by defining u±

α (t) = ι(t) ±
wα/2

√
Var(y(t))/n, we have ιn(t) ∈ [u−

α (t), u+
α (t)] with an approximate probability 1 − α

for large values of n.
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Figure 2. Simulation for β = 3, γ = 1 and n = 10.

In Figure 3, another simulation of ιn is carried out for β = 3 and γ = 1. However, in order
to appreciate the convergence of ιn to the equilibrium 1 − τ for the deterministic model, a
population of size n = 5, 000 is now considered. The bounds u−

α and u+
α are pictured with

dash lines for α = .05, and hence, in this case wα/2 = 1.96.
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Figure 3. Simulation for β = 3, γ = 1 and n = 5, 000.

Figure 3 confirms |ιn(t)− ι(t)| ≤ C with an approximate probability bigger than 1 − α = .95,
where C = wα/2

√
τ/n = .0226.

5. Estimators and their asymptotic behavior

The main results of this article are stated in this section; however their proofs are deferred to
the last section.
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5.1. Preliminaries

Let us suppose for each i = 1, . . . , m, ai splits as ai = βibi, where βi is a parameter of the model

and bi is a non-negative continuous function defined on an open set containing E.

Since for each i = 1, . . . , m, Ln
i is a martingale and

Zn
i (t)/n = βi

[nt]

∑
k=1

bi(χ
n(tn

k−1))Δtn + Ln
i (t), (t > 0),

by observing the epidemic through the time interval [0, T], (T > 0), we have

β̂n
i (T) =

Zn
i (T)

n ∑
[nT]
k=1 bi(χn(tn

k−1))Δtn
(15)

is a martingale estimator of βi.

For each T > 0, let β̂n(T) = (β̂n
1(T), . . . , β̂n

m(T))
⊤. Proposition 5.1 below states that

{β̂n(T)}n∈N is a consistent sequence of estimators for β = (β1, . . . , βm)
⊤.

Proposition 5.1. Let assume the hypotheses of Theorem 4.1 are satisfied. Then, for each T > 0 the

sequence {β̂n(T)}n∈N converges in probability to β.

Proof. Note that for each i = 1, . . . , m,

β̂n
i (T) = βi +

Ln
i (T)

∑
[nT]
k=1 bi(χn(tn

k−1))Δtn
.

From Theorem 4.1, {∑
[nT]
k=1 bi(χ

n(tn
k−1))Δtn}n∈N converges in probability to

∫ T
0 bi(χ(t))dt,

and from (4.1.1) along with Lemma 2.2 imply {Ln
i (T)}n∈N converges in probability to zero.

Therefore, the proof is complete.

5.2. Asymptotic normality of estimators

In this subsection we state two asymptotic normality results for the martingale estimators for

β.

Theorem 5.1. Let χ be the unique solution to (3) and assume conditions (C) and (L) are satisfied.

Moreover, suppose the following three conditions hold:

(5.1.1) {χn(0)}n∈N converges in probability to χ(0) = (σ0, ι0, ρ0)
⊤, as n goes to ∞.

(5.1.2) For each ǫ > 0 and each i = 1, . . . , m, { 1
n ∑

n
k=1 IE(ξn

k (i)
2I{|ξn

k (i)|>ǫ
√

n}|F n
k−1)}n∈N

converges in probability to zero, as n goes to ∞.

(5.1.3) For each i = 1, . . . , m, there exists a continuous increasing function vi : [0, ∞[→ R such that

vi(0) = 0 and for each t > 0, {vn
i (t)}n∈N converges in probability to vi(t), as n goes to ∞.
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Then, for each T > 0, {√n(β̂n(T)− β)}n∈N converges in distribution, as n goes to ∞, to a normal

random vector N(0, Σ) having mean zero and variance-covariance matrix Σ = {σij(T)}1≤i,j≤m

satisfying

σij(T) =

{
vi(T)/[

∫ T
0 bi(χ(t))dt]2 if i = j

0 if i �= j.

Proof. Let Qn = (Qn
1 , . . . , Qn

m)
⊤, where Qn

i =
√

nLn
i , (i = 1, . . . , m). From Lemma 2.1, for each

t ≥ 0, Qn
1 (t), . . . , Qn

m(t) are Gn
t−-conditionally independent random variables and for each

i = 1, . . . , m, the predictable quadratic variation of the martingale Qn
i is given by 〈Qn

i 〉 = vn
i .

Condition (5.1.3) indicates for each i = 1, . . . , m, {〈Qn
i 〉(t)}n∈N converges in probability to

vi(t). This fact and Condition (5.1.2) enable to conclude that the hypotheses of Corollary 12 in
Chapter II in (Rebolledo, 1979) hold. Consequently, {Qn(T)}n∈N converges in distribution to
a normal random vector Q(T) = (Q1(T), . . . , Qm(T))⊤ with mean zero and satisfying

IE(Qi(T)Qj(T)) =

{
vi(T) if i = j

0 if i �= j.

We have
√

n(β̂n(T)− β) = DnQn(T), where Dn = Diag(dn
1 , . . . , dn

m) is the diagonal random
matrix with entries dn

1 , . . . , dn
m in its diagonal given by

dn
i =

1

∑
[nT]
k=1 bi(χn(tn

k−1))Δtn
.

Condition (5.1.3) implies Condition (4.1.2) and consequently, the hypotheses of Theorem 4.1

are satisfied. Thus, for each i = 1, . . . , m, {∑
[nT]
k=1 bi(χ

n(tn
k−1))Δtn}n∈N converges in probability

to
∫ T

0 bi(χ(t))dt and Slutzky’s theorem (see Theorem 5.1.6 in [25], for instance) enables us to
conclude {DnQn(T)}n∈N converges in distribution to a normal random vector with mean
zero and variance-covariance matrix Σ = {σij}1≤i,j≤m, which satisfies

σij =

{
vi(T)/[

∫ T
0 bi(χ(t))dt]2 if i = j

0 if i �= j.

This concludes the proof of Theorem 5.1.

Remark 5.1. Note that Condition (5.1.2) holds whenever for each ǫ > 0 and each i = 1, . . . , m,

{max
k≤n

IE(ξn
k (i)

2I{|ξn
k (i)|>ǫ

√
n})}n∈N

converges in probability to zero, as n goes to ∞. In particular, this condition is satisfied when the double
sequence {ξn

k (i)
2; 0 ≤ k ≤ n, n ∈ N} is uniformly integrable.

6. The general epidemic model

In order to carry out asymptotical inference for a great number of epidemic models, results
stated in Section 5 can be applied. In this subsection, statistical inference for the General
Epidemic Model is developed.
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6.1. The model

As mentioned in Subsection 3.1, this model contains two parameters β and γ denoting the
infection and removal rate, respectively, and it is defined by two increasing integer valued
processes, which we denote by An and Bn, so that

Sn(t) = Sn(0)− An(t),

In(t) = In(0) + An(t)− Bn(t),

Rn(t) = Rn(0) + Bn(t).

From (15) and the definition of this model given in Subsection 3.1, the martingale estimators
of β and γ in [0, T], are respectively given by

β̂n(T) =
An(T)

∑
[nT]
k=1 σn(tn

k−1)ι
n(tn

k−1)
and γ̂n(T) =

Bn(T)

∑
[nT]
k=1 ιn(tn

k−1)
. (16)

In order to verify β̂n(T) and γ̂n(T) are martingale estimators, Condition (C) has to be hold.
By taking into account some heuristic considerations, which are related to the infection
spreading, the distribution of the process can be determined. This fact is sufficient, although
not necessary as mentioned previously, to obtain Condition (C). Let β denote the average of
effective contacts per time unit between an infected person and any other individual in the
population. This constant is known as the contact rate, cf. [15]. Hence, β/n is the average
number of effective contacts per time unit per capita of an infected, and it is natural to assume
the probability of a susceptible individual to become infective in a time interval ]tn

k−1, tn
k ] is

(β/n)ιn(tn
k−1). On the other hand, since the total number of adequate contacts in tn

k−1 that
may produce an infection in tn

k equals the susceptible number Sn(tn
k−1), it is assumed that

ΔAn(tn
k ) and ΔBn(tn

k ) conditionally on F n
k−1 have independent Binomial distribution with

parameters (Sn(tn
k−1), (β/n)ιn(tn

k−1)) and (In(tn
k−1), γΔtn), respectively.

Note that it satisfies

IE(ΔAn(tn
k )|F n

k−1) = a1(χ
n(tn

k−1)) and IE(ΔBn(tn
k )|F n

k−1) = a2(χ
n(tn

k−1)),

where a1(u, v, w) = βuv and a2(u, v, w) = γv. Hence, conditions (C) and (L) hold and, β̂n(T)

and γ̂n(T) are martingales estimators. Also, in the next subsection, we see that this approach

satisfies the hypotheses of Theorem 5.1 and hence, asymptotic normality of β̂n(T) and γ̂n(T)
is obtained.

Regarding the initial state of the epidemic, two natural assumptions can be made and both of
them satisfy Condition (5.1.1) in Theorem 5.1. The first consists in assuming {χn(0)}n∈N is a
deterministic sequence converging to χ(0) in E. This assumption is quite reasonable whenever
a good knowledge about the initial numbers of susceptible, infected and removed individuals
is involved. For instance, this assumption can be done when the population is small and the
proportion of individuals belonging to each compartment can be observed and calculated at
time zero. The second possible assumption consists in assuming (Sn(0), In(0), Rn(0))⊤ has
multinomial distribution with parameters n, p1, p2 and 1 − p1 − p2, (0 < p1 + p2 < 1), i.e. for
each (s, i) ∈ {0, . . . , n} × {0, . . . , n} such that s + i ≤ n,

IP(Sn(0) = s, In(0) = i) =
n!

s!i!(n − s − i)!
ps

1 pi
2(1 − p1 − p2)

n−s−i.
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This second assumption will be held from now on, and although the parameters of this
distribution can be estimated by taking a sample at time zero, in the sequel it will be assumed
these parameters are known.

Note that the solution χ = (σ, ι, ρ)⊤ to (3) satisfies:

dσ
dt (t) = −βσ(t)ι(t)

dι
dt (t) = βσ(t)ι(t)− γι(t)

dρ
dt (t) = γι(t),

(17)

with initial condition (σ(0), ι(0), ρ(0)) = (p1, p2, 1 − p1 − p2).

6.2. Asymptotic normality

As a consequence of Theorem 5.1, the following proposition is stated, which shows the
parameter estimators for the SIR epidemic model are asymptotically normal. In this
subsection all notations and facts given on the preceding subsection will be maintained.

Proposition 6.1. Let λ = (β, γ)⊤, T > 0 and λ̂n = (β̂n, γ̂n)⊤. Then, {√n(λ̂n(T) − λ)}n∈N

converges in distribution to a normal random bivariate vector with mean zero and variance-covariance
matrix

Σ(T) =

⎛
⎝

β2/(σ(0)− σ(T)) 0

0 γ2/(ρ(T)− ρ(0))

⎞
⎠ .

Proof. From the Kolmogorov Law of Large Numbers, {χn(0)}n∈N converges almost sure to
χ0 = (p1, p2, 1 − p1 − p2)

⊤ and hence, Condition (5.1.1) holds.

Let ξn
k (1) = ΔAn(tn

k )− βσn(tn
k−1)ι

n(tn
k−1) and ξn

k (2) = ΔBn(tn
k )− γιn(tn

k−1). In order to verify

Condition (5.1.2), it suffices to prove for each i = 1, . . . , m, the double sequence {ξn
k (i)

2; 0 ≤
k ≤ n, n ∈ N} is uniformly integrable. For this purpose, we note that, for a random variable
X with Binomial distribution, the following inequality holds:

IE(|X − IE(X)|3) ≤ 8 IE(X)3 + 6 IE(X)2 + IE(X).

Consequently, according to our approach, for each i = 1, 2, we have

sup{IE(|ξn
k (i)|3) : n, k ∈ N} ≤ 8ζ3 + 6ζ2 + ζ,

where

ζ =

⎧
⎨
⎩

β if i = 1

γ if i = 2.

Hence, {ξn
k (i)

2}n,k∈N is uniformly integrable and Condition (5.1.2) holds.

Let

vn
A(t) =

1

n

[nt]

∑
k=1

IE([ΔAn(tn
k )− βSn(tn

k−1)ι
n(tn

k−1)Δtn]
2|F n

k−1)
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and

vn
B(t) =

1

n

[nt]

∑
k=1

IE([ΔBn(tn
k )− γIn(tn

k−1)Δtn]
2|F n

k−1).

We have,

vn
A(t) =

1

n

[nt]

∑
k=1

βσn(tn
k−1)ι

n(tn
k−1)(1 − βιn(tn

k−1)Δtn),

and

vn
B(t) =

1

n

[nt]

∑
k=1

γιn(tn
k−1)(1 − γΔtn).

Since 0 ≤ vn
A(t) ≤ βt and 0 ≤ vn

B(t) ≤ γt, the sequences {vn
A(t)/n}n∈N and {vn

B(t)/n}n∈N

converge to zero and hence, Condition (4.1.2) holds. Thus, assumptions of Theorem 4.1 are
satisfied and consequently, {χn}n∈N converges to χ uniformly in probability over compact
subsets of R+. This fact along with

vn
A(t) =

∫ t

0
βσn(u)ιn(u)du + O(1/n) and vn

B(t) =
∫ t

0
γιn(u)du + O(1/n),

allow to conclude for each t ≥ 0, {vn
A(t)}n∈N and {vn

B(t)}n∈N converge in probability to

vA(t) =
∫ t

0
βσ(u)ι(u)du and vB(t) =

∫ t

0
γι(u)du,

respectively.

Thus, as a consequence of Theorem 5.1, we have that {√n(γ̂n(T) − γ)}n∈N converges in
distribution to a normal random bivariate vector having mean zero and variance-covariance
matrix

Σ(T) =

(
β/

∫ T
0 σ(u)ι(u)du 0

0 γ/
∫ T

0 ι(u)du

)
.

From (6) we have σ(0)− σ(T) = β
∫ T

0 σ(u)ι(u)du and ρ(T)− ρ(0) = γ
∫ T

0 ι(u)du. Hence,

Σ(T) =

(
β2/(σ(0)− σ(T)) 0

0 γ2/(ρ(T)− ρ(0))

)
,

and this concludes the proof.

Since Proposition 6.1 involves a limit distribution depending on the solution of (17), this
proposition may be of limited utility. However, Proposition 4.1 and Slutsky’s theorem have,
as a consequence, the following corollary, which is an alternative to this possible difficulty.

Corollary 6.1. Let T > 0 and

Qn(T) =
√

n

(
(σ(0)− σn(T))1/2(β̂n(T)− β)

(ρn(T)− ρ(0))1/2(γ̂n(T)− γ)

)
.

Then, {Qn(T)}n∈N converges in distribution to a normal random bivariate vector with mean zero and
covariance matrix

I =

(
β2 0

0 γ2

)
.
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6.3. Hypothesis test for the infection rate

In this section, we are interested in proving whether the parameter β of this SIR epidemic
model belongs to a subset of the parametric set. This analysis, which is known as hypothesis
test, will intend to define whether the infection rate is bigger than a fixed value β0 > 0, i.e.
the null hypothesis is stated as H0 : β = β0 against the one-side alternative H1 : β > β0. Since

under H0, {β̂n(T)}n∈N converges in probability to β0, H0 shall be rejected in favor of H1

when β̂n(T) is too large, i.e. when β̂n(T) > un, being un determined by IP(β̂n(T) > un|H0) ≤
α. Here, α is the preassigned level of significance which controls the probability of falsely
rejecting H0 when H0 is true.

By means of Corollary 6.1, it is possible to obtain an approximate value un when n is large.

For this purpose, IP(β̂n(T) > un|H0) ≤ α is replaced by the following weaker requirement:

IP(β̂n(T) > un|H0) → α, as n → ∞.

From the Proposition 6.1, under H0, {√n(σ(0) − σ(T))1/2(β̂n(T) − β0)/β0}n∈N converges
in distribution to a random variable having mean zero and variance one. Therefore, with an
asymptotic level of significance α,

√
n(σ(0)− σ(T))1/2(un − β0)/β0 → tα as n → ∞,

where 1 − Φ(tα) = α. Here, Φ is the cumulative distribution function of a standard normal
variable. Hence, un = β0 + β0tα/

√
n(σ(0)− σ(T)) + o(1/n). In particular, we can choose

un = β0 + β0tα/
√

n(σ(0)− σ(T)) and therefore, with an asymptotic level of significance α, a
critical region for the test is

R1(n) = {
√

n(σ(0)− σ(T))1/2(β̂n(T)− β0)/β0 ≥ tα}.

Under H0, σ(T) is known but it can not be explicitly obtained due to the fact that (6) does not
admit a closed-form solution. However, we can take advantage of the fact that {σn(T)}n∈N

converges in probability to σ(T), and by Slutzky’s theorem, it can be obtained that

R2(n) = {
√

n(σ(0)− σn(T))1/2(β̂n(T)− β0)/β0 ≥ tα}

is a critical region for the test with an asymptotic level of significance α.

Let Δ > 0 and let us consider the alternative hypothesis

H1 : β = β0 + Δ/
√

n.

In this case, under H1 the power of the test πn(β) = IP(R(n)|H1), where R(n) = R1(n) or

R(n) = R2(n), converges to Φ(
(σ(0)−σ(T))1/2Δ−tαβ0

β ).

6.4. Relative removal-rate and basic reproduction number

As pointed out in Subsection 4.2, a fundamental concept resulting from the mathematical
theory of the general deterministic epidemic model is the relative removal-rate, see for
instance [2] and [3]. This number is defined as τ = γ/β, where γ and β represent the removal
and infection rates, respectively, and it plays a crucial part in determining the probable
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occurrence of an epidemic outbreak. Actually, due to the fact that in the deterministic version
of this model, we have (see (17))

dι

dt
(t) = βσ(t)ι(t)− γι(t),

by assuming ι(0) > 0, one has the derivative of ι at zero is bigger than zero, if and only if,
τ < σ(0). Consequently, unless the initial density of susceptible individuals is bigger than
the relative removal-rate, no epidemics can start. It is worth pointing out that this parameter
is connected with the basic reproduction number, which is defined as the number of cases
generated by one infective over the period of infectivity when that infective was introduced
into a large population of susceptible individuals. See for instance, [16], or, [14]. Actually, it
becomes R0 = σ(0)/τ. Notice σ(0) ≈ 1 when a large population of susceptible individuals
is considered. Hence, an epidemic can start with a positive probability, if R0 > 1, and it
will die out quickly if R0 ≤ 1. The knowledge of the basic reproduction number allows
the establishment of vaccination policies when necessary, in order to reduce the number of
susceptible individuals in a population to such a level that R0 is brought below the unity
threshold. Moreover, it is useful to carry out the following hypothesis test:

H0 : R0 = 1 against H1 : R0 > 1.

A natural critical region for the test is {R̂n
0 (T) > un}, where R̂n

0 (T) = σ(0)β̂n(T)/γ̂n(T)

and un is a constant which should be determined by IP(R̂n
0 (T) > un|H0) ≤ α, being α a

preassigned level of significance controlling the probability of falsely rejecting H0 when H0 is
true. The following proposition allows us to carry out the mentioned hypothesis test.

Proposition 6.2. Let Δ be a non-negative real number and Ûn(T) =
√

n(R̂n
0 (T)− 1). Then, under

local alternatives having the form
HΔ : R0 = 1 + Δ/

√
n,

Ûn(T) has as asymptotically normal distribution with mean Δ and variance v0(T)
2, where

v0(T) =

(
1

σ(0)− σ(T)
+

1

ρ(T)− ρ(0)

)1/2

.

Proof. Under HΔ we have Ûn(T) =
√

n(R̂n
0 (T)− R0) + Δ. Let f (x, y) = x/y, (x, y ∈ R, y �= 0).

By Taylor’s theorem, we have

√
n(R̂n

0 (T)− R0) =
√

n( f (σ(0)β̂n(T), γ̂n(T))− f (σ(0)β, γ))

=
σ(0)

γ

√
n(β̂n(T)− β)− σ(0)β

γ2

√
n(γ̂n(T)− γ) + En,

where

En = −σ(0)
√

n

γ2
n

(β̂n(T)− β)(γ̂n(T)− γ) +
σ(0)2δn

√
n

γ3
n

(γ̂n(T)− γ)2

and (δn, γn) is a random point between (σ(0)β̂n(T), γ̂n(T)) and (σ(0)β, γ).

From Propositions 5.1 and 6.1, {En}n∈N converges in probability to zero. Hence, it follows

from Proposition 6.1 that Ûn(T) is asymptotically normal with mean Δ and variance v2
0(T).

Therefore, this proof is complete.
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The constant un can be chosen as un = 1 + tαv0(T)/
√

n + o(1/
√

n), where tα satisfies
1 − Φ(tα) = α. In particular, we can choose un = 1 + tαv0(T)/

√
n, and therefore, with an

asymptotic level of significance α, a critical region for the test is {Ûn(T)/v0(T) > tα}. Note

also that, under HΔ, the power of the test πn(Δ) = IP(Ûn(T)/v0(T) > tα|HΔ) converges to
π(Δ) = Φ(Δ/v0(T)− tα).

Remark 6.1. An application of the preceding proposition is to calculate the approximate power of the
test, with a level of significance α, relative to

H0 : R0 = 1 against H1 : R0 = r,

where r > 1.

We interpret Δ in HΔ as
√

n(r − 1) and approximate the power of the test by means of π = IP(N >

tα|HΔ), where N is a normal random variable with mean
√

n(r−1)
rv0(T)

and variance 1. Consequently, the

power of the test can be approximated by

π = Φ(

√
n(r − 1)

rv0(T)
− tα).

7. Numerical simulations for the general epidemic model

In order to carry out asymptotical inference for a great number of epidemic models, results
stated in Section 5 can be applied. In this subsection, statistical inference for the General
Epidemic Model is developed. In this section we maintain notations used in Section 6.

7.1. Validating the population size

In this subsection, some numerical simulations are carried out in order to validate the
appropriate population size under which the results contained in this work are applicable.

Let

Xn(T) =

⎛
⎜⎝

√
σ(0)−σ(T)

β 0

0

√
ρ(T)−ρ(0)

γ

⎞
⎟⎠

⎛
⎝

β̂n(T)

γ̂n(T)

⎞
⎠ .

According to Proposition 6.1, the square Euclidean norm of Xn(T), namely ‖Xn(T)‖2, has
asymptotically χ2(2) distribution. The positive part of the real straight line is partitioned in
m subintervals, which are determined by 0 = t0 < t1 < · · · < tm−1 < ∞. Let F denote
the χ2(2) distribution function. For β = 2, γ = 1 and T = 10, ‖Xn(T)‖2 is simulated 1, 000
times with m = 10, where t1, . . . , t9 have been chosen in such a way that F(ti) = i/10, i.e.,
t1 = 0.21, t2 = 0.45, t3 = 0.71, t4 = 1.02, t5 = 1.39, t6 = 1.83, t7 = 2.41, t8 = 3.22
and t9 = 4.61. In order to F(t10) = 1, t10 is defined as ∞. For different population sizes
(n = 20, 50, 100, 300, 500, 1000), percentages obtained into the corresponding subintervals are
presented in Table 1. From Proposition 6.1, better approximations correspond to percentages
close to 10%. These closeness are measured by means of the standard deviation (SD) of the
observations corresponding to the different population sizes, which are indicated at the last
column of Table 1 below.
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n [t0, t1[[t1, t2[[t2, t3[[t3, t4[[t4, t5[[t5, t6[[t6, t7[[t7, t8[[t8, t9[[t9, t10[ SD

30 10.7 8.9 8.3 9.0 7.4 7.1 9.1 8.4 9.1 22.0 43.3

50 10.8 7.6 10.0 9.3 7.8 10.0 10.6 9.1 8.3 16.5 25.4

100 11.0 9.6 10.6 9.3 10.3 10.2 8.3 8.1 10.8 11.8 11.8

300 10.0 10.0 9.3 8.6 8.9 10.3 10.0 9.8 10.8 12.3 10.4

500 9.3 10.8 9.2 9.2 9.9 11.0 9.5 10.2 11.3 9.6 7.9

1000 9.4 9.3 10.0 10.3 10.8 10.1 9.8 9.0 9.9 11.4 7.2

Table 1. Percentages of observations of ‖Xn(T)‖2 for the indicated population size, β = 2, γ = 1 and
T = 10.

By carrying out five simulations of a random variable χ2(2), 1, 000 times each, the percentages
of values that resulted in the corresponding subintervals for each of the five simulations, with
the corresponding SD at the last column, are showed in Table 2 below. From Tables 1 and

N[t0, t1[[t1, t2[[t2, t3[[t3, t4[[t4, t5[[t5, t6[[t6, t7[[t7, t8[[t8, t9[ [t9, t10[ SD

110.3 10.3 11.4 9.3 9.7 7.8 8.8 11.2 11.5 9.6 12.0

210.4 9.6 9.8 10.4 10.3 11.4 10.5 8.7 10.2 8.4 9.1

310.5 11.3 10.3 8.8 9.7 11.0 11.0 9.4 9.4 8.6 9.6

4 9.7 12.3 8.8 9.5 9.7 9.8 8.9 11.7 9.8 9.8 11.2

510.6 10.4 10.3 10.1 9.5 8.1 9.9 10.3 9.7 11.1 8.1

Average SD:10.0

Table 2. Percentages of χ2(2) observations into each subintervals for 5 series of 1, 000 trials each.

2, we can conclude that, for a population size over 300, the distribution of ‖Xn(T)‖2 is quite
approximate to the χ2(2) distribution. In Table 3, estimates of β, γ and R0 have been simulated
for different population size. Table 3 corroborates the convergence in probability demands

n β̂n(T) γ̂n(T) R̂n
0 (T)

100 2.87 0.82 1.76

200 1.73 1.17 0.74

500 1.82 0.99 0.93

1,000 1.91 0.98 0.99

2,000 1.95 1.01 0.97

5,000 2.01 0.99 1.01

10,000 2.00 1.00 1.01

Table 3. Estimates for β̂n(T), γ̂n(T) and R̂n
0 (T) for the indicated population size, β = 2, γ = 1 and

T = 10.

bigger population size in order to obtain a suitable approximation of the parameters. We
appreciate, appropriate estimates for β, γ and R0 are obtained for population sizes over n =
5, 000.

For β = 2, γ = 1 and T = 10, Xn(T) is simulated 1, 000 times again. Let Xn,1(T) and

Xn,2(T) the first and second row of Xn(T), i.e. Xn(T) = (Xn,1(T), Xn,2(T))
⊤. In Figure 4

below, histograms of Xn,1(T) and Xn,2(T) are showed for n = 300. It is observed that their
corresponding frequencies of simulated values are quite close to the standard normal density.

Let Ûn(T) and v0(T) be as in Proposition 6.2 and denote Xn,3(T) = Ûn(T)/(R0v0(T)). By
observing in Figure 5 the histogram of Xn,3(10), we notice the graphical frequency of its
simulated values is also quite close to the standard normal density.
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Figure 4. Histograms of Xn,1(10) and Xn,2(10) for a population size equals 300.
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Figure 5. Histograms of Xn,3(10) for a population size equals 300.

7.2. The power function of the test for the basic reproduction number

According to Proposition 6.2, the power function πn(Δ) converges to the asymptotic power
function (apf) π(Δ) = Φ(Δ/v0(T) − tα). The level of significance of the test is assumed to
be α = 0.05 and consequently, tα = 1.644853. Notice πn(Δ) can be estimated by π̂n(Δ), the

frequency H0 is rejected (rf). Hence, π̂n(Δ) is the frequency of times that Ûn(T)/v0(T) >

1.644853, under HΔ : R0 = 1 + Δ/
√

n. By the Law of Large Number, a strong consistent
estimator of πn(Δ) is given by

π̂n(Δ) =
1

M

M

∑
k=1

I{Ûn,k(T)/v0(T)>1.644853},

where Ûn,1(T), . . . , Ûn,M(T) are independent and identically distributed random variables,

which have the same distribution as Ûn(T) under HΔ. Even, it can prove that the convergence
of π̂n to πn, as M goes to ∞, is uniform on compact subsets of R+, I.e., for each T > 0,

lim
M→∞

sup
0≤Δ≤T

|π̂n(Δ)− πn(Δ)| = 0, a.s.
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In Table 4 below, M = 1, 000 simulations of π̂n(Δ) are carried out for a population size equals
300 and for 150 values of Δ between 0 and 14.9, with step sizes of equal length Δ = 0.1. Since

Δ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 0.000 0.001 0.001 0.004 0.002 0.005 0.002 0.007 0.008 0.005

1 0.004 0.014 0.004 0.021 0.010 0.015 0.015 0.016 0.018 0.020

2 0.023 0.040 0.032 0.036 0.042 0.047 0.052 0.059 0.063 0.060

3 0.078 0.075 0.104 0.085 0.120 0.105 0.136 0.140 0.143 0.150

4 0.151 0.183 0.190 0.202 0.201 0.210 0.247 0.267 0.289 0.282

5 0.296 0.329 0.343 0.357 0.342 0.376 0.415 0.431 0.427 0.446

6 0.467 0.463 0.509 0.536 0.524 0.558 0.579 0.570 0.604 0.595

7 0.632 0.628 0.655 0.663 0.703 0.706 0.723 0.719 0.730 0.775

8 0.762 0.787 0.765 0.807 0.814 0.798 0.805 0.842 0.845 0.846

9 0.881 0.854 0.874 0.880 0.890 0.900 0.913 0.901 0.913 0.904

10 0.911 0.927 0.934 0.937 0.941 0.941 0.944 0.942 0.958 0.957

11 0.972 0.961 0.969 0.967 0.988 0.973 0.978 0.986 0.988 0.981

12 0.982 0.987 0.982 0.987 0.988 0.989 0.981 0.995 0.990 0.996

13 0.991 0.992 0.993 0.998 0.996 0.998 0.998 0.997 0.994 0.997

14 0.997 1.000 1.000 0.999 0.999 0.999 0.999 1.000 0.998 0.998

Table 4. Frequency of times Ûn(T)/v0(T) > 1.644853 for different values of Δ.

for Δ = 0 the power of the test should be close to 0.05, the random function π̂n cannot be
considered a good estimator for πn, at least for n = 300. However, the asymptotic power
function π seems to give a better approximation for πn. The values of π(Δ) are given in Table
5 below for 150 values of Δ between 0 and 14.9, with step sizes of equal length Δ = 0.1. In

Δ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 0.050 0.053 0.056 0.059 0.063 0.067 0.071 0.075 0.079 0.083

1 0.088 0.093 0.098 0.103 0.108 0.114 0.119 0.125 0.132 0.138

2 0.144 0.151 0.158 0.165 0.173 0.180 0.188 0.196 0.205 0.213

3 0.222 0.230 0.239 0.249 0.258 0.268 0.277 0.287 0.297 0.307

4 0.318 0.328 0.339 0.350 0.361 0.372 0.383 0.394 0.405 0.417

5 0.428 0.440 0.451 0.463 0.475 0.486 0.498 0.510 0.521 0.533

6 0.545 0.556 0.568 0.579 0.591 0.602 0.613 0.625 0.636 0.647

7 0.657 0.668 0.679 0.689 0.699 0.709 0.719 0.729 0.739 0.748

8 0.757 0.766 0.775 0.784 0.792 0.801 0.809 0.817 0.824 0.832

9 0.839 0.846 0.853 0.860 0.866 0.872 0.878 0.884 0.890 0.895

10 0.900 0.905 0.910 0.915 0.919 0.923 0.928 0.931 0.935 0.939

11 0.942 0.946 0.949 0.952 0.955 0.957 0.960 0.962 0.965 0.967

12 0.969 0.971 0.973 0.974 0.976 0.978 0.979 0.981 0.982 0.983

13 0.984 0.985 0.986 0.987 0.988 0.989 0.990 0.991 0.991 0.992

14 0.992 0.993 0.994 0.994 0.994 0.995 0.995 0.996 0.996 0.996

Table 5. Values of π(Δ) for different values of Δ.

Figure 6 below, a graphical comparison between π and π̂n is given for a population size equals
n = 300.
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Figure 6. Grafics of π(Δ) and π̂n(Δ) for a population size equals n = 300.

8. Conclusions

A wide class of discrete-time stochastic epidemic models was introduced and analyzed in
this work, the convergence of the stochastic model to the deterministic one as the population
increases was proved. Moreover, it was proved the convergence in distribution of a process,
depending on the fluctuations between the stochastic and deterministic models, to the
solution to a stochastic differential equation. The statistical analysis was focused in proving
asymptotic normality of natural martingale estimators, for the parameters of the model,
and these results were applied to hypothesis tests for the General Epidemic Model. As
a consequence, a hypothesis test for the reproduction number was stated and numerical
simulations validated the size populations under which the results are useful.

The stochastic models considered here represent an alternative modeling to those using
counting processes and having transitions occurring at random times. However, both are
asymptotically consistent with their deterministic counterparts. The advantage of considering
stochastic models at discrete times is that it is not necessary to observe the epidemic over
a long period of time; however, in order to attain the asymptotical consistency mentioned,
our model requires frequent observation when dealing with a large population. Another
important conclusion is obtained from Subsection 4.2, where numerical simulations was
carried out for the SIS epidemic model. Indeed, the simulation showed large fluctuations of
the SIS stochastic epidemic model, for n = 10, regarding the deterministic one. However,
by simulating the process for n = 1, 000 it could be appreciated the trajectories of the
deterministic and stochastic models were quite closed. Moreover, Theorem 2 provides
confidence bounds which give an insight of the fluctuations of the stochastic model regarding
the deterministic one. The simulation in Subsection 4.2 for the SIS epidemic model shows
the coherence between these bounds and the simulated process (Figure 3). As a conclusion,
the deterministic and stochastic model are quite different for small populations, while for
large populations both models perform similarly. However, it is worth noting, although the
stochastic and deterministic trajectories are similar for large size populations, an attractor state
for the deterministic model is not necessarily an attractor for the stochastic model. As shown
in Subsection 4.2, this is the case for the SIS epidemic model.
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In order to develop statistical inference on the parameters of the model, martingale estimators
are proposed. This fact allows to obtain closed form for the estimators. Even, such estimators
can be obtained when the distribution of the process governing the epidemic is not completely
known.

All the models belong to the class that we are presenting in this chapter assume a stochastic
latent period, and consequently, the Reed-Frost model are not included here. As a matter
of fact, none of these models could be considered an extension or a particular case of the
Reed-Frost model. Moreover, the modeling presented in this chapter need not be Markovian,
even though some Markovian epidemic models are included in this setting.
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