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1. Introduction

The discrete-time linear control systems have been applied in the wide area of applications

such as engineering, economics, biology. Such type systems have been intensively considered

in the control literature in both the deterministic and the stochastic framework. The stability

and optimal control of stochastic differential equations with Markovian switching has recently

received a lot of attention, see Freiling and Hochhaus [8], Costa, Fragoso, and Marques [2],

Dragan and Morozan [4, 5]. The equilibrium in these discrete-time stochastic systems can be

found via the maximal solution of the corresponding set of discrete-time Riccati equations.

We consider a set of discrete-time generalized Riccati equations that arise in quadratic optimal

control of discrete-time stochastic systems subjected to both state-dependent noise and

Markovian jumps, i.e. the discrete-time Markovian jump linear systems (MJLS). The iterative

method to compute the maximal and stabilizing solution of wide class of discrete-time

nonlinear equations is derived by Dragan, Morozan and Stoica [6, 7].

We study a problem for computing the maximal symmetric solution to the following set of

discrete-time generalized algebraic Riccati equations (DTGAREs):

X(i) = P(i, X) := ∑
r
l=0 Al(i)

TEi(X)Al(i) + CT(i)C(i)

−(∑r
l=0 Al(i)

TEi(X)Bl(i) + L(i))

×R(i, X)−1 (∑r
l=0 Bl(i)

TEi(X)Al(i) + L(i)T) , i = 1, . . . , N ,

(1)

where R(i, X) = R(i) + ∑
r
l=0 Bl(i)

TEi(X)Bl(i) and E(X) = (E1(X), . . . , EN(X)) with X =
(X(1), . . . , X(N)) and

Ei(X) =
N

∑
j=1

pij X(j) , X(j) is an n × n matrix , for i = 1, . . . , N.

©2012 Ivanov, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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In addition the operator

Π (i, X) =

(
∑

r
l=0 Al(i)

TEi(X)Al(i) ∑
r
l=0 Al(i)

TEi(X)Bl(i) + L(i)

∑
r
l=0 Bl(i)

TEi(X)Al(i) + L(i)T ∑
r
l=0 Bl(i)

TEi(X)Bl(i)

)

is assumed to be linear and positive, i.e. X ≥ 0 implies Π (i, X) ≥ 0 for i = 1, . . . , N. That is

a natural assumption (see assumption H1, [6]). The notation X ≥ 0 means that X(i) ≥ 0, i =
1, . . . , N.

Such systems of discrete-time Riccati equations X(i) = P(i, X), i = 1, . . . , N are used to

determine the solutions of linear-quadratic optimization problems for a discrete-time MJLS

[5]. More precisely, these optimization problems are described by controlled systems of the

type:

x(t + 1) = [A0(ηt) +
r

∑
l=1

wl(t)Al(ηt)]x(t) + [B0(ηt) +
r

∑
l=1

wl(t)Bl(ηt)]u(t) (2)

for x(0) = x0 and the output

y = C(ηt) x(t) + D(ηt) x(t)

where {ηt}t≥0 is a Markov chain taking values in {1, 2, . . . , N} with transition probability

matrix (pij)
N
i,j=1. Moreover, {w(t)}t≥0 is a sequence of independent random vectors (w(t) =

(w1(t), . . . , wr(t))T), for details see e.g. [5–7].

We define the matrices Al , Bl such that Al = (Al(1), . . . , Al(N)), Bl = (Bl(1), . . . , Bl(N))
where Al(i) is an n × n matrix and Bl(i) is an n × k matrix l = 0, 1, . . . , r and i = 1, . . . , N, and

A = (A0, A1, A2, . . . , Ar) and B = (B0, B1, B2, . . . , Br). We present the Definition 4.1 [7] in the

form:

Definition 1.1. We say that the couple (A, B) is stabilizable if for some F = (F(1), . . . , F(N)) the

closed loop system:

x(t + 1) = [A0(ηt) + B0(ηt)F(ηt) +
r

∑
l=1

wl(t)(Al(ηt) + Bl(ηt)F(ηt))]x(t)

is exponentially stable in mean square (ESMS).

The matrix F involved in the above definition is called stabilizing feedback gain.

We will investigate the computation of the maximal solution of a set of equations (1). A

solution X̃ of (1) is called maximal if X̃ ≥ X for any solution X.

We will consider three cases. In the first case the weighting matrices R(i) = DT(i) D(i), i =
1, . . . , N are assumed to be positive definite and Q(i) = CT(i)C(i), i = 1, . . . , N are positive

semidefinite. Thus, the matrices R(i, X) = R(i) + ∑
r
l=0 Bl(i)

TEi(X)Bl(i), i = 1, . . . , N are

positive definite. We present an overview of several computational methods [6, 10] to compute

the maximal and stabilizing solutions of a considered class of discrete-time Riccati equations.

In addition, we apply a new approach, where the variables are changed and an equivalent set
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of the same type Riccati equations is obtained. A new iteration for the maximal solution to

this equivalent set of nonlinear equations is proposed. This is the subject of section 2.

We investigate the applicability of the existing methods for the maximal solution to (1)

where the weighting matrices R(i), Q(i) are indefinite in the second case. These weighting

matrices are indefinite, but the matrices R(i, X), i = 1, . . . , N are still positive definite. Similar

investigations have been executed by Rami and Zhou [12, 14] in case in the infinite time

horizon. The important tool for finding the maximal solution is a semidefinite programming

associated with the linear matrix inequalities (LMI). The method for the maximal solution

used an LMI optimization problem is called the LMI approach or the LMI method. Rami and

Zhou [14] have described a technics for applying the LMI method to indefinite linear quadratic

problem in infinite time horizon. Here we will extend their findings and will modify their

technics to indefinite linear quadratic problem of Markovian jump linear systems. We propose

a new optimization problem suitable to the occasion. The investigation is accompanied by

comparisons of the LMI approach on different numerical examples. This is the subject of

section 3.

The third case is considered in section 4. Here, the solution of (1) under the assumption that

at least one of matrices R(i, X), i = 1, . . . , N is positive semidefinite is analysed. In this case

set of equations (1) can be written as

X(i) = ∑
r
l=0 Al(i)

TEi(X)Al(i) + CT(i)C(i)− S(i, X) (R(i, X))† S(i, X)T (3)

for i = 1, . . . , N with the additional conditions

R(i, X) ≥ 0, and (I − (R(i, X))† R(i, X)) S(i, X)T = 0 . (4)

Such type generalized Riccati equation is introduced in [15]. The notation Z† stands for the

Moore-Penrose inverse of a matrix Z. We derive a suitable iteration formula for computing the

maximal solution of (3) - (4) and the convergence properties of the induced matrix sequence

are proved. In addition, the LMI approach is modified and applied to the case of semidefinite

matrices R(i, X) (i = 1, . . . , N). Numerical simulations for comparison the derived methods

are presented in the section.

We are executing some numerical experiments in this investigation. Based on the results

from experiments the considered methods are compared in all cases. In the examples we

consider a MJLS with three operation modes describing an economic system, adapted from

[17] which studies a time-variant macroeconomic model where some of the parameters are

allowed to fluctuate in an exogenous form, according to a Markov chain. The operation

modes are interpreted as the general situation: "neutral", "bad" or "good" (N = 3). See [17]

and references therein for more details. Our experiments are carried out in the MATLAB on

a 1,7GHz PENTIUM computer. In order to execute our experiments the suitable MATLAB

procedures are used.

The notation Hn stands for the linear space of symmetric matrices of size n over the field of

real numbers. For any X, Y ∈ Hn, we write X > Y or X ≥ Y if X − Y is positive definite

or X − Y is positive semidefinite. The notations X = (X(1), X(2), . . . , X(N)) ∈ Hn and the

inequality Y ≥ Z mean that for i = 1, . . . , N, X(i) ∈ Hn and Y(i) ≥ Z(i), respectively. The
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linear space Hn is a Hilbert space with the Frobenius inner product < X, Y >= trace(XY).
Let ‖.‖ denote the spectral matrix norm.

2. The positive definite case

Let us assume that the weighting matrices R(i), i = 1, . . . , N are positive definite and Q(i), i =
1, . . . , N are positive semidefinite. Thus the matrices R(i, X), i = 1, . . . , N are positive definite.

In this section, we consider set of equations (1) where a matrix X belongs to the domain:

DomP = {X ∈ Hn | R(i, X) = R(i) +
r

∑
l=0

Bl(i)
TEi(X)Bl(i) > 0, i = 1, 2, . . . , N } .

Note that X ∈ DomP implies Y ∈ DomP for all Y ≥ X and that DomP is open and convex.

We consider the map DomP → Hn. We investigate some iterations for finding the maximal

solution to (1). For the matrix function P(i, X) we introduce notations

Q(i, Z) = ∑
r
l=0 Al(i)

TEi(Z)Al(i) + CT(i)C(i) ;

S(i, Z) = ∑
r
l=0 Al(i)

TEi(Z)Bl(i) + L(i) ;

F(i, Z) = −R(i, Z)−1 S(i, Z)T ,
(
note that S(i, Z) = −F(i, Z)T R(i, Z)

)

T(i, Z) = CT(i)C(i) + F(i, Z)T L(i)T + L(i) F(i, Z) + F(i, Z)T R(i) F(i, Z)

=
(

I F(i, Z)T
) (CT(i)C(i) L(i)

L(i)T R(i)

) (
I

F(i, Z)

)

and we present set of equations (1) as follows:

X(i) = Q(i, X)− S(i, X) R(i, X)−1 S(i, X)T ,

with i = 1, . . . , N .

Then, for the matrix function P(i, X) we rewrite

P(i, X) = Q(i, X)− F(i, X)T R(i, X) F(i, X) .

We will study the system X(i) = P(i, X) for i = 1, . . . , N. We start by some useful properties

to P(i, X). For briefly we use Ãl(i, Z) = Al(i) + Bl(i)F(i, Z), l = 0, 1, . . . , r for some Z ∈ Hn.

Lemma 2.1. [10] Assuming Y ∈ Hn and Z ∈ Hn are symmetric matrices, then the following

properties of P(i, X) , i = 1, . . . , N

PZ(i, Y) =
r

∑
l=0

Ãl(i, Z)T Ei(Y)Ãl(i, Z) + T(i, Z)

−
(

F(i, Y)T − F(i, Z)T
)

R(i, Y) (F(i, Y)− F(i, Z))

PZ(i, Z)−PZ(i, Y) =
r

∑
l=0

Ãl(i, Z)T Ei(Z − Y)Ãl(i, Z)

+
(

F(i, Y)T − F(i, Z)T
)

R(i, Y) (F(i, Y)− F(i, Z))
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hold.

Dragan, Morozan and Stoica [6] have been proposed an iterative procedure for computing the

maximal solution of a set of nonlinear equations (1). The proposed iteration [6, iteration (4.7)]

is :
X(i)(k) = PX(k−1) (i, X(k−1)) + ε

k In

= ∑
r
l=0

[
Ãl(i, X(k−1))

]T
Ei(X

(k−1))
[

Ãl(i, X(k−1))
]

+T(i, X(k−1)) + ε
k In ,

where Ãl(i, X(k−1)) = Al(i) + Bl(i)F(i, X(k−1)) ,

(5)

k = 1, 2, 3 . . . , and ε is a small positive number. Note that iteration (5) is a special case of the

general iterative method given in [6, Theorem 3.3]. Based on the Gauss-Seidel technique the

following modification is observed by Ivanov [10]:

X(i)(k) = ∑
r
l=0

[
Ãl(i, X(k−1))

]T

×
(
Ei1(X

(k)) + piiX(i)(k−1) + Ei2(X
(k−1))

)

×
[

Ãl(i, X(k−1))
]
+ T(i, X(k−1)) ,

i = 1, 2, . . . , N, k = 1, 2, 3 . . .

(6)

where

Ei1(Z) =
i−1

∑
j=1

pij Z(j), and Ei2(Z) =
N

∑
j=i+1

pij Z(j) .

The convergence properties of matrix sequences defined by (5) and (6) are derived in the

corresponding papers.

The method can be applied under the assumption that the matrix inequalities P(i, Z) ≥ Z(i)
and P(i, Z) ≤ Z(i), (i = 1, . . . , N) are solvable. Under these conditions the convergence of

(6) takes place if the algorithm starts at any suitable initial point X(0). The new iteration (6)

can be considered as an accelerated modification to iteration (5). The convergence result is

given by the following theorem:

Theorem 2.1. [10] Letting there are symmetric matrices X̂ = (X̂1, . . . , X̂N) ∈ DomP and

X(0) = (X
(0)
1 , . . . , X

(0)
N ) such that (a)P(i, X̂) ≥ X̂(i); (b)X(0) ≥ X̂; (c)P(i, X(0)) ≤ X(i)(0)

for i = 1, . . . , N. Then for the matrix sequences {X(1)(k)}∞
k=1, . . . , {X(N)(k)}∞

k=1 defined by (6) the

following properties are satisfied:

(i) We have X(k) ≥ X̂ , X(k) ≥ X(k+1) and

P(i, X(k)) = X(i)(k+1) +
r

∑
l=0

Ãl(i, X(k))TEi1(X
(k) − X(k+1))Ãl(i, X(k)),

where i = 1, 2, . . . , N, k = 0, 1, 2, . . .;

151Iterations for a General Class of Discrete-Time Riccati-Type Equations: A Survey and Comparison
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(ii) the sequences {X(1)(k)}, . . . , {X(N)(k)} converge to the maximal solution X̃ of the set of

equations X(i) = P(i, X) and X̃ ≥ X̂ .

In this section, we are proving that iteration (5) has a linear rate of convergence.

Theorem 2.2. Assume that conditions a),b),c) of theorem 2.1 are fulfilled for a symmetric solution

X̂ ∈ DomP of set of equations (1). Then, the sequence {X(k)}∞
k=1 defined by (5) converges to the

maximal solution X̃. If

max
1≤i≤N

‖X(i)(0) − X̃(i)‖ <
2 − ∑

r
l=0 ‖Ãl(i, X̃)‖2

a
=

2 − b

a

where

a = ‖R(i, X(0))‖ ‖R(i, X̃)−1‖2

(
‖R(i, X̃)−1‖‖S(i, X̃)‖

r

∑
l=0

‖Bl(i)‖
2 +

r

∑
l=0

‖Bl(i)‖ ‖Al(i)‖

)2

,

then

max
1≤i≤N

‖X(i)(k) − X̃(i)‖ < max
1≤i≤N

‖X(i)(k−1) − X̃(i)‖ .

Proof. Following the course of the proof of theorem 2.1 it has been proved that X(k) ≥ X̂ for

all k. Therefore, for i = 1, . . . , N we conclude R(i, X(k)) ≥ R(i, X̂) > 0 . It follows that

lim
k→∞

R(i, X(k)) = R(i, X̃)

and then, the limit F(i, X̃) = limk→∞ F(i, X(k)) exists and

F(i, X̃) = −R(i, X̃)−1 S(i, X̃)T .

Based on the proof of theorem 2.1 and the properties of lemma 2.1 the following equality is

established

X(i)(k) = PX(k−1) (i, X(k−1)) +
ε

k
In and X̃(i) = PX̃(i, X̃) .

Moreover

P(i, X(k−1)) =
r

∑
l=0

Ãl(i, X̃)T
(
Ei(X

(k−1))
)

Ãl(i, X̃) + T(i, X(k−1))

−
(

F(i, X(k−1))T − F(i, X̃)T
)

R(i, X(k−1))
(

F(i, X(k−1))− F(i, X̃)
)

,

and

X(i)(k) − X̃(i) = PX(k−1) (i, X(k−1))−PX̃(i, X̃) +
ε

k
In

X(i)(k) − X̃(i) =
r

∑
l=0

Ãl(i, X̃)T
(
Ei(X

(k−1) − X̃)
)

Ãl(i, X̃) +
ε

k
In

−
(

F(i, X(k−1))T − F(i, X̃)T
)

R(i, X(k−1))
(

F(i, X(k−1))− F(i, X̃)
)

.
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Consider the difference

F(i, X(k−1))− F(i, X̃)

= −R(i, X(k−1))−1 S(i, X(k−1))T + R(i, X̃)−1 S(i, X̃)T

= −R(i, X(k−1))−1 S(i, X(k−1) ± X̃)T + R(i, X̃)−1 S(i, X̃)T

=
[

R(i, X̃)−1 − R(i, X(k−1))−1
]

S(i, X̃)T − R(i, X(k−1))−1
r

∑
l=0

Bl(i)
TEi(X

(k−1) − X̃)Al(i)

= R(i, X̃)−1
[

R(i, X(k−1))− R(i, X̃)
]

R(i, X(k−1))−1 S(i, X̃)T

−R(i, X(k−1))−1
r

∑
l=0

Bl(i)
TEi(X

(k−1) − X̃)Al(i) .

Then

F(i, X(k−1))− F(i, X̃)

= R(i, X̃)−1

[
r

∑
l=0

Bl(i)
TEi(X

(k−1) − X̃)Bl(i)

]
R(i, X(k−1))−1 S(i, X̃)T

−R(i, X(k−1))−1
r

∑
l=0

Bl(i)
TEi(X

(k−1) − X̃)Al(i) .

Thus

‖F(i, X(k−1))− F(i, X̃)‖ ≤ ‖R(i, X̃)−1‖2 ‖S(i, X̃)‖
r

∑
l=0

‖Bl(i)‖
2 ‖Ei(X

(k−1) − X̃)‖

+‖R(i, X̃)−1‖
r

∑
l=0

‖Bl(i)‖ ‖Al(i)‖ ‖Ei(X
(k−1) − X̃)‖ ,

‖F(i, X(k−1))− F(i, X̃)‖ ≤ τi,2 ‖Ei(X
(k−1) − X̃)‖ ,

where

τi,2 = ‖R(i, X̃)−1‖

(
‖R(i, X̃)−1‖‖S(i, X̃)‖

r

∑
l=0

‖Bl(i)‖
2 +

r

∑
l=0

‖Bl(i)‖ ‖Al(i)‖

)
.

In addition, using X(0) ≥ X(k) we in fact have

‖R(i, X(k−1))‖ ≤ ‖R(i, X(0))‖ , i = 1, . . . , N .
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Furthermore, we estimate for i = 1, . . . , N

‖X̃(i)− X(i)(k)‖ ≤
r

∑
l=0

‖Ãl(i, X̃)‖2 ‖Ei(X
(k−1) − X̃)‖+ (τi,2)

2 ‖Ei(X
(k−1) − X̃)‖2 ‖R(i, X(0))‖ .

Note that

‖Ei(X
(k−1) − X̃)‖ ≤

N

∑
j=1

pij ‖X(k−1)(j)− X̃(j)‖ ≤ max
1≤j≤N

‖X(j)(k−1) − X̃(j)‖ , ∀ i.

Further on,

max
1≤i≤N

‖X̃(i)− X(i)(k)‖ ≤ b

(
max

1≤j≤N
‖X(j)(k−1) − X̃(j)‖

)
+ a

(
max

1≤j≤N
‖X(j)(k−1) − X̃(j)‖

)2

.

Now, assuming that the inequality

max
1≤i≤N

‖X(i)(s) − X̃(i)‖ <
2 − b

a

holds for s = 0, . . . , k − 1. Then

max
1≤i≤N

‖X̃(i)− X(i)(k)‖ ≤ max
1≤j≤N

‖X(j)(k−1) − X̃(j)‖

×

(
a max

1≤j≤N
‖X(j)(k−1) − X̃(j)‖+ b − 1

)
< max

1≤j≤N
‖X(j)(k−1) − X̃(j)‖ .

Thus, the proof of the theorem is complete.

Let us consider the following example in order to compare iterations (5) and (6).

Example 2.1. We take the following weighting matrices:

R(1) = diag (0.0126, 0.024) ,

R(2) = diag (0.09, 0.012) , R(3) = diag (0.12, 0.105) ,

Q(1) = 0.75 ∗ eye(n, n) , Q(2) = 0.25 ∗ eye(n, n) , Q(3) = 0.05 ∗ eye(n, n) .

The coefficient matrices A0(i), A1(i), B0(i), B1(i), L(i), i = 1, 2, 3 for system (1) are given through

formulas (using the MATLAB notations):

A0(1) = randn(n, n)/6; A0(2) = randn(n, n)/6; A0(3) = randn(n, n)/6;

A1(1) = randn(n, n)/7; A1(2) = randn(n, n)/7; A1(3) = randn(n, n)/7;

B0(1) = randn(n, 2)/8; B0(2) = randn(n, 2)/8; B0(3) = randn(n, 2)/8;

B1(1) = randn(n, 2)/8; B1(2) = randn(n, 2)/8; B1(3) = randn(n, 2)/8;

L(1) = randn(n, 2)/8; L(2) = randn(n, 2)/8; L(3) = randn(n, 2)/8 ,
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and the following transition probability matrix

(
pij

)
=

⎛
⎝

0.67 0.17 0.16

0.30 0.47 0.23

0.26 0.30 0.44

⎞
⎠ .

We have executed hundred examples of each value of n. We report the maximal number of

iteration steps mIt and the average number of iteration steps avIt of each size for all examples

needed for achieving the accuracy. The used accuracy equals to 1.e − 10. The results are

listed in Table 1. The average number of iteration steps for method (6) smaller than the

corresponding average number for method (5). The last column of Table 1 shows how much

is the acceleration of method (6).

method (5) method (6) speed up

n mIt avIt mIt avIt

15 212 79.2 166 60.1 0.75
16 141 87.1 112 65.3 0.75
17 216 104.6 165 77.7 0.74
18 235 132.9 177 97.0 0.73
19 389 195.8 288 143.5 0.73
20 1882 311.8 900 221.5 0.71

Table 1. Results for Example 2.1. Comparison between iterations for 100 runs.

Further on, we execute some matrix manipulations on system (1) to derive new recurrence

equations. We are going to prove the convergence properties to the proposed new iteration

under new assumptions. Following the substitution

Y = (Y(1), . . . , Y(N)) , where Y(i) = Ei(X) for i = 1, . . . , N ,

the equivalent system of equations is derived

Y(i) = P(i, Y) , (7)

where

P(i, Y) = ∑
r
l=0 Âl(i)

T Y(i) Âl(i) + ĈT(i)Ĉ(i)− Ŝ(i, Y(i))

×[R(i) + ∑
r
l=0 Bl(i)

T Y(i) Bl(i)]
−1 Ŝ(i, Y(i))T + ∑

N
j=1 γij Y(j) ,

(8)

with appropriate transformations on the matrix coefficients Âl(i), Ĉ(i), L̂(i) and

Ŝ(i, Y(i)) =
r

∑
l=0

Âl(i)
T Y(i) Bl(i) + L̂(i) ,

Âl(i) =

√
pii

1 − δii
Al(i) , Ĉ(i) =

√
pii

1 − δii
C(i) , l = 0, . . . , r ,
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L̂(i) =

√
pii

1 − δii
L(i) , Ŝ(i, Y(i)) =

r

∑
l=0

Âl(i)
T Y(i) Bl(i) + L̂(i),

for i = 1, . . . , N , and

Γ = (γip)
N
1 =

{
γii = 0

γip =
δip

1−δii
, if i 	= p

and assume that Γ is nonnegative (γip ≥ 0). We introduce the notations

G(i, Y) = ∑p 	=i γip Y(p) ,

Yi‖Z = (Y(1), . . . , Y(i − 1), Z, Y(i + 1), . . . , Y(N))

The new iteration scheme applied to the equivalent system (7) is:

Y(k+1)(i) = ∑
r
l=0 Âl(i, Y(k)(i))T Y(k)(i) Âl(i, Y(k)(i))

+T(i, Y(k)(i)) + G(i, 1, Y(k+1)) + G(i, 2, Y(k)) ,

i = 1, . . . , N.

(9)

where

G(i, 1, Z) =
i−1

∑
j=1

γij Z(j) , and G(i, 2, Z) =
N

∑
j=i+1

γij Z(j) .

The convergence properties of (9) are investigated. We will prove that the convergence of (9)

takes place if the algorithm starts at any suitable initial point Y(0). The new iteration (9) can

be considered as an accelerated modification to iteration (5). The convergence result is given

by the following theorem:

Theorem 2.3. [11] We assume that Γ is a nonnegative matrix and λii
1−δii

are positive numbers

for all values of i. Letting there are symmetric matrices Ŷ = (Ŷ(1), . . . , Ŷ(N)) and Y(0) =
(Y(0)(1), . . . , Y(0)(N)) such that (a) P(i, Ŷ) ≥ Ŷ(i); (b) Y(0) ≥ Ŷ; (c)P(i, Y(0)) ≤ Y(i)(0) for

i = 1, . . . , N. Then for the matrix sequences {Y(1)(k)}∞
k=1, . . . , {Y(N)(k)}∞

k=1 defined by (9) the

following properties hold:

(i) We have Y(k) ≥ Ŷ , Y(k) ≥ Y(k+1) and

P(i, Y(k)) = Y(k+1)(i) + G(i, 1, Y(k) − Y(k+1))

where k = 0, 1, 2, . . .;

(ii) The sequences {Y(1)(k)}, . . . , {Y(N)(k)} converge to the solution Ỹ of the equations Y(i) =
P(i, Y) and Ỹ ≥ Ŷ .

3. The LMI approach

There exists an increasing interest to consider a computational approach to stochastic algebraic

Riccati equations via a semidefinite programming problem over linear matrix inequalities.

Similar studies can be found in [12–14]. The main result from such type studies is the
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equivalence between the feasibility of the LMI and the solvability of the corresponding

stochastic Riccati equation. Moreover, the maximal solution of a given stochastic algebraic

Riccati equation can be obtained by solving a corresponding convex optimization problem

(an LMI approach).

Further on, following the classical linear quadratic theory [13, 14] we know that the

optimization problem is associated with (1) has the form (for example see [1, 7]):

max ∑
N
i=1 〈I, X(i)〉

subject to i = 1, . . . , N
⎛
⎜⎝

−X(i) + Q(i, X) S(i, X)

S(i, X)T R(i, X)

⎞
⎟⎠ ≥ 0

R(i, X) > 0 ,

X(i) = X(i)T .

(10)

However, we can apply the same approach to equivalent system (7). As a result we formulate

a new optimization problem assigned to (7) and we will use it to find the maximal solution to

(7).

The corresponding optimization problem, associated to the maximal solution to (7), is given

by:

max ∑
N
i=1 〈I, Y(i)〉

subject to i = 1, . . . , N

⎛
⎜⎜⎝

−Y(i) + ĈT(i)Ĉ(i) + ∑
N
j=1 γij Y(j)

∑
r
l=0 Âl(i)

T Y(i) Âl(i)
Ŝ(i, Y(i))

Ŝ(i, Y(i))T R(i) + ∑
r
l=0 Bl(i)

TY(i)Bl(i)

⎞
⎟⎟⎠ ≥ 0

R(i) + ∑
r
l=0 Bl(i)

TY(i)Bl(i) > 0 ,

Y(i) = Y(i)T .

(11)

It is very important to analyze a case where the weighting matrices R(i), Q(i), i = 1, . . . , N

are indefinite in the field of linear quadratic stochastic models. This case has a practical

importance. There are studies where the cost matrices are allowed to be indefinite (see [3, 16]

and reference there in). In this paper we will investigate this special case to considered general

discrete-time Riccati equations (1). We will interpret iterations (6) and (9) in a case where

matrices R(i), i = 1, . . . , N are indefinite and however, we will look for a maximal solution

from DomP .

Based on the next example, we compare the LMI approach (through optimization problems

(10) and (11)) for solving the maximal solution to set of nonlinear equations (1).
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We take the n × n matrices Q(1), Q(2) and Q(3) as follows:

Q(1) = diag[0.0, 0.5, . . . 0.5] , Q(2) = diag[0.0, 1, . . . 1]
Q(3) = diag[0.0, 0.05, . . . 0.05] .

and the same probability matrix as in Example 2.1 .

Example 3.1. The coefficient matrices A0(i), A1(i), B0(i), B1(i), L(i), i = 1, 2, 3 for system (1) are

given through formulas (using the MATLAB notations):

A0(1) = randn(n, n)/6; A0(2) = randn(n, n)/6; A0(3) = randn(n, n)/6;

A1(1) = randn(n, n)/7; A1(2) = randn(n, n)/7; A1(3) = randn(n, n)/7;

B0(1) = sprandn(n, 2, 0.3); B0(2) = sprandn(n, 2, 0.3); B0(3) = sprandn(n, 2, 0.3);
B1(1) = randn(n, 2)/8; B1(2) = randn(n, 2)/8; B1(3) = randn(n, 2)/8;

L(1) = randn(n, 2)/8; L(2) = randn(n, 2)/8; L(3) = randn(n, 2)/8 .

Test 3.1.1. R(1) = diag[0.02, 0.04] , R(2) = diag[0.085, 0.2] , R(3) = diag[0.125, 0.1] ,

Test 3.1.2. R(1) = zeros(2, 2) , R(2) = zeros(2, 2) , R(3) = zeros(2, 2) ,

Test 3.1.3. R(1) = diag[−0.002 , 0.005] , R(2) = diag[−0.003, 0.010] ,

R(3) = diag[0.02 , −0.0004] ,

Test 3.1.4. R(1) = diag[−0.00025 , −0.00005] , R(2) = diag[−0.00035, −0.00010] ,

R(3) = diag[−0.0002 , −0.00005] .

Test 3.1.1 Test 3.1.2

LMI for (10) LMI for (11) LMI for (10) LMI for (11)

n mIt avIt mIt avIt mIt avIt mIt avIt

15 47 34.6 46 42.5 45 37.0 49 45.0
16 43 37.5 49 42.4 44 37.0 47 41.8
17 43 34.8 50 41.7 48 36.5 50 42.4
18 52 40.3 51 43.7 50 39.3 48 43.7
19 41 35.3 51 40.6 45 38.8 49 43.0
20 45 36.8 47 40.6 46 37.0 52 44.3

CPU time 10 runs (in seconds)

20 1332.4 341.1 1431 338.67

Table 2. Comparison between iterations for Example 3.1.

The MATLAB function mincx is applied with the relative accuracy equals to 1.e − 10 for

solving the corresponding optimization problems. Our numerical experiments confirm the

effectiveness of the LMI approach applied to the optimization problems (10) and (11). We

have compared the results from these experiments in regard of number of iterations and time
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Test 3.1.3 Test 3.1.4

LMI for (10) LMI for (11) LMI for (10) LMI for (11)

n mIt avIt mIt avIt mIt avIt mIt avIt

15 45 36.8 50 44.4 46 36.7 51 43.9
16 47 37.5 50 43.6 48 37.8 52 43.9
17 49 38.7 57 46.4 48 38.6 55 46.3
18 61 42.2 59 46.4 53 41.4 61 48.2
19 46 35.4 50 43.6 46 35.6 53 43.0
20 46 38.6 50 43.3 44 39.2 49 43.0

CPU time 10 runs (in seconds)

20 1401 355.66 1441.2 350.8

Table 3. Comparison between iterations for Example 3.1.

of execution. The executed four tests of examples have demonstrated that LMI problem (10)

performance needs more computational work than LMI problem (11) and thus, LMI method

(11) is faster than LMI method (10) (see the CPU times displayed in tables 2 and 3).

4. The positive semidefinite case

We will investigate new iterations for computing the maximal solution to a set of Riccati

equations (1) where the matrices R(i, X), i = 1, . . . , N are positive semidefinite. It is well

known the application of a special linear quadratic stochastic model in the finance [18] where

the cost matrix R is zero and the corresponding matrix R + BT XB is singular. So, this special

case where it is necessary to invert a singular matrix is important to the financial modelling

process. Without loss of generality we assume that all matrices R(i, X), i = 1, . . . , N in (1)

are positive semidefinite. Thus, we will investigate set of equations (3)-(4) for existence a

maximal solution. Investigations on similar type of generalized equations have been done by

many authors (see [8, 9] and literature therein).

We introduce the following new iteration:

X(i)(k) = ∑
r
l=0

[
Âl(i, X(k−1))

]T (
Ei1(X

(k)) + piiX(i)(k−1) + Ei2(X
(k−1))

)

×
[

Âl(i, X(k−1))
]
+ T(i, X(k−1)) , i = 1, 2, . . . , N, k = 1, 2, 3 . . . ,

where Âl(i, Z) = Al(i) + Bl(i)F(i, Z) , F(i, Z) = − (R(i, Z))† S(i, Z)T ,

T(i, Z) = CT(i)C(i) + F(i, Z)T L(i)T + L(i) F(i, Z)

+F(i, Z)T R(i) F(i, Z) .

(12)

We will prove that the matrix sequence defined by (12) converges to the maximal solution X̃

of (3)-(4) and R(i, X̃), i = 1, . . . , N are positive semidefinite. Thus, the iteration (12) constructs

a convergent matrix sequence.

Let us construct P(X) = (P(1, X), . . . ,P(N, X) ) and define the set

domP† = {X ∈ Hn : R(i, X) ≥ 0 and KerR(i, X) ⊆ KerS(i, X), i = 1, . . . , N} .
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Consider the rational operator P : domP† → Hn given by

P(i, X) = ∑
r
l=0 Al(i)

TEi(X)Al(i) + CT(i)C(i)− S(i, X) (R(i, X))† S(i, X)T ,

i = 1, . . . , N

which has been investigated and some useful lemmas have been proved. We present some

preliminary results from the matrix analysis.

Lemma 4.1. [8, Lemma 4.2] Assume that Z is a m × n matrix and W is a p × n matrix. Then the

following statements are equivalent:

(i) Ker Z ⊆ Ker W;

(ii) W = WZ†Z;

(iii) W† = Z†ZW†.

Lemma 4.2. [8, Lemma 4.3(i)] Let H be a hermitian matrix of size n+m with H =

(
L N

N∗ M

)
where

L is n × n and M is m × m. Then, H is positive semidefinite if and only if M ≥ 0, L − NM† N∗ ≥ 0

and Ker M ⊆ Ker N.

The next lemma generalizes lemma 3.1 derived by [9] in the following form:

Lemma 4.3. If X̂ ∈ domP† and KerR(i, X̂) ⊆ KerS(i, X̂) for i = 1, . . . , N, then X ∈ domP† for all

X ≥ X̂.

Proof. For X ≥ X̂ we have

R(i, X) ≥ R(i, X̂) ≥ 0

and

KerR(i, X) ⊆ KerR(i, X̂) ⊆ KerS(i, X̂). (13)

We apply lemma 4.2 for H = Π (i, X − X̂) ≥ 0 and we conclude ∑
r
l=0 Bl(i)

TEi(X − X̂)Bl(i) ≥ 0

and

Ker
r

∑
l=0

Bl(i)
TEi(X − X̂)Bl(i) ⊆ Ker

r

∑
l=0

Al(i)
TEi(X − X̂)Bl(i) .

Moreover,

0 ≤ R(i, X̂)

= R(i) +
r

∑
l=0

Bl(i)
TEi(X̂ ± X)Bl(i)

= R(i, X)−
r

∑
l=0

Bl(i)
TEi(X − X̂)Bl(i) .

Thus

R(i, X) ≥
r

∑
l=0

Bl(i)
TEi(X − X̂)Bl(i)
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and

KerR(i, X) ⊆ Ker
r

∑
l=0

Bl(i)
TEi(X − X̂)Bl(i) ⊆ Ker

r

∑
l=0

Al(i)
TEi(X − X̂)Bl(i) . (14)

Combining (13) and (14) we write down

KerR(i, X) ⊆ Ker

[
S(i, X̂) +

r

∑
l=0

Al(i)
TEi(X − X̂)Bl(i)

]
= Ker S(i, X) .

We define

ŴX(i, H) = [F(i, X)− F(i, H)]T R(i, H) [F(i, X)− F(i, H)]

for X ∈ Hn and H ∈ Hn. Obviously ŴX(i, H) ≥ 0 and ŴX(i, X) = 0.

Lemma 4.4. If Y ∈ Hn and Z ∈ Hn (or let Y, Z) be symmetric matrices with KerR(i, Y) ⊆
KerS(i, Y) and KerR(i, Z) ⊆ KerS(i, Z) for i = 1, . . . , N. Then, the following identities hold:

PZ(i, Y) = ∑
r
l=0 Ãl(i, Z)T Ei(Y)Ãl(i, Z) + T(i, Z)− ŴZ(i, Y)

where Ãl(i, Z) = Al(i) + Bl(i) F(i, Z)
(15)

and

PZ(i, Z)−PZ(i, Y) =
r

∑
l=0

Ãl(i, Z)T Ei(Z − Y)Ãl(i, Z) + ŴZ(i, Y)

for i = 1, . . . , N .

Proof. Let us consider the difference

P(i, Y)− T(i, Z)

=
r

∑
l=0

Al(i)
TEi(Y)Al(i)− F(i, Y)T R(i, Y) F(i, Y)

−F(i, Z)T L(i)T − L(i) F(i, Z)− F(i, Z)T R(i) F(i, Z)

=
r

∑
l=0

Al(i)
TEi(Y)Al(i)− F(i, Y)T R(i, Y) F(i, Y)± F(i, Z)T R(i, Y) F(i, Y)

−F(i, Z)T L(i)T − L(i) F(i, Z)± F(i, Y)T R(i, Y) F(i, Z)

−F(i, Z)T

(
R(i)±

r

∑
l=0

Bl(i)
TEi(Y)Bl(i)

)
F(i, Z).
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According to lemma 4.1 we obtain F(i, Z)T R(i, Z) = −S(i, Z) and F(i, Y)T R(i, Y) = −S(i, Y).
We derive

−F(i, Z)T(L(i)T + R(i, Y) F(i, Y))

= −F(i, Z)T(L(i)T − S(i, Y)T) = F(i, Z)T
r

∑
l=0

Bl(i)
TEi(Y)Al(i),

and

−(L(i) + F(i, T)T R(i, Y)) F(i, Z)

= −(L(i)− S(i, Y)) F(i, Z) =
r

∑
l=0

Al(i)
TEi(Y)Bl(i) F(i, Z).

Then

P(i, Y)− T(i, Z) =
r

∑
l=0

Ãl(i, Z)T Ei(Y)Ãl(i, Z)− ŴZ(i, Y)

and

P(i, Y) = PZ(i, Y) =
r

∑
l=0

Ãl(i, Z)T Ei(Y)Ãl(i, Z) + T(i, Z)− ŴZ(i, Y) ,

i.e. the identity (15) holds for all values of i.

Further on, taking Y = Z in (15) we obtain:

P(i, Y) =
r

∑
l=0

Ãl(i, Y)T Ei(Y)Ãl(i, Y)− T(i, Y) .

Combining the last two equations it is received

PZ(i, Z)−PZ(i, Y) =
r

∑
l=0

Ãl(i, Z)T Ei(Z − Y)Ãl(i, Z) + ŴZ(i, Y) .

Now, we are ready to investigate recurrence equations (12) where X(0) is a suitable matrix. We

will prove some properties of the matrix sequence {Xi}
∞
i=0 defined by the above recurrence

equation. The limit of this matrix sequence is a solution to (3)-(4). We will derive the theorem:

Theorem 4.1. Letting there are symmetric matrices X̂ = (X̂1, . . . , X̂N) and X(0) = (X
(0)
1 , . . . , X

(0)
N )

such that (for i = 1, . . . , N):

(a) X̂ ∈ domP† with KerR(i, X̂) ⊆ KerS(i, X̂);

(b)P(i, X̂) ≥ X̂(i);

(c)X(0) ≥ X̂;
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(d)P(i, X(0)) ≤ X(i)(0).

Then for the matrix sequences {X(1)(k)}∞
k=1, . . . , {X(N)(k)}∞

k=1 defined by (12) the following

properties are satisfied:

(i) We have X(k) ≥ X̂ , X(k) ≥ X(k+1) and

P(i, X(k)) = X(i)(k+1) +
r

∑
l=0

Ãl(i, X(k))TEi1(X
(k) − X(k+1))Ãl(i, X(k)),

where i = 1, 2, . . . , N, k = 0, 1, 2, . . .;

(ii) the sequences {X(1)(k)}, . . . , {X(N)(k)} converge to the maximal solution X̃ of set of equations

(3)-(4) and X̃ ≥ X̂ .

Proof. Let k = 0. We will prove the inequality X(0) ≥ X(1). From iteration (12) for k = 1 with

X(0) ∈ domP† and for each i we get:

X(i)(1) = ∑
r
l=0

[
Ãl(i, X(0))

]T (
Ei1(X

(1)) + piiX(i)(0) + Ei2(X
(0))

)

×
[

Ãl(i, X(0))
]
+ T(i, X(0)) .

We will derive an expression to X(i)(0) − X(i)(1). We obtain

X(i)(0) − X(i)(1) = ∑
r
l=0 Ãl(i, X(0))T

(
Ei1(X

(0) − X(1))
)

Ãl(i, X(0)) + X(i)(0) −P(i, X(0)) .

We conclude X(i)(0)−X(i)(1) ≥ 0 for i = 1, 2, . . . , N, under the assumption (d) of the theorem.

Beginning with X(0) and using iteration (12) we construct two matrix sequences {FXi
}∞

i=0 , and

{Xi}
∞
i=1. We will prove by induction the following statements for i = 1, . . . , N:

• X(i)(p) ≥ X̂(i) and thus X(p) ∈ domP† and KerR(i, X(p)) ⊆ KerS(i, X(p)),

• X(i)(p) ≥ X(i)(p+1),

• P(i, X(p)) = X(i)(p+1) + ∑
r
l=0 Ãl(i, X(p))TEi1(X

(p) − X(p+1))Ãl(i, X(p)) .

We will prove X(i)(p) ≥ X̂(i) for i = 1, . . . , N. Using (15) with Y = X̂ and Z = X(p−1) we from

the difference

X(i)(p) − X̂(i) =
r

∑
l=0

Ãl(i, X(p−1))T
(
Ei1(X

(p)) + piiX(i)(p−1) + Ei2(X
(p−1))

)

× Ãl(i, X(p−1)) + T(i, X(p−1))− X̂(i) .

Based on identity (15) in the form

P(i, X̂) = PX(p−1) (i, X̂) = ∑
r
l=0 Ãl(i, X(p−1))T Ei(X̂)Ãl(i, X(p−1)) + T(i, X(p−1))

−ŴX(p−1) (i, X̂) .
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we derive

X(i)(p) − X̂(i)−P(i, X̂)

=
r

∑
l=0

Ãl(i, X(p−1))T
(
Ei1(X

(p) − X̂) + pii(X(i)(p−1) − X̂(i)) + Ei2(X
(p−1) − X̂)

)

×Ãl(i, X(p−1))− X̂(i) + ŴX(p−1) (i, X̂) .

We know that P(i, X̂)− X̂(i) ≥ 0. Then X(i)(p) − X̂(i) ≥ 0 for all i = 1, . . . , N.

Lemma 4.3 confirms that X(i)(p) ∈ domP†. We compute F(i, X(p)) =

−
(

R(i, X(p))
)†

S(i, X(p))T . Next, we obtain the matrices X(i)(p+1) from (12) and we

will prove X(i)(p) ≥ X(i)(p+1) for i = 1, . . . N. After some matrix manipulations we derive

X(i)(p) − X(i)(p+1)

=
r

∑
l=0

Ãl(i, X(p))T Ei1(X
(p) − X(p+1)) Ãl(i, X(p))

+
r

∑
l=0

Ãl(i, X(p−1))T
(

pii(X(i)(p−1) − X(i)(p)) + Ei2(X
(p−1) − X(p))

)

× Ãl(i, X(p−1)) + ŴX(p−1) (i, X(p)) .

It is easy to see that X(i)(p) − X(i)(p+1) ≥ 0 for i = 1, 2, . . . , N from the last equation.

Further on, we have to show that

P(i, X(p)) = X(i)(p+1) +
r

∑
l=0

Ãl(i, X(p))TEi1(X
(p) − X(p+1))Ãl(i, X(p))

for i = 1, . . . , N.

We have

P(i, X(p)) =
r

∑
l=0

Ãl(i, X(p))T Ei(X
(p)) Ãl(i, X(p)) + T(i, X(p))

and
X(i)(p+1) = T(i, X(p)) + ∑

r
l=0 Ãl(i, X(p))T

×
(
Ei1(X

(p+1)) + piiX(i)(p) + Ei2(X
(p))

)
Ãl(i, X(p)) .

Subtracting the last two equations we yield

P(i, X(p)) = X(i)(p+1) + ∑
r
l=0 Ãl(i, X(p))TEi1(X

(p) − X(p+1))Ãl(i, X(p)) ,

for i = 1, . . . , N.
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Thus, it is received a nonincreasing matrix sequence {Xi}
∞
i=1 of symmetric matrices bounded

below by X̂ which converges to X̃ and X̃ ≥ X̂. Hence, X̃ ∈ domP† by Lemma 4.3.

The theorem is proved.

Thus, following the above theorem we could compute the maximal solution X̃ of the set of

equations (3)-(4). We should apply iteration (12). The next question is: How to apply the LMI

method in this case?

Let us consider the modified optimization problem:

max ∑
N
i=1 〈I, X(i)〉

subject to i = 1, . . . , N
⎛
⎜⎝

−X(i) + Q(i, X) S(i, X)

S(i, X)T R(i, X)

⎞
⎟⎠ ≥ 0

X(i) = X(i)T .

(16)

Theorem 4.2. Assume that (A, B) is stabilizable and there exists a solution to the inequalities

P(i, X) − X(i) ≥ 0 for i = 1, . . . , N. Then there exists a maximal solution X+ of (3)-(4) if and

only if there exists a solution X̃ for the above convex programming problem (16) with X+ ≡ X̃.

Proof. Note that the matrix X = (X(1), . . . , X(N)) satisfies the restrictions of optimization

problem (16) if and only if

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(i) + Q(i, X)− S(i, X) R(i, X)† S(i, X)T = P(i, X)− X(i) ≥ 0 ,

R(i, X) ≥ 0 ,

Ker R(i, X) ⊆ Ker S(i, X) ⇐⇒ S(i, X)
(

I − R(i, X) R(i, X)†
)
= 0 (Lema 4.1 (ii)),

for i = 1, . . . , N .

(17)

The last statement follows immediately by lemma 4.2.

Assume that X+ is the maximal solution of (3)-(4). Thus, X+ ≥ X and trX+(1) + . . . +
trX+(N) ≥ trX(1) + . . . + trX(N) for any solution X of (3)-(4), i.e. for any matrix X satisfies

restrictions of (16) and then X+ is the solution of optimization problem (16).

Further on, suppose that X̃ is a solution of optimization problem (16). The inequalities (17) are

fulfilled for X̃, i.e. X̃ ∈ domP† and assumptions for theorem 4.1 hold for X̂ = X̃. Thus, there

exists the maximal solution X+ with X+ ≥ X̃. Moreover, the optimality of X̃ means that

tr (X+(1)− X̃(1)) + . . . + tr (X+(N)− X̃(N)) ≤ 0

and then X+(j)− X̃(j) = 0 for j = 1, . . . , N. Then X+ ≡ X̃.
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Let us consider set of equations (7)-(8) under the assumption that R(i) + ∑
r
l=0 Bl(i)

TY(i)Bl(i)

≥ 0, i = 1, . . . , N. Thus, optimization problem (11) is transformed to the new optimization

problem:

max ∑
N
i=1 〈I, Y(i)〉

subject to i = 1, . . . , N

⎛
⎜⎜⎜⎝

−Y(i) + ĈT(i)Ĉ(i) + ∑
N
j=1 γij Y(j)

∑
r
l=0 Âl(i)

T Y(i) Âl(i)
Ŝ(i, Y(i))

Ŝ(i, Y(i))T R(i) + ∑
r
l=0 Bl(i)

TY(i)Bl(i)

⎞
⎟⎟⎟⎠ ≥ 0

Y(i) = Y(i)T .

(18)

It is easy to verify that the solution of (18) is the maximal solution to (7)-(8) with the positive

semidefinite assumption to matrices R(i) + ∑
r
l=0 Bl(i)

TY(i)Bl(i) ≥ 0, i = 1, . . . , N.

We investigate the numerical behavior of the LMI approach applied to the described

optimization problems LMI: (16) and LMI(Y): (18) for finding the maximal solution to set

of discrete-time generalized Riccati equations (3) - (4). In addition, we compare these LMI

solvers with derived recurrence equations (12) for the maximal solution to the same set of

equations. We will carry out some experiments for this purpose. In the experiments in this

section we construct a family of examples (N = 3, k = 3) with the weighting matrices

Q(1) = diag[0; 0.5; . . . , 0.5] , Q(2) = diag[0; 1; 1; . . . , 1] ,

Q(3) = diag[0; 0.05; 0.05; . . . , 0.05] ,

R(1) = R(2) = R(3) = zeros(3, 3) ,

and zero matrices L(1), L(2), L(3) and the introduced transition probability matrix via

Example 2.1.

Example 4.1. We consider the case of r = 1, n = 6, 7, where the coefficient real matrices A0(i), A1(i),

A2(i), B0(i), B1(i), B2(i), L(i), i = 1, 2, 3 are given as follows (using the MATLAB notations):

A0(1) = randn(n, n)/10; A0(2) = randn(n, n)/5; A0(3) = randn(n, n)/5;

A1(1) = randn(n, n)/100; A1(2) = randn(n, n)/50; A1(3) = randn(n, n)/100;

B0(1) = 100 ∗ f ull(sprand(n, k, 0.07)); B0(2) = 100 ∗ f ull(sprand(n, k, 0.07));

B0(3) = 100 ∗ f ull(sprand(n, k, 0.07));

B1(1) = 100 ∗ f ull(sprand(n, k, 0.07)); B1(2) = 100 ∗ f ull(sprand(n, k, 0.07));

B1(3) = 100 ∗ f ull(sprand(n, k, 0.07)) .
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In our definitions the functions randn(p,k) and sprand(q,m,0.3) return a p-by-k matrix of

pseudorandom scalar values and a q-by-m sparse matrix respectively (for more information see the

MATLAB description).

Results from experiments are given in table 4. The parameters mIt and avIt are the same as the

previous tables. In addition, the CPU time in seconds is included. The optimization problems

(16) and (18) need the equals iteration steps (the column avIt) for finding the maximal solution

to set of equations (3) - (4). However, the executed examples have demonstrated that LMI

problem (18) faster than LMI problem (16). Moreover, iterative method (12) is much faster

than the LMI approaches and it achieves the same accuracy.

(12) LMI for (16) LMI for (18)

n mIt avIt mIt avIt mIt avIt

6 23 15.9 59 37.9 59 37.9
7 27 16.9 64 39.2 63 37.5

CPU time 20 runs (in seconds)

20 0.41 72.12 14.48

Table 4. Comparison between methods for the maximal solution in Example 4.1.

We introduce an additional example where the above optimization problems are compared.

Example 4.2. The parameters of this system are presented as follows. The coefficient matrices are
(r = 1, k = 3, n = 6):

A0(1) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

58 20 66 60 45 13

7 33 45 3 33 45

21 19 36 20 11 42

58 34 26 38 28 20

7 51 53 31 59 59

40 16 56 17 27 29

⎤
⎥⎥⎥⎥⎥⎥⎥

, A0(2) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

66 29 54 58 19 36

20 52 10 22 39 17

62 42 4 44 32 63

18 0 4 11 5 17

21 27 48 47 49 11

33 8 58 14 64 41

⎤
⎥⎥⎥⎥⎥⎥⎥

,

A0(3) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

63 54 24 17 46 13

27 34 44 63 65 61

8 18 11 64 46 33

56 51 6 12 65 3

45 61 16 11 22 14

22 3 48 6 39 9

⎤
⎥⎥⎥⎥⎥⎥⎥

, A1(1) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 7 1 5 8 3

1 6 7 5 8 6

1 3 7 10 9 5

2 6 7 3 9 7

6 7 9 8 3 0

2 7 8 4 7 1

⎤
⎥⎥⎥⎥⎥⎥⎥

,

A1(2) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

9 8 5 5 8 9

9 9 10 3 3 1

8 6 9 0 9 2

6 7 3 8 10 7

10 7 9 7 4 8

6 7 6 9 6 2

⎤
⎥⎥⎥⎥⎥⎥⎥

, A1(3) = 0.001 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7 6 1 6 2 6

5 3 7 5 6 9

5 9 2 8 5 1

6 3 7 3 5 7

8 8 2 9 4 8

7 4 8 5 3 9

⎤
⎥⎥⎥⎥⎥⎥⎥

.

Coefficient matrices B0(i), B1(i), i = 1, 2, 3 are 6 × 3 zero matrices with nonzero elements:

B0(1)(5, 3) = 10.07; B0(1)(3, 1) = 2.56; B0(2)(1, 2) = 6.428; B0(2)(4, 2) = 5.48;
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B0(3)(6, 3) = 13.498; B0(3)(5, 3) = 1.285; B1(1)(2, 3) = 6.525; B1(1)(4, 3) = −5.2;

B1(2)(2, 1) = −22.99; B1(2)(4, 1) = 3.25; B1(3)(6, 1) = 6.8466; B1(3)(6, 2) = 2.5 .

This choice of the matrices B0(i), B1(i), i = 1, 2, 3 guaranteed that the matrices R(i, X) are positive

semidefinite, i.e. there are symmetric matrices X which belongs to dom P†. The remain coefficient

matrices are already in place.

We find the maximal solution to (3) - (4) for the constructed example with iterative method

(12) and the LMI approach applied to optimization problems (16) and (18). The results are

the following. Iteration (12) needs 15 iteration steps to achieve the maximal solution. The

computed maximal solution W has the eigenvalues

Eig W(1) = (4.9558e − 5; 0.50058; 0.50004; 0.50002; 0.50001; 0.5) ,

Eig W(2) = (0.00019562; 1.0007; 1.0001; 1; 1; 1) ,

Eig W(3) = (9.33e − 5; 0.05041; 0.05005; 0.050018; 0.050011; 0.050003) .

(19)

The LMI approach for optimization problem (16) does not give a satisfactory result. After

32 iteration step the calculations stop with the computed maximal solution V. However,

the norm of the difference between two solutions W and V is ‖W(1) − V(1)‖ = 1.0122e −

9, ‖W(2)− V(2)‖ = 2.8657e − 6, ‖W(3)− V(3)‖ = 3.632e − 6.

The LMI approach for optimization problem (18) needs 28 iteration steps to compute the

maximal solution to (1). This solution Z has the same eigenvalues as in (19). The norm of

the difference between two solutions W and Z is ‖W(1) − Z(1)‖ = 7.4105e − 12, ‖W(2) −

Z(2)‖ = 2.8982e − 11, ‖W(3)− Z(3)‖ = 3.0796e − 11.

The results from this example show that the LMI approach applied to optimization problem

(18) gives the more accurate results than the LMI method for (16). Moreover, the results

obtained for problem (16) are not applicability. A researcher has to be careful when applied

the LMI approach for solving a set of general discrete time equations in positive semidefinite

case.

5. Conclusion

This chapter presents a survey on the methods for numerical computation the maximal

solution of a wide class of coupled Riccati-type equations arising in the optimal control of

discrete-time stochastic systems corrupted with state-dependent noise and with Markovian

jumping. In addition, computational procedures to compute this solution for a set of

discrete-time generalized Riccati equations (7)-(8) are derived. Moreover, the LMI solvers for

this case are implemented and numerical simulations are executed. The results are compared

and the usefulness of the proposed solvers are commented.
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