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1. Introduction 

More than 120 years ago, Peter Hermann Stillmark in his doctoral thesis presented in 1888 to 

the University of Dorpat, gave the earliest step in the study of proteins that have a very 

interesting feature: the ability to agglutinate erythrocytes. These proteins were initially 

referred as to hemagglutinins or phytoagglutinins, since they were originally isolated from 

extracts of plants [1]. The first hemagglutinin isolated by Stillmark was extracted from seeds 

of the castor tree (Riccinus communis) and was named ricin [2]. This hemagglutinin was 

strongly used by Paul Ehrlich as model antigens for immunological studies [2,3]. 

Thirty-one years after Stillmark, James B. Sumner, isolated from jack bean (Canavalia ensi-

formis) a protein that he called concanavalin A (ConA). For the first time a pure hemaggluti-

nin had been obtained [4]. However, the report that ConA agglutinates cells such as eryth-

rocytes and yeasts and also precipitates glycogen from solution was given by Summer and 

Howell nearly two decades after its isolation. In addition, the findings of these researchers 

showed that the hemagglutination by ConA was inhibited by sucrose, demonstrating for the 

first time the sugar specificity of lectins. Thus, they suggested that the hemagglutination 

induced by ConA might be due to the reaction of the plant protein with carbohydrates ex-

pressed on the surface of the erythrocytes [1,4]. 

In 1907, Landsteiner and Raubitschek analyzed the hemagglutination of red blood cells from 

different animals by various seeds extracts. They found that the relative hemagglutinating 

activity was quite different for each extract tested [1]. However, it was only in the 1940s that 

Willian Boyd and Karl Renkonen, working independently, made the important discovery of 

human blood groups specificity for hemagglutinins. They found that crude extracts of two 

leguminous plants, Phaseolus limensis and Vicia cracca, agglutinated blood type A 
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erythrocytes but not blood type B or O cells, whereas the extract of Lotus tetragonolobus 

agglutinated only blood type O erythrocytes [1,5].  

The specific interaction between lectins and carbohydrates of erythrocytes played a crucial 

role in the investigations of the antigens associated with the ABO blood group system. In the 

subsequent decade, Morgan and Watkins found that the agglutination of type A 

erythrocytes by extracts of Phaseolus limensis was best inhibited by α-linked N-acetyl-D-

galactosamine, while the agglutination of O cells by the extract of L. tetragonolobus was best 

inhibited by α-linked L-fucose [6]. 

Around thirty years after Boyd, the research on lectins reached the molecular level studies. 

It was clear the need to a better understanding on the structural aspects of lectins. Then, in 

1972 Edelman and colleagues established the primary sequence of ConA [6]. In the same 

year, Edelman’s group and independently Karl Hardman with Clinton Ainsworth, solved 

the 3D structure of ConA by X-ray crystallography [7,8]. 

2. What exactly is a lectin? 

In 1954 Boyd and Shapleigh proposed the term lectin, from the Latin verb legere (which 

means “to select”). This term was based on the fact that these proteins have the ability to 

distinguish between erythrocytes of different blood types [9]. 

Lectins were early defined as carbohydrate-binding proteins of nonimmune origin that 

agglutinate cells or as carbohydrate-binding proteins other than antibodies or enzymes. 

However, these definitions were updated, since some plant enzymes are fusion proteins 

composed of a carbohydrate-binding and a catalytic domain, for instance, type 2 RIPs, such as 

ricin and abrin, are fusion products of a catalytically active A-chain (which has the N-

glycosidase activity) and a carbohydrate-binding B-chain, both linked by a disulfide bond [10]. 

Furthermore, there is in nature carbohydrate-binding proteins possessing only one binding 

site and, therefore, are not capable of precipitating glycoconjugates or agglutinating cells [11]. 

Thus, in 1995 Peumans and Van Damme proposed the most suitable definition for lectins. 

According to the “new” definition, all plant proteins that possess at least one noncatalytic 

domain that binds reversibly to a specific mono- or oligosaccharide are considered as lectins 

[12,13]. 

2.1. Plant lectins 

Lectins are proteins widely distributed in nature such in microorganisms, plants, animals 

and humans, acting as mediators of a wide range of biological events that involve the crucial 

step of protein-carbohydrate recognition, such as cell communication, host defense, 

fertilization, cell development, parasitic infection, tumor metastasis, inflammation, etc [14-

15]. 

Peumans and Van Damme classified the plant lectins according to their overall structure. 

Merolectins consist exclusively of a single carbohydrate-binding domain (e.g. hevein, a 
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chitin-binding latex protein isolated from the rubber tree Hevea brasiliensis). Since 

merolectins have a unique carbohydrate-binding site, they are incapable of precipitating 

glycoconjugates or agglutinating cells. Hololectins are also built of carbohydrate-binding 

domains. However, they contain at least two such domains that are identical or very 

similar. Because these lectins are di- or multivalent they can agglutinate cells and/or 

precipitate glycoconjugates. Most plant lectins are hololectins. Superlectins are built of at 

least two carbohydrate-binding domains. Unlike hololectins, these domains are not 

identical or similar. Thus, superlectins recognize structurally different sugar (e.g. TxLCI, a 

tulip bulb lectin that recognizes mannose and N-acetyl-galactosamine). Chimerolectins are 

fusion proteins that consist of two different chains, one of them with a remarkable 

catalytic activity (or another biological activity). RIPs type 2 are examples of 

chimerolectins [11-12]. 

The most thoroughly investigated lectins have been isolated from plants, particularly that 

extracted from members of the Leguminosae family. Legume lectins are a large group of 

proteins that share a high degree of structural similarity with distinct carbohydrate 

specificities. The subtribe Diocleinae (Leguminosae) comprises 13 genera, mostly of them 

from the New World. However, only 3 of these genera (i.e. Canavalia, Cratylia and Dioclea) 

are considered as the main sources for protein purification [16]. 

Concerning the biological activity, legume lectins are considered as enigmatic proteins. 

Despite the philogenetic proximity as well the high degree of similarity shared between 

them, they possess different biological activities such as histamine release from rat 

peritoneal mast cells, lymphocyte proliferation and interferon-γ production, peritoneal 

macrophage stimulation and inflammatory reaction as well as induction of paw edema and 

peritoneal cell immigration in rats [16]. 

2.2. Plant lectins as biotechnological tools 

Significant progress has been reached in last years in understanding the crucial roles of 

lectins in several biological processes [17]. The importance of lectins as biotechnological 

tools has been established early in the studies involving its biological application. In 1960 a 

major step in immunology was given in order to determine the role of these proteins on the 

lymphocytes cell division. It was found that the lectin of the red kidney bean (Phaseolus 

vulgaris), known as phytohemagglutinin (PHA), possesses the ability to stimulate lympho-

cytes to undergo mitosis [18]. After these findings, many studies have been performed to 

evaluate the role of lectins on different models involving the immune response and its 

products, for instance the stimulation of citokine secretion [19], functional activation of 

monocytic and macrophage-like cells [20] and ROS production by spleen cells [21]. 

In addition to immunological studies, recent works have been investigated the influence of 

lectins in the field of microbiology, since lectins can be considered as valuable tools to verify 

the role of interaction between the pathogen and carbohydrates present in host cells and its 

importance to disease development. For instance, it has been proposed that the pathogen 

Helicobcter pylori infects human cells through an interaction involving a lectin [22]. 
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3. Carbohydrates and the neoplasic process 

Currently, malignancies are considered a major problem in the public health, especially 

given their increasing incidence and prevalence rates observed in recent decades. In this 

context, the malignant tumors, or cancers, account for approximately 7.8 million deaths per 

year, thus becoming the second greatest cause of death worldwide, only behind the 

cardiovascular disease [23]. 

The cancer can be defined as a set of more than 100 diseases that have in common the 

uncontrolled growth of cells, which invade tissues and organs and can spread to other body 

regions [23]. Thus, both the processes of cellular mutation that affects the neoplastic cell and 

metastasis, involve a series of genetic changes that culminate in modifications in the pattern 

of several receptors and signaling molecules present on the cell surface [24]. 

Carbohydrates are biomolecules that have enormous potential for encoding biological in-

formation. These combined-molecules (Glycoproteins and Glycolipids) are responsible for 

different biological interactions between the cell and the extracellular environment [26]. 

Regarding the neoplastic cells, the glycosylation of these proteins and lipids is changed, 

which generates membrane signaling molecules capable of inducing several processes di-

rectly related to tumor progression such as cell adhesion, angiogenesis, cellular mitosis and 

metastasis, in addition, in some cases, be responsible for inhibition of apoptosis induction 

triggered by the cells of the immune system [26]. 

Certain changes in glycans occur frequently in neoplastic cells and may be considered 

"tumor-specific", establishing a correlation between the stage of disease progression and 

prognosis of the same [25]. Some classic examples of these changes are the antigens of the 

ABH and Lewis system. ABH antigens are not expressed in cells of healthy human colon 

but significantly expressed on tumor cells [27]. Since the antigen Lewisy can be observed in 

several carcinomas and has been correlated with poor prognosis in breast tumors [28]. 

Another example is the glycosylated antigens sialyl-LewisA and sialyl-Lewisx, which are 

significantly up-regulated in carcinomas of the colon and appear to be related to tumor 

progression [29]. 

Thus, due to the intrinsic role of carbohydrates in the tumorigenesis, the glycosylation pro-

cess as well as the identification of glycosylated antigens have been intensively focused, 

given the fact that glycosylation of antigens can vary extensively depending on the stage of 

the disease, which can provide, when properly identified, a better possibility of correct di-

agnosis and treatment. 

4. Application of plant lectins in the diagnosis of malignant tumors 

Because the peculiar characteristic of specific binding to carbohydrates, lectins have been 

used as tools to identify aberrant glycans expressed by neoplastic cells. Such methods 

have been essential to obtain a more precise diagnosis that allows a more accurate 

prognosis. 
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Several methods regarding the use of lectins as tools for recognizing aberrant glycans have 

been proposed in recent days [30,31,32]. The technique most common and widespread is the 

use of lectins in immunohistochemical assays. 

In this context, the study conducted by [30], showed that leguminous lectins from Canavalia 

ensiformis (ConA) and Ulex europaeus (UEA-1) were used as histochemical markers of parotid 

gland mucoepidermoid carcinoma with low, intermediate, and high grade dysplasia. The 

authors stated that ConA localization in the cytoplasm and/or plasma membrane was 

significantly associated with neoplastic cells from the three grades of severity, whereas 

UEA-1 was associated with low and intermediate grade dysplasia. The authors obtained 

similar results after the analysis of other cell regions. 

Another recent methodology was addressed by [33]. This methodology exploits the fact that 

glycoproteins produced by cancer cells have altered glycan structures, although the proteins 

themselves are common, ubiquitous, abundant, and familiar. However, as cancer tissue at 

the early stage probably constitutes less than 1% of the normal tissue in the relevant organ, 

only 1% of the relevant glycoproteins in the serum should have altered glycan structures 

[34]. With that in mind, the strategy to approach the detection of these low-level 

glycoproteins is based in: (a) a quantitative real-time PCR array for glycogenes to predict the 

glycan structures of secreted glycoproteins; (b) analysis by lectin microarray to select lectins 

that distinguish cancer-related glycan structures on secreted glycoproteins; and (c) an 

isotope-coded glycosylation site-specific tagging high-throughput method to identify carrier 

proteins with the specific lectin epitope [33].  

Therefore, further analyses of lectins as biomarkers have been undertaken to improve our 

understanding of the processes involved in malignant tumor formation. As well as enable us 

to acquire new methods of identification of neoplastic cells at an early stage, enabling a 

better prognosis with appropriate treatment and low cost. 

5. Application of plant lectins in the treatment of malignant tumors 

Apoptosis is a mechanism by which cells undergo death to control cell proliferation or in 

response to irreparable DNA damage. It is featured by unique morphological and biochemi-

cal changes, such as nucleus condensation and margination, membrane blebbing, and inter-

nucleosomal DNA cleavage [35]. As the type I programmed cell death (PCD), apoptosis 

occurs through two major pathways, the extrinsic pathway triggered by the Fas death recep-

tors, and the mitochondria-dependent pathway that brings about the release of Cytocrome c 

(Cyto c) and activation of the death signals under stimulus. In both ways the caspases, 

which belong to a family of cysteine proteases, have been well established as major players 

in apoptosis-causing mechanisms [36]. 

Several studies have demonstrated that lectins can induce apoptotic cell death. In the 

mitochondrial-dependent pathway, ConA treatment results in a decrease of mitochondrial 

membrane potential, and thus collapsing mitochondrial transmembrane potential. Cyto c is 

subsequently released, making up apoptosome with Apaf-1 and procaspase-9. After 
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conjugating apoptosome, procaspase-3 turns into active caspase-3 that eventually triggers 

apoptosis [37]. 

In [38], it was evaluated the pro-apoptotic activity of a lectin isolated from Artocarpus incisa 

(frutalin) on HeLa cells derived from human cervical cancer. In this study, frutalin 

possessed a remarkable antiproliferative effect on HeLa cells. This effect was irreversible as 

well as time and dose dependent. When the lectins were added, serious visible cellular 

morphology changes were observed, possibly as a result of cell stress.  

An interesting study conducted by [39] showed the pro-apoptotic caspase-dependent 

activity of the lectin isolated from Astragalus membranaceus in leukemia cell line (CML K562). 

These results showed a close relationship with the low expression of BCL-2 (anti-apoptotic 

protein) indicating that the lectin is active through the mitochondrial apoptotic pathway 

[40]. Furthermore, structural changes in cell membrane and different levels of Caspase-3 

contributed to support their hypothesis. 

Despite the apoptotic activity of several lectins have been demonstrated in different studies, 

the precise mechanism of how this process is triggered as well the mode of internalization is 

unknown until the present date. 

6. Carbohydrates and the inflammatory process 

The inflammation is a nonspecific event of immune response that occurs in reaction to any 

type of tissue injury. This process is capable of triggering a series of physiological changes 

such as increased blood flow, elevated cellular metabolism, vasodilation, release of soluble 

mediators, extravasation of fluids and cellular influx [41].  

The continuity of cell recruitment and tissue damage in addition to chemical mediators released 

by the injured tissue as well as resident cells on site activate various mechanisms, in turn, 

induce the migration of more immune cells as well as increasing local tissue perfusion [42].  

Both, acute and chronic inflammations have specific characteristics and the innate immune 

system plays a central role, since it mediates the initial response. Infiltration of innate im-

mune cells, specifically neutrophils and macrophages, characterizes the acute inflammation, 

while infiltration of T lymphocytes and plasma cells are features of chronic inflammation 

[41,42]. 

As discussed previously, carbohydrates can act as the intermediates of communication 

in biological processes such as differentiation, proliferation and certain cell–cell 

interactions that are crucially important in both physiological and pathological 

phenomena [43,44]. The information contained in the enormous variety of 

oligosaccharide structures normally conjugated to proteins or lipids on cell surfaces 

(glycocodes) is recognized and deciphered by a specialized group of structurally 

diverse proteins, the lectins [44]. 

Galectins (formerly “S-type lectins”), an evolutionarily conserved family of endogenous 

animal lectins, share unique features, including their highly conserved structure, exquisite 
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carbohydrate specificity, and ability to differentially regulate a myriad of biological 

responses [45].  

Although galectins have been implicated in many biological activities, most of the functional 

studies reported to date link galectins to early developmental processes, such as 

neovascularization, regulation of immune cell homeostasis and inflammation [44,46,47]. 

Through deciphering glycan-containing information about host immune cells or microbial 

structures, galectins can modulate a diversity of signaling events that lead to cellular 

proliferation, survival, chemotaxis, trafficking, cytokine secretion and cell−cell 

communication [46,47]. 

These findings are extremely important because they demonstrate the importance of the 

glicocodes in the process of cell recognition and inflammation. In this context, plant lectins 

have been widely used to understand the pro-inflammatory mechanisms, as well as the 

design of new compounds with pro-healing effect. 

7. Plant lectins and its immunomodulatory activity 

An immune system is a system of biological structures and processes within an organism 

that protects against disease. In order to function properly, an immune system must detect a 

wide variety of agents, from viruses to cancer cells, and distinguish them from the 

organism's own healthy tissue [41]. The immune system is composed of many cells and 

molecules that act in a complex and harmonious way with the ultimate goal of annihilating 

the aggressive factor [42]. 

In the immune system, two phases of activity can be clearly established: the innate immune 

response and the adaptive immune response. In the innate immune response, there is the 

activity of cells and cytokines in a nonspecific way with the main purpose to annihilate 

quickly the local damaging agents. At this stage, we highlight the neutrophils, eosinophils, 

basophils and macrophages, cells with well-established activities but with the common 

function of production and release of cytokines. These cytokines are molecules with various 

functions in the inflammatory process, such as chemotaxis, activation of certain cell groups 

and increased tissue perfusion [48]. 

On the other hand, the adaptive immune response is composed by another set of cells that 

acts in a more specific way, the lymphocytes. Such cells are responsible for producing anti-

bodies specific for certain invading microorganisms and the activation of mechanisms of 

apoptosis in abnormal cells [49]. 

Thus, the use of molecules capable of inducing cell recruitment as well as cytokine 

production and lymphocytes proliferation is of special scientific interest. 

Korean mistletoe (Viscum album L. var. coloratum) is traditionally used as a sedative, 

analgesic, anti-spasmolytic, cardiotonic and anticancer agent, in Korea. An important lectin 

has been isolated from this plant and its immunomodulatory activity was analyzed [50]. It 

was shown that KML differentially modulated macrophage-mediated immune responses. It 
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also enhanced the expression of various cytokines (IL-3, IL-23 and TNF-a), ROS generation, 

phagocytic uptake and surface levels of some glycoproteins (co-stimulatory molecules, PRRs 

and adhesion molecules). Nevertheless, the functional activation of adhesion molecules 

assessed by cell–cell or fibronectin adhesion events was up-regulated by KML treatment. 

A recent study [51] demonstrated the immunomodulatory activity of ConBr, a lectin isolated 

from Canavalia brasiliensis seeds. The assays showed that ConBr was able to induce in vitro 

proliferation of splenocytes with minimal damage to the cellular structure. Furthermore, 

ConBr increased in the production of cytokines such as IL-2, IL-6 and IFN-γ production and 

decreased IL-10. These findings indicate the potential immunomodulatory effect of this 

lectin in conjunction with the intrinsic role of carbohydrates in intercellular communication 

related to the inflammatory process. 

Regarding the activity of lectins on lymphocytes, a recent study [52] evaluated the effect of 

lectin extracted from seeds of Cratylia mollis Mart. (Cramoll 1,4) on experimental cultures of 

mice lymphocytes. In this study, aspects directly related to inflammation as cytokine 

production, cytotoxicity and cellular production of nitric oxide (NO) were evaluated. Cramoll 

1,4 did not show cytotoxicity at the concentrations tested, in addition, was able to induce 

IFN-γ and showed an anti-inflammatory activity through the supression of NO production. 

The biological function of carbohydrates in inflammation events is well-defined. In this 

context, proteins that bind specifically to such glycans are of great interest because of their 

possible functions and applications in biotechnological studies. 

8. Plant lectins and its pro-healing activity 

Recently, researches have undertaken efforts at the possible pro-healing activity of some 

lectins [53,54]. This goal is supported by the fact that such molecules may interfere with the 

inflammatory process. This effect is not yet fully elucidated, however peculiar and interest-

ing results can be observed. 

Experiment conducted in a murine model, employing the lectin isolated from Bauhinia 

variegata seeds (BVL) topically on surgically induced wounds, revealed the pro-healing 

potential of such molecule. Although not yet elucidated, it is suggested that this lectin appears 

to stimulate the mitogenic activity of resident cells, turning them into potent chemotactic 

agents for the recruitment of neutrophils through the release of cytokines [54]. Furthermore, it 

is suggested that the BVL stimulates the differentiation of fibroblasts into myofibroblast, which 

is an extremely important event in the remodeling of connective tissue [55]. 

Although promising, this issue requires further studies to better characterize the 

mechanisms involved in pro-healing role played by lectins. 

9. Marine algae lectins 

To date, there are fewer than 100 publications describing the presence of lectins in marine 

red, green and brown macroalgae. Moreover, and in marked contrast to higher land plant 
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lectins, marine algal lectins have been isolated and characterized at a much lower pace since 

the first report of haemagglutinating activity in these organisms appeared more than 46 

years ago [56]. Thereafter, other studies describing the presence and/or purification of algal 

lectins were reported by groups from England [57], Japan [58], Spain [59], United States [60] 

and Brazil [61].  

Currently, the presence of lectins was analyzed at about 800 algae species. However, this 

number is still small, considering that there are thousands of species of marine algae. To-

gether, the research shows that approximately 60% of the analyzed species show hemagglu-

tinating activity. The number of positive species could be higher since in the first screenings 

the authors used a limited number of red blood cells and without enzyme treated erythro-

cytes.  

The improvement in the methodologies of both, extraction and hemagglutination assays 

could increase the number of positive species. In fact, there appears to be coincidence that 

the rabbit erythrocytes treated with papain are most suited for the hemagglutinating activity 

detection in marine macroalgae [62,63].  

Although marine algal lectins show proteinaceous content similar to lectins from terrestrial 

plants, they differ in some aspects. Early publications on this issue, reported that in general, 

lectins from algae have low molecular masses, no affinity for monosaccharides, strong speci-

ficity for complex oligosaccharides and/or glycoproteins. Moreover, they appear to have no 

requirement for metal ions, showing high content of acidic residues and even in high con-

centrations tend to stay in the monomeric form [64,65,66]. However there are a few reports 

showing that some of these molecules may be inhibited by simple sugars and are cation 

dependent as showed for the lectins from the green marine alga genus, Codium [67] and red 

marine alga genus, Ptilota [68,69,70].  

The classical methods used to purify marine algae lectins include methods such as protein 

precipitation (using salt or ethanol), liquid chromatography (especially affinity) and electro-

phoresis [69,71]. Ion exchange chromatography has been effectively used in the isolation of 

lectins from seaweed, mainly in initial stages in purification. In this step, the lectins were 

separated from pigments present in the extracts [66,72,73]. In the protein extracts, phycobil-

ins are co-extracted with lectins, becoming an undesirable contaminant in the purification 

process [72].  

Lectins from marine algae Cystoclonium purpureum [74], Gracilaria verrucosa [75], Palmaria 

palmata [76], Solieria robusta [62], Gracilaria tikvahiae [60], Bryothamnion seaforthii and 

B.triquetrum [66], Solieria filiformis [77], Enantiocladia duperreyi [78], Amansia multifida [73], 

Hypnea musciformis [79], Gracilaria ornata [80], Hypnea  cervicornis [81] and Georgiela confluens 

[82] were isolated by exchange chromatography, usually on DEAE cellulose. In contrast, due 

usually algal lectins have binding specificity of  complex sugars, affinity chromatography 

has been used a few times, such as the lectins of green algae of the genus Codium [83,84,85], 

lectins from Ulva lactuca [86], Caulerpa cupressoides [87], Enteromorpha prolifera [88], Ulva 
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pertusa [89], Bryopsis plumosa [90,91,92], Bryopsis hypnoides [93] and lectins from red marine 

algae of the genus Ptilota [68,69,70]. 

To date, only 31 lectins from Rhodophyceae and 17 lectins from Chlorophyceae were 

isolated and characterized. The virtual absence of lectins isolated from brown algae 

(Phaeophyta) is mainly due to the amount of polyphenols present in plants. It is known that 

polyphenols are released in extraction and that these compounds and their oxidation 

products, quinones, bind tightly to proteins [94] causing a false hemagglutination [83,95]. 

Even with the increase in the publications related to marine algae lectins, biochemical and 

structural information on algal lectins is scarce and from only a few species, and hence the 

functional and phylogenetic classification of these lectins remains unclear. The available 

structural information indicates the existence of different carbohydrate-binding proteins in 

the marine algae investigated. Moreover, the complete amino acid sequences of only 14 algal 

lectins have been determined. In red marine algae, Bryothamnion triquetrum lectin (BTL) was 

the first lectin to be determined its primary structure [96].  

In same year, [97] reported the primary structure of Hypnea japonica agglutinin (HJA) that 

shares sequence similarity with BTL and with lectin from Bryothamnion seaforthii [98] and 

these lectins constitute the first marine red alga lectin family. Based on identity between 

HML and HCA and in the differences in amino acid sequences compared with BTL/HJA, 

[99] suggest that HCA/HML constitute another algal lectin family.  

On the other hand, the lectins isolated from Eucheuma serra, E. amakusaensis, E. cottonii [100] 

have masses around 28 kDa, presents a monomer, share N-terminal sequence similarity 

with the complete amino acid sequence of isolectin 2 from Eucheuma serra (ESA-2) [101]. 

Also, the primary structure of ESA-2 contains repeated domains in their primary structure. 

These data suggest that lectins from genus Eucheuma can be grouped in a thirty family of red 

marine alga haemagglutinins. The amino acid sequence of lectin from red marine alga 

Griffthisia sp. [102] displays sequence similarity with lectin from jack fruit (Artocarpus integri-

folia). The common methodology employed to determine the primary structures from red 

marine alga lectins was a combination of Edman degradation of sets of overlapping pep-

tides and mass spectrometry. From green marine algae, the first primary structure deter-

mined was the lectin from Ulva pertusa (UPL-1) [89]. [103] described a 19 kDa protein ex-

pressed in strictly freshwater conditions in species of Ulva limnetica Ichihara et Shimada 

(freshwater alga), and this protein (named ULL) was identified and sequenced by cDNA 

cloning. The protein encoded by the cDNA showed 30% identity to UPL-1. However, the 

ULL should be considered a lectin-like since its haemaglutination activity was not yet char-

acterized. UPL-1 and ULL did not show amino acid sequence similarity with known plant 

and animal lectins.  

Recently [90] reported that the aggregation of cell organelles of Bryopsis plumosa in seawater 

was mediated by a lectin–carbohydrate complementary system and the purified lectin 

(named bryohealin) is involved in protoplast regeneration. The primary structure of bry-

ohealin and of lectin from Bryopsis hypnoides [104] had few similarity with any known plant 
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lectin, but rather resembled animal lectins with fucolectin domains. In addition, Bryopsis 

plumosa, has other two lectins described.  

The lectin BPL-2 is a 17 kDa protein specific to D-mannose (ref). The authors found no 

similarity with others proteins in specific databases. The BPL-3 [92] possesses specificity to 

N-acetyl-D-galactosamine/N-acetyl-D-glucosamine and share the same sugar specificity 

with bryohealin. However, the primary structures of the two lectins were completely 

different. The homology sequence analysis of BPL-3 showed that it might belong to H lectin 

group from Roman snails (Helix pomatia). The latest primary structure published was of 

lectin from Boodlea coacta (BCA) [105]. BCA consisted of 3 internal tandem-repeated 

domains, each one containing the sequence motif similar to the carbohydrate-binding site of 

land plant lectin from Galanthus nivalis. It should be noted that the primary structures from 

green marine algal lectins were mainly determined with combination of Edman degradation 

and cDNA cloning.  

Another observation is that a large number of sequenced algal lectins have the presence of 

cysteinyl residues or the duplication of internal domain.  Still a lot of work needs to be done 

on the structure of algal lectins, since a few amount of primary structures has been 

determined. Further structural studies will contribute to understanding the differences in 

their biochemical characteristics as well as to the evolutionary aspects upon lectin presence 

in land plants and marine algae. 

10. Marine algae lectins and its biotechnological role 

There are few studies in the literature about the biotechnological applicability of lectins from 

marine algae. Probably due to low rentability of lectins obtained through the purification 

processes. It is noteworthy that the majority of lectins isolated so far were extracted from red 

algae, which are rich in carbohydrates and not in proteins. Moreover, during the extraction 

of algae proteins, phycobiliproteins are extracted simultaneously, and therefore the addition 

of steps to remove these phycobiliproteins causes losses of other proteins, among these are 

the lectins.  

However, several studies on biological applications of algae lectins demonstrate that these 

molecules have an additional benefit; they are molecules with low molecular weight and 

may be less antigenic when used in biological models.  

In cancerology, it was demonstrated that a lectin from the red marine algal Eucheuma serra 

(ESA) induced cell death in human cancer cells through the induction caspase-3 activity and 

DNA fragmentation in human colon adenocarcinoma (Colo201) cells [106]. ESA also in-

duced cell death in a dose-dependent manner via apoptosis pathway in in vitro studies with 

Colon adenocarcinoma (Colon26) Cells derived from BALB/c mice [107].  

In current studies, Span 80 vesicles (a potential type of nonionic vesicular drug delivery 

system) with ESA and PEGylated (EPV) lipids immobilized, showed hemagluttinating activ-

ity similar to free ESA and decreased the viability of Colo201 cancer cells in vitro and not 
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affected the growth of normal cells. EPV caused the anti-tumor effect in vivo by inducing 

apoptosis in tumor cells [108].  

Bryothamnion seaforthii lectin (BSL) and Bryothamnion triquetrum lectin (BTL) were able to 

differentiate human colon carcinoma cell variants. Differentiation was, probably, in function 

to cell membrane glycoreceptors and could be exploited to investigate structural 

modification of cell membrane glycoconjugates in cancer cell systems. In addition, it has 

been shown that the binding of both lectins to the carcinoma cells results in their 

internalization, which is a very interesting property that could be used in future 

applications, such as drug delivery [109].  

The lectins isolated from the red marine algae Hypnea cervicornis (HCA), Pterocladiela 

capillacea (PcL) and Caulerpa cupressoides (CcL) have been tested as anti-inflamatory and 

antinociceptive agents. The data indicated that HCA, PcL and CcL have actions anti-

inflammatory and antinociceptive (in formalin and acetic acid models). However, these 

lectins did not present significant antinociceptive effects in the hot plate test [110,111,112].  

Concerning the mitogenic activity, the lectin from the red marine alga Carpopeltis flabellate 

(Carnin) was the first lectin that showed mitogenic activity for T lymphocytes from mouse 

spleen at a concentration of 10,5 μg/ml. Carnin inhibited the normal embryonic 

development of the sea urchin Hemicentrotus pulcherrimus at the stage of blastula and also 

inhibited the gasturulation induced in starfish Asterina pectinifera, at concentrations of 10 

and 5 μg/mL, respectively. In addition, it was showed an interaction between a lectin of 

macroalgae with a microorganism of the marine ecosystem [113].  

The antibacterial effect was too evaluated. The lectins from the red marine algal Eucheuma 

serra (ESA) and Galaxaura marginata (GMA) have an antibiotic activity. ESA and GMA 

strongly inhibited Vibrio vulnificus, a fish pathogen, but not were able to inactive V. neresis 

and V. pelagius [114]. BSL and BTL also were able to avoid the bacterial adhesion of 

streptococci strains in enamel pellicles. BTL was more efficient in avoiding the adherence of 

Streptoccocus sobrinus and S. mitis and BSL was able to reduce adherence of S. mutans. This 

fact can contribute with preventing caries at early stages [115].  

Red marine algae lectins from Amansia multifida (AML), Bryothamnion seaforthii (BSL), Bry-

othamnion triquetrum (BTL) and Gracilaria caudata (GCL) induced neutrophil migration in 

vitro and in vivo in the peritoneal cavity or dorsal air pouch of rats or mice. The results 

showed that BT had the most potent effect in neutrophil migration when tested on rats. In 

mice, BS required four times higher than the dose of BT to induce neutrophil migration. 

However, when the algae lectins were assayed in mice, AML was the most potent [116].  

Concerning the antiviral effects, a lectin named KAA-2 from the red marine algal 

Kappaphycus alvarezii (specific to high mannose type N-glycans) showed antiviral action 

against H1N1 virus [117]. The red alga lectin from Griffithsia sp. called griffithsin (GRFT) 

is a small mannose specific lectin that binds carbohydrates on HIV envelope 

glycoproteins and block HIV entry into target cells. GRFT is a candidate for development 

of anti-HIV microbicides [118,119]. GRFT was also able to inhibit the action of the 
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pathogenic agent responsible for respiratory syndrome (SARS), the SARS coronavirus 

(SARS-CoV) [120]. 

11. Lectins as biotechnological tools to study the microbial biofilms 

Biofilms are microbial complex communities established in a wide variety of surfaces and 

are generally associated with an extracellular matrix composed by several types of polymers 

[121]. This type of microbial association can develop on biotic and abiotic surfaces, including 

living tissues, medical devices and/or industrial water piping systems and marine 

environments [122,123,124]. 

Bacterial infections involving biofilm formation are usually chronic and often present a 

arduous treatment [125,126,127]. The growth and proliferation of microorganisms inside 

the biofilm provides reduction or prevents the penetration of various antimicrobial agents 

[128,129] and thus become extremely difficult or impossible to eradicate them 

[130,131,132]. For some antibiotics, the concentration required to eliminate the biofilm can 

be up to a thousand times higher than required to planktonic form of the same specie 

[127]. 

The ability of microorganisms to form pathogenic cell aggregates is a worldwide concern. In 

attempt to remedy this problem, pharmaceutical companies associated to research groups 

work avidly to the development of new options for the treatment of infections caused by 

bacteria organized in biofilms. 

Biofilm formation is a process in which bacteria has a change in lifestyle, it goes from a state 

unicellular in suspension to a multicellular sessile, where the growth and cell differentiation 

results in structured communities. The biofilm begins with the setting free of microorgan-

isms in a given area. The first microorganisms adhere initially by weak interactions, mainly 

of the van der Waals forces [133]. If the colonies are not immediately removed from the 

surface, they can anchor by cell adhesion molecules existing in the pili and / or flagella [134]. 

The first colonies facilitate the arrival of other cells through adhesion sites and begin to 

build the matrix that will form the biofilm. Only a few species are able to adhere to a surface 

per se. Others may anchor to the matrix or directly on existing colonies. Since the coloniza-

tion has started, the biofilm grows through cell division and combination of the recruitment 

of other cells [135]. 

According to [136], the biofilm development occurs through three events. At first, there is a 

distribution of fixed cells in surface through cell motility. Then, occurs the proliferation of 

fixed cells by division, expanding to upward and sides forming agglomerated of cells, simi-

lar to the formation of colonies on agar plates [137]. Finally, clusters of cells attached to the 

biofilm are recruited by the action of the environment itself to the development of other 

biofilms, reaching a climax community [136]. These general stages provide guidance to the 

study of biofilms by bacteria furniture, although many details of regulation of this process 

may vary between species.  

One of the biofilm-forming components of great importance in the maintenance of cell 

clusters is the matrix polymeric called EPS (Extracellular Polymeric Substances) [138]. 
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Consisting of proteins, polysaccharides and environmental waste results in a solid structure 

highly hydrated with small channels between the microcolonies [139]. This matrix holds the 

biofilm together, one of those factors responsible for providing an increased resistance to 

antibiotics, disinfectants, and ultraviolet radiation [140]. In most biofilms, microorganisms 

that make up these agglomerates constitute less than 10% dry weight, while the extracellular 

matrix may contribute up to 90% [141]. 

The first step to biofilm formation, the early adhesion, is considered essential for 

colonization and infection by pathogenic bacteria. Macromolecules surfaces are directly 

involved in this stage [142]. Proteins known as adhesins are able to recognize specific 

polysaccharide substrate present on the surface to be colonized, for example, the presence of 

carbohydrates existing in the film of saliva that covers the teeth in the oral environment 

[143]. Glycidic epitopes present on surfaces of microorganisms (early colonizers) can also be 

recognized by these proteins to mediate an event known as coaggregation, which will start 

the formation of a multi-species community [144]. 

One etiological factor for the development of teeth biofilms is the adhesion of pathogenic 

bacteria in the dental enamel [145]. However, the microorganisms are not deposited directly 

on the tooth surface, but bind to a thin acellular layer composed of salivary proteins and 

other macromolecules that cover the tooth surfaces called acquired pellicle [146,147]. 

The acquired pellicle is formed by glycoproteins and carbohydrates that serve as receptors 

for bacteria containing proteins with glucan-binding domains [148]. Bacteria interact with 

the film by several specific mechanisms, including the interaction lectin-like involving the 

bacterial adhesins and receptors existing in the pellicle [148,149]. Next, other bacteria can 

adhere to the film as well as the bacteria pre-existing in the biofilm [150]. 

The event coaggregation is a phenomenon widely observed in diverse microbial communi-

ties [151,152,153]. Cells can interact in suspension, forming cell aggregates, as well as con-

nect directly on biofilm in the process of formation. In the first case, plancktonic cells recog-

nize specifically species genetically distinct creating the coaggregates. In other situations, 

coaggregates in the form of secondary colonizers can adhere on biofilm in development, a 

process known as coadhesion. Both cases have an important role in the integration and 

establishment of a mature biofilm [154]. 

Thus, carbohydrate residues have an important role in formation and maintainability of 

microbial biofilms. They act as mediators of the binding between bacteria and the surface 

that will serve as substrate for biofilm formation [155], as well as site of interaction between 

microorganisms to form cell aggregates [156,157]. Furthermore, through EPS matrix, 

maintains the biofilm attached in the surface, conferring a greater resistance to antimicrobial 

agents in general [158,159]. 

Molecules able to bind specifically and selectively to carbohydrates have a key importance 

in the development of research related to microbial biofilms. Thus, lectins have been shown 

as powerful tools for analyze the glycidic structures of those aggregates from microbial 

origin [160,161]. 
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Studies of microbial biofilms through the interaction with lectins have two main objectives: 

visualization and characterization of polymeric matrix (EPS) formed by different species of 

microorganisms [162,163] and inhibition of oral biofilm formation by blocking the bacterial 

binding sites present in the pellicle of saliva in the form of glycoproteins and / or 

carbohydrates [164]. 

The application of lectins in the characterization of EPS is already widely exploited by many 

research groups. Lectin of wheat germ (WGA) was used as a marker of Staphylococcus epi-

dermidis microcolonies, mainly in the study of the mechanisms involved in bacterial organi-

zation during the formation of the cell aggregates [165]. In a study published by the same 

group, WGA was used to quantify the production of GlcNAcβ-1,4n, a sugar component of 

the extracellular matrix involved in biofilm formation [166]. 

In 1980s was developed a system called ELLA (Enzyme-linked Lectin Assay) that uses en-

zyme-lectin conjugates to detect specific carbohydrate units on the surface of cells. This 

assay allows better detection and quantitation of the sugars by standard immunofluores-

cence with fluorescein-conjugated lectins [167]. The lectins concanavalin A (ConA) and 

WGA peroxidase-labeled were used to detect D-glucose or D-mannose and N-acetyl-D-

glucosamine or N-acetyl-neuraminic acid, respectively, on the biofilm of several species 

[168]. 

Recent studies demonstrated the characteristics and distribution of glycoconjugates in cya-

nobacteria biofilm using lectins with different specificities. In this study the authors stated 

that the distribution of carbohydrates in the matrix is very variable. Based on lectin specifici-

ty, glycoconjugates produced by cyanobacteria biofilm contained mainly fucose, N-acetyl-

glucosamine or -galactosamine and sialic acid [169]. 

Lectins may be a suitable antiadhesion agent for streptococci, since it has been reported that a 

lectin-dependent mechanism is involved in its adhesion [170]. However, the application of 

lectins as tools to interfere with biofilm formation is still poorly explored [115,171]. As 

shown by [172], plant lectins appear as a new strategy to reduce the development of dental 

caries by inhibiting the early adherence and subsequent formation of of Streptococcus mutans 

biofilm. 
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