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1. Introduction 

Harold Stearns carried out geologic studies on the island of Lanai during 1936. The strand 

line deposits he described were interpreted as a series of high stands of sea level (Stearns 

1938). But, he realized that this was not consistent with Sea Level Variation (SLV) records 

elsewhere in the world. Stearns (1985) interpreted the strandlines as being due to a 

combination of SLV and Island uPlift (here referred to as SLIP).  Moore and Moore (1984, 

1988) proposed that these same deposits were debris thrown up on the island by giant 

waves generated by slope failure on the SW flank of the island of Hawaii (hereafter referred 

to as the Giant Wave Hypothesis, GWH). 1.1 Validity of Giant Wave Hypothesis vs. SLIP 

Keating and Helsley (2002) revisited the three ancient Lanai shorelines reported by Stearns (1978) 

in Kaluakapo Crater (SE Lanai) with the objective of testing the validity of the GWH and SLIP 

(Sea Level oscillations and Island Uplift) scenarios. In this paper we report the results of field 

studies west of the previously studied Manele Bay and Kaluakapo Crater areas. These studies as 

well as geologic excursions around Lanai allowed the authors to: 1) observe the outcrops 

reported in Harold Stearns field notes and publications, 2) study the features assigned a GWH 

origin, 3) extend Stearns original observations, and 4) compare the coral bearing deposits. 

Evidence for SLIP is reported and geologic inconsistencies with the GWH are discussed. 

1.1. Setting 

Corals in boulder beach deposits as well as SLV notches were found preserved on the arid 

southern flank of Lanai where maximum precipitation (in the mountains) is less than 25 

cm/yr. The field areas are located on the leeward side of the island of Lanai, which in itself is 

situated in the lee of the island of Maui (Fig. 1). Thus the modern environment is desert, 
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with vegetation dominated by mesquite (locally called kiawe, Prosopis pallida, introduced in 

1828) and other drought tolerant vegetation. Furthermore, due to long-term drought 

conditions and fires, vegetation was minimal providing excellent opportunities to view 

outcrops. Similar deposits are not present on the wet, windward sides of the islands, where 

erosion rapidly removes these deposits.  

 

Figure 1. Map of the Hawaiian Islands showing sites of sedimentary carbonate rock outcrops (red dots) 

and drill core sites with sedimentary units (x-symbols). These units include: dunes, reefs, and marine 

conglomerates. The marine conglomerates have also been called gravels associated with the GWH. 

1.2. Methodology 

The geologic field area is situated west of the Manele Bay Resort golf course. Traverses on 

foot were made, beginning at the top of the slope at an elevation of nearly 800 ft, down the 

dry gullies, to elevations of 30 masl (meters above sea level). The coral and basalt deposits 

were found at various elevations within the dry gullies, and recorded as GPS landmarks, 

and were concentrated on the leeward eastern side of the gullies (side least exposed to 

waves at the time of formation. The exploratory traverses followed the gullies down slope 

(Fig. 2), and then were extended across the interfluves between gullies, GPS mapping of the 

coral and basalt bearing deposits show that the pattern of deposits extends across the island 

flank, in bath-tub ring fashion (Fig. 3) without any deposits on interfluves and rarely on the 

slopes between the 'bath-tub rings'. 

24°N 

19 N         

  160° W 
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Figure 2. Map showing the sampling sites (mapped by dots), situated on the southern flank of the island 

of Lanai associated with this study, and Poopoo and Anapuka gullies in particular. The cluster of sites on 

the extreme right (East) are situated at Kaluakapo Crater and extreme left (West) at Kaunolu Point. The 

elevations of fossil sampling sites were corrected with barometric measurements. Up to 25 fossils were 

collected at each site. At most sites, the marine fossils were abundant enough that the number collected 

needed to be restricted, due to the difficulty in transportation to the nearest access point.  

 

Figure 3. Detail of the center portion of Fig. 2, showing the location of sample sites, marked with black 

dots. Contour lines have been highlighted in gray to show the parallel “bathtub-ring” distribution of the 

deposits. Note that fossils were not found on the interfluves (surface between gullies) or on the slopes 

between the 'bath-tub rings'.  

1.3. Prior related studies 

During the 1980’s Harold Stearns (then retired) contacted several scientists, encouraging 

them to evaluate the GWH. Several publications have resulted from those discussions, 
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including: Jones (1993, 1995) Grigg and Jones (1997), and later Felton, et al. (2000), Keating 

and Helsley (2002), Felton, et al. (2006), and Crook and Felton (2008). Felton et al. (2006) 

published a detailed facies analysis, describing a series of 14 beds separated by eight 

discontinuities. Three of these discontinuities were characterized by truncated paleosols; 

indicative the deposits accumulated over long periods of time, and thus were from several 

geological events separated in time. Keating and Helsley (2002) showed that the ancient 

shorelines described by Stearns at 190 and 170 m in Kaluakapo crater showed undisturbed 

marine deposits at 190 m, abundant marine carbonate deposits at 170 m elevation, and a 

total absence of fossil bearing deposits between 200 and 365 m.  

Age dating studies by Grigg and Jones (Grigg 1997) and Rubin et al. (2000) provided 

evidence for more than one geologic event on Lanai. Sedimentary studies of SLV which bear 

on this study were carried out on Oahu (Fletcher and Sherman, 1995; Fletcher and Jones, 

1996; Hearty, 2002; Hearty, 2011; and McMurtry et al., 2011). 

Numerical modeling of the GWH tsunami were carried out by Johnson and Mader, (1994), 

Jones and Mader (1995), and these models suggest a wave height of less than 100 m. Keating 

et al. (2011) published a compilation of a Tsunami Deposit Database that summarized the 

range of tsunami run-up values reported elsewhere in the literature. The maximum run up 

level reported was 70 m, and the compilation indicated that a 70 m run up is a rare and 

extreme event.  

1.4. Field observations on Lanai 

During this study, traverses were concentrated in the SW portion of Lanai across a series of 

dry gullies west of the Manele Bay Resort Golf Course. The Poopoo and Anapuka areas 

display an outcrop pattern of fossil-bearing deposits preserved in dry gullies, and in small 

notches eroded into basaltic rock and filled with lithified coral and basaltic detritus with 

rare boulders of beach rock, that display lateral continuity. These parallel notches, benches, 

and deposits display lateral continuity that is apparent in the map view of sampling sites 

shown in Fig. 3. Examples of the outcrops are shown in Figs. 4 through 6.   

 

Figure 4. (Right) Photograph of a notch within lava rock containing shallow marine sediments and 

corals. This site is designated as GPS Landmark 241 at 140m above sea level in Poopoo Gullies. (Left) 

Photographs of a notch in the hillside filled with coral-bearing deposits. This site is designated GPS 

Landmark 172 at an elevation of 165m on the Poopoo Gullies.  
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Figure 5. (Top left) Image of the dry gully that corresponds with the hill side drawn in the lower left corner in 

the landscape sketch. Fig. 5b. Center, cartoon drawing showing the distribution of geologic features. Fig. 5c. 

The floor of the embayment is shown in the photograph at the lower left. Fig. 5d. The image at the lower right 

shows an ancient boulder beach, situated on the left side of the embayment at the center of the drawing (Fig. 

5c, center). Had there been a giant tsunami at this site, the boulder beach would have been disrupted. Its 

presence is a very strong indication that the Poopoo and Anapuka area was not affected by giant waves. Fig. 

5d. Upper right, image of a small wave cut cliff at the toe of the slope on the right side of the embayment.  
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In the main Anapuka drainage, there are a series of parallel notches with coral fillings, 

between elevations of 35 and 240 m (Fig.4a & b). These deposits are similar in rock types and 

lithologies found at the present time along modern Hawaiian rocky shorelines including 

beach rock (cemented coral sand), rounded boulders, and coral and basalt conglomerates 

with coral fragments.  

In the Anapuka area a semi-flat area was found, showing evidence of small wave-cut cliffs, 

Fig. 5b, boulder-clad shorelines (Fig. 5c), and outcrops of corals with one coral having 

grown upon another (Fig. 5d). Large pieces of lithified beach rock (up to 1 m across) are 

present in places along the margin of the platform. This area formed in a small sheltered 

embayment (see configuration Fig. 5c) that obviously favored the growth of abundant 

shallow marine organisms. 

 

Figure 6. Photograph showing the position of fossil-bearing deposits on the margin of a dry gully. The 

fossil-bearing outcrop extends from the horizon marked by the horizontal bar and the feet of the 

observer, standing at the left edge of the picture. Notice the step in topography in the background.   

Caliches (gravel, rocks, soil and alluvium cemented with soluble salts) are common 

throughout the arid south and leeward side of Lanai. They occur as: 1) fracture fillings 

within and between lava flows, 2) irregular masses and sheets between lava flows, 3) 

cementation within the marine conglomerates, and 4) casts of plant roots. The caliches are 

very common in lava flows roughly 10 m above the 190-m level platform at Poopoo and 

Ananpuka and elsewhere on the southern coast of Lanai. Caliches also occur at natural 

seeps, and at watering stations where there is, or has been, long-term water seepage. 

Ancient sea stacks were observed at several locations on the slopes of Lanai, e.g. near 

Kaluakapo Crater (illustrated in Keating and Helsley, 2002) and near the Naha Road/trail 

(east of Kaluakapo Crater). On the old Naha trail, a broad terrace at roughly 180 m on the 

southeastern flank of Lanai contains laminated ash deposits. Elsewhere on the central and 

west flank of Lanai outcrops of lava contain vein-filling caliche are common (non-

fossiliferous carbonates) at roughly the 180 m elevation. In the Poopoo and Anapuka area, 

there is a transition at roughly 180 m, from deeply weathered red basaltic boulders (above) 
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to smaller, more-rounded black volcanic boulders (lacking weathered rims) lower on the 

slopes. 

1.5. Fossils  

Symbols mark the location of sampling sites containing coral in Fig. 2. In general, the coral-

bearing rocks are well cemented conglomerates and were collected using a sledgehammer 

and chisel. Samples collected from individual sites contained fossil specimens (mostly coral 

and mollusk). In some small sites, essentially all the mega-fossils exposed on the outcrop 

were collected. On the Anapuka plain, corals were far too numerous to be collected in bulk 

and transported in large numbers. Instead, a comprehensive collection was made of 

representative samples for laboratory study. Drs. Allison Kay, Julie Brock and Richard Grigg 

made fossil identifications. Dr. Richard Grigg made the selection of fossils that display the 

least alteration for radiometric age dating. The coral Porites lobata was the most abundant 

species found, followed by Porites compressa. The bioturbation was identified as moderate 

and typical of shallow Hawaiian coastal waters (A. Kay, P. Comm.). Some outcrops contain 

numerous shells and corals, that are whole, unbroken and abrasion-free, cemented in a 

matrix of sand; others are dominated by broken clasts. Clasts of volcanic material are found 

in most outcrops. At one locality there is a clear vertical progression from course fossil 

bearing rubble at the base to fine-grained fossiliferous gravel upward in the unit. At the 190 

m elevation in the Anapuka drainage, an aeolian sand unit, similar to other back beach sand 

deposits in Hawaii, overlies the coral and basalt bearing units, and further up slope, there 

are weathered red basalts with abundant caliche filled fractures.  

The major occurrences of fossils in the Poopoo and Anapuka dry gullies are at elevations 

of 180, 168-171, 156, 150 m (600, 560-570, 520, and 500 ft) above sea level. Stearns (1978) 

suggested wave-cut gently sloping platforms lie at altitudes of 45 and 168 m (150 and 560 

ft) and between 97.5 and 112.5 m (325 and 375 ft). These platforms appear to be 

associated with in-situ deposits we identified at 45 m, 168-171 m, and the bench deposits 

at 120-135 m.  

1.6. Ages 

Abundant fossils are present in the strandline deposits we have studied and they display a 

general increase in weathering, and surface darkening with elevation. The coral Favia is no 

longer present in Hawaiian waters, but it was found in 7 sites between 147.3 and 181.5 m 

elevation (identified by Grigg). The abundance of the fossils no longer living in Hawaiian 

waters increases with elevation. This interval roughly corresponds with radiometric dating 

sample LanS (Rubin et al., 2000), collected from an elevation of 155m, which yielded an age 

of 134 kya This observation is consistent with an overall pattern of increasing fossil age with 

elevation. Moore and Moore report U-series ages from the island of Hawaii, dated at 110 ka 

+/- 10).  Moore and Moore (1988) reported 3 U-series ages from Lanai that yielded ages of 

108 ka +/-5, 101 ka +/- 4 from Kawaiu Gulch and 134 ka +/-7 from Kaluakapo Crater. (These 

are equivalent to the Waimanalu sea level stand on Oahu).  
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Additional radiometric ages for Lanai were published by Rubin et al. (2000; U-series) and 

Grigg and Jones (1997; ESR, Electron Spin Resonance). ESR, U-series, TL 

(thermoluminence) and OSL (optical dating), age determinations have produced 

comparable results to those of Yoshida and Brumby (1999), Carew and Mylroie (1995), 

Tanaka et al. (1997) where ages are generally correlated to specific faunal assemblages. 

The original studies of the type Manele Bay deposits were concentrated on the lower 50 m 

(Felton et al., 2000, 2006) of the Manele Bay outcrops. Most of the studies are from corals in 

the Manele Bay Resort complex at elevations less than 50 m. The studies of Poopoo and 

Anapuka gullies concentrate on the exposed deposits at higher elevations from 45 m to 

200 m.  

Plots of sample age and sample site occurrences versus elevation are shown in Fig. 7. 

The outcrops between 50-200 m elevations represent rocks equivalent to older Marine 

Isotope Stages (MIS stages 7 and 9 and perhaps 11). Numerous fossils with minimum 

alteration were collected for dating (by Ken Rubin). And, according to Rubin, the new 

collection should provide much more suitable candidates for dating, than those 

previously utilized.  

Young ages of 2-3 thousand years ago (kya) occur near sea level (0.5 m). Ages of roughly 130 

kya are observed up to roughly 50 m with one at 155 m (Szabo, 1984 reported in Moore and 

Moore, 1988). A cluster of ages between 200-250 kya occurs at elevations up to 80 m. One 

age of 350 kya has been reported at 190 m within Kaluakapo Crater.  

Using the Marine Isotope Record as a proxy for a relative sea level curve for Lanai (Fig. 8) 

and using the oldest ages reported by Rubin et al. (2000), Moore and Moore (1984), and 

Grigg and Jones (1997) for controls; ages around 120 kya (MIS 5.5) occur up to 23 m 

elevation; 211-230 kya (MIS 7.1, 7.3) occur between 28-35 m; one age of 250 kya is reported at 

58 m (MIS 7.5); a single age of 350 kya is reported from 171 m (MIS 9.3). A theorized uplift 

scenario for Lanai is illustrated using the proxy marine oxygen isotope records from 

Shackleton (2000) and others (Fig. 9). A comparison of radiometric ages versus elevation, 

and the uplift SLV curve are shown in Fig 9. These comparisons are similar to those Toscano 

and Lundberg (1999) and Tanaka et al, (1999) for Florida, Barbados and Haiti. A list of 

observed notches filled with corals, depositional benches, and platforms with ages are given 

in Table 1. 

In conclusion, the complicated internal stratigraphy documented by Felton et al. (2000) and 

Felton et al. (2006) is much easier to explain if the interbedded soils are interpreted as 

erosional surfaces within marine carbonates and clastic deposits accumulated during low 

sea level stands during glacial periods. 

Samples collected in submersible dives by Grigg (2002), yielded an age of 8 ka for 

submerged coral at -61m (-200 ft). Fig. 7a shows a pattern of increasing age of fossiliferous 

deposits with increasing elevation. Grigg and Jones (1997) report that a trend of increasing 

age of coral beach deposits with elevation (on Oahu and Molokai) have been interpreted as 

support for island uplift. 
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Figure 7. Fig. 7a (top) Plot of age versus elevation for coral samples from the southern slope of Lanai. 

The symbols represent the published radiometric ages: U-Series ages from Rubin et al (2000), ESR ages 

from Grigg & Jones (1997), and two other ages reported by Moore and Moore (1988). The line showing 

the uplift rate from today to the oldest ages date is a solid line.  

Fig. 7b. A plot of sample occurrences versus elevations is shown above. The plot shows that a great 

number of the samples collected for this study came from elevations higher than those previously 

published. The number refers to the number of sampling bags that were collected: each bag contained 

from one to 25 rocks. Zero values indicate that no samples were found between the elevations occurring 

in a ‘bath-tub’ ring distribution.  
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Figure 8. Sea Level Variations for Hawaii after the record by Szabo et al. (1994). The labels at the top list 

the equivalent rock units on the island of Oahu.  

 

Elevation Age (thousand yrs) Isotopic Stage 

225 m  
(*Likely road construction 

material) 

186-192 m  MIS11 

180 m   

168-171 m 350 ka MIS9.3 

156 m  MIS 9.1 

150 m  MIS 9.1 

120-135  MIS 8.5 

97.5-112.5m  MIS 8.3 

78 m  MIS 8.3 

45 m  MIS 

35 m  Low stand 7/8 

30 m 211-230 Ka MIS 7.1, 7.3 

23 m 120 ka MIS 5.5 

14 m  MIS 6.5 

5 m  MIS 3 

Table 1. Elevation (m), Age (ka), Correlated MIS 
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2. Mechanism for island uplift  

The sinking of the active islands due to the unbalanced load applied to the crust by growing 

volcanoes has been well documented and sinking rates of one to three mm/y have been 

documented by many authors studying coral reef deposits and erosional surfaces near the 

big island of Hawaii. The consequences of this loading have been examined by Watts and 

ten Brink (1989), Wessel and Keating (1994) Smith and Wessel (2000), and others.  

The volcanic edifice adds a load to the crust that causes the formation of a moat around the 

volcanic load and at greater distances the seafloor is uplifted in a broad low arch. This 

phenomenon can be seen in the bathymetry around the 'Big Island' as well as all along the 

Hawaiian Island chain where a portion of the sea floor has been raised a few hundred 

meters as two parallel ridges on either side of the chain. What is not generally considered is 

the uplift also affects the pre-existing islands immediately downstream of the hot spot. Here, 

a balance is struck between the continued slow sinking of the volcanic edifice due to the 

massive load on the crust with the flow of sub crustal material away from the latest volcanic 

load that forms the arch around that load. In the case of Lanai, it is at the appropriate 

distance for the inflow of the displaced sub crustal asthenosphere to form uplift in excess of 

the residual sinking of the island edifice due to its residual crustal loading. The SLIP 

hypothesis suggests that this balance of forces became positive, i.e. in favor of uplift, about 

450 kya at the time that the volcanic edifice beneath the Kohala volcano ceased to be active. 

The peak uplift rate is probably past, since the center of volcanic edifice building has shifted 

to the SE in the past few hundred thousand years and Lanai is now at a distance equivalent 

to the outer edges of the arch to either side of the Big Island. It is our contention that the 

elevated strand lines we have observed are the result of coastal erosion and concurrent 

offshore and strand line deposition at times in the past when the island uplift rate and the 

rate of eustatic sea level rise due to changes in ice volume were approximately equal (Fig. 9). 

Comparably, low stand deposits did form at times when the uplift rate and the beginnings 

of sea level rise are again comparable. But in the low stand case, corals can continue to grow 

and sediments can continue to be accumulated beneath the sea through the sea level rise 

period and even into the sea level fall portion of the cycle. The deposits in the Manele Bay 

area (those between current sea level and 70 masl are part of the deposits that formed 

during previous low stands for they contain interbedded marine and non-marine clastic 

layers including soils and irregular erosion surfaces characteristic of karst surfaces as well as 

offshore reef material. 

For simplicity, we have assumed an island uplift that begins about 450 kya and that 

remained constant until today. A more realistic model would be to assume the uplift rate 

rose from zero uplift to a maximum one as the island passed over the arch and then to a 

lower uplift rate after the peak had passed. But we have too few age constraints for the older 

and more elevated strand lines at present so a simple constant uplift rate has been used. The 

model, regardless of exact uplift history, is constrained by the strand line deposits we have 

observed at high elevation (190 m) on the slopes of Lanai (Fig. 9). Modelling results imply 

uplift rates for the past 350 kya plus years must average about 0.5 mm per year. We have 
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added this cumulative time dependent uplift to the proxy sea level data (Waelbroeck 2002) 

to provide a model uplift to estimate where sea level might have been relative to the 

observed strandline and other carbonate deposits on Lanai. The high elevation strand lines 

are probably associated with the 400 kya maximum based on a single age of 350 kya for a 

sample collected at 170 meters. We also need to point out once again that the carbonate 

deposits near the present coast line with ages between 100 and 220 kya are most likely low 

stand accumulation deposits.  

 

Figure 9. Plot of the MIS Proxy of sea level (Waelbroeck et al., 2002) vs. elevation (on vertical axis) 

with the origin of the plot at modern sea level (0 on horizontal axis). The published ages are shown in 

red dots. The ages from Manele are from publications by Grigg and Jones (1997) and Rubin et al. 

(2000). The plot is constrained from modern sea level 0 to the maximum age of 350 kya at 200 m 

elevation. The slope of the line above the curve is interpreted as the rate of island uplift. The green 

shaded vertical bars mark periods of standstill when the accumulation of sediments matches the rate 

of uplift, at these times corals accumulate. The two gray shaded areas represent times when low 

stands of sea level allow accumulations of debris eroded from the island to accumulate below sea 

level. The violet colour represents times of maximum sea level when rate of coral growth equals the 

rate of uplift. High resolution sea floor mapping in the shallow water between the islands of Lanai and 

Molokai reveals submerged lagoons and terraces on the submerged flanks Lanai and Molokai and 

shows many submerged lagoons and terraces are present on the submerged flanks of Lanai (see the 

University of Hawaii SOEST Website www.soest.hawaii.edu/HMRG/Multibeam/3d.php) and Grigg et 

al., 2002).   
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Many others have recognized the need for sea level variation (SLV) to be combined with 

island uplift to explain the uplifted reef deposits in the Hawaiian Islands -Stearns (1978) 

Stearns (1970) 0.3 mm/y, Bruckner and Radtke (1989); Jones (1993b); Muhs and Szabo (1994) 

0.036-0.050 m/kya; Szabo et al. (1994); Grigg and Jones (1997) 0.33 +/- 0.03 mm/y; Grossman 

et al. (1998) 0.05 mm/y; Hearty et al. (2002) 0.03mm/y; (Hearty et al. 2011). There is a wealth 

of evidence that indicates the fossiliferous deposits above sea level in the Hawaiian Islands 

likely formed by a combination of normal geologic processes, rather than extreme events.  

 

Elevation (1978) 
Locations (1978)

Other Islands 

Locations (1978) 

Lanai 

360 m (1200 ft) 
Maybe Oahu, 

W. Maui, Molokai 

Mahana Shoreline, Lanai 

 

190 m (625 ft)  
Kaluakapo Shoreline, 

Lanai 

168 m (560 ft) Oahu, Molokai Manele Shoreline, Lanai 

75m (250 ft) 
Olowalu, Maui and 

Oahu 
 

29 m (95 ft) Kaena, Oahu  

21 m (70  ft) Laie, Oahu  

16.5 m (55 ft) Kahuku, Oahu  

12 m (40 ft) 
Waialae Shoreline, 

Oahu, Kohala, HI 
 

7.6 m  (22 and 27 

ft) 

Waimanolo, Oahu 

PCA Lualualei Valley, 

Oahu 

 

3.6 m (12 ft.) Kailua Shoreline, Oahu  

0.6 (2 ft.) Leahi, Oahu  

Table 2. List of terraces recognized by Harold Stearns (1978).  

3. Is the mega-tsunami concept valid? 

Succinctly stated, the giant wave hypothesis (GWH) suggests a submarine landslide 

southeast of Lanai triggered three “giant waves” that rushed toward Lanai with initial 

velocities of 149 m/s, at intervals of only one and a half minutes. The first wave reached 

190 m elevation on Lanai and eroded the soils and churned up boulders. The second 

wave reached the 375 m elevation, and picked up the gravels in suspension and 

stripped the terrain. The third wave reached 190 m high on the island slope taking 

boulders in suspension, then accelerated down slope, stripping soil and molding the 

boulders into mound-shaped bed forms. The GWH presents an exciting but problematic 

scenario of events.  

As part of an effort to date drowned reefs around Hawaii (Moore 1987; Moore and 

Campbell, 1987; Ludwig, Szabo, Moore and Simmons, 1991; Campbell, 1986; Moore and 
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Moore, 1984; Moore, 1987) used both tide gauge records and radiometrically dated drowned 

reef corals to argue that the Hawaiian islands have sunk too quickly for there to be marine 

deposits remaining above sea level. This belief that all marine platforms in Hawaii are 

quickly drowned, led them to suggest the coral-bearing gravels on Lanai had been thrown 

above sea level by tsunami waves. But these surmises fly in the face of nearly a hundred 

years of published data that has documented in-situ marine carbonate deposits high above 

modern sea level. More recent studies report evidence inconsistent with the GWH (Jones, 

1993b; Grigg and Jones, 1997; Rubin, et al. 2000; Felton, Crook and Keating, 2000; Keating 

and Helsley, 2002 and Felton et al. 2006, and this paper).  

 

Table 3.  

Our field observations and other evidence from the literature suggest that these tenets are 

not supported by field evidence. The reasoning behind this statement is provided in the 

point by point discussion that follows.  

4. Problems with the GWH 

4.1. Subsidence 

A basic tenet of the GWH is the contention that the island of Lanai was sinking too quickly 

for marine deposits to be preserved near sea level. Yet, elevated strand line related, 

sedimentary deposits are found on each of the main Hawaiian Islands, and described in the 

classic geologic texts describing the Hawaiian Islands (Macdonald and Abbot, 1970; 

MacDonald, Abbot and Peterson, 1983; Stearns, 1966, Stearns, 1985) as well as our own 

Basic Tenets of the Giant Wave Hypothesis:  

1. Tide gauge records and dated drowned reefs indicate island subsidence.  

2. Shell fragments have been reported at 326 m and 183 m above sea level. 

3. Soils were stripped from the island slopes.  

4. Deposits consist of “locally continuous gravel beds.”  

5. Gravel beds consist of 95% basalt, 5% coral and beach rocks.  

6. Boulders form a continuous formation that thins landward to vestiges at 326 m. 

7. Corals are not in growth position. 

8. A cemented layer at the base thought to be “encrusted”. 

9. The gravels are clast-supported deposits with thickness and size of clasts decreasing 

inland. 

10. The gravels originally blanketed the region as a single wedge-shaped deposit. 

11. The deposits correspond to ages around 110 kya. 

12. The deposits were ripped up from a coral reef. 

13. The lower layers of gravel contain coral clasts that represent upsurge. The upper 

layers contain angular clasts representing tsunami wave retreat.  

14. Deposits are the result of giant waves triggered by a giant landslide. 
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publications. The presence of numerous marine deposits throughout the Hawaiian island 

chain refutes this basic tenet. 

4.2. Marine fossils at 326 m 

The GWH attributes observations of coral and shell fragments at high elevations on 

Lanai to Harold Stearns but ignores Stearns’s evidence for ancient shorelines preserved 

in the GWH inundation zone. Instead the GWH theorizes that tsunami wave run up 

was responsible for fossils at 326 masl. Jim Moore (P. Comm., 1997) reports that he was 

unable to locate the Stearns’ fossil outcrop. Subsequently numerous scientists 

(including: Grigg, Jones, Walter, Gavenda, Felton and Crook) concentrated a great effort 

looking for the reported 326 m limestone outcrop without success. Keating and Helsley 

(2002) used Stearns’s field maps and notebooks to identify the Stearns’ outcrops. But, 

these geologists failed to find marine limestones at the 326 m elevation. Instead, the 

authors observed sub-aerially deposited caliche vein-fillings (Fig. 10b). Caliches are 

cements that fill cracks in existing rocks associated with the wetting and drying of rocks 

within an arid environments (Fig. 10a &b). The caliche results from meteoric waters 

leaching minerals from the rocks and the precipitation of these minerals at rock surfaces 

as the waters evaporate. This deposition is subaerial not submarine (Thomas, 1994). 

With rainfall on Lanai less than 25 cm/yr (Ziegler, 1986) caliche cements form 

extensively along the southern arid coasts. Samples were collected of vein-fillings 

between 326 and 200 m at Kaluakapo Crater and the samples were examined for fossils 

by micropaleontologist J. Resig who found no evidence of biological structures in any of 

the samples. Thus, despite extended research (involving on the order of ten man-days) 

no evidence exists to verify the presence of any tsunami-related marine deposits at 326 

m on Lanai.  

There are root casts in these caliche deposits at Stearns Swale that may have been thought 

to be fossils, but it is more likely that a bag of Stearns’ samples became mislabeled and 

thus a misidentification of material has occurred. On the same day Stearns visited a 

locality at approximately 150 m elevation to the east of the 326 m site that is known to be 

quite fossiliferous. His notes indicate that he made extensive fossil collections that 

included corals, pelecypods, and gastropods. In our view, it is likely that some of these 

samples became mixed or mislabeled with the caliche samples collected at 326 m. A 

subsequent study that bears on this topic will be raised in the discussion (Crook and 

Felton, 2008).  

4.3. Soil stripping and scouring 

A basic tenet of the GW Hypothesis is that soils were stripped from the island, “at an 

altitude of 365 m, is an irregular boundary below which the thick red soil typical of the 

uplands has been removed, presumably by wave erosion associated with deposition of the 

Hulopoe Gravel.”  
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Figure 10. (Top) Caliches are common throughout southern Lanai. Caliche deposits from the Stearn’s 

Swale site at 326 masl, were proposed as the upper limit of tsunami deposits in the GWH. Fig. 10b. The 

photograph at bottom was taken on the margin of a dry gully near the shore in the Poopoo-Anapuka 

area.  
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Soil scientists (Foote, Hill, Nakamura, and Stephens, 1972) in fact described the southern slopes 

of Lanai as very stony ground. During repeated visits to Lanai, both red and black soils were 

found within the hypothesized giant tsunami inundation zone (Keating, 1997). With the 

assistance of Robert Gavenda (U. S. Department of Agriculture) test pits were dug on 

interfluves along the south coast of Lanai. Soils of up to 1.2 m thickness were observed (Fig. 11a-

e). A road cut on the interfluv (the area between dry gullies) adjacent to the type section shows 

50 cm of soil. Natural outcrops reveal roughly 50 cm of black soil exposed at the Kaunolu 

Archeological site on southwest Lanai. In tens of archaeological test pits dug throughout the 

Manele/Hulopoe Bay area, 70 cm of soil were found lying directly on basaltic bedrock (Kaschko, 

1991). These same black, montmorillonite-rich soils were also found in excavations for 

foundations at the Manele Bay Resort (Cacalda, 2000). Other significant deposits of the highly 

expansive soils are present throughout the proposed tsunami inundation area. Soil scientists 

report that black soils are commonly found in coastal zone deposits around the Hawaiian 

Islands a result of coastal emergence from the sea. These soils expand when wet and then shrink 

when dried, leading to serious toppled walls and damaged concrete foundations. The 

expansion and shrinking of the soils works rocks upward from the underlying substrate until 

the rocks are exposed at the surface. Subsurface coring shows no loose rocks remain in the soils 

but instead, the loose rocks occur at the surface as an one-clast thick layer, thus classified as very 

stony ground. The unusual rock studded surface was misinterpreted as tsunami deposits. 

There is an abundance of fine-grained material within the study area. Fig. 12 shows an 

example of the suspension of fine grain soil washed off the island after a winter storm. Also, 

ash deposits have been found in the proposed inundation zone along the Naha road (Fig. 

13a). It is surprising that the ash would not be eroded away by “Giant waves.”  

Scour 

A compilation of the characteristics of tsunami deposits was published as a data base 

(TDDB) by Keating et al. (2008). The compilation shows that during the drain back phase of 

tsunami waves, tsunami waves do strip coastal sediments (particularly sands) and they 

scour the pre-existing drainages. This observation is inconsistent with the GWH. On Lanai 

the Hulopoe and Kapihua gullies were filled rather than scoured.  

4.4. Locally continuous gravel beds 

The GWH describes locally continuous gravel beds. We observed numerous locally 

continuous gravel beds that are commonly associated with strandline carbonate deposits. 

We did not observe a continuous gravel sheet.  

4.5. Lithostratigraphy 

The original GWH publication (1984) described a lithologic section along the major gulch 

which drains into the northernmost extent of Kapihua Bay, directly west of Hulopoe Bay, 

about 200 m from the shore. The series of beds were originally described as follows: a bed 5  



 
Tsunami – Analysis of a Hazard – From Physical Interpretation to Human Impact 242 

 

Figure 11. Soils are common throughout the GWH type field. Fig. 11A (Top left). Photograph of an 

example of a fossil soil in Kapihua Gully showing soil overlain by carbonate fragment gravel. These 

soils at the base of the gravels are approximately 0.3 m thick. Fig. 11b (Top right) Geologists investigate 

bed forms situated off the west side of the Manele Bay Road and above the Manele Bay Resort. There, 

lava boulders were stacked together to form small basins that were filled with the black-brown soil. 

This is the traditional method of growing sweet potatoes by native Hawaiians and is most likely a 

cultural artefact rather than a ‘bedform’. Fig. 11c (Lower and middle left). Digging through the rock-

strewn surface of the GWH type area reveals a thick soil layer beneath it. The lower left photograph 

shows a hole in the expansive soils (roughly 0.3 m deep) extending down to basaltic rocks. The rocks 

have been worked upward by the shrinking and swelling of the soils under dry and wet weather 

conditions. The surface of the expansive soils is now covered by the loose boulders derived from the 

lava flows below, and the soils are free of loose expelled rocks. Fig. 11d (Lower right) A geologist points 

out the thickness of the soils in the GWH type area, approximately 0.5 m thick.  
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Figure 12. Rain showers from the day prior, washed abundant soils off shore at Hulopoe gully, 

adjacent to the Manele Bay Resort Hotel. Clearly, the soils forming the light colour plume in the ocean 

off the Manele Bay area were not stripped by extreme tsunami waves. They are instead present and are 

being eroded by normal geological processes.  

m thick overlying nonweathered basalt consisting of 2 layers: a lower layer of 

subrounded to rounded clasts of basalt (about 95%) and limestone (about 5%) 

representing the upsurge of the wave and an upper layer of sub-angular to angular 

clasts of basalt ranging from 20 cm to 1.5 m assigned as debris from the drain back of 

the same wave.” Four years later, these original descriptions were revised with the 

description of the Hulopoe Gravel section calling for three beds (a lower bed of 2m, an 

intermediate bed of 4 m, and an upper bed of 2 m), with the limestone clasts mainly 

confined to the lower third of the three beds. The publication states, “in the limestone-

free upper part of the bed, which is distinctly bimodal in size distribution, basalt 

boulders are enclosed in a silty pebbly matrix that in places contains abundant marine 

debris...” 

Felton et al. (2000) published detailed lithological descriptions of the section. Thirteen beds 

were documented at this location showing the limestone-to-basalt clast ratio varying 

significantly from bed to bed (from roughly 5-40% limestone). The initial lithological 

description of the Lanai section is poorly representative of the southern Lanai rock unit. 

These rock units are considered to represent a sequence of marine gravels and non-marine 

soils by Felton et al. (2006) and that paper contains detailed descriptions of the rocks and 

environments of deposition. Most likely, these deposits represent subaerial low stand 

deposits. 
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4.6. Boulders form a continuous formation that thins landward to vestiges at  

326 m elevation 

Our observations do not support a continuous and thinning boulder bed.  Patches of well-

rounded beach boulders are present to an elevation of 190 m (see Fig. 5c). Locally derived 

quasi-rounded boulders are present throughout the slopes on lanai, irrespective of 

elevation. Other than the boulder beds associated with strand line carbonates, the boulders 

rarely occur in concentrations. We conclude that the isolated boulders are ubiquitous and 

are boulders formed by chemical weathering of the basaltic substrate (see Fig 6).  

4.7. No corals in growth position 

The GWH publications indicate that the Hulopoe Gravels unit contains no corals in growth 

position. Indeed, most corals do not occur in growth position, but A. Kay (P. Comm., 1998) has 

found assemblages of mollusks that display in-situ preservation and indicate a water depth of 

80 m. If the Hulopoe gravels were deposited along a highly energetic rock-bound coast like the 

modern one, even large boulders would be moved by storm waves, so corals growing on these 

boulders would not be found in growth positions. But biological assemblages, particularly 

micro-mollusks living within sheltered patches between boulders, are preserved in growth 

position, and an isolated site reported here showed single corals growing one on the top of 

another, suggesting that remnants of a short-lived embayment remain. 

4.8. Encrusted base  

The GWH states that a cemented layer at the base of the Hulopoe gravel is an “encrusted” 

surface (Fig. 13b). We have observed this layer and identify it as caliche, a subaerial deposit 

(formed after the gravels were deposited). 

 

Figure 13. (Left) Fine grain ash deposits are present within the inundation area, on the Naha Road, 

west of Kaluakapu Crater. Fig. 13b. The base of the gravel unit in Kapihua gully is marked by caliche.  
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4.9. Clast-supported deposits 

The GWH publications describe clast-supported gravels in the Hulopoe gully. The 

argument was made that clast-supported boulders were water-laid, not transported in a 

submarine debris flow (which would produce matrix-supported debris), the implication 

being that the powerful tsunami waves had removed the finer grain material leaving only 

large boulders, free of fine-grained material. But the deposits exposed in gullies only 100 m 

and 400 m west of the type section do have sand and clay size components clearly present. 

Modern boulder deposits in coves along the modern shore lack often lack sand filing yet are 

clearly storm derived deposits. This is not a diagnostic feature. 

Sorting and grain size 

The GWH contends that the original thickness of the gravels and size of clasts decrease 

systematically with distance and elevation above sea level. But extended field observations 

upslope (approximately 60 m upslope of the Hulopoe section and up to 200 m elsewhere), 

show that boulders up to 1m can be found in many places. There is no size trend with either 

elevation or distance from shore. All of our observations suggest that the modern shore line 

assemblage is characteristic of these upland boulder deposits. Observations in the Poopoo 

and Anapuka drainage gullies also confirm that large boulders are found upslope 

(particularly around 100 m) that do not conform to the size/elevation distribution described 

by the GWH. Boulder pavements are associated with each of our 'strandlines' and are present 

at the modern shore. Also, we have frequently observed boulders of up to 1 m diameter, but 

no mega-boulders (over 3 m) were found. Had a giant tsunami taken place, it would be 

expected that mega-boulders would occur somewhere along the southern coast of Lanai.  

4.10. Wedge-shaped unit 

The GWH indicates that the coral-bearing gravels originally blanketed the region as a 

continuous wedge-shaped deposit. Instead, horizontal fossil-bearing notches are exposed in 

gullies in SW Lanai (this publication) that occur in a “bathtub ring” fashion. These notches 

and coral-rich deposits extend for kilometers along slope with the interfluves between the 

gullies barren of fossils. The deposits have the appearance of “high stand deposits” 

described elsewhere in the geologic literature and thus are contradictory to a proposed 

wedge-shaped gravel unit.  

Inside Kaluakapo Crater (east of Manele Bay), Keating and Helsley (2002) found: no in situ 

fossils between 190-326 m, the absence of weathered rounded boulders (i.e., lacking 

weathering rinds) between 190-365 m, the preservation of an essentially undisturbed 

boulder and coral platform deposit at 190 m, the presence of marine deposits confined to 

limited stratigraphic intervals with a systematic internal stratigraphy at 170 m, the presence 

of both fine-grained and coarse material in distinct stratigraphic relationship in Kaluakapo 

Crater, and the presence of fragile fossils in deposits at 170m, and sea stacks preserved All of 

these geologic observations conflict with the notion of a wedge-shaped tsunami debris unit.  
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4.11. Ages  

Uranium-series dating methods were used for dating rocks ages on Lanai reported by 

Moore and Moore (1984), Rubin et al. (1995), and Bryan, et al. (1997). Reported age clusters 

around 100 kya and 200 kya. (The rocks from Molokai had older ages, clustering around 200 

kya and 350 kya, according to Jones and Grigg, 1997). 

In 1988, the GWH theorized that the coral and basalt units were formed by a tsunami 

generated by the submarine collapse of the margin of Hawaii. Later, with an established age 

of roughly 105 kya from the coral clasts, the source of the tsunami was suggested to be the 

Alika landslide on the west coast of Hawaii, believed to have a corresponding age. During a 

1997 Geological Society of America field trip to the outcrops, Jim Moore (1997, P. Comm.) 

concluded the radiometric ages indicated there had been more than one tsunami event on 

Lanai.   

Numerous investigators have published radiometric-dating results for Hawaiian coastal 

deposits. The radiometric dating includes: 13 different techniques described in roughly 40 

publications. The published ages for Lanai are incorporated in the plot in Fig. 7a.  

Published radiometric analyses for other Hawaiian Islands have largely been concentrated 

on corals in-situ (i.e., growth position), with fewer analyses of marine conglomerates or sand 

units. But where the comparison of dates from the same site derived from in-situ coral 

versus dates of coral clasts extracted from coral and basalt conglomerates, reveals that no 

significant age difference exists between the two rock types (Muhs and Szabo, 1994). The 

deposits (Fig. 14) are lithologically and stratigraphically very similar to modern shoreline 

deposits (e.g. Queen’s Beach on Oahu) and they are generally considered to be uplifted reef 

and coastal material derived from normal coastal processes (Keating, Whelan et al. 2004). On 

Oahu, marine conglomerates occur along the shore of Queens Beach, Makai Pier, and 

Waianae where sand and shell fragments fill the crevices between cracks in volcanic rocks.  

 

Figure 14. The GWH refers to the rocks as “gravels”, but they are also referred to as marine 

conglomerates. The outcrop at left is from the island of Lanai, while the marine conglomerates at right 

are from the modern shoreline at Queen’s Beach, Makapu’u, Oahu.  
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Like Lanai, age dating of sedimentary deposits at Waimanalo, S.E. Oahu, demonstrates that 

erosional notches were cut by wave activity at 7- 9 m (22 and 27 ft) above modern sea level at 

120 kya. Sherman et al. (1993) report two distinct high stands on the Ewa Plain (SW Oahu) 

associated with the Waimanalo Formation, with ages correlated to Marine Isotope sub stage 

5e. Studies reported by Stearns (1985); Muhs and Szabo (1994); Ku et al. (1974) and Szabo et al. 

(1994) prove that numerous outcrops of Waimanalo Limestone around Oahu have a similar 

age range. Radiometric dates of sediments from Kapapu Island, E. Oahu were reported by 

Grossman et al. (1989) and dates from an intertidal notch from Mohulua Island (Grossman and 

Fletcher, 1998) were in agreement with the Stearns (1935; 1978 ) high stand prior to 3889-3665 

cal ya. These ages help constrain Oahu’s long-term average uplift rate (0.03-0.07 mm/yr) based 

on Pleistocene age shorelines (Hearty, 2002). The coral bearing deposits at about 2 m elevation 

on Hawaii are reported to be a similar age to the Waimanalo Formation on Oahu (McMurtry, 

Fryer et al. 2004b) (While these latter authors suggest these deposits are associated with a 

submarine landslide generated tsunami (GWH), these rock ages are equivalents of the 

Waimanalo Formation exposed on other islands, consistent with the SLIP.) 

Problems with radiometric dating 

Hearty (2011) commented on the age of rocks in a publication (McMurtry, Campbell et al. 

2011) and Reply (McMurtry, Campbell et al. 2011) and concludes, “their age data are flawed 

and lack supportive field and proxy evidence.” Furthermore he writes, “such allochtonous 

cobbles have been emplaced by younger transgressions or tsunami any time after coral 

growth, but screening protocals (e.g. Mortlock et al., 2005) should exclude Ko Olina and 

Lualualei. . .” See the publication of Sherman et al. (1999) that described marine and meteoric 

diagenesis from Oahu emergent sediment and the work of Oliver Chadwick and colleagues 

for pertinent studies on the island of Hawaii  

Hearty concludes, “unsupportable interpretations such as theirs should not become 

embedded in the literature.” Hearty writes, “ages as incontrovertibly unreliable due to 

excessive recrystallization and detrital Th greater than 1-2 ppb…. Lacking reliable ages and 

ESL’s [Eustatic Sea Level], it is not possible to determine accurate uplift rates….”  

Basing geologic models on single sample radiometric dates or age correlated with distant 

sites need also to be reconsidered. The original (1984) estimate of the age of the deposits 

within the GWH and the revised ages Moore and Moore (1988) are problematic. One age is 

from the island of Hawaii, with no supportive field evidence between the two islands. Other 

dates use less than ideal numbers of samples.  

4.12. Source material  

The GWH states that tsunami waves ripped up corals from an offshore reef as tsunami 

waves reached shallow depths.  

Outcrops in gullies draining into Manele Bay and Hulopoe Bay contain individual 

specimens of corals, not aggregations of corals common on modern and ancient reefs, e.g., 
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corals exposed in emergent outcrops on the Ewa plain of Oahu Island, Hawaii. Additionally, 

the maximum size of the coral clasts is small (a few to 20 cm across) compared to the basalt 

boulders. If a reef were present offshore, a tsunami could have moved coral clasts 

comparable to the size of the basalt boulders. Since it did not, it is concluded that the 

carbonate source material was composed of isolated corals of restricted size growing on 

boulders, like those observed in the modern shore and shallow offshore environment, as 

opposed to a developed reef complex. 

4.13. Wave couplets  

The GWH suggested that bedding couplets rich with coral clasts occur in their lower layers 

(representing upsurge of the wave) while the upper layers contain angular clasts 

(representing wave retreat). Detailed lithological descriptions are now available Felton, et al. 

(2000) and Felton et al. (2006) that show that rather than couplets, 14 beds were found along 

with 8 unconformities between beds.  

Paleosols are identified at several boundaries within the gully-filling deposits proving a 

subaerial history for parts of the deposits. Root clasts are found as well as insect remains 

according to Resig (1999). At least one bed of the GWH locality is alluvial, i.e., a stream 

deposited unit of subaerial origin (Felton et al., 2006). These observations are inconsistent 

with the GWH. Had a giant tsunami taken place, it is extremely doubtful that insect remains 

would be preserved, since they are light enough to be blown away in the wind or washed 

away by rain.  

4.14. Bed forms 

The GWH describes branching dune-like gravel ridges (called bed forms) generally 1 m 

high. The deposits are situated in a location that was long occupied by native Hawaiians. In 

their preliminary survey of the area, archaeologist Steve Athens identified 182 

archaeological structures. Ancient Hawaiians made extensive use of basalt boulders for 

construction in the Manele/Hulopoe Bay area including: platforms, grinding stones, game 

stones, hammer stones, hearths, rock walls, canoe sheds, cairns marking upland trails, cairns 

such as fishing shrines, holding pens, housing (oval terraces, rectangular shelters, curved 

wall enclosures), rock shelters, temporary fishing shelters, burial structures, boundary walls 

(Athens, 1991). The structures described as GW-derived bed forms (Fig. 15a-e) appear to be 

the remains of ancient anthropogenic structures. The photograph in GWH publication (1984, 

p. 1313, Fig. 4) even looks like an archaeological site illustrated by Emory (1924, Fig. 4). 

Athens (1991) remarks on a description of the south and west coast of Lanai made by 

Captain King in 1785, a member of Captain Cook’s expedition, who wrote, “the country to 

the south is high and craggy; but the other parts of the island had a better aspect and 

appeared to [be] well inhabited. We were told it produced very few plantains, and 

breadfruit trees; but that it abounds in roots such as yams, sweet potatoes and tarrow 

[taro].” Furthermore, Stearns (1940) wrote, “around the old native village sites especially at 
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Kaunolu and Manele are traces of rock terracing representing considerable industry. These 

terraces are reported to have been sweet potato gardens.” Since the structures were built on 

expansive soils, they have toppled.  

 

Figure 15. (Upper Left) the GWH describes bed forms in the Manele Bay Resort property. However, 

there are archaeological sites spread throughout the area that can be easily misinterpreted as bed forms. 

Athens (1991) described 182 structures built by native Hawaiians. Fig. 15b. (Upper right) The image 

shows a Hawaiian structure, while the rock walls have toppled, the rectangular shape of the foundation 

is still apparent. Fig. 15c. (Middle left) A drawing made by Emory (1924) of some of the numerous 

archaeological sites that dot the southern slope of Lanai (compare this drawing to Fig. 12b). Fig. 15d. 

(Lower left) The hillside above the Manele Bay Resort is marked by rock wall structures. They consist of 

rock walls laid in c-shaped configuration with the expansive black soils filling the structures to provide 

raised beds for growing sweet potatoes. Similar structures are in use in Hawaii currently. When the 

Captain Cook Expedition reached the Hawaiian island chain, the Lanai sweet potatoes were obtained 

for the expedition. Fig. 15e. (Lower right) Geologists examine the rock walls and soils still present in the 

growing beds.  
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4.15. Additional considerations 

The GWH compares the postulated catastrophic tsunami flooding on Lanai to the 

catastrophic draining that took place when dammed glacial melt water of Lake Missoula (W. 

USA) broke through a topographic barrier and eroded basaltic terrain to produce the 

“scablands” terrain of western Oregon and Washington (Baker, 1973). (These scabland 

deposits were examined by the authors on several occasions.) The “scablands” surfaces, 

display extensive scarring and breakage of the boulders and cobbles and bedrock. In 

marked contrast, the Lanai deposits lack the scarring obvious in the scablands. The coral 

clasts instead display abrasion and breakage comparable to that of the modern boulder 

beach and are generally associated within the gravel or boulder deposit, that is, they are 

beach deposit, not giant wave deposits. 

Furthermore, basalt boulders found below 200m m generally have a well rounded nature 

typical of beach boulder deposits. Basalt exposed on small cliffs generally have well-

preserved irregular a’a surface textures as well as delicate surface structures (Fig. 16). If the 

boulders had been transported by tsunami waves, these delicate surface textures would 

likely have been destroyed or at least heavily scraped and scarred. A cone of red cinder sits 

at roughly 120 m elevation at the west side of the Manele Bay section. Felton et al. (2000) 

report that red cinders were found in a bed in the nearby gully. Given the extreme height, 

turbulent, and erosive nature of the proposed “giant waves”, the red cinders would be 

expected to be distributed throughout the presumably tsunami-derived gravels of southern 

Lanai, yet they are not. The observation that this rock type is restricted indicates that its 

deposition is due to local erosional processes that segregate rocks rather than a giant 

catastrophic event that would widely distribute distinctive cinders.  

 

Figure 16. A photograph of a highly vesicular basalt boulder shows delicate surface of lava preserved. 

The boulders in the GWH type area are not marked by heavy scratching causes by abrasion in a mass 

flow. They have not been heavily abraded similar to debris left by the flooding of glacial Lake Missoula.  
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Alignment of boulders has also been cited as evidence for tsunami. Nanayama et al. (1998) 

examined the deposits of the 1993 tsunami (with maximum wave run up of 8.6 m) on the 

Hirahama coast at Taisei town, southwest Hokkaido, Japan. They found that the imbrication 

of gravel was restricted to a small area of only a few meters indicating an outward (seaward 

flow) and beach drainage (the long axis of gravels inclined seaward). Dominey-Howes 

(1999) reported similar observations from the Mediterranean. There is no obvious 

imbrication observed in Lanai deposits (see .Fig. 17).  

 

Figure 17. The figure above consists of a set of tracings of outcrop photographs, made to examine the 

alignment of clasts. The photographs were taken perpendicular to the outcrop so that the upslope 

direction is to the left and down slope direction is to the right, in the gully adjacent to Hulopoe Gully. In 

general there is little evidence of alignment. The images are roughly 1.5 m, in dimension. The grain size 

varies from boulders to pebbles in a caliche-encrusted matrix. The clasts range from well-rounded to 

angular shapes, and the largest clasts are roughly 0.3 m in diameter.  

4.16. Erosion versus deposition 

Shepard et al. (1950) documented the destructive effects of the 1946 tsunami in Hawaii. The 

photographs in that report show areas of maximum flooding marked by floating debris 

(including wooden buildings), large areas swept clean of debris other than sand deposited 

as a sheet, and eroded and fragmented corals and shells found along drainages and in 

poorly drained, low-elevation coastal areas. Sheppard et al. (1950) remark that some areas 

were so thoroughly swept clean of debris by the tsunami waves that they could be used to 

land an airplane.  

The pattern seen in the historic Hawaiian tsunami is one of erosion with sporadic deposition 

of limited nature and breakage of corals and shells. This pattern of tsunami erosion along 

drainages is often reported in the literature (see, Keating et al, 2008; Keating et al., 2011). This 

pattern is entirely different from the pattern suggested by the GWH. On Lanai, rather than 

seeing evidence of erosion sweeping the drainages clean, rocks are deposited in the 

drainages. If the southern slope of Lanai was the site of giant tsunami waves, it seems 

logical that the waves on the moderately steep slope would have preferentially scoured out 

existing drainages, rather than using them as “sediment traps” for the rock mobilized by 

wave action, as proposed by the GW hypothesis. 
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The southern coast of Lanai seldom receives rain, but when it does, it is often in the form of 

a winter storms with several inches or feet of rain fall within several hours to several days. 

The surface run-off from these storms can move large rocks significant distances downhill 

and erode soils. This normal process of reworking of rocks from higher to lower elevations 

has taken place throughout the history of the island and should be expected to produce a 

scattered pattern of ages but retain a pattern of increasing age with elevation. Also, the SLV 

during the last 400 kya has provided repeated opportunities for rock deposition (and 

erosion) at any given elevation within the Poopoo and Anapuka gullies.  

High elevation fossils are also a problem. Crook and Felton (2008) report on the microscopic 

study of samples from Stearns Swale, a site situated at 326 m on the outside of Kaluakapo 

crater. They report “we found only veins of carbonate concentrated in cracks in lava 

outcrops….’” Despite numerous visits to the site by numerous scientists, no fossils have 

been found. And, all samples collected by Keating and Helsley from the site were studied by 

micro-paleontologist J. Resig (specialist in foraminifera) who found no biological structures 

in any of the roughly 30 samples collected.  

Crook and Felton examined a sample collected by Harold Stearns during 1936 that was stored 

in the U.S. National Museum, in Washington, D.C. Stearns in 1936 (Stearns 1936 ) recorded in 

his notes, “Rode down into fault country between Manele and Kawaio [Naha side of Kaluakapu 

Crater] (by horseback). While riding thru here I notice [sic] some fossil limestone fragments but 

that they had been packed up here after riding past them I realized how weathered they were 

and that no one would pack [carry] them up so I went back and found plenty of loose 

fragments and two places where fossiliferous limestone fills cracks in the bedrock.…”  

In 1936, Stearns visited two sites on the same day. Since no fossils have been found at the swale 

by subsequent investigators, we question whether the sample examined by Crook and Felton 

(2008) was mislabeled when collected. This question arises because Helsley observed rocks of a 

similar nature to those in the Stearns collection at the locality that Stearns visited later that day. 

Further field work on the Naha side of the crater will be required to resolve this question.  

Stearns wrote, “Henry says the old Hawaiians used this white (montmorillonite?) in the 

gulch east of the high coral locality for chalk.” The only white material in this area of the 

swale is crack filling caliche, some having thicknesses of more than 3 cm. These caliches 

have root casts and other ‘organic’ looking structures but under the microscope, all such 

structures are inorganic in origin (as reported by Resig). This raises another concern; there is 

no gulch east of the Stearns Swale. The swale is located on the outside of Kaluakapo Crater, 

on the west flank of the crater. There is a small gully inside the crater but no white 

montmorillonite deposit. There is a significant deposit of white material in the gully to the 

east near the outcrops that Helsley thinks are the source of the fossils in the Stearns 

Collection at the Smithsonian Museum.  

Crook and Felton (2008) also refer to disturbance of the Stearns site due to a military installation. 

Our understanding is that the high point served as an observation point, rather than any full-

blown military installation. The disturbance seems to be limited to the construction of a jeep 

road into the swale area that terminates short of the observation post. This construction does not 



Traces of Coral Bearing Deposits on Lanai, Hawaii, and  
Implications for Their Origin (Island Uplift vs. Giant Tsunami) 253 

seem to impact areas beyond the jeep road but it is possible that the road destroyed the small 

outcrop that Stearns described. Also, the publication cites that Stearns mentioned that limestone 

would not have been carried up to the site. Keating raised the question to Manele Bay Resort 

game manager Gary Onuno. He reported that limestone was used in ceremonials when young 

Hawaiian boys came of age and that it was carried from the coastal area to the uplands, and it 

would not have been a miniscule amount. One such route from Manele bay to the interior 

passes by the swale that Stearns defines as the source of his samples. 

 

Giant Wave Hypothesis Basic 

Tenets
Our Observations 

Island Subsidence Island Uplift and Sea Level Variation 

Shells at 365 m and

Shells at 183 masl

Multiple strandlines below 190 m. No fossils at 326 m. 

Marine Terrace at 190 masl

Soils Stripped 
Highly expansive vertisols present having a thickness 

of 50 cm to 1 m.

Locally continuous gravel beds 
Coral bearing strandlines and notches 

And gully filling gravels near sea level 

95% basalt, 5% corals 

Complex stratigraphy with four discontinuity 

bounded transgressive-regressive cycles with soils 

and insects marking subaerial intervals 

Continuous deposits to 326 m 
No carbonates above 190 m. Carbonates not 

continuous – tends to be elevation limited strandlines 

Corals not in growth position, 

repositioned by tsunami 

inundation and retreat

Growth position corals are not expected in rocky 

shoreline littoral deposits – some evidence for in-

growth position in biofacies and growth on substrate. 

Encrusted layer Caliche (post depositional)

Clast-supported with thickness 

and clast size decreasing inland.

Rocky shoreline deposits with wave cut notches in 

bathtub-ring configuration.

Single wedge-shaped deposit 
Multiple strandlines representing both high and low 

stands

Ages around 110,000 ybp, then 

revised to include another event 

around 220,000 

ybp 

Multiple age strandlines with older material at higher 

elevations, also fossils of corals no longer living in 

Hawaiian waters occur at high elevations. 

Source: coral reef 
Shallow water transgressive strandlines and 

regression hiatuses and low stand deposits 

Bimodal lithofacies 

representing tsunami upsurge 

and tsunami wave retreat

Complex stratigraphy representing multiple 

depositional events of high stand and low stand 

origin.

Disturbance resulting from 

giant waves
Multiple lines of evidence represent strandline origins 

Table 4. Comparison of the basic tenets of the Giant Wave Hypothesis with the geologic features 

described in this publication.  
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5. Conclusion 

Our observations on coral-bearing deposits on the south flank of Lanai are totally supportive 

of the hypothesis that these deposits represent uplifted strandlines formed during island uplift 

and glacial eustatic sea level variations documented elsewhere in the world. The formation of 

these uplifted coral-bearing deposits does not require a giant wave origin. Moreover, had a 

Giant Wave(s), of the sort proposed by others, occurred, the loose fragmented coral, sand, and 

boulder deposits characteristic of some of these strandlines would have been disturbed or 

destroyed and some of the transported material would have been deposited at higher 

elevations. Yet, no evidence of coral bearing deposits was found above 190 masl.   

Erosion and boulder stripping is a normal process and all the geomorphic features described 

by the Giant Wave Hypothesis can be attributed to normal geologic processes and occasional 

but significant rainfall events, such as winter storms or hurricanes. The large number of 

geologic publications describing exposed carbonate units in the Hawaiian islands, the 

abundance of published radiometric dates, the consensus of scientists that these rocks 

represent deposition by normal coastal processes and the display of a pattern of increasing 

rock ages with elevation contradict a mega-tsunami origin for deposits on Lanai. An extreme 

catastrophic event is not necessary to explain these marine deposits. While the GW 

hypothesis is an exciting notion, the concept is not supported by field evidence on Lanai.  
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