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1. Introduction 

Since early 1900s, gasoline and diesel internal combustion engines have represented the 

most successful automotive powering systems despite their low efficiency, their emissions 

issues and the increasing cost of fuel. Their main advantage over both gas engines and 

Battery Electric Vehicles (BEVs) is the very high energy density of liquid fuel that allows 

long driving ranges with small (and light-weight) storage tanks and safe and fast refueling 

processes. Moreover, gasoline and diesel fuels have an established infrastructure of 

distribution that is difficult and very expensive to replicate for other energy sources.  

Environmental issues, energy crises, concerns regarding peaking oil consumption and the 

expected increase of number of cars in developing countries have eventually encouraged 

research into alternative energy sources. However, they are still unable to penetrate the 

market for several technological limitations.  

The main drawback of BEVs resides in the batteries. They are still too expensive, too bulky 

and heavy (due to their low energy density). Moreover, they have an unsatisfactory life 

cycle and require long recharging times. Vehicles using fuel cell (FCV) a very clean fuel 

conversion system, have technologic drawback even higher. They add to the problems of a 

BEV, the use of a very light gaseous fuel that has severe limitations in terms of producing 

process, storing system, safety and distribution infrastructure. Thus, they are not to be 

considered as a viable way for eco-mobility in the next future (German, 2003).  

Hybrid electric vehicles are characterized by the presence of two different typologies of 

energy storage systems: usually a battery and a gasoline or diesel fuel tank. HEVs have no 

limitation of range with respect to conventional vehicle and use the existing distribution 

infrastructure. The main advantages of HEVs are: the flexibility in the choice of engine 

operating point that allows the engine to be run in its high efficiency region and the 
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possibility of downsizing the ICE and so obtaining a higher average efficiency. Moreover, 

the engine can be turned off when the vehicle is arrested (e.g., at traffic lights) or the power 

request is very low (reduction of the idle losses).  

PHEVs can be considered either as BEVs that can be run in hybrid mode when the state of 

the charge (SOC) of the batteries is low or as HEVs with batteries that can be recharged from 

the electricity grid. They are characterized by the use of much larger battery pack when 

compared with standard HEVs. The size of the battery influences the All Electric Range 

(AER), an important design parameters of PHEVs that is defined as the number of miles 

they vehicle can run in pure electric mode on the UDDS cycle. A vehicle is classified as 

PHEVXY if it has an AER of XY miles. 

PHEVs require fewer fill-ups at the gas station than conventional cars and have the 

advantage, over HEV, of home recharging.  

BEVs, HEVs, and PHEVs have also the capability of partially recovering energy from brakes 

by inverting the energy flow from batteries to wheels through the electric machine. 

Simpson, 2006 presented a comparison of the costs (vehicle purchase costs and energy costs) 

and benefits (reduced petroleum consumption) of PHEVs relative to HEVs and conventional 

vehicles. On the basis of his model, Simpson found that PHEVs can reduce per-vehicle 

petroleum consumption. In particular, reductions higher than 45% in the petroleum 

consumption can be achieved using designs of PHEV20 or higher (i.e. vehicles containing 

enough useable energy stored in their battery to run more than 20 mi (32 km) on the UDDS 

cycle in electric mode according to the previous definition of AER). 

The study of Simpson, 2006 underlined that from the economic point of view, the PHEVs 

can become a competitive technology is the cost of petroleum will continue to increase and 

the cost of the batteries will decrease.  

Because of different characteristics of multiple energy sources, the fuel economy and the 

environmental impact of hybrid vehicles mainly depend on a proper power management 

strategy. The particular operating strategy employed in this kind of vehicles significantly 

influences the component attributes and the value of the PHEV technology (Gonder et al. 

2007). 

Generally speaking, the environmental impact of an ecologic vehicle has to be determined 

with a “well to wheel” (WTW) approach. From a “tank to wheel” (TTW) point of view, a 

BEV, or a PHEV running in electric mode do not produce either pollutant or greenhouse 

gases while the emissions of pollutant and CO2 in the WTW processes depend on the 

primary source and the technology used to generate electric energy at the grid.  The well-to- 

wheel CO2 emissions of a FCV can be equal to those of a diesel engine vehicle if it uses 

hydrogen produced from non-renewable energies sources (Guzzella and Sciaretta, 2007). 

In a hybrid vehicle, the local emissions of CO2 and pollutant strongly depend on the 

management strategy used for the ICE that becomes the main issue in both HEVs and 

PHEVs. 
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2. Classification of hybrid vehicles 

Hybrid Electric Vehicles can be classified according to their architecture, the 

discharge/recharge mode of batteries and the level of hybridization. 

As for architecture, HEV are called “parallel” when they use a gasoline or diesel engine 

mechanically coupled with an electric motor at the same shaft to satisfy the power request at 

the wheels.  A parallel HEV can be run in five modes of operation (Guzzella et al, 2007): 

power assist (the electric motor give the supplementary torque to the shaft when the request 

is higher than engine available torque), battery recharging (a part of the engine power is 

used to recharge the batteries), electric mode (engine turned off), conventional vehicle 

(electric motor turned off) and regenerative braking. 

In a “series” hybrid, the power request is entirely satisfied by the electric motor. Electric 

current to the motor is the algebraic sum of the current form/to the batteries and the current 

produced by an engine-driven generator. A series HEV can be run in four modes (the same of 

a parallel vehicle apart from conventional mode since the engine is not connected to the shaft). 

Combined hybrid that can be run either in parallel and series mode have also been 

developed and introduced in the automotive market.  

Traditionally, series HEVs have been neglected in scientific literature since they are less 

efficient than parallel HEVs and require more additional weight. Moreover, their energy 

management was considered trivial: a simple on-off engine control was considered 

sufficient. However, the increasing interest in plug-in vehicles has given new impulse to the 

research of advanced control strategies for series architectures.  

There are two possible ways to regulate the energy management of hybrid vehicles with 

batteries. The first one (charge depleting mode, CD) accepts the batteries to be completely 

discharged during the mission. In this mode, the battery SOC can increase or decrease in 

time but it tends to be reduced along the mission. This approach can be considered for 

plug-in vehicles only. The second one (charge sustaining mode, CS) tries to keep the 

battery always charge to not affect the vehicle autonomy. The SOC can increase or 

decrease in time but it tends tore main constant during the mission (for series and parallel 

HEVs, not possible for BEV). 

A PHEVs is usually run in CD mode without using the engine until reaching a pre-assigned 

lower bound on the SOC, then a CS strategy is adopted. Another possibility is to discharge 

gradually the battery throughout the trip as in the so-called blended mode control (Tulpule et 

al., 2009).   

This makes a PHEV more complex, more dependent on traffic and route information and 

more efficient than a standard series HEV. 

Another classification of importance for hybrids is the degree of hybridization. Micro-

Hybrids are quite similar to conventional vehicles, from that they differ for the presence of a 

slightly larger battery and a little more powerful electric motor that allow the engine to be 
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turned off when the car is stopped at the cross-lights and then turned on again when the 

vehicles moves. This system, named Start&Stop is nowadays adopted by several automotive 

companies in order to fulfill the Euro V standard. It does not require an increase of the 

voltage of the electric systems. The increase in cost and complexity is quite small like the 

potentiality to decrease fuel consumption. By further increasing the electric power and the 

voltage, it  is possible to recover the braking energy (+5-10% in fuel economy, Chan, 2007). If 

the power of the electric motor increases, the internal combustion engine can be downsized 

and the electric motor is used to increase the pick power with the Power Assist logic. This is 

the case of mild hybrids (like Honda Civic and Honda Insight), that can increase fuel 

economy by 20-30% (Chan, 2007) with a similar increase of cost. Mild hybrids usually are 

not able to be run in all electric drive like Full Hybrids. Full hybrids can achieve a 40-50% 

higher fuel economy than conventional car. (Chan, 2007)  They work with very high tension 

in order to accept the largest electric power. They can be sub classified in Synergy Hybrids 

and Power Hybrids. The former are designed to maximize fuel economy (downsized 

engine) while the latter use the electric motor to increase the available torque (no-

downsizing). 

Finally, the term Range extender is used to define series hybrid vehicles where the small 

engine-alternator group is only used to recharge the battery when their SOC is too low. 

2.1. Designing and managing internal combustion engines for hybrid 

applications 

The role of the internal combustion engine in hybrid electric vehicles (HEVs) is quite 

different from conventional vehicle. The engine has no more to be designed to fulfill the 

performance (maximum speed, acceleration and climb) required for the vehicle but can be 

downsized, thus reducing fuel consumption and greenhouse emissions. Moreover, the 

internal combustion engine can be better managed in order to avoid low-efficiency and 

high-emission operations like idling, vehicle stops and strong accelerations.  

The current approach to HEV design is to use internal combustion engines developed for 

conventional vehicles. From this point of view, the advantage of fuel economy of HEVs can 

be actually defeated by the higher complexity, weight and volume of the power-train. 

However, many of the electronic-controlled devices used in engine to increase their 

efficiency and reduce emissions at idle and low speed-low torque operating mode are 

completely useless in HEV applications. This means that simpler, lighter and less costly 

engine could be developed for hybrid applications.  

It is well known that internal combustion engines have poor fuel economy and larger if they 

work at low temperature. This is particularly important in hybrid electric vehicles since they 

allow the engine to be turned off for long periods during which the engine temperature 

decreases. This can lead to higher cold-start emissions particularly due to the poor 

conversion efficiency of the after-treatment devices when the light off temperature is not 

reached. On the other hand, hybrid electric allow either engine or after-treatment devices or 

both devices to be controlled to reduce the warm-up period and improve their performances 
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in a fully integrated approach (Bayar et al., 2010).  In HEV, the engine is cranked to higher 

speed than conventional vehicles and this makes the combustion condition during startup 

process quite different. Yu et al., 2006, investigated the effect of cranking speed on the 

start/stop operation of a gasoline engine for hybrid applications. Once again, fuel economy 

and emission during the engine start process depend on the control strategy used for the 

engine and the motor.  

In order to reduce the warm-up period of the engine Lee et al., 2011 considered the 

recovering of exhaust gas heat exchanging system with coolant and gear box oil 

simultaneously.  Accordingly, they developed an exhaust heat recovery device, which 

performs integral heat exchange of the exhaust gas heat of engine to increase the 

temperature of the coolant and the gear box oil, thereby reducing friction loss and 

improving fuel economy.  

2.2. Approaches to the supervisory control models 

The capability of a HEV in reducing fuel consumption and pollutant emissions strongly 

depends on the supervisory control strategy and the specific driving conditions. In fact, in 

hybrid electric vehicles a supervisor control system defines in each time the power split 

between the fuel conversion system (engine/alternator or fuel cell) and the electric storage 

systems (batteries and/or super capacitors)  in order to minimize fuel consumption, sustain 

battery charge and reduce polluting emissions. Note that these goals are competitive and the 

performance of the HEV strongly depends on which goal it is given a higher importance. 

The optimization should be performed, ideally, over the entire life cycle of the vehicle even 

if a much shorter time interval (from a small number of minutes to few hours) is usually 

taken into account.  

Several approaches for the optimization of energy management of a HEV have been 

presented in literature (Serrao, 2009). They can be classified in four categories: numerical 

optimization, analytical optimal control theory, instantaneous optimization and heuristic 

control techniques.  

Heuristic control techniques are based on a set of rules that generate control action (i.e., the 

power to be delivered from the two energy sources) according to the value of some vehicle 

parameters like speed, acceleration, battery SOC, etc. These methods easy to implement in 

vehicles but they do not guarantee the minimization of either fuel consumption or emissions 

and the achievement of charge sustaining at the end of the mission.  

Numerical optimization usually applies dynamic programming to optimize the vehicle 

behavior with the unrealistic assumption of perfect knowledge of the vehicle driving 

conditions (Lin et al, 2003). 

An alternative to dynamic program is the application of the Pontrayagin’s principle. This 

approach assumes that the power train can be described with simple analytical functions. 

Thus, it is often a too simplified approach and it also requires the knowledge of the driving 

cycle to be applied (Anatone et al.  2005, Serrao et al. 2008).  
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In the instantaneous optimization approach, the global minimization problem is 

implemented and solved as a sequence of local optimization problems. The best known of 

these strategies is the Equivalent Consumption Minimization Strategy for charged-

sustaining vehicles. The ECMS tries to minimize the equivalent fuel consumption that is 

calculated as the sum,  in a time interval Δt, of the actual engine fuel consumption and the 

fuel equivalent of the electric energy stored in/extracted from the battery in the time interval 

Δt. Since battery is only used as an energy buffer, its energy is produced ultimately by the 

fuel that the engine has consumed/saved in the past (or will consume in the future). The 

main drawback of the approach is that it requires the definition of equivalent factors in the 

conversion of fuel energy to electrical energy and vice versa (Guzzella and Sciarretta, 2007).  

Recently, Millo et al. 2011 extended the ECMS technique to include engine emissions. In 

particular, they correlated the use of the battery with equivalent NOx emissions and 

compared the results of the fuel consumption-oriented optimization and the NOx 

optimization in terms of State of Charge history, engine operating points, etc. with respect to 

several standard driving cycles.  

The usage of standard driving cycles in the optimization of the control strategies is a 

common way to obtain sub-optimal controller that, however, can give poor results in the 

real driving conditions.  

2.3. Prediction of vehicle driving patterns 

As explained before, the possibility of estimating the future driving profile (speed and 

related power demand) is a key issue in the development of hybrid vehicles. In fact, the 

supervisory controller of a HEV could use the future speed profile to optimize the power 

split in a future time window in order to minimize fuel consumption, pollutant emission, 

battery usage and so on.  Moreover, the information about future can be used to activate the 

electric warming of engine and after-treatment devices. In this way they will be at the right 

temperature when the engine will be turned on and the exhaust gas flow will enter the after-

treatment device. 

In literature, a number of “auto-adaptive” techniques which try to predict future driving 

conditions based on the past ones have been defined A possible approach is to predict the 

future driving conditions based on the past behavior of the vehicle (Sciarretta et al, 2004) 

relying on the assumption that similar operating conditions will exist. But the future driving 

profile also depends on the instantaneous decisions which the driver will take to respond to 

the physical environment (driving patterns). Moreover, recent studies have shown that 

driver style, road type and traffic congestion levels impact significantly on fuel consumption 

and emissions (Ericson, 2000, Ericson, 2001). For these reasons, the control strategies 

proposed in some schemes (Won et al, 2005) incorporate the knowledge of the driving 

environment. 

In the case of series HEV, the knowledge of the driving conditions have been found in 

literature to be less important than in the case of parallel hybrids (Barsali et al,. 2004).  
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In the case of plug-in hybrid electric vehicles, the control is more complex, strongly 

depending of the initial value of SOC and on the mission length, particularly if Blended 

Mode control methods are used. In fact, if the total trip was known, the best results would 

be obtained if the SOC would reach the lower value at the end of the trip (Karbowski et al. 

2006). Gong et al. 2007, developed an Intelligent Transportation System that uses GPS 

information and historical traffic data do define the driving patterns to be used in the 

optimization. Donateo et al. 2011, have estimate numerically that the knowledge of the 

driving cycle in a future time window of 60s can improve fuel consumption in a series 

PHEV with Blended Mode control by 20%. 

3. ICT and sustainable mobility 

3.1. Intelligent vehicle technologies 

According to Gusikhin et al. 2008, a vehicle can be defined as intelligent if it is able to sense 

its own status and that of the environment, to communicate with the environment and to 

plan and execute appropriate maneuvers. The first application of intelligent vehicle systems 

has been the increase of safety by providing driver assistance in critical moments. A 

combination of on-board cameras, radars, lidars, digital maps, communication from other 

vehicles or highway systems are used to perform lane departure warning, adaptive cruise 

control, parallel parking assistants, crash warning, automated crash avoidance, intelligent 

parking systems.  

Markel et al. 2008 studied the effect of integration between an electrified vehicle fleet and 

the electric grid in order to increase the amount of renewable energy used to power the 

electric vehicles by optimizing the timing and the power of the charging processes during 

the day. Different communication protocols have been considered and compared by Markel 

et al. Intelligent Transport Systems like traffic management can have a direct effect on the 

emissions of CO2 produced by the automotive floats (Dimitrakopoulos, 2011). According to 

Janota et al. 2010, Intelligent Transportation Systems can reduce consumption and emissions 

by acting on the vehicle (by monitoring and controlling the engine), on the infrastructure 

(reduction of number/duration of congestions and stoppage, optimization of intersection, 

cooperative systems to avoid congestions) and on the driver (planning of ecologic routes 

based on real-time information, support to driver for economic drive).  

Recently, Information and Communication Technologies (ICT) techniques have been 

proposed for gathering information about the vehicle routes and road conditions that could 

allow the evaluation of the future power request of the vehicle over a large time window. 

ICT techniques can be used to estimate the future driving profile, suggest low consumption 

behaviors to the driver, propose alternative route, communicate the position and the status 

of electric recharging stations, etc. (Sciarretta et al, 2004).  

Schuricht et al. 2010 analyzed two active energy management measures. The first one, uses 

advanced traffic light, and communication systems to support the driver during intersection 

approaching. The second one explores the uses of information and sensor sources from the 

traffic telematics for the predictive online optimal control of hybrid vehicles.  
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3.2. The CAR approach 

The role of Intelligent Transport Systems in the improvement of PHEV performance and 

spreading of vehicles electrification is a research issue at the Center for Automotive 

Research at the Ohio State University.  Starting from the awareness that traffic, weather and 

road conditions will be available in the next future through vehicle-to-vehicle and vehicle-

to-infrastructure communications, the researchers at CAR emphasize the possibility this 

information in order to adapt the tuning of the energy management controller in HEVs, 

predicting the future driving profile, signaling the availability of recharge stations, 

predicting the route and generating statistical information for modifying pre-stored maps.  

In the paper of Tulpule et al. 2011, the authors concentrated on the impact of the available 

data on the energy management in order to identify the most important factors on the actual 

fuel consumption of a PHEV. The factors analyzed in the investigation, named “Impact 

Factors”, derive from both weather information (temperature and humidity) and traffic 

information (status of traffic lights, presence of pedestrian, road events in intra-city highway 

and inter-city highway). Their importance on the performance of the ECMS strategy were 

evaluated on the basis of a large amount of data acquired on a Toyota Prius converted to 

plug-in mode. The plug-in Prius has been run for a total of 60,000 miles in the campus area 

of the Ohio State University and several parameters like GPS information, temperature, fuel 

consumption, battery SOC, etc. were collected along with time and date.  

To study the effect of the driving patterns, Gong et al. 2011 used a statistic approach to 

analyze real world profiles and derive information about average speed, speed limits, 

segment length, etc. These data were used to build a series of reference driving cycles by 

using the Markov chain modeling. The results of the investigation showed that the driving 

patterns have a relevant effect on the performance of a plug-in HEV and that the statistic 

values of acceleration have the largest impact of the tuning of the ECMS strategy. 

3.3. The CREA approach 

The CREA idea of intelligent hybrid vehicle includes the possibility of sensing the traffic 

environment in which it moves to predict the future driving conditions (Ciccarese et al. 

2010). In particular, the vehicle is assumed to receive information from GPS, on-board 

sensors and vehicular communications. The scheme of the intelligent HEV according to the 

CREA research center is shown in Figure 1.  

This information can be used on-board to perform a simulation of the traffic in a pre-set time 

window in order to predict the power request pattern in the next future and execute on-line 

optimization of the energy management over the predicted power pattern. The main 

difference with the CAR approach is that the vehicle is assumed to be able to compute on-

board a simulation of the traffic conditions by using a microscopic road traffic simulation to 

derive its own future power request profile and optimize fuel consumption, battery usage, 

emissions levels, etc. This approach requires a relevant on-board computational capability 

that we believe could be available in the next future for other applications like safety, 
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entertainments and so on. Alternatively, the simulation of the traffic patterns and the 

calculation of the speed profiles of the vehicles in a particular urban zone could be 

performed by a central computational unit that could send the results to the vehicles 

circulating in that zone.  

 

Figure 1. An intelligent hybrid vehicle according to the CREA approach 

The gray area in Figure 1 represents the tools to be implemented on board. They include the 

prediction system, which is used to estimate the future speed profile of the vehicle, a power 

train simulator, which evaluates the evolution of fuel consumption and battery SOC during 

the prediction interval, and an optimizer, which is used to optimize the parameters of the 

control strategy.  

3.3.1. The prediction block 

This block gathers status messages that surrounding vehicles and/or the infrastructure 

broadcast. Messages transmitted by a vehicle carry status information, such as position, 

speed, acceleration, etc., and, optionally, some information related to its route. Messages 

generated by the infrastructure, instead, carry the current status and the timing of traffic 

lights. Besides the status information received through vehicular communications, the 

system gathers the status information on the “predicting vehicle” locally obtained by a GPS 

receiver and/or on-board sensors and also retrieves the data on road network from the 

digital maps used by the GPS navigation device. 

The information gathered is exploited to take, at regular intervals, a snapshot of the traffic 

scenario in a given area. Each snapshot is the input to a run of module which simulates the 

traffic dynamics over a certain time interval, whose duration is at most equal to the 

prediction horizon. In Ciccarese et al. 2010, a modified version of  SUMO software has been 

considered as on-board simulator.  
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SUMO (Simulation of Urban MObility) is an open source microscopic road traffic simulator. 

The input parameters of SUMO consist of the road network, the characteristics of each 

vehicle, the path (route) that each vehicle follows and the timing of traffic lights. 

Vehicles with the same characteristics are grouped in classes and, for each class, a set of 

mechanical specifications is provided maximum speed, acceleration and deceleration.,  

vehicle length, mass, friction coefficients, etc. 

The road network is represented by an oriented graph, where nodes correspond to 

intersections and arcs to one-way lanes. For each lane, the maximum speed, the slope and 

the classes of vehicles which are allowed to go along it have to be also specified. The route of 

a vehicle consists of a list of consecutive arcs in the graph. 

Using the input data, SUMO generates a mobility trace for all vehicles according to a Car-

Following model (Wang et al. 2001): each vehicle tries to hold its speed close to the 

maximum one allowed for the current lane and decelerates if it is approaching either to an 

intersection or to another vehicle on the same lane; in the latter case, its speed is adapted to 

that of the vehicle which moves ahead of it. 

The accuracy of the proposed prediction method has been tested experimentally (Ciccarese 

et al. 2012) in a augmented reality environment to simulate the presence in the Ecotecke 

campus of a certain number of vehicles able to communicate with the target vehicle. The 

experimental campaign showed that the inaccuracy of the prediction method is below 

4km/h. In Figure 2, a comparison is shown between the predicted and the actual speed 

profile of the target vehicle in a time window of 100s. More details about the experimental 

campaign can be found in Ciccarese et al. 2012. 

 

Figure 2. Example of speed profiles obtained by the experimental environment 

3.3.2. The power-train simulator 

The Power train simulator block implements a model of the power-train. The block 

processes the output of the prediction system and calculates the related power demand of 
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the predicting vehicle by considering aerodynamic force, inertial contribution, rolling force 

and grade force. Information from on board sensors (ambient temperature, asphalt 

conditions, tires pressure and temperature) can be used to correct the predicted load. Then, 

the block simulates the energy flows according to the selected energy management strategy 

(described above) and evaluates the evolution of fuel consumption and battery SOC during 

the prediction interval.  

Two different paradigms are usually considered to simulate a hybrid vehicle (Guzzella and 

Sciaretta, 2007). In the backward paradigm, the velocity of the vehicle is an input. According 

to the vehicle specification and speed values, the power request at the wheel is calculated. 

By means of static maps, the energy consumption of both engine and batteries is calculated 

according to the selected energy management strategy. If the power-train is not able to meet 

the cycle requirements, the acceleration is reduced and the vehicle diverges from the driving 

cycle. 

In a forward or dynamic model, the power requested by the driver through the acceleration 

and braking pedals is used as input to evaluate the acceleration and the vehicle speed. This 

kind of model is used for the development of the control systems, while the backward 

method is best suited for analysis and evaluation of the energy and power flow in the 

vehicle driveline. Thus, a backward model is considered in the proposed scheme.  

If the driving cycle is predicted with a traffic model that takes into account the actual 

acceleration and deceleration capability of the power-train, it is not necessary to check if the 

vehicle is able to follow the prescribed driving cycle. 

3.3.3. The energy management system 

This block implements the supervisor control system which defines, at each time, the power 

split between the fuel conversion system (engine/alternator in a series HEV) and the electric 

storage systems (generally batteries) with the constraints that the sum of the power 

extracted from each energy source must be equal to the total power requested at the wheels. 

3.3.4. The optimizer 

The role of the optimizer block is to adapt the parameters of the actual control strategy to 

the future driving conditions. This block can be implemented either as a on-line optimizer or 

as a memory device for loading optimized maps (Donateo et al. 2011).  

3.3.5. Monitoring blocks 

The system also includes a block, named Energy monitoring, which monitors the energy 

parameters of the vehicle (engine efficiency, level of gasoline in the tank, battery SOC, etc.) 

and evaluates the effectiveness in optimizing the energy management. This evaluation is 

carried out at regular intervals of duration equal to the prediction horizon.  
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Another block, named Prediction accuracy, evaluates the prediction error (based on a 

comparison between the actual speed profile evaluated by GPS and that estimated by the 

prediction system). The output of the Prediction accuracy block could be used to trigger a 

new prediction run. 

4. A test case: ITAN500 

In order to evaluate the effectiveness of the CREA approach in reducing fuel consumption of 

a plug-in HEV, a numerical investigation has been performed with respect to ITAN500.. 

ITAN500 a four-wheel vehicle prototype with a size comparable with that of a large scooter. 

ITAN500 can be classified as PHEV40 because its all-electric range is 40 miles on the UDDS 

cycle.  

The vehicle was designed to reach a maximum speed of 90km/h in hybrid configuration 

with a mass of about 800 kg. By taking into account the overall transmission ratio (1/3.46) 

the DC motor was selected in order to generate a torque of about 27 Nm at the speed of 3560 

rpm. A set of six lead acid batteries in series are used  to produce the nominal voltage of 72V 

required to feed the electric motor. The choice of lead acid batteries was due to the need of 

reducing the vehicle cost. However, other kinds of batteries are currently under 

consideration.  

A small gasoline engine with a maximum power of 9.9kW at 3600 rpm is used to extend the 

range of the vehicle.  More details on the power-train (shown in Figure 3) can be found in a 

previous publication (Donateo et al. 2012). 

 

Figure 3. Scheme of the ITAN500 power-train 

4.1. The VPR power-train simulator 

VPR (Vehicle Power Request) is a backward model that uses quasi-static maps for the main 

power-train components (thermal engine, motor and batteries) to predict their efficiency 

according to the requested values of torque and speed.  

The main outputs of the VPR model are the evolution of fuel consumption and battery SOC 

along the driving cycle. Starting from the velocity speed and grade traces, the vehicle power 

request is calculated by considering aerodynamic force, grade force, inertial contribution 
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and rolling force. An example of vehicle power request trace is shown in Figure 4 together 

with other VPR output.  

Note that during deceleration the power request is negative which means that the braking 

energy can be recovered and stored in the batteries. In the example shown in Figure 4, 

engine is turned on only in a small fraction of the vehicle missions, around 500s from the 

start of the cycle. 

 

Figure 4. Example of VPR results 

The efficiency of the electric motor according to torque and speed has been evaluated 

experimentally on an inertial test bench (Donateo et al. 2011).  

Since the engine is run at the constant speed of 3000 rpm, its efficiency is considered as 

function of torque only. Literature data have been used to derive the maps of Figure 5.  

The data of Figure 5 refers to a fully-warmed case, i.e. the temperature of the engine block is 

at the nominal temperature of 90°C. However, engine efficiency is strongly dependent on its 

temperature; in particular it is very low at cold start. In the VPR model, the efficiency data of 

Figure 5 are corrected as proposed by Guzzella et Onder, 2004 by multiplying the full-

warmed engine efficiency by a correction factor whose dependence on temperature is 

shown in Figure 6. 
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Figure 5. Fully-warmed engine efficiency versus torque at 3000rpm 

 

Figure 6. Correction factor for engine efficiency as a function of the block temperature 

Note that if VPR is run on-board, the temperature of the engine block is a measured data 

while in the present investigation it has to be simulated. For this reason, a thermal model 

based on a zero-dimensional simulation of the engine has been proposed (Donateo et al. 

2012). The thermal model is able to simulate the increase of temperature when the engine is 

on as a function of its actual torque. When the engine is off, its temperature decreases due to 

the heat transfer to the surrounding air. More details on the thermal model can be found in 

Donateo et al. 2012. 

An example of temperature trace versus time obtained from VPR with the same input 

conditions of Figure 4 is shown in Figure 7.  
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Figure 7. An example of temperature trace obtained with the thermal model of the engine 

The overall electric efficiency between the chopper and the wheels is set constant and equal 

to 0.65 for the present investigation. 

4.2. The energy management strategy 

The energy management strategy developed for ITAN500 includes an initial Charge 

Depleting (CD) mode where the battery only is used until a threshold value of battery SOC 

is reached (SOCCD). Then, the vehicle can be run in three different modes.  

In Mode 1, the power to the motor is supplied only by the generator/engine group.  

Mode 2 uses only battery to supply power. Both engine and battery are used in the other 

modes. In particular, in mode 3 the engine is used both to charge battery and to supply power 

to the motor while in mode 4 the engine and the battery are used together to feed the motor.  

According to the actual power to be supplied to the motor to move the wheels (Pload) and 

instantaneous value of SOC, the power-train is operated in one of the Areas 1-11 of the Figure 

8. In particular, mode 1 is preferred in the high power region except when the battery SOC is 

very high (Area 5). Mode 2 is mandatory in three cases: when the battery is fully recharged 

(Area 3), in braking (Area 1) and when the load power is very low (Area 2). Moreover, the use 

of mode 2 is preferred when the SOC is reasonably high and the load power relative low with 

respect to the engine nominal power (Areas 4 and 7), otherwise the use of engine is preferred 

(Areas 8). Area 6 and 9 correspond to the use of the engine to recharge the battery (mode 3). 

However, this is possible only when the sum of the load power and the power request to 

recharge the battery is lower than PICE,max. If not, mode 1 is used. 
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Note that Areas 11 and 10 of Figure 8 were not taken into account because the power 

request is always lower than PICE,max for all the operating conditions considered in the 

present investigation.  

The actual size of each area depends on the values of energy management parameters 

SOCCD, SOCmin, k and PICE,min that influences the results in terms of fuel consumption and 

battery usage over a specific vehicle mission. The meaning of SOCmin, and PICE,min is quite 

straightforward while some explanation has to be given for K. The K parameter was 

introduced to solve the dilemma between using mode 1  or mode 2 in Areas 7 and 8  since 

neither the engine nor the battery works at their best in that region. By using K it is possible 

to prefer the battery at relative low power and high SOC (area 8) and the engine otherwise .  

 

Figure 8. Energy management strategy 

4.3. The optimizer 

The optimal combination of the parameters can be easily performed off-line with a general 

optimization algorithm like genetic algorithms (Paladini et al. 2007). 

The role of the optimizer is to find the optimal combination of parameters in Table 1 that 

define the size of the areas of Figure 8. For the optimization described in this paragraph, the 

minimum and maximum values and the steps of variation of the design variables reported 

in Table 1 were considered. 

 

Variable Min Max

SOCCD (%) 60 80

SOCMIN (%) 20 60

K 0 1

PICE,min [W] 500 6200

Table 1. Design variables for the optimization 

In each case, the goal of the optimization was the reduction of the equivalent fuel 

consumption calculated in the following way: 
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    
,( )tot FC ICE eq BATTm w m m  (1) 

where: 

 ( )ICEm  is the effective fuel consumption function of engine temperature θ; 

FCw is the weight assigned to the level of fuel stored in the tank. It is set equal to 1 if the 

tank level is greater than 25% When the tank level is very low, this parameter is increased to 

prefer battery usage when the fuel level is low. In particular wFC is 1.2 for 

10%<tank_level<25% and 1.5 for tank level lower than 10%. 

Note that eq. (1) has been obtained by adapting the equivalent fuel consumption defined by 

Sciarretta et al. 2004  for a parallel HEV to the specific power-train of ITAN500.   

The equivalent fuel consumption of the battery is obtained as follows: 

 
 


 


,

BATT
eq BATT

LHV

P
m

Q t
   (2) 

where η represents the average fuel consumption of the battery which is assumed to be 

constant and the same in charge and discharge in the present investigation.  

When the battery is in charge, PBATT represents the power that could be stored in the battery. 

Due to the battery efficiency η, the actual power stored in the battery (which define the 

equivalent fuel consumption) is lower than PBATT. This is taken into account by setting γ =1. 

In discharge, PBATT is the power requested from the battery is increased by η (γ=-1).  

To complete the description of eq. (3), QLHV is the lower heating value of the fuel (in the 

present investigation gasoline is considered with QLHV =44MJ/kg while Δt is the time step of 

the driving cycle (Δt =1s). 

The penalty function fp(SOC) takes into account the battery usage in the optimization 

process and has been defined according to Sciarretta et al. 2004. 

4.3.1. Driving cycles  

In the present investigation three kinds of driving cycles were taken into account for 

ITAN500. The first two are standard driving cycle adopted for the registration on new cars 

(NEDC and UDDS). Other numerical cycles were obtained with the help of SUMO. The 

ITAN500 has been simulated to move in the Ecotekne campus of the University of Salento 

for about 10000s (2.8h) together with other vehicles that, unlike ITAN500, can enter and exit 

the campus area. Different driving scenarios were taken into account by changing the 

number and the specification of the vehicles moving in the area.   

The specification of the vehicles are used in the framework of SUMO to calculate the 

maximum values of acceleration/deceleration allowed to each vehicle according to the 

difference between the actual power request (depending on aerodynamics, rolling and 

inertia) and the maximum traction/braking power of the vehicle. Cycles obtained in this way 
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were named as Trace A to Trace H. More details on the procedure used to obtain the 

numerical cycles can be found in Donateo et al. 2011. 

Another cycle named R has been taken into account. This cycle is an actual driving cycle 

acquired with a GPS system on board of the vehicle ITAN500 when it is run in all electric 

range. The cycle has been assumed to be executed for 25 times (R*25) in order to obtain 

results of fuel consumption and battery usage comparable with those of cycles A and B.  

The specifications of the cycles taken into account in the investigation are reported in Table 

2. Note that all the cycles taken into account in the present investigation refer to a zero grade 

condition. 

 

Cycle Total time [s] 
Average 

speed [m/s] 
Max speed [m/s] 

Min speed 

[m/s] 

Cycle_NEDC 1225 8.93 33.36 0 

Cycle_UDDS 1370 8.73 25.37 0 

Cycle_1015 661 6.90 19.45 0 

Cycle_HWFET 766 21.56 26.80 0 

Trace A 10001 4.69 13.90 0 

Trace B 10801 6.88 13.90 0 

Trace C 9999 1.79 8.33 0 

Trace D 10001 2.00 8.33 0 

Trace E 10001 1.38 8.33 0 

Trace F 10001 1.08 8.33 0 

Trace G 10001 1.95 8.33 0 

Trace H 10001 1.47 8.33 0 

Cycle R 382 25.75 41.61 0.2 

Table 2. Specification of the driving cycle taken into account for the creation of the maps 

4.3.2. Full knowledge approach 

In this approach the driving cycle is assumed to be completely known and the parameters of 

Table 1 are optimized for each cycle of Table 2. The results of the application of this 

approach to cycles A, B, R, NEDC and UDDS are reported in Table 3. 

 

Cycle Duration 

[s] 

Equiv.fuel 

cons. 

[l/100km] 

Δ
SOC 

[%] 

FC 

[l] 

SOCCD

(%) 

SOCMIN

(%) 

K PICE,MIN 

[kW] 

#A 10000 2.78 24.8 1.02 65 44.4 0.9 3.2 

#B 10800 3.1 24.7 1.96 77.9 50.1 0.6 2.6 

#R*25 9550 3.38 24.8 1.91 77.3 34.8 0.98 2.4 

#UDDS 1370 1.66 18.7 0.08 60.6 37.6 0.97 6.1 

#NEDC 1225 2.52 17 0.16 71.4 35.6 0.26 5.9 

Table 3. Results of the optimization in the case of full knowledge (initial SOC 45%) 
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4.3.3. No-knowledge approach 

The driving cycle is assumed to be completely unknown. The parameter of the control 

strategy are optimized for the NEDC cycle and applied to the other cycles. The results are 

reported in Table 4. 

 

Cycle Duration 

[s] 

Equiv.fuel 

cons. 

[l/100km] 

Δ
SOC 

[%] 

FC 

[l] 

SOCCD

(%) 

SOCMIN

(%) 

K PICE,MIN 

[kW] 

#A 10000 3.47 25 1.29 71.4 35.6 0.26 5.9 

#B 10800 3.85 25 2.38 71.4 35.6 0.26 5.9 

#R*25 9550 3.89 25 2.19 71.4 35.6 0.26 5.9 

#UDDS 1370 1.67 18.7 0.08 71.4 35.6 0.26 5.9 

#NEDC 1225 2.52 17 0.16 71.4 35.6 0.26 5.9 

Table 4. Results of the optimization in the case of no knowledge (initial SOC 45%) 

4.3.4. Prediction & maps supervisory control 

In order to reduce the on-board computational load required by the CREA approach, 

Donateo et al. 2011 proposed the use of maps that are optimized off-line with respect to 

reference driving conditions. They were obtained with the following procedure. 

All cycles of Table 2 have been taken into account to generate one global driving cycle of 

85208s (about 23 hours).  Then, the VPR has been used to calculate the corresponding power 

request according to the specification of the vehicle and a global power request trace has 

been obtained. This power request trace has been divided into 1420 Mini Power Cycles 

(MPC) of 60s.  

The 1420 MPCs have been distributed in 90 groups with the help of the K-Means clustering 

technique. For each group, a representative driving cycle, named Reference Mini Power 

Cycle has been identified and numbered.  

Figure 9 shows, with different colors, five MPCs belonging to the same group. The bold blue 

line is the RMPC chosen with the clustering algorithm.   

The off-line optimization has been performed for each of the 90 RMPCs, two levels of engine 

temperature (cold-hot), three levels of the initial state of charge, and three levels of the fuel 

tank. In this way 1620 optimized maps have been obtained. Each map contains the 

optimized values of SOCmin, k and PICE,min. for a particular combination of RMPC, engine 

temperature, initial state of charge and level of the fuel tank.  

The maps could be used in an intelligent hybrid electric vehicle in the following way.  

1. At any interval of 60 seconds, the predicted speed profile is obtained from the 

prediction block; 
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2. The corresponding power request profile over 60s is calculated according to the vehicle 

and road specification (es. grade) with VPR; 

3. The power request profile is compared with each of the RMPCs and the most similar 

one in terms of root mean square error is found; 

4. According to the measured values of engine temperature, fuel tank level and battery 

state of the charge, the corresponding map is loaded; 

5. The optimized values of the energy management parameters of the selected map are 

applied over the next 60s. 

 

Figure 9. Example of RMPC 

4.4. Analysis of the prediction&maps approach 

The proposed on board prediction-optimization tool has been evaluated numerically in the 

following way. The ITAN500 is simulated to execute one of the driving cycles of Table 2 

with the assumption that they are know (by prediction) in blocks of 60s. 

At any 60s, the power request versus time in the next time window of 60s is evaluated with 

VPR and compared with each of the RMDCs to find the most similar one. Then, the 

instantaneous values of engine temperature, SOC and fuel levels are set as initial values and 

the corresponding optimized map is loaded. The thermal model of VPR is used to predict 

the profile of engine temperature along the mission. The values of the energy management 

parameters are used to evaluate the fuel consumption and battery usage in the next 60s on 

the basis of the actual power request (not on the selected RMDC).  

The results in terms of fuel consumption and battery usage obtained with this approach are 

reported in Table 5. 
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Cycle Duration 

[s] 

Equiv.fuel 

cons. 

[l/100km] 

ΔSOC 

[%] 

FC 

[l] 

SOCCD

(%) 

SOCMIN

(%) 

K PICE,MIN 

[kW] 

#A 10000 3.38 24.9 1.26 

From maps 

#B 10800 3.76 24.9 2.32 

#R*25 9550 3.73 25 2.09 

#UDDS 1370 2.42 13.4 0.19 

#NEDC 1225 2.61 15.6 0.18 

Table 5. Results of the simulation with the optimized maps (initial SOC 45%) 

4.4.1. Percentage of mission with Controlled Battery Discharge (CBD%)  

To compare the results of the three approaches, different metrics can be taken into account. 

The first metric useful to compare the results of the three approaches can be derived by 

analyzing the typical SOC trace versus time in a plug-in hybrid electric vehicle. An example 

is shown in Figure 10 with respect to two different initial values of the battery SOC. 

The traces of SOC show an initial zone where the results corresponding to full knowledge, 

prediction&maps and no knowledge are perfectly overlapped and the SOC decreases 

monotonically (Electric Mode). Of course this region is particularly evident and relevant 

when the initial SOC is higher (75%). 

Then, there is a region in which the SOCs tends to decrease but can be kept locally constant 

or be increased thanks to the use of the engine (Plug-in Hybrid Mode). This region ends 

when the battery is fully discharged (SOC=20%). After this, the SOC remains globally 

constant for all cases (full knowledge, prediction&maps and no knowledge) with small variation 

that are not visible in the scale used for the Figures (Discharged Battery Mode). Thus, the 

different results in terms of fuel consumption obtained with the three methods can be 

accounted for with the different duration of the EM, PHM and DBM zones.  

In the EM region, the fuel consumption is zero but the SOC strongly decreases due to the 

extensive use of the battery. In the PHM mode, the battery is the main energy source and the 

engine is turned on (when its efficiency is high) to decrease the slope of the SOC trace. The 

DBM region is the worst in terms of fuel consumption because engine has to be run also in 

its low efficiency region since batteries are fully discharged. A plug-in HEV is run at its best 

when the DBM region (SOC=20%) is reached exactly at the end of the mission and the EM 

region extends through as much of the mission possible. This is possible when the vehicle 

mission is entirely known (full knowledge case). The traces of Figure 10 show that the 

proposed method performs better than the no knowledge case since it allows to reduce the 

length of the DBM and to increase the PHM. As a consequence, the ICE is averagely run at 

high efficiency. 

Thus, a useful metric to evaluate the performance of an energy management strategy for 

PHEV could be the percentage of the mission run in EM+DBM modes. This metric is named 
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here CBD% while in a previous investigation (Donateo et al. 2012) it was referred to as 

Δmission. 

 

Figure 10. Explanation of the meaning of CBD% for Cycle A 

The value of the CBD% has been calculated for each approach with reference to cycle A, B 

and R*25 of Table 2. R*25 means that cycle R has been repeated 25 times to achieve a 

duration similar to that of cycle A and B. 

 

Figure 11. Values of  CBD% for cycles A, B and R*25 with SOCin=45% and 75% 
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By analyzing the results of Figure 16 it is possible to notice that the performance of the 

proposed strategy is very close to that of full knowledge for cycle A (for both values of 

SOCin) and for cycle R with SOCin=75%. The values of CBD% are always slightly higher 

than in the no knowledge approach for the other cycles. 

These results suggest that better performances could be obtained by increasing the duration 

of the prediction window used in the present investigation (60s) even if this could results in 

a worse accuracy of the prediction. Future development will be related to the optimization 

of the prediction horizon to increase the % of the mission covered by EM+DBM.  

4.4.2. Percentage of mission with EngineON (engON%) 

Another aspect to be taken into account in evaluating the performance of the proposed 

energy management  strategy is the usage of the internal combustion engine in terms of 

percentage of mission during which the engine is turned ON (EngON%). 

The results are shown in Figure 12 with respect to cycles A and B to understand the results of 

Figure 11. Note that cycle B requires the engine to be turned on for a much higher percentage 

of the mission with respect to cycle A. This explains why this cycle is more critical in the 

optimization of metric CBD%. Even if the prediction&maps is not much successful in optimizing  

CBD% , it is able to strongly reduce the usage of the engine in both cycle A and B. 

 

Figure 12. Values of EngON%for cycles A and B (SOCin=45%) 

4.4.3. AEE (Average Engine Efficiency) 

The average efficiency of the engine (AEE) is another important aspect to be taken into 

account. The results of the comparison are reported in Figure 13. 

Once again, the worst performance of the prediction&maps method are obtained for cycle B. 
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Figure 13. Values of AEE  (SOCin=45%) 

4.4.4. Well-to-wheel emissions of CO2 

The ultimate goal of advanced power-train technologies is to reduce the overall emissions of 

greenhouse gases. Thus, it could be interesting to evaluate the overall well-to.-wheel (WTW) 

emissions of CO2 produced with the different approaches considered in this investigation. 

The complete combustion of 1 liter of gasoline produces 2.4 kg of CO2. Assuming a density 

of 700 kg/m3, 1 kg of gasoline produces 3.42 kg of CO2 (tank to wheel emissions). Sullivan et 

al. 2004 consider a multiplying factor of 1.162 to pass from TTW to WTW emissions of CO2. 

Thus, a kg of gasoline can be assumed to produce 3.98 kg of CO2 (WTW). Using this 

conversion factor, the total CO2 produced along the cycles #A, #B and #R25 has been 

calculated from the results in Table 3 (i.e. for the full knowledge case). 

As for the electric emission, the TTW contribute is obviously zero while the well-to-tank 

(WTT) emissions depend on the energy mixing used to generate the electricity stored in the 

batteries. A report from the International Energy Agency, 2011 indicates for Italy an average 

emission of 0.386 kg of CO2 per kWh of electric energy. Using the data about the capacity of 

the batteries (equivalent 1.8 kWh) and the results in terms of SOC, it is possible to evaluate 

the total energy used for each cycle and for each approach. Thus, the electric WTT emission 

of CO2 can be easily calculated.  

The calculated values of CO2 emissions from engine and batteries with the full-knowledge 

approach are reported in Table 6. Note that the electric emissions are almost negligible with 

respect to the quantity of CO2 produced by the engine even if the engine is used only for a 

fraction of the mission. Moreover, they are quite the same for all cycles since the batteries 

are fully discharged in all cases.  

The calculation of the total CO2 emissions has been repeated for the no-knowledge and 

prediction&maps cases. The comparison is shown in Figure 14. 
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Cycle Usage of Electric 

energy  

Fuel 

consuption 

CO2 from engine 

(WTW) 

CO2 from 

Battery (WTT) 

total CO2 

(WTW) 

 [kWh] [liters] [kg] [kg] [kg] 

#A 24.8 1.02 2.92 0.172 3.09 

#B 24.7 1.96 5.61 0.172 5.78 

#R*25 24.8 1.91 5.47 0.172 5.64 

Table 6. Well to wheel emissions of CO2 in the case of full knowledge 

The results of Figure 14 reveal that complete information about the future driving mission 

could help to significantly reduce the overall emission of CO2 from a plug-in series HEV. 

The estimated reduction ranges from 12% for cycle #R*25 to 20% for cycle #A. 

 

Figure 14. Well to wheel emissions of CO2 for the proposed approaches 

The results of the prediction&maps approach are intermediate between full-knowledge and no-

knowledge cases. Nevertheless, the results in terms of CO2 are not satisfactory since the 

proposed approach helps to reduce the greenhouse emission by only 2-4%. This results 

suggest the possibility to replace or integrate the goal of the optimization process (eq. 1) with a 

cost function that takes into account the overall well-to-wheel emission of CO2. Moreover, 

better results could be obtained by increasing the duration of the prediction horizon.  

5. Summary and conclusions 

The chapter describes the optimal usage of an internal combustion engine in an intelligent 

hybrid electric vehicle able to sense its surrounding and adapt the energy management strategy 

to the actual driving conditions. After an introduction on hybrid electric vehicles and their 

challenges, the chapter describes the role of Information and Communication Technologies in 

the reduction of greenhouse emissions. Then, the chapter focuses on different approaches 
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presented in literature on the usage of information about traffic and weather conditions for the 

optimal energy management of hybrid electric vehicles. In particular, the chapter describes the 

application of the prediction&maps approach developed at the University of Salento for the 

optimization of the engine usage in the ITAN500 plug-in hybrid electric vehicle. 

Finally, the chapter proposes four metrics to evaluate the performance of the proposed 

method: the percentage of mission performed before reaching the lowest allowed value for 

battery state of charge (CBD%), the percentage of mission execute with the engine turned 

ON (EngON%), the average efficiency of the engine (AEE), calculated according to its actual 

temperature and the overall well-to-wheel emissions of CO2. 
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AEE  All Electric Range 
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CBD%  % of mission with controlled battery discharge 
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PHEV  Plug-in Hybrid Electric Vehicles 
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SOC  State of Charge 
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