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1. Introduction 

Welding, among all mechanical joining processes, has been employed at an increasing rate for 

its advantages in design flexibility. In addition to that, cost savings, reduced overall weight 

and enhanced structural performance. The highly localized transient heat and strongly non-

linear temperature fields in both heating and cooling processes cause non-uniform thermal 

expansion and contraction. Thus, result in plastic deformation in the weld and surrounding 

areas. As a result, residual stress, strain and distortion are permanently produced in the 

welded structures. This is particular when fabrication involves the use of thin section sheet 

materials, which are not inherently stiff enough to resist the contraction forces induced by 

welding. Transient thermal stresses, residual stresses, and distortion sometimes cause cracking 

and mismatching of joints. High tensile residual stresses are undesirable since they can 

contribute in causing fatigue failure, quench cracking and stress- corrosion cracking of welded 

structures under certain conditions. Welding deformation is undesirable owing to the decrease 

in buckling strength and injures the good appearance of structures.  

In addition, it causes defaults during the assembly which result in repeating the process and 

productivity restriction. Correction of unacceptable distortion is costly and in some cases, 

impossible. In welding design, the study and analysis of welding residual stresses and 

distortion become necessary in critical industries such as: aerospace engineering, nuclear 

power plants, pressure vessels, boilers, marine sector….etc. Measurement of transient 

thermo-mechanical history during welding process is of critical importance, but proves to be 

prohibitively expensive and time consuming. It often fails to provide a complete picture of 

temperature and stress/strain, deformation distribution in the weldment. On the other hand, 

detailed experimental measurements of the residual elastic strain distributions in welded 

parts are typically not feasible due to significant resource (man, machine and material) 

consumption. Mathematical modeling for residual stress evaluation provides a resource 
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effective method in comparison to the experimental methods when all interaction fields 

were correctly described in the modeling process. However, development of the modeling 

scheme gain demands a careful experimental data. The purpose of this chapter is to develop 

Finite Element models that satisfy the analysis of the behavior of transient phenomena of 

residual stress and distortion. That can be achieved by using different methods of the 

mitigation technique which work as heat transfer enhancement. Approximating the 

mechanisms of the transient temperature and longitudinal residual stress after temperature 

modification can be made. The modeled welding materials are aluminum and titanium 

alloys concerning flat and cylindrical shapes. 

2. The origin of residual stress  

Residual stresses developed during most manufactured processes involving metal forming, 

heat treatment and machining operations deform the shape or change the properties of a 

material. They arise from a number of sources and can be presented in the unprocessed raw 

materials, and can be introduced during manufacturing or can arise from in-service loading. 

(Withers & Bhadeshia, 2000; Rudd, 1992; Borland, 1994; Kandil et. al. , 2001 ). The residual 

stresses may be high enough to cause local yielding and plastic deformation on both 

microscopic and macroscopic level, that can severely affect component performance. For 

this reason it is vital that some knowledge of the internal stress state can be deduced either 

from measurements or modeling predictions. Both magnitude and distribution of the 

residual stress can be critical to the performance that should be considered in the design of a 

component. Tensile residual stresses in the surface of a component are generally undesirable 

since they can contribute to the major cause of fatigue failure, quench cracking and stress- 

corrosion cracking.  

Compressive residual stresses in the surface layers are usually beneficial since they increase 

fatigue strength, resistance to stress-corrosion cracking, and increase the bending strength of 

brittle ceramics and glass. In general, residual stresses are beneficial when they operate in 

the plane of the applied load and are opposite in sense (i.e, a compressive residual stress in a 

component subjected to an applied tensile load). The origins of residual stresses in a 

component may be classified as: mechanical, thermal and chemical. Mechanically generated 

residual stresses are often a result of manufacturing processes that produce non-uniform 

plastic deformation. They may develop naturally during processing or treatment, or may be 

introduced deliberately to develop a particular stress profile in a component (Brien, 2000). 

Examples of operations that produce undesirable surface tensile stresses or residual stress 

gradients are rod or wire drawing (deep deformation), welding, machining (turning, 

milling) and grinding (normal or harsh conditions). On a macroscopic level, thermally 

generated residual stresses are often the consequence of non-uniform heating or cooling 

operations. The residual thermal stresses coupled with the material constraints in the bulk of 

a large component can lead to severe thermal gradients and the development of large 

internal stresses. An example is the quenching of steel or aluminum alloys, which leads to 

surface compressive stresses, balanced by tensile stresses in the bulk of the component. 
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Microscopic thermally generated residual stresses can also be developed in a material 

during manufacture and processing as a consequence of the CTE mismatch between 

different phases or constituents. The chemically generated stresses can develop due to 

volume changes associated with chemical reactions, precipitation, or phase transformation. 

Chemical surface treatments and coatings can lead to the generation of substantial residual 

stress gradients in the surface layers of the component. Nitriding produces compressive 

stress in the diffusion region because of expansion of the lattice and precipitation of nitrides 

also carburizing causes a similar effect (Littmann, 1964).  

3. Sheet metal fabrication  

In recent years the new vision of high-tech industrial strategy looking for minimizing the 

cost and increasing the strength to weight ratio of critical structure such as aerospace, 

marine, nuclear etc. Thin walled element fabricated by welding process can promote such 

effect. In the last two decades the research in welding science became more vital than other 

manufacturing sciences in many industrial sectors. The development in welding technology 

is vastly increased, and the need for sheet metal fabrication by welding is necessary for 

many applications. Such those applications are rockets fuel tank and aircraft exhaust and 

engine mounts). Typical example of some components used in industries are shown in 

figure 1.  

 

Figure 1. Typical thin welded component used in aerospace: (a,b,c) type of rocket fuel tank. 

Other examples of sheet metal welding applications are in ships and airplanes structures. 

Welding can be successfully alternated to other connection processes such as riveting. Riveting 

has a low joint efficiency, thus a structure designed to be riveted, generally requires more 

materials even if joint itself is not complex. The area adjacent to the rivets is also a site of high 

(a) (b) (c) 
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residual stresses and stresses concentration, generating a favorable environment for stress 

corrosion and initiation of fatigue cracks. Welding is considered a challenge for replacing 

riveting in the future for airbus industries. The advantage of welding compared to the 

mechanical fastenings, includes cost, time and ease of fabrication. Also, simpler, lighter 

component design, and better joint efficiency. Laser beam welding may become a new joining 

technique for aircraft fuselage shells for the A318 and A380 airbuses (Airbus, 2000). Laser 

beam welding of the longitudinal stiffeners of the skin panels of a commercial aircraft fuselage 

may reduce the weight of the panels to 80% against the riveted structure production Figure 2. 

Welding is performed simultaneously from both sides of the stiffener. The main problem with 

welding is to keep the distortion as low as possible (especially the transverse deflections) and 

to reduce the residual stresses (especially the longitudinal tensile stresses).  

 

Figure 2. The fuselage structure 

 

Figure 3. Typical distortion on welded sheet: longit. welds (a,b,c), circular welds (d,e), and 

circumference welds (f,g).  
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The twin problem of stress and distortion due to welding, using conventional fusion welding 

process, have presented fabrication problems for many years especially, in aerospace industry. 

Consequently, manufacturing have applied additional time consuming and costly operations. 

This is to remove distortions or to relieve stresses after welding that avoid variable quality 

problem. This is particularly so when fabrication involves the use of thin sheet section, 

typically in the range of 0.5-4 mm in thickness. Recently advanced aluminum and titanium 

alloys became very attractive materials in sheet metal fabrication in high tech- industries due 

to their strength to weight ratio. However, as the thickness decreases, the sheet materials are 

not stiff enough to resist the contraction forces induced by welding. In the aerospace 

fabrication, the longitudinal residual stress in addition to distortion such as longitudinal 

bending and buckling become more substantial. The manufacturing of welded cylinders, 

cones or other shaped shell elements in aerospace industries are always accompanied by 

distortions. Figure 3, shows typical example of those distortions produced by longitudinal or 

circumferential welding when fusion welding process is applied (Guan, 1999). 

4. Welding and its focus research  

Historically, electric arc welding appeared in the late 19th century, shortly after electric power 

became available. Other fusion welding processes were recently developed such as electron 

beam welding (EB) and laser beam welding (LB), which introduced new generations in the 

welding equipments and processes. Failure of welded bridge in Europe in the 1930 and the 

American liberty ships in world war II make the concern of welding mechanics is important. 

The welding researches carried out since that time, then vastly developed. Analyses of these 

subjects require complex computation; therefore, most early studies were primarily empirical 

or limited to the analysis of simple cases. A number of studies have been performed on the 

calculation of residual stress and deformation, but few are useful in the design process. Most 

of these calculation methods are limited for special purposes, e.g. (Hansen, 1968), or too 

complicated to be used in design and production, e.g. (Okerblom, 1955). (Puchaicela, 1997), 

exhibit some empirical formulas for general distortion modes in welded steel structures. Most 

of the formula are based on measurements of deformation and strains and cannot take in to 

account what really happens in the (HAZ) when the welding is cooling down.  

Attempts were made to investigate changes in the bending deformation due varying 

pertinent parameters, see (Masubuchi, 1980). The investigation cover many practical aspects 

of process, but based mainly on experimental data. It is difficult to analyze the process, 

which is highly non-linear and involves plastic deformations and high temperatures varying 

in both time and space. Several reviews are, however, available such as the extensive review 

done by (Masubuchi, 1980; Radaj, 1992; Goldak et al., 1992) and the recent one by (Lindgren, 

2001a, 2001b, 2001c). With the advancement of modern computers and computational 

techniques (for example, the finite-element and finite-difference method), a renewed effort 

has been made in recent years to study residual stresses and related phenomena. Therefore, 

it is now possible using computer programs to simulate the transient thermal stresses and 

metal movement during welding, as well as, the residual stresses and distortion that remain 

after welding is completed as found by (Tall, 1991 ; Hibbit & Marcel, 1972; Muraki et. al., 

1975; Rybicki et. al., 1978 ).  
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4.1. The finite element method in historical perspective  

The history of the finite element method is about hundred years, but it took another fifty 

years before the method became useful. In 1906 a paper was presented where researchers 

suggested a method for replacing the continuum description for stress analysis by a regular 

pattern of elastic bars. Later (Courant, 1943) proposed the finite element method, as we 

know it today, the residue of section cover the developed FEM during the years and the 

motivation computer tools based on FEA, and the use for those packages for simulation of 

welding phenomena by the researcher. Many authors have utilized the commercial finite 

element codes ABAQUS & ANSYS enhanced with user subroutines, to model weld 

simulations with great success (Dong et. al., 1998; Feng et. al.,1996; Karlsson et. al., 1989; 

Grong & Myhr, 1993; Voss et. al., 1999; Tenga & Linb, 1998; Li et. al.,2004). The finite element 

code ADINAT was used by (Karlsson & Josefson, 1990), while other authors (Junek et. al., 

1999; Vincent et. al., 1999; Dubois et. al., 1984) have utilized SYSWELD to perform weld 

simulations. Welding is complex industrial process which often requires several trials before 

it can be done right. The welding is carried out by skilled workers, but in the past few years 

automated machines and robots are sufficiently used in the small and large industrial scales. 

To obtain the expected productivity through mechanization, high precision of the assembled 

parts must be kept. Therefore, the predictability is important in such aerospace, shipyards, 

nuclear and automobile industries. In order to produce a high-quality product, the accuracy 

control should be kept through the whole assembly line. The concept of accuracy control 

should be incorporated in the structural design, so that the designer can produce a better 

design accounting for the geometric inaccuracy. Numerical modeling and simulation of 

welding are a difficult and challenging problem due to the complex mechanisms involved. 

The wide range of problems concerned can be generalized into the fields shown in figure 4. 

The fields are strongly interrelated and couple in almost every possible manner. 

Establishment of a model accounting for all the physical effects and their couplings would 

be an incomprehensibly large and complex task. Hence, welding research is characterized 

by choice of a focal area for thorough analysis and use of suitable assumptions. Thus, the 

'art' of welding research is to choose simplifications without invalidating the research focus. 

 

Figure 4. Coupled fields in welding analysis. 
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4.2. Welding induced residual stresses 

Stresses arising during the welding process are referred to as internal or locked-in stresses 

(Radaj, 1992; Gatovskii & Karkhin, 1980). Residual stresses can be defined as those stresses that 

remain in a material or body after manufacture and processing in the absence of external forces 

or thermal gradients. Residual stress measurement techniques invariably measure strains rather 

than stresses, and the residual stresses are then deduced using the appropriate material 

parameters such as Young’s modulus and Poisson’s ratio. Often only a single stress value is 

quoted and the stresses are implicitly assumed to be constant within the measurement volume, 

both in the surface plane and through the depth. Residual stresses can be defined as either 

macro or micro stresses and both may be present in a component at anyone time. Macro 

residual stresses, which are often referred to as Type I residual stresses, vary within the body of 

the component over a range much larger than the grain size. Micro residual stresses, which 

result from differences within the microstructure of a material, can be classified as Type II or III. 

Type II residual stresses are micro residual stresses that operate at the grain-size level; Type III 

are generated at the atomic level. Micro residual stresses often result from the presence of 

different phases or constituents in a material. They can change sign or magnitude over distances 

comparable to the grain size of the material under analysis. To summarize, Residual stresses in 

the material body can be classified three type as found in (Withers & Bhadeshia, 2000; Borland, 

1994; Noyan). The different types of residual stress are shown schematically in figure 5. 

 

Figure 5. Categorization of residual stresses according to length scales.  

Welding stresses can be classified by three characteristics: By lifetime, welding stresses can 

be temporary or residual, the temporary stresses do exist only in a specific moment of the 

non-stationary process of heating and cooling. The residual stresses can be found after the 

whole process of welding is completed and structure is cooled down to the room 

temperature. By directional the welding stresses subdivide into longitudinal (parallel to the 

welding direction) and transversal (perpendicular to the weld seam) and through thickness 

stress. By the origins, the welding stresses are subdivided into. Thermal stress, Stresses 

caused by the plastic deformation of the metal; Stresses caused by phase transformations. 
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4.2.1. Welding induced longitudinal residual stress 

Representation of the temperature and the resulting longitudinal stress distributions that 

occur during welding are schematically gives in figure 6. In this example a simple bead-on-

plate case is analyzed (see figure 6a). The welding arc which is moving along the x-axis with 

a speed v, is indicated by the arrow. Far ahead from the heat source the temperature is 

constant and the stress is equal to zero in all the points. Moving in the negative direction of 

the x-axis, we reach the point where the temperature starts to rise figure 6c. The points close 

to the weld line start to experience compression in the longitudinal direction. This deep fall 

changes to a fast rise of the longitudinal stress. The rate of stress change is proportional to 

the temperature gradient ahead of the source. It caused by the yielding point σ yield 

changing with temperature. As known, at elevated temperatures the material begins to 

soften. After some temperature (the softening temperature) the material reaches the stage 

when σY is almost zero, and so, the points situated close to the centerline reach the softening 

temperature, and climb up to a zero value of the longitudinal stress. Stresses in the regions a 

short distance from the arc are compressive, because the surrounding metal restrains the 

expansion of these areas where the temperature is lower. However, stresses in the areas 

further away from the weld arc are tensile and balanced by compressive stresses in the areas 

near the weld. Going further, at some distance behind the welding arc, the temperature 

drops sufficiently for the material to be stiff enough to resist the deformation caused by the 

temperature change. Due to cooling the areas close to the weld contract and cause tensile 

stresses. After a certain time, the temperature change due to welding diminishes. High 

tensile longitudinal stresses (usually up to the yielding stress) are produced near the weld. 

In the regions further away from the weld, compressive stresses do exist. Figure 6d describe 

the final distribution of longitudinal residual stress, from literature (Masubuchi, 1980), σX 

can be approximated by: 

 
2[1/2( / ) ]2( ) [1 ( / ) ] y b

x my y b e     (1) 

Where σ M is the maximum stress at the welding line, y is the distance from the weld line, b 

width of tension stress. 

 

Figure 6. Schematic representation, (a, b, c) temperature vs stress during welding[Pilipenko]; d) final 

longitudinal residual stress. 
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4.3. Welding induced deformation  

As in case of the stresses occurring during and after welding, welding deformation can be 

transient or residual. Figure 7 gives an overview of various types of welding deformations 

to be expected when welding plates.  

 

Figure 7. Different types of welding distortions. The arrows indicate the shrinkage direction of the weld 

metal which causes the corresponding distortion [Masubuchi 1980].  

All these kinds of distortions are related to the shrinkage of the weld metal during cooling. 

They can be subdivided into:  

1. Transverse shrinkage – shrinkage perpendicular to the weld seam  

2. Longitudinal shrinkage – shrinkage in direction of the weld seam  

3. Angular distortion – transverse uplift caused by a non-uniform temperature 

distribution in the through-thickness direction. For instance in case of butt-joints with a 

V-groove.  

4. Rotational distortion – in-plane angular distortion due to the localized thermal 

expansion and contractions. Very relevant for overlap joints, for instance.  

5. Bending distortion – longitudinal uplift. The same causes as angular distortion.  

6. Buckling distortion – caused by compressive stresses inducing instabilities in the plates.  

Driven by the need to save fuel and reduce transport and operating costs, there is a 

growing demand for lightweight structures, for example in the automotive and aircraft 

industries as well as in shipbuilding. At the very basis of this trend we find the 

availability of recently developed metallic alloys that actually allow the transition to more 

lightweight designs. Although many of the welding techniques that are currently 

available offer suitable material and mechanical properties, the degree of distortion 

remains unacceptable and residual stresses often approach component design limits. The 

increasing reduction in thickness will lead to a growing demand for effective solutions for 

residual stress and strain control during welding. An example of welding deformations in 

thin sheet structures can be found in the shipbuilding industry, where welding causes a 

typical wave-like appearance on the hull of a ship (see Figure 8). Such problem results 
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through various stages of production have emerged as a major obstacle to the cost-

effective fabrication of lightweight structures. Same situation may occurs in aerospace and 

aircraft assembly where the high strength to weight ratio are necessary and thin elements 

are used, in addition to the requirement of smooth surface to maximize hydrodynamic 

performance and minimize radar signature [Huang 2004]. A conservative estimation for 

the labor costs accumulating for post-welding distortion correction is approximately 30 % 

[Andersen 2000; van der Aa,2007]. 

 

Figure 8. Ship hull defect due to distortion (van der Aa, 2007) .  

4.3.1. Bending distortion in welded sheet metal  

Bending distortion in sheet metal can be schematically shown in figure 9. When structure is 

welded, heat is supplied to melt the joint and non-uniform temperature distribution is 

caused owing to local melting, As a result, non-uniform thermal strains and stresses are 

caused and plastic strains remain after thermal cycle. Residual plastic strain around welded 

joints is the cause of permanent deformation. Figure 9a presents the pure cambering which 

may occur when the ratio of sheet length to width is high enough, but when this ratio 

decreases, the sheet exposes both cambering and angular distortion as shown in figure 9b. In 

small thickness, angular deformation is not significant because of the high homogeneity of 

the temperature field through the plate thickness. In some cases gradient forces countered 

from longitudinal shrinkage Fx, as shown in figure 9c, are more dominant and cause the 

cambering owing to low stiffness of thin sheet at this moment. This may occur when the 

longitudinal residual stress above the neutral axis of the sheet exceeds that below the 

neutral axis. 

The possibility for minimizing or eliminating this problem is only to balance the 

longitudinal stress around the neutral axis otherwise, minimizing these stresses below the 

significant magnitude which not exceeds the component stiffness. For most welding 

processes, the incident surface will absorb the most energy, with the energy absorption 

decreasing with depth. The variation in the through-thickness heating causes variation in 

the longitudinal stresses through the plate thickness. This generates a bending moment, 

which causes the bending distortion mode. 
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Figure 9. Schematic of: (a) cambering; (b) combined cambering and angular; (c) Shrinkage foresees in 

inherent strain region. 

4.4. Novel control techniques for residual stress and distortion  

Controlling of distortion has been investigated in series of papers by the Edison welding 

institute (EWI) (Conrady & Dull, 1995; Michaleris et al., 1999; Michaleris & Sun, 1997; 

Conrardy & Dull, 1997). Those papers concerned for the thermal tensioning technique in 

both static and dynamic heating during welding processes. The technique was found to be 

an active method in welded ship structures. Different heating sources can be used 

enhancing tensioning effect such as dynamic flame heating and moving laser spot heating or 

static heating. Another mitigation technique for controlling welding-induced stresses and 

distortion has been developed by Beijing Aeronautical Manufacturing Technology Research 

institute (Q. Guan et. al., 1994; Guan et al., 1993). The technique called dynamic controlled 

low stress no distortion (DC-LSND); it has been applied successfully to aerospace 

manufacturing for shell structures such as jet engine cases of heat resistance alloys and 

rocket fuel tanks of aluminum alloys (Guan et al., 1993; Guan et al., 1996). Many literature 

present that the residual stress can be minimized by using (DC-LSND) welding technique ( 

Li et al , 2004a; Li et al., 2004b). many cooling media can be used in this technique such as 

(atomized water, compressed air, solid CO2, liquid nitrogen, liquid argon). Beside the 

reduction of plastic strain, it was found that heat transfer enhancement by trailing heat sink 

technique work as source for balancing residual stresses above and under the neutral axis 

(Soul & Yanhua, 2005, 2006; Soul et al, 2010). The set-up of dynamic heating spots and 

trailing heat sink are represented schematically in figure 10. The studies on the temperature 

field characteristics and the thermal history are the foundation and prerequisite to study the 

stress and distortion control mechanism in welding mitigating techniques. Sometimes, it is 

inconvenient or even impossible to obtain the real thermal cycle at weld pool by experiment 

due to its limitations. 

(c)

(a) 

(b) 
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Figure 10. Schematic drawing represents: (a) moving heating spots; (b) trailing cooling spot 

To overcome this disadvantage, the advanced numerical analysis technologies, such as finite 

element method and finite difference method, have been frequently used to obtain the whole 

temperature field of the welded specimen. It is necessary to develop a computer-based tool to 

optimize welding mitigation processes and hence minimize the expense and time incurred by 

extensive welding trials. In this chapter three dimensional finite element methods are employed 

to find qualitative analysis for the temperature field, residual stress and transient plastic strain 

developed during welding process. To mitigate the problem of residual stress and distortion, 

two different techniques were tested and compared, those are trailing heat sink and dynamic 

heating spots techniques. Gas tungsten arc welding process (GTAW) is used for simulation. 

5. Investigation of residual stress behaviour after enhanced heat transfer 

5.1. Trailing cooling spot  

The proposed welding technique incorporates a trailing heat sink (an intense cooling source) 

with respect to the welding torch, and it is also named Low Stress No Distortion (LSND) 

welding. The development of this mitigation technique is based on both detailed welding 

process simulation using advanced finite element method and systematic laboratory trials. 

For understanding well LSND welding, finite element method is used to investigate the 

mechanism of the technique. In this chapter, 3D-FEA results from different papers done by 

the author have been selected. These results study the mechanism of the trailing heat sink 

mitigation technique and how the longitudinal residual stress was minimized based on the 

distance between the torch and the cooling spot. The qualitative and quantitative analysis of 

residual stress depend on the temperature gradient in the component during heating and 

cooling. So any modification of temperature topography may decrease or increase the 

residual stress that depends on interaction of strains. Three-dimensional models for 

welding, the thermal cycle and residual stress in welding are now in common use as a 

research tool for both academic and commercial purposes. The models use a transient 3-

dimensional thermal model which is decoupled to an elastic-plastic model for calculating 

the stress and strain. Models were investigated with different material and dimension as 

shown in table 1. 

(a) (b)
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Model Size geometry 

Model 1 Al-Mn(3003) 260 130 2mm mm mm  Flat sheet 

Model 2 Al-Mg (5083) 240 80 3mm mm mm  Flat sheet 

Model 3 Ti-6Al-4V 270 120 2.5mm mm mm  Flat sheet 

Model4 AL-Cu (2024 100mmOD, 96mmID, 240mm length Cylindrical sheet 

Table 1. Simulated models: material, shapes and their dimensions. 

5.1.1. Establishment of heat source model  

In this study, two heat source models were investigated, then correlated on fitting a 

practical welded sample for distinguishing the better one, so it can be used to detect other 

analysis. The first one is disc model proposed by (pavelic et al, 1969 ), the mathematical 

expression of the model present in Equation 2. 
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Where q(r) is the surface flux at radius r  (W/m2), r0 is the region in which 95 % of the heat 

flux is deposited, r is radial distance from center of the heat source and Q is the heat 

input.  

The second model is double ellipsoidal power density distribution" adopted from (Goldak, 

1984), the mathematical expression of the model present in Equations 3 and 4. 
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Where a, b, c are the semi-axis for the gaussian distribution in (x,y,z) direction respectively 

and ff, fr are fractions of heat deposit in front and rear of the heat source. The intensity plot 

for both surface heat and double ellipsoid heat source models is shown in figure 11. 

Variation of the semi-axis and the heat deposit fractions allows the double ellipsoid fitted to 

give suitable heat source especially at increased welding speed.  

At the same heat input, the double ellipsoid is more reasonable for fitting the fusion 

boundary rather than the gaussian distribution or surface heat source model as depicted in 

figure 12. 
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Figure 11. Intensity of heat source model: (a) gaussian distribution; b) double ellipsoid 

 

Figure 12. Experimental & simulated fusion boundary fitting: (a) double ellipsoid; (b) gaussian 

distribution;  

5.1.2. Effects of trailing cooling spot on heat transfer form  

The temperature distribution resulted from the thermal analysis for the heat sink process stated 

above is predicted at a welding time of 25s and presented in Figure 13. The temperature 

decreases drastically in the zone between the arc and the heat sink, and the corresponding 

temperature gradient increases. Further more, in the front of the heat sink the temperature 

isotherms reveals the existence of high temperature gradient and therefore, some of high 

temperature contours are drawn back to the front of heat sink and distorted temperature 

distribution were formed. However, the point in and near the weld centerline may passed by 

more than one thermal cycle and this may expressed as [heating - normal cooling - forced 

cooling – surrounding heating – normal cooling]. The evidence of those cycles became more 

clear when different locations in the samples in both conventional and after applying heat sink 

processes were selected. Figure 14 reveals different location with difference cycle profiles.  

The locations at or near the weld line present those cycles and exhibit significance difference 

in thermal profiles. The point at weld line reveals the maximum intensity of the cooling spot 

which indicate a steep profile and the existence of valley . The thickness of the modeled 

sample play an important role for the effectiveness of the technique. Figure 14c shows the 

thermal history of simulated welded aluminum alloy with 2mm in thickness 

(a) (b)

(a) (b) 
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Figure 13. Temperature contours in trailing cooling spot: a) Al-alloy; b) Ti- alloy (soul, 2oo5,2006) 

 

 

 

 

 

 
 

 

Figure 14. Thermal history: (a) conventional welding; (b) trailing cooling spot[t=3mm], (c) [t=2mm] 

Comparing these results with that modeled with thickness 3mm as presented in figure 14b, 

at the point (y=0), the penetration of cooling zone is more effective in the small thickness, 

which reveals lower temperature magnitude at the center of the spot figure 14c. Moreover, 

(a) (b) 

(a) (b) (c) 
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the overall temperature tips in thermal history is decreased compared with conventional 

welding. This refers to some energy absorbed from the total energy by the amount action of 

introduced cooling.  

5.1.3. Longitudinal residual stress behaviour  

The result obtained from the 3-D modeling of welding a bead on plate with thickness 2.5mm 

for titanium alloy and 3mm for aluminum alloy using GTAW process were depicted in 

figure 15. Describing the process behavior, in the front of the torch, compression transient 

residual stress were developed which result from generated thermal strain. When the 

material loose the mechanical properties at high temperature such yield strength and 

young’s modulus, no extra stresses were produced. Behind the welding pool when the 

shrinkage started , plastic strain was accumulated and transient residual stress changes from 

compression to tension in short period of time. Therefore, Its magnitude increased vastly as 

the temperature decreased. However, it is an important knowledge if this change with 

duration can be measured practically to make correlation, but it is so difficult. In fact, the 

final magnitude of residual stress depends on cooling rate, regarding the metallurgical 

science welding microstructure morphology and size depend on the cooling rate as well. So 

no welding residual stress developed if there is no change or homogenous microstructure 

was obtained.  

 

Figure 15. Transient residual stress: (a) Al-Mg alloy; (b) Ti-6Al-4V alloy 

In more details, after including trailing heat sink technique, which can enhance heat transfer 

process, the temperature was modified. The analyzed results in figure 16 obtained when the 

trailing heat sink is located at 30 mm behind the torch, exhibit that the stress profile has 

different behavior. For instance, in small area depicted in figure 16a (zone of compressed 

contours), the contours behind the torch were compressed in the front of the cooling spot, 

and its shape becomes in complicated form through this stage.  

(a) (b)
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Figure 16. Transient longitudinal residual: (a) stress vs thermal cycle ; (b) longitudinal residual stress 

contours Al-Mn alloy 

The transient longitudinal residual stress stays constant for a period of time, this may also 

be referred to the high temperature contours intercepted between the two sources which 

don’t affect the plastic strain. Through enough length along weld centerline behind cooling 

zone, the longitudinal residual stress seams to have a constant value which can be 

distinguished from a stable color along this length. This behavior coupled with the constant 

values of contours around mentioned length.  

Moving a step back, far from local cooling zone, the temperature of the metal at the spot-

cooling region is smaller than the surrounding, so the fast contraction of welded metal in the 

cooling zone and high transient longitudinal residual stress may developed as depicted in 

figure 16b (red color were the arrow located). Because of cooling that crossed in a short time 

and the hot contours appeared again due to the hot surrounding material, the residual plastic 

strain may released and recovery process may generate. However, both the effectiveness of the 

cooling at the upper surface and the abnormal temperature developed behind the heat source 

may affect the balance level for the front-to-rear stress pattern. Furthermore, in short distance 

behind the torch, high temperature contours around the cooling zone and low temperature 

inside, which revealed a big difference from that occurred in conventional welding process. 

Therefore, it may brought less stress during solidification temperature range, and reasonable 

longitudinal strain can be obtained. Behind the cooling zone the transient longitudinal residual 

stress profile seems to be decreases to somewhat value due to an increase in temperature as 

shown in figure 17. In this stage, the process became as heat treatment for the residual stress, 

and the metal may expand again due to heating which believed to be appeared in the 

expansion process in the rear of the cooling zone. 

(a) (b)
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The drop in residual stress magnitude follows the change in temperature according to the 

thermal cycle may refer to the opposite change of the elastic strain when the temperature 

increases again by the surrounding hot metal. Therefore, the reasonable expression for this 

mechanism related to recovery process due to the heating process behind the cooling spot 

which may expand again, and then some of the plastic strain can be released. In practice, 

this process is quite logic during the heat treatment of materials suffering from residual 

stress induced by welding or other strengthening process such as cold working etc. 

Furthermore, the maximum longitudinal residual stress in titanium model is reduced to 

about (~326 MPa) from that in conventional welding, where in the aluminum model the 

maximum residual stress is minimized about (~55MPa) from that in conventional welding. 

The tested technique shows the significance influence on the final longitudinal residual 

stress through thickness, the clear evidence for such influence can be seen in figure 18. The 

residual stress at the upper surface became less in magnitude than that in the middle of 

plate thickness. It seems not only the over all stress minimization but the possibilities for 

balance the stresses around the center of the Thickness. 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 17. Transient longitudinal residual stress in moving cooling spot: (a) in Al-Mg alloy; (b) in Ti-

6Al-4V alloy 

(a) (b) 
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Figure 18. Final longitudinal Residual Stress through Thickness: (a) In Conventional Welding; (b) In 

Trailing Heat Sink. 

5.1.4. Longitudinal plastic strain behavior  

In welding process, the residual stress magnitude based on the inherent strain or plastic 

strain, so the analysis of strain behavior is important to characterize the minimization of 

residual stress. In the work done by (soul & yan hua,2006) the transient longitudinal plastic 

strain profiles were analyzed at two nodes and presented in figure 19. In conventional 

welding the plastic strain at the centerline (Y=0mm) seams to be higher than the point a little 

moved a way from the center line (Y=2.5mm). However; after including dynamic cooling 

spot figure 19b, significant change in plastic strain behavior was obtained. The plastic strain 

at the centerline became lower than that at (2.5mm), it is clear that the overall plastic strain 

magnitude were minimized due to the used technique.  

The minimization behavior refers to the complex tensioning effect based on the 

temperature topography. Moreover, due to the surrounding hot material, the temperature 

increased again behind the trailing cooling spot, and some of strains is released or partial 

annealing process occurs. In practical welding, it is difficult to obtain constant 

temperature through thickness with respect to the time whatever it is thin. This non-

homogeneity refers to the three heat transfer conditions which may occurs at the upper 

surface rather than at the lower surface, hence the temperature is still higher above. To 

characterize the change in plastic strain through the thickness, simulated result of 2.5 mm 

modeled welded titanium sheet is analyzed. However, when no backing used in welding, 

the cooling rate at upper surface is still more than at lower surface. Figure 20 reveals that 

the maximum plastic strain occurs at the upper surface but after trailing heat sink 

introduced figure 20b, all the plastic strain magnitude through the thickness became close 

to each other due to the process effects.  

(a) (b) 
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Figure 19. Transient plastic strain: (a) in conventional welding; (b) in trailing heat sink. 

 

 
 

Figure 20. Plastic strain through depth: (a) in conventional welding; (b) in trailing heat sink. 

Moreover, the plastic strain magnitude at the upper surface is less or equal the strain at the 

lower surface which cause a balance in strains around the neutral axis. Therefore, balancing 

of forces occurred, and bending distortion minimized or can be eliminate depends on the 

degree of balancing. It is conclude that the reduction in overall longitudinal plastic strain 

magnitude is the source of longitudinal residual stress minimization. This results can be 

coupled with that obtained in Figs. 15b and 17b. 

(a) (b) 

(a) (b) 
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5.1.5. Effectiveness of the process on longitudinal welded cylinder model  

In the cylindrical model the trailing heat sink considered to be moving behind the heat 

source at the bottom side. This consideration according to the results obtained in 

conventional welding which indicate that the maximum axial residual tensile stress 

occurred at inner the surface. The temperature distribution resulted from the thermal 

analysis of those conventional welding and that including trailing cooling spot welding 

process stated in the above sections are studied at welding time of 20s. Contour plots of 

the temperature distribution under the two conditions are shown in figure 21. 

Comparing the isotherms in both process results, the contours behind the heat source 

were shifted in the front of trailing cooling spot due to abnormal heat transfer process. 

The homogeneous heat transfer in conventional welding looses its stability after cooling 

spot was introduced. Moreover, the temperature magnitude in compressed contours was 

decreased due to the absorbed heat at high temperature behind the torch by the action of 

cooling. The effect of change in heat transfer mechanism on the distribution of axial 

residual stress can be seen in figure 22. the residual stress profile is completely different 

after introduced dynamic cooling spot. Because of the cylindrical shape is different from 

the flat from point of view the stiffness resistance from point of view, the reduction in 

final residual stress in cylindrical model is not sufficient when it is compared with the 

flat model which is still thicker. 

 

 

 

 

 
 

 

 

Figure 21. Temperature distribution at 20 s: (a) conventional welding; (b) trailing heat sink. 

(a) (b)
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Figure 22. Transient axial residual stress (a) conventional welding; (b) trailing heat sink. 

5.1.6. Control of distortion by trailing cooling spot  

As discussed in the previous sections, how the mechanism of heat transfer was changed 

after introducing heat sink. Therefore, it results in thermal tension that differs from what 

occurs in conventional one. The degree of tension depends on the position of the cooling 

spot with respect to the heat source, or the proper parameters as denoted in ( Li et al, 2004, 

2005; Soul et. al., 2006). All the above results show the minimization in longitudinal residual 

stress that refers to the decrease in responsible plastic strain. All of the previous parameters 

in addition of balancing stress and strain on the upper and under the neutral axis bring the 

elimination of the structure distortion as depicted in figure23 and figure 24.  

 

Figure 23. Final distortion: (a) conventional process; (b) with heat sink process;  

(c) welded experiment sample. 

(a) (b) 
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Figure 24. Final deformed model: (a) GTAW process; (b) DC-LSND process. 

5.2. Optimization of thermal tensioning in welded shell element  

There are many different methods of welding deformation and stress reduction. At the same 

time, the main principles are the same. Classification of the mitigation techniques helps to 

understand its performance capabilities and limitations. According to the basic mechanisms 

on which the techniques are based. 

5.2.1. Effect of the laser heating spot on the temperature distribution 

The Introducing of heating spot besides the welding reveals an increase in temperature 

at fusion zone and other near regions comparing with the conventional welding itself. 

So, to obtain the similar contours of temperature at welding line, the heat input from the 

torch were decreased about 19%. Figure 25 shows the predicted temperature distribution 

in conventional welding and moving heating spots respectively. The selected separated 

positions for laser spots were 34 mm from the centerline. It is clear, that the heating spot 

not only affects the temperature distribution in the front of heat source, but also enlarges 

the contours in transverse direction far way from centerline. This is due to the increasing 

of the total energy input with respect to small specimen width. However the contours 

change completely at the position of spots due to the concentration of laser heating. 

 

 
 

Figure 25. Temperature distribution contours: (a) conventional welding; (b) moving heat spot. 

(a) (b)

(a) (b) 
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5.2.2. Effects of the laser heating spot on the stress and strain behavior  

Longitudinal residual stresses and plastic strains in transverse direction with respect to 

the time are presented in figure 26. The analyzed points are taken at different distance 

from the centerline in the mid length of the model. The distance of heat spot from weld 

centerline is 25 mm. The tensile stress profile developed during cooling cycle show 

different behavior compared to the result obtained from the conventional welding figure 

26a. However, the transient longitudinal residual stress stay constant during some period 

of time (~40s), Thus, at that time the heat source already switched off. This behavior is 

related to the effect of spot heating. The heated material by laser spot were expanded to 

the direction of welding centerline, in the same time the metal behind the torch vastly 

contracted, now there are two possibilities, first, if the material is heated for enough 

distance in transfer direction the contraction of welded material don’t meet the resistance 

from the heated material for mentioned period of time above, in the opposite of the 

conventional process were the cold material restrained the contraction. Second, when the 

material contacted at the welding line the heated material by spots expanded in the 

direction of welding line, hence the material may contracted without more tension due to 

the expanded material neighboring during the above mentioned period. Moreover the 

residual stress using this method still more than in cooling spot technique. Concerning the 

plastic strain behavior in this technique, the transient plastic strain result from laser 

heating spots reveals complicated profile too; the longitudinal plastic compressive strain 

is caused by the expansion of the heated material being constraint by the cooler material 

nearby. 

 

Figure 26. Simulated results in moving heating spots: (a) Transient residual stress; (b) Transient plastic 

strain  

The rising of temperature far ways from zone induced by laser spots affects the material 

properties and decrease it is stiffness, hence the resistance of material to the weld metal 

contraction were reduced. Moreover the transient longitudinal plastic take long period of 

(a) (a)
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time to accomplished final magnitude due to increase of overall body temperature, and 

it’s value less than from that obtained by trailing heat sink technique figure 17a, but the 

residual stress and distortion is still more. This phenomenon may refer to other strains 

results in transverse and through thickness direction, which need more details for their 

behavior under this process due to the complicated strain interaction in the three 

dimensional 

5.2.3. Processes parameters controlling distortion degree 

It is clear from the previous studies that any modifications in the longitudinal residual 

stress results from temperature modification or heat transfer enhancement. As what 

happen in the simulated techniques, and the main control on the twin problem is how the 

temperature topography looks like. However, the change of processes parameters will 

give changes in temperature topography. Therefore, different temperature topography 

generate different tensioning process or different strain interaction. According to the 

previous explanation, for the process optimization investigation of the effect of the 

distance between the heating spot and weld centerline on the cambering distortion 

magnitude was carried out. Figure 27 presents the degree of distortion obtained from 

computational results at different distance of the laser spot. The results show that the 

distortion increases as the distance increases. However, after introducing the heat sink 

process as depicted in figure 27b, the distortion may disappear and the calculated 

displacement is only 1.3 mm. The result is quite reasonable according to the minimized 

and balanced residual longitudinal stress and plastic strain or the balanced forces and 

moment which become insignificant to produce the curvature along welding line as 

mentioned in the previous sections. Moreover, the displacement in laser heating spot was 

reduced but still higher than that obtained in the cooling technique. At this point 

comparing both mitigation techniques, it can be concluded that at the same reduction of 

distortion, still the moving cooling spot more effective technique than thermal tensioning 

for residual stress minimization in thin element. 

 

Figure 27. Parameters effects the processes performance: (a) heating spots; (b) cooling spot. 
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6. Conclusions  

One of the major problems induced during welding of thin element structure are the twin 

Problem. Residual stresses reduce the performance of welded component when they have the 

same sense with the working stress in service. Other disadvantage of residual stress is 

promoting the stress corrosion cracking. Distortion from other side, impairs the structure 

appearance and causes misalignment during assemblies. During the years, many mitigating 

techniques are developed in literature to reduce the residual stress and elimination of 

distortion. In the end of last century, techniques introduced thermal tensioning or temperature 

modification were creative, that including (LSND) and heating techniques. When the dynamic 

action of these techniques applied, they became more suitable to approximate the solution of 

the problem, because it is dealing with temperature modification, and it is known that the 

temperature is the source of the problem. In this chapter, the two mentioned active mitigating 

techniques were investigated in dynamic action and correlated with each other. The main 

fields of interest for the investigation are temperature fields, longitudinal residual stress and 

strain in addition to the bending distortion. Atomized cooling water with heat transfer 

coefficient were proposed , also laser heating spot beside the torch with proper heat input 

were considered. The output results of this investigation summarized as following: 

 The change of heat transfer enhancement produce temperature modification or 

different temperature topography. 

 The modification of temperature distribution generate different tensioning inside the 

body, therefore new abnormal strain interaction in different direction. 

 Due to complexity stiffness based-response for different shape, the transient stress 

behavior developed in the bead on plate model show different profile correlate with 

that in the cylinder model. 

 One of the major advantages of FE optimization approach over welding trials was that 

the models enabled the transient stresses and strains during welding to be considered. 

This greatly simplified the understanding and optimization process. 

 During the DC-LSND process, the thermal history for metal in the weld centerline and 

at closed region passed more than one thermal cycles, as (heating-cooling-heating-

cooling) and the duration time for staying the metal at high temperature is shorter than 

in conventional process. This is found to reveal different stress and strain history 

profiles at this region compared with the profiles obtained in the conventional process. 

 The significant reduction in the residual stress obtained at the top of surface and the 

maximum stress at the middle of the thickness. This helps to balance the shrinkage 

forces above and under the weld metal center, and distortion can be prevented 

 The suggested techniques gave a reduction of the peak residual stress. Optimization of 

both DC-LSND and thermal tensioning can give similar reduction or elimination of 

bending distortion of such used models thickness. At this optimization still the DC-

LSND method has a better effectiveness on longitudinal residual stress minimization 

Future work analysis need for strains in other (Y and Z) directions, to see it is behavior after 

applying the above techniques and correlate with the longitudinal direction. 
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