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1. Introduction 

Understanding refers to “the ability to understand”, which means “to comprehend, to 

apprehend the meaning or import of, or to grasp the idea of [something]” (Oxford English 

Dictionary, 1989). Understanding is a key concept within all fields of study concerning 

learning and development, such as cognitive psychology, pedagogy, educational sciences, 

and developmental psychology. Within these fields of study, understanding has been 

studied for different domains, such as scientific reasoning (e.g., Grotzer, 2004; Inhelder & 

Piaget, 1958/2001; Rappolt-Schlichtmann, Tenenbaum, Koepke, & Fischer, 2007), social 

development (e.g., Blijd-Hogeweys, 2008), mathematics (e.g., Dehaene, 1997; Gilmore & 

Bryant, 2008), and many more. In the field of education, children’s understanding is 

especially important, as understanding involves deep knowledge of concepts, and the active 

manipulation of this knowledge in the form of explaining, predicting, applying, and 

generalizing (Perkins & Blythe, 1994). A model of understanding can give guidance to both 

researchers and educators dealing with children’s understanding and the development of 

their understanding. In this chapter, we will present such a model, based on dynamic 

Systems and Skill Theory principles. The model is illustrated throughout this chapter with 

examples of children’s understanding of scientific concepts, or more specifically, children’s 

understanding of air flow and air pressure during a syringe task, which is described below. 

The syringes task is designed to let children explore how air flows through a system, and to 

introduce them to the relationship between pressure and volume, as well as the way in 

which pressure can exert forces on objects (see also De Berg, 1995). Although there are some 

basic questions the researcher asks every child during the administration of the task, most  

of the interaction between the boy and the researcher emerges in real-time, i.e. during the 

task itself. 
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Between three and seven years of age, important changes in children’s conceptual 

understanding of scientific concepts take place (Van Geert & Steenbeek, 2008), in addition to 

changes in curiosity and exploration tendencies (Simonton, 1999), which are probably 

related to important changes in children’s lives. That is, they go through a major transition 

when they enter first grade, and start learning to read, write, and to do arithmetic (Carrière, 

2009). During this age period children’s learning behavior gets shape, attitudes toward 

school are formed, and first interactions with peers and teachers in a school setting emerge, 

which are the building blocks of academic performance at a later age.  

Moreover, this is also the age at which important cognitive developmental transitions take 

place. From the work of Piaget (1947/2001) we know that children between three and seven 

years old are in the pre-operational stage of development, which is characterized by the 

forming of concepts, and the use of symbols to think about the world, but also by centrism, 

i.e., focusing on a single aspect instead of more aspects while children reason or solve 

problems. More recently, research using Skill Theory, which is inspired by Piaget’s theory, 

illustrated that the highest skill (understanding) level that children first reach between 3 and 

7 years of age develops from single representations (understandings that go beyond specific 

actions on objects) to representational systems (linking several of these representations that 

define the object or concept at hand – see also section 3) (Fischer & Bidell, 2006). However, 

this research also showed that children vary enormously in their skills across context, tasks, 

and within short periods of time. This variation is due to the fact that context dynamically 

contributes to the deployment of skills in the form of a real-time activity. That is, thinking or 

understanding takes place in the form of action. How does the process of understanding 

occur in action, taking into account the real-time interactions that constitute this process in a 

teaching environment, and taking into account the vast amount of intra-individual 

variability? 

Based on our ongoing longitudinal research project, we will illustrate how short term 

“building blocks” of understanding give rise to various long-term patterns of 

understanding. In order to fully understand these short-term building blocks, we have 

selected one particular problem domain for this chapter, namely air flow and air pressure, 

because it provides a domain that is both limited and rich enough to study. Zooming in on 

these short-term interactive processes gives us important information to understand the 

development and transformations of understanding on the long term (Steenbeek, 2006; 

Thelen & Smith, 1994).  

During the ongoing longitudinal research project, a researcher repeatedly visits 32 young 

children (3 to 6-years old) as part of an ongoing longitudinal study on children’s 

understanding of scientific concepts, such as the flow of air and air pressure. During one 

visit, the researcher presents each child with two empty medical syringes without a needle, 

which are joined together by a small transparent tube. One of the syringes’ pistons is pulled 

out. “What do you think will happen if I push this [piston] in?” is one of the questions the 

researcher asks. This question triggers a variety of answers from the children. Some children 

think nothing happens, others say the tube will pop out, whereas others even think the 
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material will explode. Some children say they don’t know and others predict that the piston 

of the other syringe comes out, which is the right answer in this case. After the researcher 

demonstrates what happens, researcher and child discuss about possible explanations for 

this phenomenon. Again, multiple answers are given. Some children simply say they don’t 

know. A few mention batteries or electricity as a causal explanation, whereas others say that 

water flows through the syringes and causes the piston to move upwards. Some children 

emphasize the tube that connects the syringes, and others understand that air flows through 

the tube and syringes.  

What accounts for the differences in young children’s understanding of scientific concepts, 

and what is the role of the environment, i.e., the teacher in supporting and promoting this 

understanding? To answer this question, a model of children’s scientific understanding 

should take the complexity and dynamic nature of this into account, as well as the complex 

interactions with the environment on which the understanding of children is often based 

(Fischer & Bidell, 2006). This chapter aims at explaining how children’s understanding of 

scientific concepts can be studied using a model based on properties derived from dynamic 

systems Theory (e.g. Van Geert, 1994) and Skill Theory (Fischer, 1980; Fischer & Bidell, 

2006).  

2. Dynamic systems and understanding 

A dynamic systems approach describes how one condition changes into another, and how 

different time scales are interrelated (Van Geert, 1994; Van Geert, 1998; Van Geert & 

Steenbeek, 2005, 2008; see also the theory of embedded-embodied cognition of Thelen & 

Smith, 1994). Research in the dynamic systems paradigm investigates real-time processes 

and captures development as it unfolds through multiple interactions between a child and 

the environment (Van Geert & Fischer, 2009). Such development can be viewed as a self-

organizing process, since the state of the system organizes from the multiple interactions 

among the elements (e.g. the child and environment). Over time, the system’s state may 

emerge toward certain stable states, or attractors (e.g., Thelen & Smith, 1994). Dynamic 

systems theory has so far proven to be a valuable framework for studying human 

development, including reflexes (Smith & Thelen, 2003), parent-child interactions (Fogel & 

Garvey, 2007), language development (van Dijk & Van Geert, 2007), scaffolding in teaching-

learning situations (Van Geert & Steenbeek, 2005), dyadic play interactions (Steenbeek, 

2006), identity development (Lichtwarck-Aschoff, Van Geert, Bosma, & Kunnen, 2008), and 

cognitive development (Fischer, 1980; Fischer & Bidell, 2006). The approach makes use of 

methods to investigate time-serial processes, and test dynamical relations between these 

processes (Cheshire, Muldoon, Francis, Lewis, & Ball, 2007; Lichtwarck-Aschoff, et al., 2008; 

Van Geert & Steenbeek, 2005; 2007; Steenbeek & Van Geert, 2005).  For example, Van Geert 

and Steenbeek (2005; 2007) present mathematical models to predict patterns and variations 

in combinations of variables over time. Other authors used time series to describe 

relationships between variables (van Dijk & Van Geert, 2007) or state space grids 

(Hollenstein, 2007) to investigate interactions between dyads; as opposed to probabilistic 

approaches which rely on deviations from the mean and group differences. 
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Applying a dynamic approach to the study of understanding scientific concepts means that 

several properties of this approach have to be taken into account. Below, four properties 

(intertwining person-context dynamics, iterativeness, interconnected time scales, and micro-

genetical variability)1 and examples of their application to the study of understanding (of 

e.g., scientific concepts) will be discussed. In section 5, the properties will be illustrated in 

light of an empirical example, in combination with Skill Theory’s framework to measure the 

complexity level of understanding (Fischer & Rose, 1999).  

2.1. Intertwining person-context dynamics 

Vygotsky (1934/1986) already pointed out that children develop understanding in close 

cooperation with their teachers and the material. His concept of the zone of proximal 

development is a dynamically changing concept, in which teacher and child co-construct the 

child’s development. This means that the child’s skills and understanding are constructed 

by a series of actions guided by the educator, instructions and tool-use, which are then 

internalized and personalized (cf., Van Geert, 1998; Van Geert & Steenbeek, 2005).  

From a dynamic systems perspective, understanding is seen as a process of intertwining 

person-context dynamics (Thelen & Smith, 1994), meaning that the social (e.g., the science 

teacher) and material environment (e.g., materials used in science class) play an active part 

in the process and cannot be viewed separately, or merely as an outside-based influence. In 

fact, these elements are intertwined across time, in a continuous person-environment loop: 

at any moment in time, one component (e.g., the child) affects the other (e.g., the teacher) 

and the other affects the first, thus creating the conditions under which both components 

will operate during the next moment in time (Steenbeek, 2006). For example, interactions 

between a child, a researcher, and the syringes-task will organize toward certain distributed 

patterns of understanding at that moment (in real time), which eventually evolve toward 

stable attractors on a longer time scale (Thelen, 1989; Halley & Winkler, 2008). Hence, 

understanding is an active process of what the child constructs in interaction with (not just 

within) a specific environment, in which each individual contribution is virtually 

meaningless if not viewed in light of the interaction (Van Geert & Fischer, 2009). Merged 

together, person and context become what Fogel and Garvey (2007) call a “cooperative 

unit”, in which both components not only contribute to the process of development, but are 

highly intertwined and form an unique process together. 

Representationalists, such as Fodor (1981) hold the idea that understanding takes the form 

of internal structures (representations) within the child’s mind. A child’s scientific 

understanding thus consists of a collection of these internal structures which represent 

scientific facts and concepts, which are activated and used to coordinate our behavior 

toward the current environment (Haselager, de Groot, & van Rappard, 2003). In this case, a 

                                                                 
1 Actually, the dynamic systems approach has many more properties or “tools” (Howe & Lewis, 2005) 

to study development. However, we highlighted these four specific properties to illustrate how this 

approach sheds new light on the study of understanding scientific concepts. 
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concept or representing model of the air pressure task would be represented in the child’s 

mind, and this representation would guide the child’s behavior as he or she is working on 

the actual air pressure task.  

Terms such as “concept” or “representation” are actually more or less undefined, and derive 

their meaning from a particular theoretical framework. From a representationalist (or 

information-processing) view, these words refer to internal entities responsible for our 

thinking or actions toward the environment. From a dynamic view, however, these words 

refer to processes, perception and action structures, that emerge within a specific 

environment (Van Geert & Fischer, 2009). Perceiving, acting and thinking are conscious 

processes that take a particular shape in the stream of consciousness of the participants, 

such as a child and the researcher (van Gelder, 1995; 1998). This shape is governed by the 

participants’ actions on the objects, such as the syringes, or on physical representations of 

the syringes, such as prints or drawings, within their current context, and should not be 

identified with a retrieval of internally stored representations (Van Geert, 2011). We can 

construct much of this stream of consciousness by carefully watching the ongoing 

interaction between child and environment in terms of the intertwining of various forms of 

verbal and non-verbal behavior, such as eye and head movements, gestures, pointing, 

verbal descriptions, manipulations of the materials, etcetera. The child's current 

understanding of the concept at issue (for instance, the flow of air through two syringes 

connected by a tube), is the child's continuously changing state of mind, or stream of 

consciousness, as he picks up and reacts to whatever goes on in the current dynamic 

interaction. Thus, despite the fact that the process of constructing an understanding is a 

distributed process, involving the intertwining of person and context, understanding can 

still be specified as an individual and "internal" process corresponding with the individual 

child's ongoing state of mind, but only as a changing state that unfolds in this active process 

(Van Geert, 2011). Hence, representations are structures that emerge during a specific 

interaction in a specific environment, and are not internal symbolic structures which guide 

behavior.  

2.2. Iterativeness 

Within the process that results from an intertwining between person and context, 

understanding emerges through iteration, that is, every step in understanding is based on 

the previous one and embedded in the current context. More precisely, iterativeness 

(sometimes referred to as recursiveness) involves a series of computational operations, in 

which the input of the next operation is the output of the previous one. For instance, if a 

child determines that an empty syringe contains air, he can build on this knowledge by 

trying out what happens if he joins two of these syringes together by using a tube. 

Understanding changes through repeated interactions, instead of being the retrieval of a 

complete representation that is already there in memory. During a teaching interaction, each 

previous action of the child has an influence on the subsequent (re-)action. In other words, 

the existing understanding is the basis for the emergence of the next understanding as it 

develops in the interaction.  
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In its simplest possible form, a dynamic systems model specifies the change in a variable (L) 

over time (t) as a function of the current level of the variable: L t+1 = f (Lt). The function f  

refers here to the change in ‘understanding’, but can specify any sort of influence or 

mechanism of change (Steenbeek, 2006). Understanding does not consist of particular 

moments within the interaction (e.g. when the child answers), but is in fact the whole 

iterative process itself, and every interaction unit is a component of this holistic 

understanding process during a particular problem solving event. Even though 

understanding consists of the whole iterative process, the child’s answers are a reflection of 

the child’s ongoing state of mind within that process and reveal his or her understanding at 

that very moment in time. 

As Howe and Lewis (2005) point out, the iterative nature of the process of understanding 

can also explain some of the differences between children. When children’s understanding 

depends on interactions, and each interaction is based on the previous one, small differences 

between children’s initial states of understanding can grow bigger over several interactions. 

This is particularly so if the process takes the form of a positive feedback loop amplifying 

idiosyncratic properties of the answers, i.e. properties that are typical of a particular child. 

For example, if the child focuses on only one syringe and the researcher’s follow-up 

questions center on that syringe as well, the difference between this child and another child 

who focuses on both syringes grows bigger. However, if the process takes the form of a 

negative feedback loop reducing the idiosyncrasies, small differences in initial states will 

most likely remain small over the course of the problem-solving process. This would be the 

case if the researcher switches the focus of her follow-up questions to the other syringe, 

thereby scaffolding the child towards a more complete picture of the task. The difference 

between this child and the child who initially focused on two syringes then becomes 

smaller. 

2.3. Time scales 

The property of interconnected time scales entails that the dynamics of long-term 

development of understanding are intrinsically related to the dynamics of short-term 

processes of understanding (Thelen & Smith, 1994; Lewis, 2000). That is, in order to get a 

grip on long-term changes in understanding of children, it is worthwhile to focus on the 

short-term (micro-genetic) process, and examine properties of that process, such as 

variability (Granott, Fischer, & Parziale, 2002; Steenbeek, 2006).  

Iterativeness occurs on the short term as well as on the long term, meaning that on the short 

term (e.g. during one interaction between child and teacher in science class), each step in 

understanding is based on the previous step in understanding, while on the long term each 

interaction builds on the preceding interaction (e.g. the interaction during last week’s 

science class). In this way, the same mechanisms are sculpting the development of 

understanding over a shorter and longer period. Thelen and Corbetta (2002) indicate that 

the general principles underlying behavioral change work at multiple time scales. The short- 
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and long-term scales interact, in that repeated (iterative) processes on the short term time 

scale influence processes on the long-term time scale (Lewis, 2000). In addition, the 

emergence of large-scale patterns also influences what happens on the short-term time scale, 

by shaping the structure and function of the interaction on the short term (Lewis & Granic, 

2000; Smith & Thelen, 2003; Van Geert & Steenbeek, 2005; Steenbeek, 2006). The underlying 

idea is that all levels of the developing system interact with each other in a self-organizing 

way, and consist of nested processes that unfold over many time scales, from milliseconds to 

years (Thelen & Smith, 1994; Lewis, 2000). 

2.4. Micro-genetical variability 

As a result of the iterative organization of the components and the intertwining between 

child and context that mark the process of children’s understanding, we can observe micro-

genetical variability. This means that the complexity of children’s understanding fluctuates 

within very short periods of time, e.g. during one task. While studying the processes of 

developmental change, it is crucial to take many observations (adopting a microgenetic 

research method) to detect the subtle changes that constitute understanding and its 

development (Siegler & Crowly, 1991; Kuhn, 1995). Researchers note that, driven by bi-

directional interactions with the environment, the complexity of children’s understanding 

can increase during a task, but also temporally decrease, for example when the task 

difficulty increases, when the teacher’s support decreases, or when children encounter 

something unexpected while working on a task. Understanding can change gradually or 

abruptly in a stage-like pattern in a short timeframe, even during a single task (Yan & 

Fischer, 2007; Siegler & Crowly, 1991). 

Researchers have suggested that this variation is an important factor in development, since 

an increase in variability may be related to the ability to reach higher levels of skill (Howe & 

Lewis, 2005; Thelen, 1989), or, more generally, to a transition to another pattern of behavior 

(i.e., attractor) (e.g., Thelen & Smith, 1994; Van Geert, 1994). The variability on the short-

term (e.g. during the syringes-task or during a science lesson) can therefore yield important 

information about how the developmental pathways of understanding will be shaped on 

the long term.  

In order to capture the complexity of understanding and variations in complexity over a 

short and longer time periods, we can use Skill Theory’s framework of cognitive 

development (Fischer, 1980; Fischer & Bidell, 2006). This framework can be used on both the 

long- and short-term time scale and is compatible with a dynamic systems approach. Even 

more so, Skill Theory could be considered as a specific dynamic system’s theory applied to 

human skill development, since it assumes skills are built in an iterative and hierarchical 

way, i.e. each skill level builds on the previously obtained skill level. Moreover, skills are 

highly context-dependent and fluctuate over time, that is, they depend on the constraints 

and affordances of the context in which they are mastered (Fischer & Bidell, 2006).  
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3. Skill theory and understanding 

Skill Theory focuses on the complexity and variability of children’s skills, which consist of 

actions and thinking abilities, and the way these are constructed (Fischer, 1980; Fischer & 

Bidell, 2006). Since skills are thinking structures mastered in a specific context, such as a 

science class, they hold both person-related as well as context-related characteristics 

(Parziale & Fischer, 1998). An example of a skill is a child’s ability to understand how air 

pressure works while manipulating the syringes-task. This understanding is reformulated 

when the student works on a similar task in another environment (e.g. with different 

materials or without the help of the researcher). Skills are thus highly influenced by the 

possibilities and constraints of the situation in which the skill is used.  

Skill Theory explains both long- and short-term development of skills by measuring these 

on the same hierarchical complexity scale. This complexity scale consists of 10 levels, 

grouped into 3 tiers, which are sensorimotor, representational or abstract by nature. The 

scale can be applied to different cognitive (Fischer & Granott, 1995; Schwartz & Fischer, 

2005), social (Fischer & Bidell, 2006) and language domains (Fischer & Corrigan, 1981), as it 

focuses on hierarchical complexity rather than content. This makes Skill Theory especially 

suitable to describe differences between children, as well as differences between skills in 

different domains for the same child (Parziale & Fischer, 1998).   

A child’s understanding within a domain, as an emergent process in real-time, can be 

viewed along two dimensions: the first being the dimension of content (the subject), the 

second of complexity (the complicatedness). In order to evaluate children’s understanding 

(of, for example, air pressure), we need a fair ruler to determine how elaborate their 

understanding is, and to evaluate whether they need extra help in some areas. One of the 

most powerful characteristics of Skill Theory (Fischer, 1980) is that it extracts complexity 

from content, resulting in a content-independent ruler of understanding. Because of the 

content-independent nature of the way Skill Theory approaches understanding (or other 

skills), it enables researchers to compare understanding across multiple time points, 

contexts, persons, and for different age ranges.  

According to Fischer (1980) and Fischer and Bidell (2006), development in a particular 

domain goes through 10 levels of skills hierarchically grouped into three tiers that develop 

between 3 months and adulthood. The first tier consists of sensorimotor skills: simple 

connections of perceptions to actions or utterances. An example is a statement that two 

syringes are attached to a tube. Sensorimotor skills form the basis of the skills in the two 

subsequent tiers, i.e. they are the building blocks of the higher levels. The second tier 

constitutes of representational skills, these are understandings that go beyond current 

simple perception-action couplings, but are still based on them. Hence, the term 

representation refers to the coordination of several sensorimotor skills at the same time, not 

to an internal symbolic structure (Fischer, 1980). Within the context of the air pressure task 

for example, the child can predict what will happen if the piston is pushed in without 

literally touching or manipulating the syringe. Nonetheless, what he or she predicts 

depends on the material context, and on the sensorimotor skills that he or she mastered 



 
Using the Dynamics of a Person-Context System to Describe Children’s Understanding of Air Pressure 29 

before. The third tier consists of abstractions, which are general nonconcrete rules that also 

apply in other situations (Schwartz & Fischer, 2005). This would be an explanation about the 

relationship between pressure and volume inside a syringe.  

Within each tier, three levels can be distinguished2, each one more complex than the 

previous one. The first one can be characterized as a single set, meaning a single action (or a 

single representation, or a single abstraction). The second level is a relation between two of 

these sets, which is referred to as a mapping. The third level is a system of sets, which is a 

relation between two mappings, in which each mapping consists of a relation between 

single sets. After this level, a new tier starts, which is divided in single sets, mappings and 

systems as well (Fischer & Bidell, 2006). For the emergence of each level, evidence of 

discontinuities and differences between levels has been demonstrated using analysis 

methods based on Rasch scaling (Schwartz & Fischer, 2005). 

Fischer and colleagues (Fischer, 1980; Fischer & Bidell, 2006; Yan & Fischer, 2002; Schwartz 

& Fischer, 2005; Granott & Parziale, 2002) showed that Skill Theory can not only describe 

and explain the development of skills on the long term, but also describe the micro-genesis 

of problem solving. When facing a new task or problem within a domain, even high-skilled 

adults go through the same cycles of development. That is, at the beginning they show skill 

levels that are mostly sensorimotor, which build up to more elaborate levels during the 

course of the task. During a task (and also during the long-term development of skills), 

people do not go through the skill cycles in a linear fashion. Instead, they repeatedly build 

up skill levels and show collapse before they obtain their highest possible level, something 

Yan and Fischer (2002) call “scalloping”. During a task, people vary constantly within a 

bandwidth between their highest and lowest possible complexity levels, which is also 

known as the developmental range. The highest levels within the bandwidth are only 

reachable when the environment provides sufficient support (Fischer & Bidell, 2006; see also 

Yan & Fischer, 2002).   

Skill theory also accounts for inter-individual differences in understanding and is therefore 

especially suitable for describing individual developmental pathways (Fischer, Rose & Rose, 

2007). Yan and Fischer (2002) showed that adults’ performance on a computer task can 

move through a variety of pathways, each one showing nonlinear fluctuations. Of all 

participants, novices showed the most frequent and rapid fluctuations in performance. 

Experts however fluctuated less frequent in their performance, meaning that variations 

followed on each other in a slower fashion. 

In sum, a model of understanding needs some kind of ruler to determine the complexity of 

understanding levels children show. Skill Theory (Fischer, 1980; Fischer & Bidell, 2006) 

provides a content-independent ruler for understanding, which can be applied to different 

                                                                 
2 After the 3 levels of the abstraction tier, a higher complexity level emerges, also known as ‘single 

principles’, which is the 10th level of the scale. Additionally, people function on the few highest levels 

usually in early adulthood, but only for their domains of expertise. For most other domains, people 

function on a lower complexity level.  
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time scales of development, and takes both the role of context, as well as inter- and intra-

individual variability into account.  

4. A model of understanding 

Using the four properties from the dynamic systems paradigm and Skill Theory’s ruler, we 

can construct a model of understanding to guide research and practice in education, but also 

in other areas that require the evaluation of cognitive growth. The general model of 

understanding here is that it is an active process, distributed across people involved, and 

that it is dynamic, i.e., it continuously changes, and self-organizes through iteration.  It is 

important to keep in mind that, even though the four properties describe distinct 

mechanisms, they all work at the same time while the process of understanding unfolds. 

Below, we will present the model and briefly highlight its components, after which we 

discuss these in more detail by using an empirical example.  

As Figure 1 shows, children construct levels of understanding during short-term 

interactions with the environment, such as during a task they are working on together with 

an adult. Both child and adult are characterized by specific distal factors (e.g. years of 

schooling) that influence their behaviour. However, those distal factors are not what we 

focus on, since the figure can be characterized as an action model, that is, it focuses on 

understandings which are constructed during an interaction by means of a process that is 

distributed across the child, the adult, and the material context with which they interact or 

which they manipulate. This means that during an interaction, there is a bidirectional 

influence between the child’s answers and the adult’s questions within the material context. 

This is illustrated in the big square (part A) of figure 1.  

Moreover, the process is iterative, meaning that it changes through repeated interactions, 

instead of being the retrieval of a complete representation that is already there in memory. 

During a teaching interaction, each previous action of the child has an influence on 

the subsequent (re-)action. This is illustrated by the big arrows between adult and child 

(part B of figure 1) and the small arrows on the side of the boxes indicating the child and 

adult.  

Each task-related utterance has two dimensions: a specific content and a complexity level. 

During interactions, we can observe the complexity level of understanding, as it comes 

forward in the child’s distinct utterances, which are often reactions to what the adult is 

saying, or are part of the ongoing discussion between an adult and a child. This 

complexity level, measured by Skill Theory (Fischer, 1980), will vary between different 

children, and will fluctuate over time within the same child. This is illustrated by part C 

in figure 1. 

Lastly, the long-term development of children’s understanding unfolds through several of 

these short-term interactions. As an example, figure 1 displays the sessions with 3-month 

intervals we used in our study of young children’s understanding of scientific concepts. The 

link between short- and long-term development is indicated in part D of figure 1.  
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Figure 1. A conceptual (action) model of understanding based on principles derived from dynamic 

systems theory and Skill Theory 

5. An empirical example and illustration of the model 

In the next sections, we illustrate the model and the four properties by using an example 

(see table 1) derived from our empirical study focusing on the long-term development of 

understanding air pressure (and other scientific concepts, such as gravity) in three to seven 

year old children. Table 1 is an excerpt of a transcribed session in which a boy (4 years, 6 

months) and a researcher explore the syringes task mentioned in the introduction. The 

transcript starts right after the point in which the researcher and the boy explored the 

exterior of the syringes. That is, they compared them in size and examined the numbers 

written on the outside.  
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Person Content: verbal (gestures, manipulations, gaze directions) Complexity Nr 

Researcher (Attaches the two syringes by a small transparent tube, gives 

one syringe to the boy) "I attached the tube to these.  What 

do you think will happen if I push mine in?" 

 1 

Boy (Looks at his own syringe) "I don't know" No level 2 

Researcher "But what do you think?"  3 

Boy (Looks from the researcher to his syringe) “Uhm..."  No level 4 

Researcher (Pauses) "You said they are the same.  I pulled this 

piston out (Touches the piston), and pushed the other 

piston in (Points down to the other piston). Then I 

attached the tube. What do you think will happen if I 

push this one in?” (Gestures as if she is pushing down) 

 5 

Boy "Then this one will go up like this." (Holds his syringe in 

one hand, while his other hand pushes the end of the piston 

on the table, then he moves his hands up) 

Single 

representation 

(prediction) 

6 

Researcher (Points to this syringe the boy holds) "Is that one going 

up?" 

 7 

Boy "Yes, and then that one is going down" (Points at the 

piston of the syringe the researcher is holding) 

Single 

representation 

8 

Researcher "Really? Why does that happen?"  9 

Boy "Because we attached the tube." (Follows the tube with his 

finger to the tip of his syringe) 

Sensorimotor 

system 

10 

Researcher "I see… If we would take away the tube, it wouldn't 

work?"  

 11 

Boy (Shakes his head) "No".  12 

Researcher (Pushes her piston in, pauses) "Were you right?"  13 

Boy (Watches his own syringe as the piston pulls out) "Yes"   14 

Researcher "Can you do it as well?" (Holds her syringe up)  15 

Boy (Looks at both syringes, pushes the piston of his syringe in)  16 

Researcher “How is this possible? You're pushing it over there 

(Points at the piston of the boy’s syringe) and then this one 

goes backwards!” 

 17 

Boy (Pushes piston in and pulls it out) "I don't know" No level, 

zero 

18 

Researcher "OK, but it has something to do with the tube, you said. 

What do you think is inside the syringes and tube?" 

 19 

Boy (Pauses for a long time, looks around) "I don't know" No level, 

zero 

20 

Researcher "I think there's no water in it" (Shakes her syringe)  21 

Boy "No" (Starts shaking the syringe)  22 
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Person Content: verbal (gestures, manipulations, gaze directions) Complexity Nr 

Researcher "But then, what is in it? And how is it possible that we 

can move one by pushing the other?" 

 23 

Boy "Because this is attached (Touches the end of the tube) and 

then it can move out” (Pulls the piston out) 

Sensorimotor 

system 

24 

Researcher "You know what; we can also attach a longer tube! (Gets 

a longer tube) “What do you think will happen then?" 

 25 

Boy (Gets the end of the tube and attaches it to his syringe) “I 

think still the same." 

Single 

representation 

(prediction) 

26 

Researcher "Even with a longer tube?"  27 

Boy "Yes" (Looks at his syringe)  28 

Researcher (Pushes her piston in, it works) "So now it works as well"   29 

Boy (Pauses, pushes the piston of his syringe in, then pulls it out)  30 

Researcher "So it has to do with the tube or something like that..."  31 

Boy "Yes, because the tube is attached to this one (Looks at 

syringe while he pushes the piston back in), and it is 

attached to here (Points at the point where syringe and tube 

are connected), and then goes (Makes a gesture for pushing 

the piston in) this (Points at the tip of the syringe), it goes 

like this” (Follows the tube from the tip until he is halfway) 

Single 

representation 

32 

Researcher "I see…what do you mean when you say 'this'?"  33 

Boy (Keeps on following the tube with his finger, can't reach for 

the last bit, so follows it in the air) "The tube, it goes like 

this" 

Single 

representation 

34 

Researcher (Follows the last bit of the tube with her finger) "Yes, but 

what is going through the tube?" 

 35 

Boy "That... (Pauses and looks at the tip of his syringe) "The sigh 

is going through the tube (Gestures for pushing the piston 

in) "And then it goes, like this, and this, and this” 

(Follows the tube until halfway) 

Single 

representation 

/representa-

tional 

mapping 

36 

Researcher "The sigh is going through the tube and flows to mine?"  37 

Boy "Yes" (Pulls the piston of his syringe out)  38 

Table 1. Excerpt of a session from our longitudinal project in which a boy (4 years, 6 months) explores 

the syringes task together with a researcher. 

5.1.1. Person-context dynamics – social construction 

An important part of these context dynamics is the social part of the context, meaning the 

people around the child. Thus, the development of the child’s understanding occurs in 
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interaction with the social environment (e.g. the teacher), and it is this interaction that drives 

the process of understanding, enabling the student to receive adaptive assistance and make 

progress step by step (Hirsch-Pasek, Golinkoff, Berk, & Singer, 2009; Van Geert & Steenbeek, 

2005). In our example (see table 1), the child constructs his answers together with the 

researcher. The researcher’s questions are guided by, and on their turn guide, the child's 

answers. An illustration of this can be seen in fragments 2 to 6 of table 1. After the boy 

answers he does not know what happens with the syringe he is holding if the researcher 

pushes the piston of the other one in, the researcher asks him “What do you think?” In this 

way, she is trying to get the boy to make predictions, encouraging him to hypothesize. In 

response, the boy looks around and does not answer the question. The researcher, in turn, 

helps him getting started by summarizing what he said before and by a verbal repetition of 

her actions with the task material. After having heard the adult’s repetition of her actions, 

the boy starts to construct an answer on a higher complexity level than before. In terms of 

Skill Theory, this answer can be classified as a single representation, as he makes a 

prediction that goes beyond simpler perception-action couplings (skill levels, when 

applicable, are indicated the right column of table 1).  

Two things are important here. First, the researcher is responding to the boy in this way, 

because he did not know the answer. Had the boy given the answer, she may had pushed 

the piston in, or asked him to elaborate on his answer. Because the boy does not know the 

answer, she needs an approach to determine whether he really has no idea, and if so, how 

she can help him to make a prediction based on what he knows about the syringes. In order 

to do this, she tries out two different approaches. First, she asks him what he thinks, which 

can be a starting point for further elaboration on his side. When the boy does not reply, she 

decides to help him to get started by giving some information about what they have done 

and seen before. The boy now hypothesizes what happens if the piston of one of the 

syringes is pushed in. The answer to the question “What do you think will happen?” (see 

fragment 1 of table 1) is therefore the product of the interaction between the boy and 

researcher. In her reactions to the boy’s “I don’t know” the researcher is trying to guide his 

understanding. In turn, after hearing the researcher’s summary, the boy constructs his 

understanding. What happens with regard to the boy’s understanding during the 

interaction with the researcher is not mere retrieval of earlier gathered knowledge, or a 

reaction to a trigger (whether it be the syringe itself or the questions), but a (re)construction 

of knowledge through a constellation of interactions with researcher and material. If we 

look at understanding while it occurs in real time, we can only study the person-context 

aggregation that results from this interactive process and cannot distinguish the unique 

contribution of the individual components (Van Geert & Fischer, 2009). Even though one 

can describe what the child does in answer to a specific action or expression of the adult; it is 

not possible to distinguish the adult’s or child’s contribution to the (variance in) 

understanding during the task. 

Parallels can be drawn with other teacher-student interactions, such as in scaffolding during 

instructions in arithmetic lessons. In their model of scaffolding, Van Geert and Steenbeek 

(2005) model the process of scaffolding during an arithmetic class taking a dynamic systems 
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approach. Scaffolding is an interactive process in which the student makes progress using 

the help of a teacher, which scaffold-level should be adapted to the student’s level in order 

to have the right effect. One of the most interesting properties of this dynamic model is that 

it accounts for transactions between teacher and student, and that it portrays a dynamic, 

real-time combination of both the student’s performance level and the scaffold-level of the 

teacher. One of the parameters in the model is the optimal scaffolding distance, a bandwidth 

which differs among individuals and contexts, within which help stimulates learning. 

Within that bandwidth, the optimal scaffolding distance is the distance between the pupil’s 

level and the level of help or scaffolding for which the learning effect is maximal. Just like in 

our model of understanding, the actions of student and teacher form a unique process built 

of bi-directional relationships (Fogel & Garvey, 2007). 

5.1.2. Person-context dynamics – the material context 

In addition to the social context, the material context (such as the syringes) also plays an 

important role in the process of understanding. The syringes should not be conceived of as 

fixed or monolithic things, but are instead part of the emerging dynamics. Even an 

unmovable material object is dynamic in terms of its effect on the child, in the sense that the 

child continuously changes his angle of vision towards the object and thus sees different 

parts of the object. The dynamic and intertwining nature of the material context is even 

more strongly illustrated by the syringes task, in which the child or the adult manipulate the 

syringe, and are thus changing the nature of the object in line with their activities.  

In the example (table 1), the syringes and tube are frequently touched by the boy and the 

researcher to emphasize or guide their verbal expressions (see fragments 5, 6, and 10). The 

best illustration of this, however, can be found in fragments 32 to 36. In this fragment, the 

boy uses the material extensively, after which a higher level of complexity emerges: he 

transitions from a sensorimotor systems level to a single representation/representational 

mappings level. Note how the boy substitutes words for gestures and pointing in fragments 

32 and 34, following the process of what happens with his hands. Parallels can be drawn 

with fragment 5, in which the researcher is talking the boy through what happened before. 

In fragments 32 and 34, however, the boy uses the material instead of the researcher’s words 

to construct his understanding. Before fragment 32, he predicted that one piston comes out 

when you push the piston of the other syringe in. However, so far, he was not able to 

explain why. Now, using his hands to examine the syringe, he is able to represent the 

process, and concludes that “it” is going through the tube. Eventually, guided by the 

researcher’s question “But what is going through the tube?” which seems to suggest that he 

is on the right track, he is able to replace the word “this” in his explanation for “sigh”.   

5.2. Second property: Understanding is an iterative process 

In figure 1, the iterative character of the understanding dynamics between student and 

researcher is shown in that each previous action of the student has an influence on the 

subsequent (re-)action of the researcher, and vice versa. Over time, each session has an 

influence on the subsequent session of this student-researcher pair, which implies that the 
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influences between the child and environment are bidirectional, meaning that not only the 

action of the researcher influences the next (re)action of the student, but also that the 

previous interaction influences the next interaction. Iterativeness is thus the form in which 

the cyclical or reciprocal character of causality occurs. 

In our example (table 1), the iterative nature of the process is not only illustrated by how the 

researcher and child react to what has been said previously throughout the whole transcript, 

but also by how the child’s understanding develops during the interaction. With regard to the 

prediction he makes in the first half of the interaction, the child goes from “I don’t know” 

(fragments 2 and 4; no skill level) to “This one goes up like this” (fragment 6; single 

representation). This change in understanding is constructed in reaction to what the researcher 

said right before in fragment 5. With regard to the explanation of the boy why this happens, 

his understanding goes from “Because this [the tube] is attached” (fragment 24; sensorimotor 

system), to “Something goes like this [through the tube]” (fragment 32; sensorimotor 

system/single representation), to “The sigh is going through the tube” (fragment 36; single 

representation/representational mapping).” The statement that the tube is attached, which the 

researcher repeats and emphasizes in fragments 19 and 31, leads to the conclusion that there 

must be something flowing inside the tube. Since there is no water in the tube fragments 21 

and 22), or anything else visible for that matter, it must be “sigh” (fragment 36).  

This step-wise refining of the boy’s understanding, in which each previous step is the 

beginning of the next step, illustrates the iterative nature of the process nicely. Not only 

does iterativeness occur on the conversation level (what the child says depends on what the 

researcher said previously and vice versa), it also occurs on the complexity level of 

understanding (each understanding of the child depends on the previous understanding). 

Finally, the iterative nature of the process can also be seen over sessions, meaning that 

previous sessions influence subsequent sessions. 

5.3. Understanding is micro-genetically variable 

In our example (see table 1), micro-genetical variability is seen in the child’s understanding 

of how the material works. First, in fragment 10 the boy names a single cause for what 

happens: “Because we attached the tube”. This is an answer on a sensorimotor system level; 

he gives a single, observable causal explanation for the phenomenon, not taking the volume 

of the syringes or the air into account (see also the third column of table 1). Over the course 

of the interaction, he briefly regresses to “I don’t know” (fragments 18 and 20; no skill level), 

and restores his previously gained skill level again in fragment 24: “Because this [the tube] is 

attached”. From there, he further constructs his understanding, and eventually reaches a 

higher level in fragment 36: “The sigh is going through the tube”, for which he needs a 

representation of the role of air in the system. 

In Figure 2 a time-serial illustration of the fluctuations in the boy’s answer levels during the 

air pressure task is depicted. The graph shows how the understanding of the boy fluctuates 

over time. While Skill Theory’s level 4 (single representation) is mostly observed during the 

interaction, the boy also regularly shows understandings at level 3 (sensorimotor system). 



 
Using the Dynamics of a Person-Context System to Describe Children’s Understanding of Air Pressure 37 

Even though his understanding seems to increase in complexity over time (on average the 

boy reaches level 4 more often in the second half of the interaction), his understanding often 

regresses to level 3 and to incorrect/irrelevant understandings. Hence, understanding is not 

a fixed entity, but varies over time, even within a single task. 

The short-term intra-individual variability influences the variations in development we can 

see on the long term (Fischer & Bidell, 2006; Van Geert & Fischer, 2009). If micro-genetical 

variability is associated with reaching higher-level skills (Howe & Lewis, 2005; Thelen, 

1989), long-term trajectories of understanding may differ between children showing more 

periods of variability versus children showing little periods of variability within short-term 

interactions. This also makes sense in combination with the property Iterativeness, as a short-

term interaction showing a broad range of skill levels makes it more likely that skill levels 

subsequently move toward a higher level (cf., a phase transition), compared to a previous 

interaction showing a narrow range of skill levels. After all, the interaction with a broad 

range of skill levels yields more possibilities for the next interaction than an interaction with 

a narrow range. In conclusion, as Howe and Lewis (2005) mention, understanding gets form 

over various instances and in turn, drives long-term developmental change. This connection 

between the short- and long-term scale of development brings us to the next property, that 

of interconnected timescales.  

 

Figure 2. Time-serial illustration of the variability in the boy’s understanding during the air pressure 

task, measured by using Skill Theory (Fischer, 1980). For this boy, levels on the y-axis range from 1 

(single sensorimotor set) to 4 (single representation). A -1 score represents an incorrect or irrelevant 

answer. 

5.4. Fourth property: Interconnected timescales 

Three months later, the researcher returns with the syringes and the tube. The researcher 

starts by asking “Do you remember what we had to do with this?” In response, the boy 

immediately grasps the material and attaches the tube to the syringes. Then he replies: “Yes, 

when you push this one in, the air will go over here”. He doesn’t need more time to think 

about the process in a stepwise fashion: That it works like this because the tube is attached, 
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that there must be something going through that tube, etcetera. Based on the previous 

interaction, he now knows that air is going through the tube and makes the pistons move. 

Note, however, that this is not a mere retrieval from memory. The boy first attaches the 

syringes to the tube, and answers afterwards. Moreover, the question of the researcher is 

phrased in a way that encourages him to think about what they did before. Even though the 

researcher’s role is not as prominent as it was in the previous interaction, the social context 

still plays a role in the construction of understanding. However, three months earlier, the 

understanding was clearly a co-construction between child and researcher. Now the child 

can directly introduce this understanding to the interaction, triggered by the researcher’s 

question and the material, but without further interference. 

6. Discussion 

From a theoretical point of view, we discussed a number of dynamic properties in 

combination with Skill Theory’s ruler of cognitive development. We argued that using these 

properties and ruler give both educators and researchers important means to get a grip on 

how children’s understanding of scientific concepts builds up over time. More specifically, it 

helps to understand how children organize their knowledge in concordance with the 

context, i.e. the teacher, and highlights the importance of being aware of teachers’ accounts 

in conversations with children, for example during a science lesson.  

There are many different types of knowledge generation processes, one of which is the 

socially situated process between adult, child and task that we are discussing here. When a 

child is assessed or diagnosed, a different process of knowledge generation occurs. In these 

instances, the child is asked to construct knowledge without the help of an adult, but 

usually in interaction with a particular symbolic substrate, such as a piece of paper to draw 

on, or the structure of language that the child is using to describe knowledge. It is however 

wrong to think that only the latter process (in which the child works without help) is a 

reflection of the child’s “real” knowledge. In fact, both the co-constructed as well as the 

individually constructed knowledge reflect the child's "real" understanding. Variations in 

complexity levels within one type of knowledge generation, but also between different types 

of knowledge generation, illustrate the intrinsic variation of understanding as such. 

The model we proposed helps in re-conceptualizing the process of understanding in 

individual children, and the underlying mechanisms of change in their understanding. The 

latter is especially important, since “Developmental psychologists are not simply interested 

in the stable states achieved by individuals along their lifespan, but also about the 

mechanisms of change that lead from one state to the next.” (Howe & Lewis, 2005, p.248). 

The advantage of a dynamic systems approach to the study of understanding is that it 

makes the development of understanding more transparent and no longer limited to an 

invisible process inside the individual learner (Van Geert & Fischer, 2009). Instead, it enables 

us to closely monitor interactions between child and environment to determine how the 

outcome (a form of understanding at some point) is constructed in real time.  
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In an applied sense, it is of great importance for parents, (science) teachers, and other 

practitioners to have knowledge about how children grasp varied concepts and how their 

understanding develops over time. By having this knowledge, they will be able to challenge 

children in their current level of understanding in order to promote children’s optimal 

developmental trajectories with regard to cognitive understanding, and by doing so, 

promote children’s optimal development in a broader sense. Departing from the idea of 

understanding as a process of change in which the child and the (social and material) 

context intertwine, the ways and complexity levels at which educators interact with their 

pupils have an important influence on the development of understanding. With regard to 

iterativeness, it is important for educators to acknowledge that how understanding changes 

at one moment in time depends on the understanding at a previous time point. That is, from 

a dynamic systems perspective, there are no internal operations on representations of 

knowledge that cause intellectual growth. Understanding organizes on the spot, and gets 

internalized over time through multiple interactions with the environment. Regarding 

micro-genetical variability, it is important for educators to understand that the highest 

complexity level on which children operate (e.g. when they learn about scientific concepts) 

can change rapidly during short-term interactions, not only when the environment or the 

amount of support visibly changes. Finally, a better understanding of the temporal stream of 

understanding will help educators to become aware of their own role in the long-term 

learning process, and may help them to change their actions when necessary or wanted. 

Students who are engaged in (scientific discovery) learning need adequate support to 

construct their knowledge (Alfieri, Brooks, Aldrich, & Tenenbaum, 2010).We claim that 

teachers’ awareness of their own role is an important indicator for the quality of their 

support, which is a crucial factor in improving children’s learning (McKinsey, 2007).   

We need to work further on completing the empirical picture of possible trajectories of 

understanding that can emerge in individual children and investigate how these are related 

to processes on the short-term time scale. This will help us to differentiate components that 

build up to children’s successful and unsuccessful learning trajectories with regard to 

scientific understanding. This knowledge will also help science educators to teach children 

to successfully master scientific concepts, as children’s understanding of scientific concepts 

is not always accurate (Grotzer, 2004). When children have more expertise in science, feel 

confident about this, and enjoy science lessons, this may eventually boost the current 

number of young people pursuing a scientific academic career. In order to maintain 

economic growth, people with a scientific education who can ensure continuous technical 

capability of the highest standards in all fields of expertise are very much needed.  

An important next step in the study of the development of children’s understanding of 

scientific concepts as a dynamic system is to try to map individual learning trajectories and 

build a dynamic simulation model, based on a general theory of action or agent behavior on 

interacting time scales, and a general theory of mechanisms of change (see van Geert, 1994; 

Van Geert & Steenbeek, 2008; Steenbeek, 2006). With the help of such a simulation model, 

the important role of the (science) educator in the emergence of understanding can be 

unravelled. As a result, such a simulation model will have an important educational value, 
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by making the dynamic principles that play a crucial role in the development of 

understanding accessible for a broader public of educators. Based on the short-term 

interaction patterns we see emerge, and the implications this has for the long term, we can 

eventually construct adaptive teaching programs, lessons and materials for science 

education, which are better adapted to children’s current levels of understanding and how 

this understanding develops in interaction.  

An example of an adaptive educational and assessment (computer) program is Mathgarden 

(van der Maas, Klinkenberg, & Straatemeier, 2010), an educational computer game with a 

wide range of sums children that can play at school or at home. Children’s responses (the 

short-term child-computer interactions) are frequently analyzed and reported to their 

teachers by means of error analyses, individual growth curves, and comparisons between 

the particular child and his classmates (or the broader population of peers). The program 

itself uses the child’s data by varying the complexity of the sums adaptively, depending on 

the percentage of right answers, but also on the child’s reaction time. Moreover, using the 

responses and reaction times of all individual children, the items of Mathgarden are 

arranged (and get frequently re-arranged) in terms of complexity. This program shows how 

multiple short-term interactions provide information about the individual’s long-term 

development and how this information can inform educational practice. These kinds of 

adaptive teaching and assessment programs translate dynamic principles into concrete 

materials that help children to develop their understanding in an optimal way. 

In conclusion, as Vygotksy (1934/1986) already noted: “To devise successful methods of 

instructing the schoolchild in systematic knowledge, it is necessary to understand the 

development of scientific concepts in the child’s mind. No less important than this practical 

aspect of the problem is its theoretical significance for psychological science.” (p. 146). We 

think that by studying the development of children’s understanding of scientific concepts 

using a model based on properties derived from dynamic systems theory and Skill Theory 

an important contribution to both this applied and scientific goal is made. 
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