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1. Introduction 

Low molecular mass organic compounds with internal charge transfer properties are widely 

adopted for organic photonics such as materials for the creation of molecular electronics 

elements, organic magnets, solar cells and organic light emitting diodes (OLEDs) for full 

display panels [1-3]. One of the most widely used red light-emitting materials contains 

pyranylidene (4H-pyran-4-ylidene) or isophorene (5,5-dimethylcyclohex-2-enylidene) 

fragments as backbone of the molecule (see Fig.1), which are conjugated in a system with 

electron acceptor and electron donor fragments [1,4-24]. In many cases the light-emitting 

layer from such commercially available compounds is prepared by thermal evaporation in 

vacuum [1-2, 25-27]. Some of them are used as dopants in a polymer matrix and spin-coated 

onto a hole transport layer from solution [1,12]. However the doping amount of luminescent 

compound is limited by self crystallization and photoluminescence quenching at higher 

concentrations which reduce the quantum efficiency of fabricated devices significantly [11-

12]. Therefore it is important to synthesize low molecular mass light-emitting organic 

compounds which do not crystallize and form thin amorphous solid films from volatile 

organic solvents. Such compounds, which can make a solid-state glassy structure prepared 

from solutions, could facilitate technological processes in the production of many devices in 

optoelectronics, for example, light emitting devices by low-cost deposition such as wet 

casting methods and easier light-emitting material synthesis. Some of these red light-

emitting compounds have been introduced by us [28-32].  

In this chapter we present complete synthesis, thermal, optical, photoelectrical and glass 

forming properties of new organic glass-forming pyranylidene and isophorene fragment 

containing derivatives with bulky trityloxy groups in their molecules. The optical 

properties, both in solution and solid state, are compared. The dependance of 
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photoelectrical properties and energy structure of glassy films on molecular structure will 

be discussed. The most popular derivatives of pyranylidene and isophorene used in OLEDs 

are shown in Fig.1. 
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Figure 1. Most widely used pyranylidene and isophorene type red-emitters used as OLED emission 

layer materials 

2. Synthesis  

The synthesis procedure of pyranylidene and isophorene D-π-A type luminophores (see 

Fig.1) with either one or two electron donor fragments can be divided into three main 

parts:  

1. Synthesis of a backbone fragment: Synthesis of derivatives of 4H-pyran-4-one, which in 

their molecules contain not only a carbonyl group, but also at least one methyl group 

and are able to react further with aromatic aldehydes.  

2. Addition of an electron acceptor fragment to the backbone: Condensation reaction of 

4H-pyran-4-one derivatives synthesized in 1) with active methylene group containing 

compounds. 

3. Synthesis of pyranylidene and isophrene D-π-A type red emitters: Final addition of 

electron donor group containing aromatic aldehydes to compounds obtained in 2). 
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2.1. Synthesis of the backbone fragment: 2,6-disubstituted-4H-pyran-4-ones 

The simplest of 2,6-disubstituted-4H-pyran-4-ones is 2,6-dimethyl-4H-pyran-4-one 

(compound 2 in Fig.2), which is obtained in 86% yield from dehydroacetic acid (compound 1 

in Fig.2) by acidic rearrangement with following decarboxylation (see Fig.2) [32-33]. 

O OH3C

OH

CH3

O conc. HCl or

10% H
2
SO

4

86% OH3C

O

CH3

1 2

-CO2

 

Figure 2. Synthesis of 2,6-dimethyl-4H-pyran-4-one. Dehydroacetic acid (compound 1) is suspended 

either in concentrated hidrochloric acid (conc. HCl) or 10% aqueous sulfuric acid (10% H2SO4) and 

heated. During the heating carbon dioxide (CO2) is liberated and 2,6-dimethyl-4H-pyran-4-one 

(compound 2) is formed. 

2,6-Dimethyl-4H-pyran-4-one (compound 2 in Fig.2) has one carbonyl group which can 

further react with active methylene group containing compounds in Knoevenagel 

condensation reactions. It also has two activated methyl groups, which can react in the same 

type of condensation reactions with one or two molecules of aromatic aldehydes. 

Another method for the syntheis of 2,6-disubstituted-4H-pyran-4-ones, which contain at 

least one active methyl group, is using 4-hydroxy-6-methyl-2H-pyran-2-one (compound 3 in 

Fig.3) as starting material [11,34]. Its further reaction with isobutyryl chloride (compound 4 

in Fig.3) in trifluoroacetic acid (TFA) gives 6-methyl-2-oxo-2H-pyran-4-yl isobutyrate 

(compound 5 in Fig.3). Without separating the compound 5 from the reaction mixture it was 

subjected to Fries rearrangement resulting in 4-hydroxy-3-isobutyryl-6-methyl-2H-pyran-2-

one (compound 6 in Fig.3). In its decarboxylation and further acidic cyclization reactions 2-

isopropyl-6-methyl-4H-pyran-4-one (compound 8 in Fig.3) is obtained with 80% yield. 

Compound 8 also contains a carbonyl group, just as the previously synthesized 2,6-

dimethyl-4H-pyran-4-one (compound 2 in Fig.2). Since it now contains just one activated 

methyl group, only one aromatic aldehyde containing fragment can be added to the 

backbone of pyranylidene derivative 8 (shown in Fig.3). 

One of the most preferred 2,6-disubstituted-4H-pyran-4-ones is 2-tert-butyl-6-methyl-4H-

pyran-4-one (compound 13 in Fig.4) [7,11,35]. The first synthesis method starts from 3,3-

dimethylbutan-2-one (compound 9 in Fig.4). Treating it with acetic anhydryde (Ac2O) and 

boron trifluoride (BF3) a boron enolate (compound 10 in Fig.4) is obtained. Its further 

condensation reaction with 1,1-dimethoxy-N,N-dimethylethanamine (compound 11 in Fig.4) 

produces N,N-dimethylamino-vinyl group containing boron enolate (compound 12 in 

Fig.4). Then following an acidic treatment gives 2-tert-butyl-6-methyl-4H-pyran-4-one 

(compound 13 in Fig.4). However this method has a drawback because two synthetic 

reactions towards our target compound had low yields (30-40%), which results in a very low 

overall yield for synthesis of 2-tert-butyl-6-methyl-4H-pyran-4-one (compound 13 in Fig.4).  
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Figure 3. Synthesis of 2-isopropyl-6-methyl-4H-pyran-4-one (compound 8). TFA - trifluoroacetic acid, 

HCl - hidrochloric acid, AcOH - acetic acid, CO2 - carbon dioxide, conc. H2SO4 - concentrated sulfuric 

acid.  
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Figure 4. Conventional synthesis of 2-tert-butyl-6-methyl-4H-pyran-4-one (compound 13). Ac2O - acetic 

anydryde, BF3 - bornon trifluoride, DMA - dimethylamine, HClO4 - perchloric acid, EtOH - ethanol. 

Fortunately, there is another method for synthesizing 2-tert-butyl-6-methyl-4H-pyran-4-one 

(compound 13 in Fig.4) with good yields [7] using pentane-2,4-dione (compound 14 in Fig.5) 

as starting reactant.  

In its Aldol reaction with methyl pivalate (compound 15 in Fig.5) a 7,7-dimethyloctane-2,4,6-

trione (compound 16 in Fig.5) was formed. Without separating the compound 16 from 

reaction mixture it was subjected to acidic cyclization producing 2-tert-butyl-6-methyl-4H-
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pyran-4-one (compound 13 in Fig.5) with a good overall yield (60%). As with 2-isopropyl-6-

methyl-4H-pyran-4-one (compound 8 in Fig.3), the resulting 2-tert-butyl-6-methyl-4H-pyran-

4-one (compound 13 in Fig.5) also contains one carbonyl group and one activated methyl 

group with the possibility of also adding only one aromatic aldehyde containing fragment. 
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Figure 5. Improved synthesis of 2-tert-butyl-6-methyl-4H-pyran-4-one (compound 13). NaH - sodium 

hydryde, conc. H2SO4 - concentrated sulfuric acid. 

One of oldest, but no less important methods known for the synthesis of 2,6-disubstituted-

4H-pyran-4-ones is to obtain them from 3-substituted-vinylcarbonyl-4-hydroxy-6-methyl-

2H-pyran-2-ones (compounds 17 in Fig.6) [33]. Compounds 17 are obtained from 

dehydroacetic acid (compound 1 in Fig.6), in which the methyl group in the acetyl fragment 

is activated to react preferentially with aromatic aldehydes (see Fig.6) giving 3-substituted-

vinylcarbonyl-4-hydroxy-6-methyl-2H-pyran-2-ones (compounds 17 in Fig.6) [33, 36]. 

Details on the obtained compounds 17 and their dependence on substituents (R) in their 

molecules are given in Table 1. They serve as precursors for further synthesis of 

pyranylidene type compounds. 
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Figure 6. Synthesis of 3-substituted-vinylcarbonyl-4-hydroxy-6-methyl-2H-pyran-2-ones (Compounds 

17). Above the arrow are different aromatic aldehydes with different substituents R (see Table 1), which 

all react with dehydroacetic acid (compound 1) the same way. CHCl3 - chloroform. 

Using this approach it is possible to obtain many different mono-styryl-substituted 4H-

pyran-4-ones (compounds 17 in Fig.7). However only a few of previously synthesized 

compounds 17 give 2-styryl-substituted-6-methyl-4H-pyran-4-ones (compounds 18 in Fig.7) 

by acidic decarboxylation under the reaction conditions reported in [30, 33] (see Fig.7) as 

summarised in Table 2. 
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R (of compounds 17) Yield, % M.p., °C Recrystallized from 

Phenyl 55 130-132 methanol 

o-Nitrophenyl 65 161-163 acetic acid/water 

m-Nitrophenyl 60 192 chloroform 

p-Nitrophenyl 22 165-167 chloroform/ethyl acetate 

p-Nitrophenyl 47 246-247 dioxane 

p-Dimethylaminophenyl 71 198-200 Chloroform, ethyl acetate, benzene 

p-Diethylaminophenyl 58 150 Chloroform, ethyl acetate 

o-Hydroxyphenyl 67 186-188 methanol 

m-Hydroxyphenyl 61 181-183 ethanol 

p-Hydroxyphenyl 69 260-262 dioxane 

p-Methoxyphenyl 73 153-154 ethanol 

2,3-Dimethoxyphenyl 47 147 ethyl acetate 

3,4-Dimetoxyphenyl 46 185 benzene/ethyl acetate 

3,4-Diethoxyphenyl 43 163 ethyl acetate 

o-Chlorophenyl 36 116-117 ethanol 

p-Chlorophenyl 54 155-156 ethanol 

3,4-Dichlorophenyl 46 185 ethyl acetate, benzene/chloroform 

p-Isopropylphenyl 65 139-141 methanol 

1-Naphtyl 62 190 ethyl acetate 

β-styryl 57 185 chloroform/ethyl acetate 

2-Furyl 85 144 benzene/ethyl acetate 

R - substituents of aromatic aldehydes which also remain in the structure of compounds 17 after reactions.  

Yield - the practical production of the particular compound 17 in the reaction of dehydroacetic acid (compound 1 in 

Fig.6) with the corresponding aromatic aldehyde. M.p. - melting point of the particular compound 17. Recrystallized 

from - organic solvent, which is used for the particular compound 17 final purification. 

Table 1. Synthetic information on pyranylidene compounds 17 (see Fig.6). 

 

O

OH

H3C

O

O

R

O

O

H3C R-CO2

17

AcOH

18

45-82%

 

Figure 7. Synthesis of 2-styryl-substituted-6-methyl-4H-pyran-4-ones (compounds 18). 
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R (of compounds 18) Yield, % M.p., °C Recrystallized from 

p-Dimethylaminophenyl 82 156 ethyl acetale/petroleum ether 

p-Diethylaminophenyl 68 128-130 methanol/water 

o-Nitrophenyl 53 187-189 methanol/water 

p-Isopropylphenyl 45 110-112 ethanol/water 

R - substituents of aromatic aldehydes which also remain in the structure of compounds 17 after reactions.  

Yield - the practical production of the particular compound 17 in the reaction of dehydroacetic acid (compound 1 in 

Fig.6) with the corresponding aromatic aldehyde. M.p. - melting point of the particular compound 17. Recrystallized 

from - organic solvent, which is used for the particular compound 17 final purification. 

Table 2. Fries rearrangement possibility [33] of pyranylidene precursors 17 (Fig.7). 

Some works can be found on red luminescent compounds where the pyranylidene fragment 

is hidden as a substructure in the molecule [8, 23-24]. For example, chromene type 

derivatives of pyranylidene are synthesized from 1-(2-hydroxyphenyl)ethanone (compound 

19 in Fig.8) [23-24]. In the Claisen condensation reaction (see Fig.8) with ethyl-acetate in the 

presence of a strong base, 1-(2-hydroxyphenyl)butane-1,3-dione (compound 20 in Fig.8) is 

obtained. After separation it was subjected to acidic dehydrocyclization giving 2-methyl-4H-

chromen-4-one (compound 21 in Fig.8) with an overall 45% yield. 
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Figure 8. Synthesis of chromene fragment containing derivative of pyranylidene (compound 21). 

For obtaining the benzopyran derivative of pyranylidene [8, 24], a two-stage synthesis 

procedure is started from 2-methylcyclohexanone (compound 22 in Fig.9).  
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Figure 9. Synthesis of the benzopyran fragment containing derivative of pyranylidene (compounds 24). 

In the first stage of synthesis, treatment with morpholine gives us enamine 23 (4-(6-

methylcyclohex-1-enyl)morpholine). In the second stage of synthesis in reaction with 2,2,6-

trimethyl-4H-1,3-dioxin-4-one, a 2,8-dimethyl-5,6,7,8-tetrahydro-4H-chromen-4-one 

(compound 24 in Fig.9) is sucessfully obtained. Once the desired pyranylidene compound is 
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obtained, the addition of electron acceptor and electron donor fragments becomes a more 

simplified process, which will be described in detail below in this chapter. 

2.2. Addition of electron acceptor fragments to derivatives of 4H-pyran-4-ones 

and 3,5,5-trimethylcyclohex-2-enone 

The next step towards synthesizing fully functional pyranilydene and isophorene type red 

luminescent organic compounds is the addition of electron acceptor fragments to the 

previously obtained 2,6-disubstituted-4H-pyran-4-ones (see Fig.10) and 3,5,5-

trimethylcyclohex-2-enone (see Fig.11). 
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Figure 10. Synthesis of electron acceptor fragment containing derivatives of pyranylidene. Electron 

acceptors are marked in red while structure backbone, which serves as π-conjugated system remain in 

black.  
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Many different electron acceptor fragments (compounds 25-35 in Fig.10) can be introduced 

in 2,6-disubstituted-4H-pyran-4-ones [1,4-18, 28-30,32] using acetic anhydride (Ac2O) as 

solvent and catalyst. From these, malononitrile (compounds 25 in Fig.10) is the most 

commonly used. Since isophorene (3,5,5-trimethylcyclohex-2-enone) (compound 36 in 

Fig.11) is an inexpensive reagent, which can be purchased from chemical suppliers - such as 

ACROS and ALDRICH, all that remains is to add electron acceptor and electron donor 

fragments. As with 2,6-disubstituted-4H-pyran-4-ones, the electron acceptor fragments are 

added in Knoevenagel condensation reactions [18-21, 31, 37] with active methylene group 

containing compounds 37-39 (see Fig.11). 
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Figure 11. Synthesis of electron acceptor fragment containing derivatives of isophorene (compounds 

37-39). As in Figure 10, the electron acceptors are marked in red while the structure backbone remains 

in black. 

The electron acceptor fragment containing derivatives of isophorene (3,5,5-

trimethylcyclohex-2-enone) (compounds 37-39 in Fig.11) thus obtained are not always 

isolated from the reaction mixture [31, 37]. Once they are formed, the electron donor 

fragment containing aromatic aldehyde is added in the mixture for further reaction with the 

aldehyde. 

2.3. Synthesis of pyranilydene and isophorene type red luminescent compounds 

by final addition of electron donor fragments 

Once the electron acceptor fragment is introduced, the last step for obtaining a fully 

functional pyranylidene and isophorene red luminescent compounds is to add one or two 

electron donor fragment containing aldehydes. They are added in Knoevenagel condensation 

reactions with electron acceptor fragment containing derivatives of isophorene as shown in 

Fig.12 and pyranylidene shown in Fig.13, which contain one or two activated methyl groups. 

For isophorene type compounds one electron donor fragment (40-44) is always introduced 

after an electron acceptor fragment is already in the molecule (see Fig.12) [18-21, 31, 37]. 

Many different structures of electron donor fragments are introduced (compounds 45-57 in 

Fig.13) in the pyranylidene backbone after introducing the electron acceptor fragment [1,4-

18,27-29,31]. In cases where only one methyl group reacts with the aldehyde, a mono-styryl 
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derivative of pyranylidene is obtained (see Fig.13). However, as all possible combinations 

shown in Fig.13 have not yet been synthesized, it presents a working opportunity for many 

organic chemists to contribute. If a pyranylidene type compound has two active methyl 

groups, like compound 25a, (see Fig.10) it will react with one or two aromatic aldehyde 

molecules producing chromophores 58-66 (see Fig.14). The reaction product will most likely 

be a mixture of mono- and bis- condensation products, which are difficult to separate and 

purify [32]. In reaction with two methyl groups bis-styryl derivatives of pyranylidene are 

obtained (see Fig.14). 
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Figure 12. Synthesis of fully functional derivatives of isophorene (compounds 40-44). CH3CN - 

acetonitrile. Electron acceptor fragments are marked in red and electron donor fragments are marked in 

blue, while the backbone structure fragments remain in black and serve as a π-conjugated system. 

A good summary on dicyanomethylene-pyranylidene type red-emitters has been made by 

Guo et al. [24], according to which the mono electron donor fragment containing 

pyranylidene-type materials (45a-c to 57a-c in Fig.13) usually have high luminescence 

quantum yield but their chromaticity is not sufficiently good. At the same time two electron 

donor fragment derivatives of pyranylidene (compounds 58-66 in Fig.14) have better 

chromaticity, but their luminance efficiency is relatively low, particulary those with larger 

conjugations leading to a broad light-emission peak above 650 nm extending to the NIR 

region, which decreases the efficiency of red electroluminescent materials. 

Both chromene (compounds 47,49-50 in Fig.13) and benzopyran (compounds 47,49,51 in 

Fig.13) type derivatives of pyranylidene have only one electron donor fragment in their 

molecules, but their optical properties are different. Since chromene type derivatives of 

pyranylidene have an additional conjugated aromatic ring in its molecule, its optical 

properties are similar to those with two electron donor fragment derivatives of 

pyranylidene (compounds 58-66 in Fig.14). At the same time benzopyran pyranylidene 

compounds 45,46,49 have a simple cyclohexene ring without additional conjugation, so their 

optical properties are more similar to pyranylidene-type red-emitters, compounds 45a-c to 

57a-c. 
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Figure 13. Synthesis of fully functional mono-styryl substituted derivatives of pyranylidene. Electron 

acceptors are marked in red, electron donors is blue and structure backbone remains in black. 

If a pyranylidene backbone with different electron acceptor fragments contains two active 

methyl groups, then in reaction with a two aldehyde group containing compounds a 

polymer is formed during the reaction (see Fig.15) [38]. The resulting polymers 70-72 are 

also reported to be red light-emitting materials. 

All derivatives of pyranylidene and isophorene reported so far in this chapter are deposited 

on the OLED hole transport layer either by thermal evaporation in vacuum or used as 

dopants in a polymer matrix in limited concentrations. 
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Figure 14. Synthesis of fully functional di-styryl substituted derivatives of pyranylidene. Color 

significance is the same as for previous figures. 
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Figure 15. Synthesis of polymeric derivatives of pyranylidene. Color significance is the same as for 

previous figures. 
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3. Synthesis and properties of trityloxy group containing glassy 

derivatives of pyranylidene and isophorene   

Our key for obtaining glass forming materials is the synthesis of such electron donor 

substituent containing aldehyde which would ensure the formation of an amorphous 

structure of our newly synthesized derivatives of pyranylidene and isophorene. We have 

synthesized such a compound - 4-(bis(2-(trityloxy)ethyl)amino) benzaldehyde [31-32] 75, in 

Fig.16.  

3.1. Preparation of molecular glasses 

For obtaining a red luminescent glass forming derivative of isophorene, we start with (3,5,5-

trimethylcyclohex-2-enone) (compound 29 in Fig.16) as already described in Fig.9. It is 

subjected to the Knoevenagel condensation reaction with malononitrile (28). However, 2-(3,5,5-

trimethylcyclohex-2-enylidene)malononitrile (61) which is formed during the reaction is not 

isolated because 4-(bis(2-(trityloxy)ethyl)amino) benzaldehyde (75) is added to the reaction 

mixture after 2 hours [31, 37] for further reaction. 2-(3-(4-(Bis(2-(trityloxy)ethyl)amino)styryl)-

5,5-dimethylcyclohex-2-enylidene)malononitrile (IWK) was obtained in good yield after its 

separation and purification by liyquid column chromatography as described in [31]. 
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Figure 16. "One pot" synthesis of IWK. (See previous figures for explanation of color significance). 

For obtaining red luminescent glass forming derivatives of pyranylidene, we use three 

different electron acceptor fragment containing derivatives of pyranylidene (compounds 25a 

in Fig.17). Malononitrile (in compounds 74a and 75a), indene-1,3-dione (in compounds 74b 

and 75b) and barbituric acid (in compounds 74c and 75c) are used as electron acceptor 

fragment carrying compounds [32].  

In the Knoevenagel condensation reaction with compound 25a and 4-(bis(2-

(trityloxy)ethyl)amino) benzaldehyde (73) a mixture of mono- (ZWK-1, DWK-1, JWK-1) and 

bis- (ZWK-2, DWK-2, JWK-2) condensation products is obtained. Their separation is 
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complicated but nevertheless a large part of each product was separated by liquid column 

chromatography (silicagel and dichloromethane for ZWK-1 and ZWK-2, dichloromethane: 

hexane = 4:1 for DWK-1 and DWK-2, dichloromethane: ethyl acetate = 4:1 for JWK-1 and 

JWK-2). The physical properties of compounds WK-1, WK-2 and IWK are described in 

detail further in this chapter. 
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Figure 17. Synthesis of glass forming derivatives of pyranylidene. Py - pyridine. (See previous figures 

for explanation of color significance). Since compounds 74a-c and 75a-c are our obtained red light-

emitting materials, we have assigned specific names for each (ZWK-1, ZWK-2, DWK-1, DWK-2, JWK-1 

and JWK-2) [28-30, 32, 46]. 

3.2. Thermal properties 

The thermogravimetric analysis (TGA) of trityl group containing pyranylidene type 

compounds is used to measure their thermal decomposition temperatures (Td). Td of 

compounds WK-1 and WK-2 are determined in the temperature range from +30°C to +510°C 

at a heating rate of 10°C/min [32] at the level of 10% weight loss (see Fig.18). 

Pyranylidene type compounds with two N,N-ditrityloxyethylamino electron donor 

fragments (ZWK-2, DWK-2, JWK-2) are slightly more thermally stable than compounds 

containing only one such fragment, i.e. ZWK-1, DWK-1 or JWK-1. The increase in thermal 

stability of pyranylidene type compounds by adding another electron donor fragment is as 

high as 10°C from ZWK-1 to ZWK-2, 19°C from JWK-1 to JWK-2 and 29°C from DWK-1 to 

DWK-2. The most thermally stable compound is a two electron donor fragment containing 

derivative of pyranylidene with malononitrile as electron acceptor in it (DWK-2). 

Differential scanning calorimetry (DSC) measurements are used to measure the glass 

transition temperatures (Tg) of the compounds WK-1 and WK-2. Three thermo cycles are 

performed for the determination of Tg. The first scan was done within the temperature range  
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Figure 18. Thermogravimetric analysis of compounds WK-1 and WK-2. A sample of each compound is 

constantly weighed during heating. At some temperature (Td) the mass of the sample starts to decrease 

rapidly - this indicates when the respective compound starts to decompose and is no longer thermally 

stable. 

from +25°C to +250°C at a heating rate of 10°C/min [32]. After the first heating scan samples 

of the compounds were cooled to 25°C at a rate of 50°C/min and heated for a second time 

from +25°C to +250°C at a rate of 10°C/min. The Tg value is obtained from the second 

heating scan (see Fig.19) and for almost all compounds is higher than 100°C. We could not 

obtain usable DSC curves for DWK-1. The compounds with two N,N-ditrityloxyethylamino 

electron donor fragments have higher Tg compared to those with only one electron donor 

fragment, which may be attributed to the different numbers of bulky trityloxyethyl groups 

attached to the two electron donor fragment. In a larger number of bulky groups Tg 

increases by 8°C from ZWK-1 to ZWK-2 and 7°C from JWK-1 to JWK-2. Pyranylidene type 

compounds with barbituric acid as electron acceptor, e.g. JWK-1 and JWK-2 have the 

highest Tg values compared to ZWK-1, ZWK-2 and DWK-2, which may be due to the 
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additional formation of intermolecular hydrogen bonds by N-H groups of barbituric acid 

fragments in the molecules. 

 

 

 

Figure 19. DSC thermogramms of compounds WK-1 and WK-2. Since amorphous compounds have 

several solid state phase modifications, the glass transition temperature (Tg) indicates when compound 

solid structure transitions from a more kinetically stable phase (with more free volume) to a more 

thermodynamically stable phase (with less free volume). During such phase transitions some ammount 

of heat is absorbed (endothermic process) which appears as a small drop on the DSC curves.  

The TGA analysis of IWK is conducted as previously described [32]. The thermal 

decomposition temperature (Td) of IWK is found to be even higher than that of 

pyranylidene type compounds WK-1 and WK-2 (see Fig.20). However its glass transition 

temperature (Tg) is lower by 18°C to 35°C degrees compared to that of pyranylidene type 

glasses. Despite the lower thermal stability, the pyranylidene type compounds WK-1 and 

WK-2 have better glass forming properties than the isophorene type compound IWK. 
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Figure 20. TGA and DSC analysis of IWK. (Please see Fig.18 and Fig.19 for a more detailed 

explanation). 

3.3. Glass forming properties 

Thin films are deposited on quartz glass by the spin-coating technique. Before the 

deposition of the layers, the quartz glass substrates are cleaned in dichloromethane. The 

solutions are spin-coated onto the substrates for 40 s at 400 rpm and acceleration 200 rpm/s. 

In all cases, pure films obtained from two electron donor fragment containing pyranylidene 

compounds (ZWK-2, DWK-2 and JWK-2) have an almost pure smooth and amorphous 

surface, but pyranylidene compounds with one electron donor fragment (ZWK-1, DWK-1 

and JWK-1) show several crystalline state areas (see Fig.21). Both glasses containing 

barbituric acid as an electron acceptor fragment (JWK-1 and JWK-2) show the least amount 

of small crystal formations on their pure film surface. The higher stability of their 

amorphous state could be explained by an enchancement of N-H group hydrogen bonds in 

the molecules. Pure films obtained from malononitrile electron acceptor fragment 

containing compounds (DWK-1 and DWK-2) contain small crystal dots, especially DWK-1. 

This could be due to small steric dimensions of malononitrile group, which allows more 

DWK-1 molecules to be concentrated in the same volume to allow closer interaction with 

other molecules enabling higher possibility to form agreggates and crystallites. 

Information obtained from the surfaces of the pure films is consistent with the measured 

glass transition temperatures (Tg). Glasses having higher Tg values are found to have less 

crystalline dots on their pure film surface. As we were unable to determinate Tg for DWK-1, 

according to above mentioned trend its glass transition temperature is expected to be below 

110°C. 

Thin film containing only pyranylidene type compound WK-1 and WK-2 are amourphous 

despite of small crystalline dots in it. Till now only way to prepare amourphse films which 

contain pyranyliden derivatives was doping them in glass forming compound. In that case 

maximum doping concentration was considered to be 2wt% due to self crystallization [11-

12]. However, incorporation of bulky trityloxy groups in their molecules or using glasses 

WK-1 and WK-2 could increase this concentration limit more then 10 times.  
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Figure 21. Optical mircroscope images of the pure films of the compound WK-1 and WK-2. Dots on the 

pure film surface represent compound crystalline state while the remaining smooth area shows 

amorphous solid state. 

3.4. Absorption and luminescence properties 

The absorption and fluorescence spectra of the synthesized compounds in diluted 

dichloromethane solution and pure films are shown in Figs. 22 and 23. 

A DWK-1 molecule, whose backbone consists of the laser dye 4-(dicyanomethylene)-2-

methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM), in dichloromethane solution has its 

absorption maximum at 472 nm, which is 8 nm red shifted with respect to the pure DCM 

molecule in the same solution [9]. It shows that the bulky trityloxyethyl group has only a 

small influence on the energy structure of the molecule. The peaks of the absorption spectra 

in solution of the molecules with indene-1,3-dione (ZWK-1) and barbituric acid (JWK-1) 

electron acceptor substituents in the backbone are red-shifted by approximately 40 nm 

compared to DWK-1. A stronger electron acceptor group gives larger red shifts. 
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Figure 22. 1) Absorption and 2) Photoluminescence spectra of compounds WK-1 and WK-2 in 

dichloromethane solution 

 

Figure 23. 1) Absorption and 2) Photoluminescence spectra of compounds WK-1 and WK-2 in thin 

solid films  

The photoluminescence (PL) spectrum of the DWK-1 solution was found to be Stokes 

shifted by about 115 nm (peak position at 587 nm) with respect to the absorption spectra (see 

Fig.22). The PL spectra of JWK-1 and ZWK-1 molecules exhibited similar shapes, with their 
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maxima red-shifted to 635 and 627 nm, respectively. The photoluminescence spectra are 

unstructured and strongly Stokes shifted in accordance with intramolecular charge-transfer 

nature of the excited states [39]. For compounds containing two 4-((N,N-ditrityloxyethyl) 

amino)styryl electron donor fragments the absorption and luminescence spectra of the 

solution are observed to be red-shifted and have larger extinction coefficients, which is due 

to the larger absorption cross section of these molecules. The peaks of the absorption spectra 

of DWK-2 and ZWK-2 are red shifted by 17 and 11 nm, respectively, compared to molecules 

with a single electron donor fragment. A similar red shift has been reported for the molecule 

with two electron donor fragments bis-DCM compared with DCM molecules with a single 

electron donor fragment [40]. It is observed that molecules with two electron donor 

fragments have a larger conjugation length. A second reason could be simultaneously 

functioning two donor groups which give stronger electron donor properties. The shape of 

the absorption spectrum of JWK-2 is found to be different from that of JWK-1 and the 

oscillator strength of the absorption band of JWK-2 at about 502 nm becomes more intense 

(see Fig.22(1)). 

The fluorescence spectra of molecules with two electron donor fragments are broader and 

further Stokes shifted than molecules with only one electron donor fragment. This may be 

attributed to the different conjugation lengths as indicated by the absorption spectra. The 

peak positions of DWK-2, ZWK-2 and JWK-2 are observed at 640, 678 and 701 nm, 

respectively. The red shift of the absorption spectra of solutions increases corresponding 

sequentially to ZWK, JWK and DWK, as stronger electron acceptor fragments induce 

larger red shifts. This could be explained by their electron withdrawing properties, which 

differ among our investigated electron acceptor fragments. The shift of luminescence 

spectra did not maintain the same sequence due to the larger Stokes shift for the JWK 

molecules. 

The absorption spectra of thin solid films of the molecules with one electron donor 

fragments are practically unchanged with respect to the solutions spectra. They are slightly 

broader with small red-shift indicating a weak excitonic interaction in the solid state, which 

is typical for glass-forming amorphous materials. For the molecules with two electron donor 

fragments ZWK and DWK the absorption spectra are found to shift by 21 nm and 22 nm, 

respectively. The peak positions of the absorption spectra for JWK molecules remain 

unchanged by the incorporation of a second electron donor fragment. However, the 

fluorescence spectra of all films are red-shifted in comparison with those of solution. 

For molecules with one electron donor fragment, the shape of the fluorescence spectra of 

thin films is very similar to that in solution, which confirms that for these compounds the 

excited states in the aggregates in the solid state are not very different from those in 

molecules. However, the derivatives with two electron donor fragments exhibit an 

additional band at longer wavelengths in thin films, which becomes more intense going 

from weaker to stronger electron acceptor fragments in the studied molecules. In the case of 

ZWK-2 in thin films the additional band even becomes dominant. 
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In the case of IWK, the absorption and luminescence spectra of thin solid films are also 

found to be practically unchanged compared to its solutions spectra as shown in Fig.24. 

 

Figure 24. 1) Absorption and 2) Emission of IWK in solutions and thin solid film  

The same relation is observed for IWK emission properties in solution as well as in thin 

films. However, in solid state its emission is very weak compared to pyranylidene type 

compounds, which may limit the usefulness of IWK in OLED applications. 

3.5. Photoluminescence quantum yields 

Photoluminescence quantum yield (PLQY) of the investigated compounds in solution and in 

thin films is measured by using an integrating sphere (Sphere Optics) coupled to a CCD 

spectrometer [41]. PLQY thus measured for all compounds are summarised in Table 3. 

Compounds with more polar groups attached exhibit PLQY up to 0.54 in dilute solutions, 

which is slightly higher than for DCM dye in similar surroundings [42, 43]. PLQY depends 

slightly on the acceptor group as can be seen from Table 3. That means that compounds 

with a stronger electron acceptor group have higher PLQY. JWK and ZWK molecules with 

two electron donor groups have lower PLQY in comparison with one electron donor group. 

However, the opposite is observed with DWK compounds, as molecules with two electron 

donor groups exhibit larger PLQY. This may be due to the shielding of the acceptor group 

by bulky trityloxyethyl groups. PLQY of pure films is found to be more than one order of 

magnitude lower than that in solution. This reduction is particularly strong in the case of 

molecules with two donor groups. PLQY values of these compounds correlate with the 

intensity of the long wavelength fluorescence band, as PLQY is lower in materials with a 

stronger low energy fluorescence band. Molecular distortions taking place during formation 

of solid films are probably responsible for both of these effects. Compound molecules with 
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two bulky acceptor groups are probably strongly distorted in solid films, so that molecular 

chains connecting acceptor and donor moieties are twisted. Such twisting usually leads to a 

red-shift in the molecular fluorescence and to fast non-radiative relaxation [44]. The twisted 

molecules form energy traps in solid films, which may be populated during the excitation 

diffusion. Therefore, even a small fraction of distorted molecules may significantly affect the 

fluorescence spectrum and PLQY. We were unable to measure PLQY in IWK pure thin solid 

films. Moreover, it also shows the lowest value in solution and therefore cannot be used as a 

light-emitting material. 

 

Solution Thin film
DWK-1 0.32 0.026
DWK-2 0.43 0.009
JWK-1 0.47 0.011
JWK-2 0.32 0.007

ZWK-1 0.54 0.01
ZWK-2 0.4 0.003

IWK 0.098 -

Table 3. Photoluminescence quantum yield of investigated molecules in dichlormethane solutions and 

pure thin films. 

It is worth mentioning that DCM molecules do not show any photoluminescence from pure 

films due to the small distance between molecules which results in high molecular 

interaction. Therefore, host-guest films of transparent polymethylmethacrylat (PMMA) 

polymer with varying dye doping were prepared in order to observe the impact of 

concentration on photoluminescence quenching. The dependence of PLQY on concentration 

of DWK-1 and DWK-2 molecules is shown in Fig.25.  

 

Figure 25. The dependence of PLQY on concentration of DWK-1, DWK-2 and DCM dyes in PMMA 

matrix. 

For comparison the PLQY of DCM in PMMA are also included in Fig.25. PMMA films 

doped with DWK-1 and DWK-2 at low concentration (<1 wt%) exhibit somewhat lower 

PLQY as compared to that obtained in solution (See Fig.24 and Table 3). This discrepancy 

may be attributed to the sensitivity of molecules to the polarity of the surrounding media. 
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At higher concentrations (>3 wt%) the DWK-1 molecule shows negligible 

photoluminescence quenching dependence on concentration. On the other hand molecules 

with two donor groups exhibit pronounced quenching. Fluorescence efficiency of the 

polymer film doped with 10 wt% of DWK-2 molecules decreases 2-times compared to that 

of films doped with 10 wt% DWK-1 molecules. The reason for the lower PLQY could be the 

same as for different PLQY of the pure films. The laser dye DCM dispersed in the polymer 

matrix at high concentration shows a remarkable fluorescence quenching. For example, at a 

10 wt% concentration of DCM molecules, up to a 4-time decrease of quantum yield is 

observed in comparison with the same concentration of DWK-1 molecules. Thus, 

incorporation of bulky trityloxyethyl groups prevents the formation of aggregates of the dye 

molecules and remarkably reduces the fluorescence quenching dependence on 

concentration, enabling the use of higher doping levels in emissive layers.  

3.6. Amplified spontaneous emission properties 

DCM molecule is a well known laser dye. In a previous work light amplification was 

demonstrated in DCM:Alq3 (see Fig.25 and Fig.26) thin films [45].  

N
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N

Alq3  

Figure 26. Tris(8-hydroxyquinolinato)aluminium (Alq3) is a well known light-emitting material. 

In order to test the light amplification prospects of our synthesized compounds, we 

prepared pure thin films of all the compounds on a quartz substrate and measured their 

amplified spontaneous emission (ASE). Such emission was observed only for four of six 

compounds, DWK-1, DWK-2, JWK-1 and ZWK-1, as shown in Fig.27 [46].  

 

Figure 27. ASE spectrum in pure films of compounds ZWK-1, DWK-1, DWK-2 and JWK-1 
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From the other two samples of JWK-2 and ZWK-2 no ASE signal has been observed. The 

peak positions of ASE are red shifted as compared to the fluorescence band maxima (see 

Fig.27 and Fig.22). The red shift values were found to be 14, 18, 10 and 31 nm for DWK-1, 

DWK-2, JWK-1 and ZWK-1, respectively. Variations in the peak intensity of ASE spectra as a 

function of the pump beam pulse energy are shown in Fig.28, from which ASE threshold 

values are estimated to be 90±10, 330±20, 95±10, 225±20 μJ/cm2 for DWK-1, DWK-2, JWK-1 

and ZWK-1, respectively. These values are larger in comparison with the threshold values (of 

the order of micro joules per square centimeter) reported for some other materials [46, 47]. 

However, a direct comparison is difficult because the ASE threshold, in addition to material 

properties, depends also on the sample and excitation geometries, film thickness, optical 

quality and excitation pulse duration. 

Nevertheless it has not been observe ASE in pure DCM films, but we have measured it in 

DWK-1 which is the same DCM with additional trityloxyethyl group. It should also be 

noted that some sample degradation has been observed at the highest excitation intensities; 

however no noticeable degradation is observed when excitation intensity is 1.5 - 2 times 

exceeding the ASE threshold. 

 

Figure 28. ASE intensity as a function of irradiation pulse energy in DWK-1, DWK-2, JWK-1, ZWK-1 

compounds in thin solid film. Lines are guides for the eye. 

ASE develops in the spectral position where the light amplification coefficient has the 

maximal value. The amplification coefficient may be described as: 
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 0( ) * [( ( ) * ( )] ( *) ( )ema n N n            (1) 

where n* is the density of excited molecules, N is the total density of molecules, 

0(),em()and *() are cross-sections of the ground state absorption, stimulated emission 

and excited state absorption, respectively. As it can be seen from Eq. (1) even weak ground 

state absorption may strongly reduce the amplification coefficient or make it negative. This 

is because only a small fraction of molecules is usually excited even under high intensity 

excitation conditions, i.e., N>>n*. Thus, the absorption band tails, which overlap with 

fluorescence band, are evidently responsible for the red shifts in ASE spectra in comparison 

with the maxima of the fluorescence. Note, that the light propagation length is limited by 

the film thickness in the absorption measurements, while ASE emission can propagate a 

much longer way along the film. 

3.7. Photoelectrical properties and energy structure of glassy thin films 

Information about the location of energy levels enables one to determine the best sample 

structure for electroluminescence measurements. To characterize the energy gap in organic 

solids several methods are applied. In organic crystals as well as amorphous solids charge 

carriers do not emerge as “bare” quasi-free electrons and holes but as a polaron type quasi-

particle, dressed “in electronic and vibronic polarization clouds” [48, 49]. Electronically 

relaxed charges may be formed far enough from each other which give rise to a wider 

optical band gap EGOpt [49, 50]. The optical energy gap EGOpt may be obtained from the low 

energy threshold of the absorption spectra of organic thin films. The vibrationally and 

electronically relaxed charge carrier states contribute to the adiabatic energy gap EGAd. It 

could be attributed to the threshold energy of photoconductivity Eth which can be estimated 

from the spectrum of the quantum efficiency of photoconductivity β(hυ) [49]: 

 
( , )

( , )
( ) ( ) ( )

phj h U
h U

k h I h g h


 

  
  (2) 

where jph is the density of photocurrent at a given photon energy hand applied voltage U, 

I(h) is the intensity of light (photons/cm2s), k(h) is the transmittance of the 

semitransparent electrode and g(h) is the coefficient which characterizes the absorbed light 

in the organic layer. 

Eth can be determined from a sample where the organic compound is sandwiched between 

two semitransparent electrodes, which in our case are ITO and thermally evaporated 

aluminum. The sample is irradiated through the electrodes and current changes are 

measured as shown in Fig.29(1). Efficiency of photoconductivity at different light energy is 

calculated using Eq. (2) and is plotted as a function of the photon energy in Fig.29(2). The 

sample is illuminated from both aluminum and ITO side when positive and negative 

voltage is applied to them. Eth is determined by plotting 2/5 as a function of the photon 

energy. The intersections of tangents at low photon energy on the curve of 2/5 plotted as a 

function of the photon energy and photon energy axis gives Eth as shown in Fig.29(3). 
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Figure 29. 1) Photocurrent at different wavelength for JWK-2 compound ,2) Dependency of 

photoconductivity efficiency on photon energy for JWK-2 compound,3) Determination of Eth from 

photoconductivity efficiency spectral dependence. 

Optical band gap EGOpt, photoconductivity threshold value Eth and reduction-oxidation 

potential Uredox, determined from cyclic voltamperogramme, for investigated compounds are 

presented in Table 4. 

 

 EGOpt (eV) Eth (eV) Uredox (V) 

DWK-1 2.20 1.92 2.35 

DWK-2 2.10 - 1.99 

JWK-1 2.08 1.78 2.01 

JWK-2 1.88 1.62 1.90 

ZWK-1 2.08 1.78 2.04 

ZWK-2 1.96 1.68 2.00 

Table 4. Optical band gap EGOpt, photoconductivity threshold value Eth and red-ox potential Uredox for 

the compunds DWK-1, DWK-2, JWK-1, JWK-2, ZWK-1, ZWK-2. 

According to Table 4, the redox potential of DWK, JWK and ZWK is higher for compounds 

with one electron donor group compared to compounds with two electron donor groups 

(see Fig.17). The same relation is found for optical band gap as well. 

The photoconductivity threshold value cannot be obtained for DWK-2 thin films due to the 

low value of photocurrent. For other compounds we obtain an excellent linear correlation 
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between optical band gaps and photoconductivity threshold values with correlation 

coefficient 0.993. The slope of this linear relation is found to be 1 and intercept 0.28 as shown 

in Fig.31 

 

Figure 30. Cyclic voltamperogramme curves of compounds WK-1 and WK-2. Posistive values are 

oxidation potential and negative values reduction potential. 



 

Organic Light Emitting Devices 224 

 

Figure 31. Linear correlation between optical band gap and photoconductivity threshold value. Line is 

the best fit with slope coefficient one. 

The energy of the photoconductivity threshold is defined as the difference between the 

conduction levels of holes and electrons [51]. The value of the intercept implies that the 

optical band gap is 0.28 eV larger than the difference between the conduction levels of holes 

and electrons. It shows a constant energy difference between optical band gap and adiabatic 

gap despite the various molecule structures. 

3.8. Electrical properties 

Electrical properties of WK-1 and WK-2 compounds are investigated in the regime of space 

charge limited current (SCLC) [52-54]. Similar sandwich type samples as used for 

photoelectrical measurements are prepared for this study as well. The thickness of the 

organic thin film is at least 500 nm. 

The current-voltage characteristics of compounds ZWK-1, ZWK-2, JWK-1, JWK-2 and 

DWK-2 in thin solid films are shown in Fig.32. 

The current-voltage characteristic of DWK-1 films could not be measured due to unstable 

current. This may be due to formation of small crystallites (see Fig.21) around 1 m in size. 

Such aggregates are found throughout the sample and induce instability in the current. In 

all other cases the current-voltage characteristics have similar shapes with three regions. In 

the first region, 0-2 volts, the current is found to depend linearly on voltage. In the second 

range, 2 to 50 volts the current increases superlinearly with voltage, following Child’s law. 

In the third region, > 50 V, the current depends on voltage to the power of at least ten, which 

may be attributable to charge trapping in the local trap states. More details of this aspect will 

be discussed further below. 

Usually the work function of ITO should be near the ionisation energy level of the organic 

compound while that of aluminium (Al) should be around the middle of the energy gap. 

This provides efficient hole injection from ITO and electron injection from aluminium when 

a positive voltage is applied to ITO. Holes may also be injected from the aluminium when 

positive voltage applied to it. Electron injection may be more difficult in the second case due 

to the large difference between the ITO work function and electron affinity potential of the 
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organic compound. This is confirmed by the current voltage characteristics shown in Fig.32. 

A similar current is observed at the lower voltage where only holes are injected either from 

ITO or aluminium when biased with a positive voltage. At higher voltage current is higher 

when ITO is positive in comparison with positive aluminium. 

 

Figure 32. Current-voltage characteristics of pure thin films of ZWK, JWK, DWK compounds. Solid 

line – compounds with one electron donor group, dashed line - compounds with two electron donor 

group. 

The temperature modulated space charge limit current (TM SCLC) method is used to 

analyse the charge carrier local trapping states in solid films [55]. The condition for using 

this method (TM SCLC) is monopolar injection, which is achieved in our case when a 

positive voltage is applied to the aluminium electrode. The measured activation energy is 

plotted as a function of the applied voltage for the investigated compounds as shown in 

Fig.33. 

No charge carrier local trap states are found in films of compounds with one electron donor 

group due to only one plateau which reaches zero. All compounds with two electron donor 

groups are found to have charge carrier trap states. The additional plateau of activation 

energy, which can be clearly seen from Fig.33 means that the thin films contain local trap 

states. The hole shallow trap depths are found to be 0.1, 0.24 and 0.3 eV in ZWK-2 JWK-2 

and DWK-2, respectively. Such trap states decrease the efficiency of electroluminescence 

and should be avoided in fabricating high efficiency light emitting diodes. The activation 
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energy increases at lower voltage for compounds JWK-1, JWK-2 and DWK-2. This is 

indicative of a contact problem where the electrode – organic interface also works as 

additional charge carrier traps. 

 

Figure 33. Activation energy dependence on applied voltage of the investigated compounds in solid 

films. Positive voltage was applied to aluminium electrode. 

3.9. Electroluminescence of ZWK-1 and ZWK-2 

A multilayer structure is used for electroluminescence (EL) measurements. 

Polyethylenedioxythiophenne:polystyrenesulfonate (PEDOT:PSS) (from H.C. Starck) is used 

as the hole injection layer and LiF as electron injection layer. PEDOT:PSS and organic 

compounds are sequentially spin coated on ITO glass. Then LiF and Al are thermally 

evaporated in vacuum. The final structure of the device has a structure of 

ITO/PEDOT:PSS(40nm)/ZWK1 or ZWK-2(~90nm)/LiF(1nm)/Al(100nm) and is not 

encapsulated. 

The EL spectrum of the device is estimated in International Commission on Illumination 

(CIE) coordinates: x=0.65 and y=0.34 for ZWK-1 and x=0.64 and y=0.36 for ZWK-2. The 

spectral maximum peak is observed at 667 nm and 705 nm in ZWK-1 and ZWK-2, 

respectively, as shown in Fig.34. These peaks are slightly red shifted compared with those of 

PL spectrum of ZWK-1 and ZWK-2 thin films. This red shift may be attributed to the 

interaction of molecules and injected charges. 
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Figure 34. a) Electroluminescence spectrum and b) light intensity dependence on voltage of ZWK-1 

(line) and ZWK-2 compounds (doted line) 

The light emission is observed at 6 V in the electroluminescent device with ZWK-1 

molecules and 9 V in with ZWK-2 molecules. The light intensity is one order less in ZWK-2 

molecules compared to that in ZWK-1. This may be due to the lower PLQY and shallow 

charge carrier trap states in ZWK-2. 

4. Conclusions  

The absorption and emission bands of the synthesized pyranylidene type compounds ZWK-

1, DWK-1, JWK-1 are comparable with those of other already known one electron donor 

fragment DCM and benzopyran type derivatives of pyranylidene within the spectral region 

studied here. Similar conclusions can be drawn about ZWK-2, DWK-2, JWK-2, which have 

similar properties to IWK and two other already known electron donnor group containing 

derivatives of pyranylidene. These properties are also similar to those of one electron donor 

fragment chromene red-emitters. However, incorporation of bulky trityloxy groups in such 

molecules not only enchances glass transition temperatures by 5° to 20°C compared to 

previously published pyranylidene type compounds containing one and two electron donor 

groups, but also enables the formation of a glassy structure in the solid state from volatile 

organic solvents. In addition, no glass transition values have been observed so far for low 

molecular mass isophorene type compounds. The photoluminescence quantum yield of 

investigated molecules in solution is up to 0.54 and is also comparable with the quantum 

yield of pyranylidene and isophorene derivatives already reported. Most of the thin solid 

films obtained from WK-1, WK-2 have almost no crystals in the sample. Newertheless the 

photoluminescence quantum yield is reduced by one order of magnitude due to the closer 

intermolecular distance between molecules, resulting in strong excitonic interaction. 
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Emission from the IWK film is too weak to detect, which may be attributed to the higher 

photoluminescence quenching in IWK than in glassy pyranylidene films. However, using 

the doping approach, the compounds we have introduced enable up to 3 times higher 

doping concentration without losing optical properties compared to other already known 

red-emitters. 

Four investigated compounds - ZWK-1, JWK-2, DWK-1 and DWK-2 show amplified 

spontaneous emission from pure solid films. Obtained threshold values are larger than 

those previously reported, but it should be mentioned that for pyranylidene type 

compounds, amplified spontaneous emission has been observed only in the doped systems 

until now.  

Electrical properties are found to be better in compounds with one electron donor group 

due to absence of local trap states in their thin films. In the case of molecules with two 

electron donor groups shallow hole trap states have been observed, which may decrease 

efficiency of electroluminescence and should therefore be avoided in fabricating high 

efficiency light emitting diodes. 

Even though we are able to prevent pyranylidene and isophorene type red-emitters from 

self crystallization in the solid state, their concentration in the emission layer would still be 

limited due to photoluminescence quenching caused by the short distance between 

molecules. Nevertheless, the glass materials can still be used not only as dopants for OLED 

applications, but also for lasing applications. Good thermal properties present a possibility 

of using them also for nonlinear optical (NLO) property studies. 
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