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1. Introduction 

A proper study of the induction machine operation, especially when it comes to transients 

and unbalanced duties, requires effective mathematical models above all. The mathematical 

model of an electric machine represents all the equations that describe the relationships 

between electromagnetic torque and the main electrical and mechanical quantities.  

The theory of electrical machines, and particularly of induction machine, has mathematical 

models with distributed parameters and with concentrated parameters respectively. The first 

mentioned models start with the cognition of the magnetic field of the machine components. 

Their most important advantages consist in the high generality degree and accuracy. 

However, two major disadvantages have to be mentioned. On one hand, the computing 

time is rather high, which somehow discountenance their use for the real-time control. On 

the other hand, the distributed parameters models do not take into consideration the 

influence of the temperature variation or mechanical processing upon the material 

properties, which can vary up to 25% in comparison to the initial state. Moreover, particular 

constructive details (for example slots or air-gap dimensions), which essentially affects the 

parameters evaluation, cannot be always realized from technological point of view.            

The mathematical models with concentrated parameters are the most popular and 

consequently employed both in scientific literature and practice. The equations stand on 

resistances and inductances, which can be used further for defining magnetic fluxes, 

electromagnetic torque, and et.al. These models offer results, which are globally acceptable 

but cannot detect important information concerning local effects (Ahmad, 2010; Chiasson, 

2005; Krause et al., 2002; Ong, 1998; Sul, 2011).  
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The family of mathematical models with concentrated parameters comprises different 

approaches but two of them are more popular: the phase coordinate model and the orthogonal 

(dq) model (Ahmad, 2010; Bose, 2006; Chiasson, 2005; De Doncker et al., 2011; Krause et al., 

2002; Marino et al., 2010; Ong, 1998; Sul, 2011; Wach, 2011).  

The first category works with the real machine. The equations include, among other 

parameters, the mutual stator-rotor inductances with variable values according to the rotor 

position. As consequence, the model becomes non-linear and complicates the study of 

dynamic processes (Bose, 2006; Marino et al., 2010; Wach, 2011). 

The orthogonal (dq) model has begun with Park’s theory nine decades ago. These models 

use parameters that are often independent to rotor position. The result is a significant 

simplification of the calculus, which became more convenient with the defining of the space 

phasor concept (Boldea & Tutelea, 2010; Marino et al., 2010; Sul, 2011).    

Starting with the ″classic″ theory we deduce in this contribution a mathematical model that 

exclude the presence of the currents and angular velocity in voltage equations and uses total 

fluxes alone. Based on this approach, we take into discussion two control strategies of 

induction motor by principle of constant total flux of the stator and rotor, respectively. 

The most consistent part of this work is dedicated to the study of unbalanced duties 

generated by supply asymmetries. It is presented a comparative analysis, which confronts a 

balanced duty with two unbalanced duties of different unbalance degrees. The study uses as 

working tool the Matlab-Simulink environment and provides variation characteristics of the 

electric, magnetic and mechanical quantities under transient operation.   

2. The equations of the three-phase induction machine in phase 

coordinates 

The structure of the analyzed induction machine contains: 3 identical phase windings placed 

on the stator in an 120 electric degrees angle of phase difference configuration; 3 identical 

phase windings placed on the rotor with a similar difference of phase; a constant air-gap 

(close slots in an ideal approach); an unsaturated (linear) magnetic circuit that allow to each 

winding to be characterized by a main and a leakage inductance. Each phase winding has 

Ws turns on stator and WR turns on rotor and a harmonic distribution. All inductances are 

considered constant. The schematic view of the machine is presented in Fig. 1a.   

The voltage equations that describe the 3+3 circuits are: 

 , ,as bs cs
as s as bs s bs cs s cs

d d d
u R i u R i u R i

dt dt dt

  
          (1) 

 , , CRAR BR
AR R AR BR R BR CR R CR

dd d
u R i u R i u R i

dt dt dt

 
        (2) 

In a matrix form, the equations become: 
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 abcs
abcs s abcs

d
u R i

dt

                (3) 

 ABCR
ABCR R ABCR

d
u R i

dt

                    (4) 

 

Figure 1. Schematic model of three-phase induction machine: a. real; b. reduced rotor  

The quantities in brackets represent the matrices of voltages, currents, resistances and total 

flux linkages for the stator and rotor. Obviously, the total fluxes include both main and 

mutual components. Further, we define the self-phase inductances, which have a leakage 

and a main component: Ljj=Lσs+Lhs for stator and LJJ=LΣR+LHR for rotor. The mutual 

inductances of two phases placed on the same part (stator or rotor) have negative values, 

which are equal to half of the maximum mutual inductances and with the main self-phase  

component: Mjk=Ljk=Lhj=Lhk. The expressions in matrix form are: 

 

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

s hs hs hs

ss hs s hs hs

hs hs s hs

L L L L

L L L L L

L L L L







   
         
    

    (5-1) 

 

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

R HR HR HR

RR HR R HR HR

HR HR R HR

L L L L

L L L L L

L L L L







   
         
    

      (5-2) 

 

   
   
   

cos cos cos 2

cos 2 cos cos

cos cos 2 cos

R R R

sR Rs sR R R Rt

R R R

u u

L L L u u

u u

  

  

  

  
 

           
   

        (5-3) 

(a) (b)



 
Induction Motors – Modelling and Control 6 

where u denotes the angle of 1200 (or 2π/3 rad). 

The analysis of the induction machine usually reduces the rotor circuit to the stator one. This 

operation requires the alteration of the rotor quantities with the coefficient k=Ws/WR  by 

complying with the conservation rules. The new values are:  

 ; ; 1 / ;abcr ABCR abcr ABCR abcr ABCRu k u k i k i        

 

2 22
2 2; ;s sR

r R hr HR hs
R h h

W WW
R k R L k L L

W

 
            

  (6) 

2 22
2 ;s s s s RR

r R s sr sR hs
R R r R h

W W W W WW
L k L L L kL L

W W 
 



   
                 

 

where the reluctances of the flux paths have been used. The new matrices, with rotor 

quantities denoted with lowercase letters are: 

 
2

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

(1 / 2) (1 / 2)

r hs hs hs

rr RR hs r hs hs

hs hs r hs

L L L L

L k L L L L L

L L L L







   
             
    

  (7-1) 

 

   
   
   

cos cos cos 2

cos 2 cos cos

cos cos 2 cos

R R R

sr sR rs hs R R Rt

R R R

u u

L k L L L u u

u u

  

  

  

  
 

                
   

  (7-2) 

By virtue of these transformations, the voltage equations become: 

 

 

 

sr abcrabcs abcs
abcs s abcs s abcs ss

sr abcsabcr abcr t
abcr r abcr r abcr rr

d L id d i
u R i R i L

dt dt dt

d L id d i
u R i R i L

dt dt dt





                                        


                                       

  (8) 

By using the notations:  

 

     
     
     

3 3

3

3

r hs s s hs r

s r hs s s hs r

r s hs r r hs s

L L L L L L L

L L L L L L L

L L L L L L L

   

   

   

    

    

    

  (9) 

and after the separation of the currents derivatives, (8) can be written under operational 

form as follows:  
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 
           

 
     

       
2

2
cos cos cos 2

3 2
sin sin sin 2

3 2
2,6

s s s hs r r hs
as bs cs ar br crR R R

s s

hs hs r
ar br crR R R R

hs r hs hs
bs cs as bs csR

s

R L R L L R L
s i i i i i u i u

L L L L L

L L L
i i u i u

L

L L L L
i i u u u

L L L



 







  

   



  



 

                   
        


     

 




 

     2
cos cos cos 2 ,

r
as

hs
ar br crR R R

L
u

L

L
u u u u u

L



  








      

 
           

 
     

       
2

2
cos cos cos 2

3 2
sin sin sin 2

3 2
2,6

s s s hs r r hs
bs cs as br cr arR R R

s s

hs hs r
br cr arR R R R

hs r hs hs
cs as as bs csR

s

R L R L L R L
s i i i i i u i u

L L L L L

L L L
i i u i u

L

L L L L
i i u u u

L L L



 







  

   



  



 

                   
        


     

 




 

     2
cos cos cos 2 ,

r
bs

hs
br cr arR R R

L
u

L

L
u u u u u

L



  








      

 
           

 
     

       
2

2
cos cos cos 2

3 2
sin sin sin 2

3 2
2,6

s s s hs r r hs
cs as bs cr ar brR R R

s s

hs hs r
cr ar brR R R R

hs r hs hs
as bs as bs csR

s

R L R L L R L
s i i i i i u i u

L L L L L

L L L
i i u i u

L

L L L L
i i u u u

L L L



 







  

   



  



 

                   
        


     

 




 

     2
cos cos cos 2 ,

r
cs

hs
cr ar brR R R

L
u

L

L
u u u u u

L



  








      

 

 
           

         

   

22
cos cos 2 cos 2,6

2
cos cos 2 cos

2 3 2 3
si

r r hs s hs
ar as bs cs br crR R R R

r

hs s hs
as bs cs ar br crR R R

r

s hs s hs
ar asR hs

R L L R L
s i i i u i u i i

L L L L

L L L
u u u u u u u u

L L L

L L L L
u L i

L L







 

   

  



  

 

 

                   

           

 
 

 



    

   

n sin 2 sin

,

bs csR R R

s hs r
br cr

r

i u i u

L L R
i i

L L




  



      

 


 
           

         

   

22
cos cos 2 cos 2,6

2
cos cos 2 cos

2 3 2 3
si

r r hs s hs
br bs cs as cr arR R R R

r

hs s hs
bs cs as ar br crR R R

r

s hs s hs
br bsR hs

R L L R L
s i i i u i u i i

L L L L

L L L
u u u u u u u u

L L L

L L L L
u L i

L L







 

   

  



  

 

 

                   

           

 
 

 



    

   

n sin 2 sin

,

cs asR R R

s hs r
cr ar

r

i u i u

L L R
i i

L L




  



      

 

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 
           

         

   

22
cos cos 2 cos 2,6

2
cos cos 2 cos

2 3 2 3
si

r r hs s hs
cr cs as bs ar brR R R R

r

hs s hs
cs as bs ar br crR R R

r

s hs s hs
cr csR hs

R L L R L
s i i i u i u i i

L L L L

L L L
u u u u u u u u

L L L

L L L L
u L i

L L







 

   

  



  

 

 

                   

           

 
 

 



    

   

n sin 2 sin

,

as bsR R R

s hs r
ar br

r

i u i u

L L R
i i

L L




  



      

 


 (10) 

Besides (10), the equations concerning mechanical quantities must be added. To this end, the 

electromagnetic torque has to be calculated. To this effect, we start from the coenergy 

expression, mW , of the 6 circuits (3 are placed on stator and the other 3 on rotor) and we 

take into consideration that the leakage fluxes, which are independent of rotation angle of 

the rotor, do not generate electromagnetic torque, that is: 

      1 1
1 1

2 2m abcs ss s abcs abcr rr r abcr abcs sr R abcrt t t
W i L L i i L L i i L i                                                 (11) 

The magnetic energy of the stator and the rotor does not depend on the rotation angle and 

consequently, for the electromagnetic torque calculus nothing but the last term of (11) is 

used. One obtains: 

 

 

     

     

1

2

1
sin 2 2 2

2

3
cos

2

sr R

e abcs abcrt
R

hs R as ar br cr bs ar br cr cs ar br cr

hs R as cr br bs ar cr cs br ar

d L
T p i i

d

pL i i i i i i i i i i i i

pL i i i i i i i i i









         

              

       

 (12) 

The equation of torque equilibrium can now be written under operational form as: 

    

        

1
sin 2 2

2

2 3 cos

z
R hs R as ar br cr bs ar br cr

cs ar br cr R as cr br bs ar cr cs br ar st

Js k
pL i i i i i i i i

p

i i i i i i i i i i i i i T

 



 
          

 
              

 

 R R Rs               (13) 

where ωR represents the rotational pulsatance (or rotational pulsation). 

The simulation of the induction machine operation in Matlab-Simulink environment on the 

basis of the above equations system is rather complicated. Moreover, since all equations 

depend on the angular speed than the precision of the results could be questionable mainly 

for the study of rapid transients. Consequently, the use of other variables is understandable. 

Further, we shall use the total fluxes of the windings (3 motionless windings on stator and 

other rotating 3 windings on rotor). 
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It is well known that the total fluxes have a self-component and a mutual one. Taking into 

consideration the rules of reducing the rotor circuit to the stator one, the matrix of 

inductances can be written as follows:   

 

       
       
       

       
       
   

1 1 / 2 1 / 2 cos cos cos 2

1 / 2 1 1 / 2 cos 2 cos cos

1 / 2 1 / 2 1 cos cos 2 cos

cos cos 2 cos 1 1 / 2 1 / 2

cos cos cos 2 1 / 2 1 1 / 2

cos 2 cos c

s R R R

s R R R

s R R R
abcabc hs

R R R r

R hs R R r

R R

l u u

l u u

l u u
L L

u u l

u L u l

u u











  

  

  

  

  

 

    

    

    
         

    

     os 1 / 2 1 / 2 1R rl

 
 
 
 
 
 
 
 
 

    

 (14) 

Now, the equation system (8) can be written shortly as: 

 , , :abcabc
abcabc s r abcabc abcabc abcabc abcabc

d
u R i where L i

dt




                             (15) 

By using the multiplication with the reciprocal matrix: 

 
1 1 1

,abcabc abcabc abcabc abcabc abcabc abcabc abcabc abcabcL L L i or i L 
  

                                  (16) 

than (15) becomes: 

 
1

,
abcabc

abcabc s r abcabc abcabc

d
u R L

dt




                      (17) 

This is an expression that connects the voltages to the total fluxes with no currents 

involvement. Now, practically the reciprocal matrix must be found. To this effect, we 

suppose that the reciprocal matrix has a similar form with the direct matrix. If we use the 

condition: 
1

1 ,abcabc abcabcL L


            than through term by term identification is obtained: 

 

 
   

   
   

   
 

1

2 2

2 2

2 2

2 2

1

cos cos cos 2

cos 2 cos cos

cos cos 2 cos

cos cos 2 cos

cos cos c

abcabc

s hs r hs r R R R

hs r s hs r R R R

hs r hs r s R R R

R R R r hs s hs s

R R

L
LD

L L L L L u u

L L L L L u u

L L L L L u u

u u L L L L L

u

  

  

  

  

  

  

  

  

 


     

     

     

     


     

     
   

2 2

2 2

os 2

cos 2 cos cos

R hs s r hs s

R R R hs s hs s r

u L L L L L

u u L L L L L

  

  



  

 
 
 
 
 
 
 
 

  
 
       

   (18) 

where the following notations have been used: 

 
 

   
( ) 3 3 2 ; 2 ;

3 2 ; 3 2

hs s hs r r s r s hs s r

s hs r hs s r s r r hs s hs r r s s

LD L L L L L L L L L L L

L L L L L L L L L L L L L L L L

       

           

      

       
   (19) 
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Further, the matrix product is calculated:
1

,s r abcabc abcabcR L 
          , which is used in (17). 

After a convenient grouping, the system becomes: 

        
   

2

2 cos 3 sin

as s s hs r s hs s r s
as as bs cs

ar br cr R cr br R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

      

    (20-1) 

        
   

2

2 cos 3 sin

bs s s hs r s hs s r s
bs bs cs as

ar br cr R ar cr R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

       

    (20-2) 

        
   

2

2 cos 3 sin

cs s s hs r s hs s r s
cs cs as bs

ar br cr R br ar R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

       

     (20-3) 

        
   

2

2 cos 3 sin

ar r r hs s r hs s r r
ar ar br cr

as bs cs R bs cs R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

      

    (20-4) 

        
   

2

2 cos 3 sin

br r r hs s r hs s r r
br br cr ar

as bs cs R cs as R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

       

     (20-5) 

        
   

2

2 cos 3 sin

cr r r hs s r hs s r r
cr cr ar br

as bs cs R as bs R

d L R L L R L L L R
u

dt LD LD LD
   

  

      


     

  

       

   (20-6) 

For the calculation of the electromagnetic torque we can use the principle of energy 

conservation or the expression of stored magnetic energy. The expression of the 

electromagnetic torque corresponding to a multipolar machine (p is the number of pole 

pairs) can be written in a matrix form as follows: 

 

1

2

abcabc
e abcabc abcabct

R

d Lp
T

d
 



               
  

    (21) 

To demonstrate the validity of (21), one uses the expression of the matrix  
1

abcabcL


    , (18), 

in order to calculate its derivative: 
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   
   
   

   
   
   

1

3

0 0 0 sin sin sin 2

0 0 0 sin 2 sin sin

0 0 0 sin sin 2 sin

sin sin 2 sin 0 0 0

sin sin sin 2 0 0 0

sin 2 sin sin 0 0 0

abcabc
R

R R R

R R R

R R R

R R R

R R R

R R R

d
L

d

u u

u u

u u

u u

u u

u u



  

  

  

  

  

  


     

  
 

  
     
 
   
 

   

  (22) 

where the following notation has been used:  

 
3

1

(3 / 2)( ) /s r r s hsL L L L L   
 

 
     (23) 

This expression defines the permeance of a three-phase machine for the mathematical model 

in total fluxes. 

Observation: One can use the general expression of the electromagnetic torque where the 

direct and reciprocal matrices of the inductances (which link the currents with the fluxes) 

should be replaced, that is:  

 

1 1

1

1 1

2 2

1

2

abcabc abcabc
e abcabc abcabc abcabc abcabct t t

R R

abcabc
e abcabc abcabct

R

d L d L
T p i i p L L

d d

d L
T p

d

 
 

 


 



                                

          

  (24) 

A more convenient expression that depends on sinθR and cosθR, leads to the electromagnetic 

torque equation in fluxes alone: 

         
      

31 / 2 2 2 2 sin

3 cos

e as ar br cr bs br cr ar cs cr ar br R

as br cr bs cr ar cs ar br R

T p             

         

            
      

 (25) 

Ultimately, by getting together the equations of the 6 electric circuits and the movement 

equations we obtain an 8 equation system, which can be written under operational form:  

        
   

2

2 cos 3 sin

s s hs r s hs s r s
asas bs cs

ar br cr cr brR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

       

    (26-1) 

        
   

2

2 cos 3 sin

s s hs r s hs s r s
bsbs cs as

ar br cr ar crR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

        

    (26-2) 
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        
   

2

2 cos 3 sin

s s hs r s hs s r s
cscs as bs

ar br cr br arR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

        

      (26-3) 

        
   

2

2 cos 3 sin

r r hs s r hs s r r
arar br cr

as bs cs bs csR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

       

      (26-4) 

        
   

2

2 cos 3 sin

r r hs s r hs s r r
brbr cr ar

as bs cs cs asR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

        

  (26-5) 

        
   

2

2 cos 3 sin

r r hs s r hs s r r
crcr ar br

as bs cs as bsR R

L R L L R L L L R
s u

LD LD LD
     

      

 
          

        

  (26-6) 

 

        
   
      

3/ 1 / 2 sin 2

2 2 3 cos

as ar br crR z R

bs br cr ar cs cr ar br R

as br cr bs cr ar cs ar br st

s k J p J p

T

     

        

        

      
      

       



  (26-7) 

 
R

R R

d

dt


     (26-8) 

This equation system, (26-1)-(26-8) allows the study of any operation duty of the three-phase 

induction machine: steady state or transients under balanced or unbalanced condition, with 

simple or double feeding.  

3. Mathematical models used for the study of steady-state under 

balanced and unbalanced conditions 

Generally, the symmetrical three-phase squirrel cage induction machine has the stator 

windings connected to a supply system, which provides variable voltages according to 

certain laws but have the same pulsation. Practically, this is the case with 4 wires 

connection, 3 phases and the neutral. The sum of the phase currents gives the current 

along neutral and the homopolar component can be immediately defined. The analysis of 

such a machine can use the symmetric components theory. This is the case of the 

machine with two unbalances as concerns the supply. The study can be done either using 
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the equation system (26-1...8) or on the basis of symmetric components theory with three 

distinct mathematical models for each component (positive sequence, negative sequence 

and homopolar).     

The vast majority of electric drives uses however the 3 wires connection (no neutral). 

Consequently, there is no homopolar current component, the homopolar fluxes are zero 

as well and the sum of the 3 phase total fluxes is null. This is an asymmetric condition 

with single unbalance, which can be studied by using the direct and inverse sequence 

components when the transformation from 3 to 2 axes is mandatory. This approach 

practically replaces the three-phase machine with unbalanced supply with two 

symmetric three-phase machines. One of them produces the positive torque and the 

other provides the negative torque. The resultant torque comes out through 

superposition of the effects.    

3.1. The abc-αβ0 model in total fluxes  

The operation of the machine with 2 unbalances can be analyzed by considering certain 

expressions for the instantaneous values of the stator and rotor quantities (voltages, total 

fluxes and currents eventually, which can be transformed from (a, b, c) to (α, β, 0) reference 

frames in accordance with the following procedure : 

 

0

1 1 / 2 1 / 2
2

0 3 / 2 3 / 2
3

2 / 2 2 / 2 2 / 2

s as

s bs

css





 
 



     
           
         

  (27) 

We define the following notations:   

 

 
 

 
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
 

 
1

2
s

s
s s

R

L L 


   
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   (28-1) 
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             (28-2) 
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  
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s

s ss r r s hs
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   (28-3) 

  
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;
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hs s r r r r r
r

r rs r r s hs

L L L R L R R
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  


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
   

              
  (28-4) 

By using these notations in (17) and after convenient groupings we obtain:  
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   (29-1) 
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   (29-2) 
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   (29-3) 
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  (29-4) 
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d
u
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
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  (29-5) 

 

 

   

1

3

2 cos 3 sin

cr
rt cr cr rs ar br r

bs cs as R as bs R

d
u

dt 


     

      

     

       
  (29-6) 

Typical for the cage machine or even for the wound rotor after the starting rheostat is short-

circuited is the fact that the rotor voltages become zero. The equations of the six circuits get 

different as a result of certain convenient math operations. (29-2) and (29-3) are multiplied 

by (-1/2) and afterwards added to (29-1); (29-3) is subtracted from (29-2); (29-1), (29-2) and 

(29-3) are added together. We obtain three equations that describe the stator. Similarly, (29-

4), (29-5) and (29-6) are used for the rotor equations. The new equation system is:      
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   (30-1, 2, 3) 
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  (30-4, 5, 6) 

Further, the movement equation has to be attached. It is necessary to establish the detailed 

expression of the electromagnetic torque in fluxes alone starting with (25) and using 

convenient transformations: 

      33 / 2 sin cose s r s r R s r s r RT p                            (31) 

Ultimately, the 8 equation system under operational form is:  

    cos sinss r rs s R Rs u              (32-1) 

    sin cosss r rs s R Rs u              (32-2) 

   00 2 ss st srs u       (32-3) 

    cos sinrr s sr r R Rs u              (32-4) 

    sin cosrr s sr r R Rs u               (32-5) 

   00 2 rr rt rss u       (32-6) 

           3/ 3 / 2 sin coss r s r s r s rR z R R sts k J p J p T                            
  (32-7) 

 R
R R

d

dt


     (32-8) 



 
Induction Motors – Modelling and Control 16 

These equations allow the study of three-phase induction machine for any duty. It has to be 

mentioned that the electromagnetic torque expression has no homopolar components of the 

total fluxes. 

3.2. The abc-dq model in total fluxes  

For the study of the single unbalance condition is necessary to consider expressions of the 

instantaneous values of the stator and rotor quantities (voltages, total fluxes and eventually 

currents in a,b,c reference frame) whose sum is null. The real quantities can be transformed 

to (d,q) reference frame (Simion et al., 2011). By using the notations (28-1), (28-2), (28-3) and 

(28-4) then after convenient grouping we obtain (Simion, 2010):    
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     (33-1, 2) 
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          (33-3, 4) 

Further, the movement equation (31) must be attached. The operational form of the equation 

system (4 electric circuits and 2 movement equations) is:       

    cos sinss r rs s R Rs u                (34-1) 

    sin cosss r rs s R Rs u                     (34-2) 

    cos sinr s sr r R Rs                   (34-3) 

    sin cosr s sr r R Rs                  (34-4) 

 

          3/ 3 / 2 sin coss r s r s r s rR z R R sts k J p J p T                            


 (34-5) 

 R
R R

d

dt


             (34-6) 

The equation sets (33-1...4) and (34-1...6) prove that a three-phase induction machine 

connected to the supply system by 3 wires can be studied similarly to a two-phase machine 
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(two-phase mathematical model). Its parameters can be deduced by linear transformations of 

the original parameters including the supply voltages (Fig. 2a). 

 

 

Figure 2. Induction machine schematic view: a.Two-phase model; b. Simplified view of the total fluxes 

in stator reference frame; c. Idem, but in rotor reference frame 

The windings of two-phase model are denoted with (αs, βs) and (αr, βr) in order to trace a 

correspondence with the real two-phase machine, whose subscripts are (as, bs) and (ar, br) 

respectively.  We shall use the subscripts xs and ys for the quantities that corresponds to the 

three-phase machine but transformed in its two-phase model. This is a rightful assumption 

since (αs, βs) axes are collinear with (x, y) axes, which are commonly used in analytic 

geometry. Further, new notations (35) for the flux linkages of the right member of the 

equations (33-1...4) will be defined by following the next rules: 

- projection sums corresponding to rotor flux linkages from (αr, βr) axes along the two 

stator axes (denoted with x and y that is ψxr, ψyr) when they refer to the flux linkages 

from the right member of the first two equations, Fig. 2b. 

- projection sums corresponding to stator flux linkages from (αs, βs) axes along the two 

rotor axes (denoted with X and Y that is ψXS, ψYS) when they refer to the flux linkages 

from the last two equations, Fig. 2c.      
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cos sin , sin cos

xr r R r R yr r R r R

XS s R s R YS s R s R

   

   

         

         

    


    
 (35) 

Some aspects have to be pointed out. When the machine operates under motoring duty, the 

pulsation of the stator flux linkages from (αs, βs) axes is equal to ωs. Since the rotational 

pulsation is ωR then the pulsation of the rotor quantities from (αr, βr) axes is equal to 

ωr=sωs=ωs –ωR. The pulsation of the rotor quantities projected along the stator axes with the 

subscripts xr and yr is equal to ωs. The pulsation of the stator quantities projected along the 

rotor axes with the subscripts XS and YS is equal to ωr. The equations (33-1...4) become:    
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 ( ) ss xrs ss u                                (36-1) 

 ( ) ss yrs ss u                            (36-2) 

 ( )r XSr rs                             (36-3) 

 ( )r YSr rs         (36-4) 

The first two equations join the quantities with the pulsation ωs and the other two, the 

quantities with the pulsation ωr = sωs. The expression of the magnetic torque, in total fluxes 

and rotor position angle becomes: 

    33 / 2 s yr s xreT p              (37) 

or a second equivalent expression: 

  3(3 / 2) r YS r XSeT p               (38) 

which shows the ″total symmetry″ of the two-phase model of the three-phase machine 

regarding both stator and rotor. The equations of the four circuits together with the 

movement equation (37) under operational form give: 

   ss xrs ss u             (39-1) 

   ss yrs ss u                  (39-2) 

  r XSr rs                       (39-3) 

  r YSr rs                            (39-4) 

          3/ 3 / 2 s xr s yrR z sts k J p J p T                 (39-5) 

 R
R R

d

dt


                      (39-6) 

This last equation system allows the study of transients under single unbalance condition. It 

is similar with the frequently used equations (Park) but contains as variables only total fluxes 

and the rotation angle. There are no currents or angular speed in the voltage equations. 

4. Expressions of electromagnetic torque  

For the steady state analysis of the symmetric three-phase induction machine, one can 

define the simplified space phasor of the stator flux, which is collinear to the total flux of the 
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(αs) axis and has a 3  times higher modulus. In a similar way can be obtained the space 

phasors of the stator voltages and rotor fluxes and the system equation (39-1...6) that 

describe the steady state becomes: 
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  (40) 

   3 3 33 / 2 sine sR rR s rT p        

When the speed regulation of the cage induction machine is employed by means of voltage 

and/or frequency variation then the simultaneous control of the two total flux space vectors 

is difficult. As consequence, new strategies more convenient can be chosen. To this effect, we 

shall deduce expressions of the electromagnetic torque that include only one of the total flux 

space vectors either from stator or rotor. 

4.1. Variation of the torque with the stator total flux space vector 

One of the methods used for the control of induction machine consists in the operation with 

constant stator total flux space vector. From (40), the rotor total flux space vector is: 
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  (41) 

where θ is the angle between stator and rotor total flux space vectors. This angle has the 

meaning of an internal angle of the machine.  

The expression of the magnetic torque that depends with the stator total flux space vector 

becomes:  
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 (42) 

Assuming the ideal hypothesis of maintaining constant the stator flux, for example equal to 

the no-load value, then the pull-out torque, Temax , corresponds to sin2θ = 1 that is:  
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Now an observation can be formulated. Let us suppose an ideal static converter that 

operates with a U/f=constant=k1 strategy. For low supply frequencies, the pull-out torque 

decreases in value since the denominator increases with the pulsatance decrease, ωs (Fig. 3). 

Within certain limits at low frequencies, an increase of the supply voltage is necessary in 

order to maintain the pull-out torque value. In other words, U/f = k2, and k2>k1.    

 

Figure 3. Mechanical characteristics, Me=f(ΩR) at ΨsR3=const. 

 

Figure 4. Resultant stator voltage vs. pulsatance UsR3=f(ωs) at ΨsR3=const. (1,91Wb) 
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A proper control of the induction machine requires a strategy based on U/f = variable. More 

precisely, for low frequency values it is necessary to increase the supply voltage with respect 

to the values that result from U/f = const. strategy. At a pinch, when the frequency becomes 

zero, the supply voltage must have a value capable to compensate the voltage drops upon 

the equivalent resistance of the windings. Lately, the modern static converters can be 

parameterized on the basis of the catalog parameters of the induction machine or on the 

basis of some laboratory tests results.  

From (40) we can deduce:  
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   (44) 

and further: 
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  (45) 

if the term νtt was neglected. By inspecting the square root term, which is variable with the 

slip (and load as well), we can point out the following observations. 

- Constant maintaining of the stator flux for low pulsations (that is low angular velocity 

values including start-up) can be obtained with a significant increase of the supply 

voltage. The ″additional″ increasing of the voltage depends proportionally on the load 

value. Analytically, this fact is caused by the predominance of the term G against F, 

(45). From the viewpoint of physical phenomena, a higher voltage in case of severe 

start-up or low frequency operation is necessary for the compensation of the leakage 

fluxes after which the stator flux must keep its prescribed value.    

- Constant maintaining of the stator flux for high pulsations (that is angular speeds close 

or even over the rated value) requires an insignificant rise of the supply voltage. The U/f 

ratio is close to its rated value (rated values of U and f) especially for low load torque 

values. However, a certain increase of the voltage is required proportionally with the 

load degree. Analytically, this fact is now caused by the predominance of the term F 

against G, (45).  

- In conclusion, the resultant stator flux remain constant for U/f =constant=k1 strategy if 

the load torque is small. For high loads (especially if the operation is close to the pull-

out point), the maintaining of the stator flux requires an increase of the U/f ratio, which 

means a significant rise of the voltage and current.  

If the machine parameters are established, then a variation rule of the supply voltage can be 

settled in order to have a constant stator flux (equal, for example, to its no-load value) both 

for frequency and load variation.   

Fig. 4 presents (for a machine with predetermined parameters: supply voltage with the 

amplitude of 490 V (Uas=346.5V); Rs=Rr=2; Lhs=0,09; Lσs= Lσr=0,01; J=0,05; p=2; kz=0,02; 
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ω1=314,1 (SI units)) the variation of the resultant stator voltage with the pulsatance (in per 

unit description) for three constant slip values. The variation is a straight line for reduced 

loads and has a certain inflection for low frequency values (a few Hz). For under-load 

operation, a significant increase of the voltage with the frequency is necessary. This fact is 

more visible at high slip values, close to pull-out value (in our example the pull-out slip is of 

0,33).  

The variation rule based on UsR=f(ωs) strategy (applied to the upper curve from Fig. 4) 

provide an operation of the motor within a large range of angular speeds (from start-up to 

rated point) under a developed torque, whose value is close to the pull-out one. Obviously, 

the input current is rather high (4-5 I1N) and has to be reduced. Practically, the operation 

points must be placed within the upper and the lower curves, Fig. 4. It is also easy to notice 

that the operation with higher frequency values than the rated one does not generally 

require an increase of the supply voltage but the developed torque is lower and lower. In 

this case, the output power keeps the rated value.     

4.2. Variation of the torque with the rotor total flux space vector 

Usually, the electric drives that demand high value starting torque use constant rotor total 

flux space vector strategy. The stator total flux space vector can be written from (41) as: 
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  (46) 

and the expression of the electromagnetic torque on the basis of rotor flux alone becomes: 
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    (47) 

Assuming the ideal hypothesis of maintaining constant the rotor flux, for example equal to 

the no-load value, then the electromagnetic torque expression is:  
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   (48) 

where the voltage and pulsation is supposed to have rated values. Taking into discussion a 

machine with predetermined parameters (supply voltage with the amplitude of 490 V 

(Uas=346.5V); Rs=Rr=2; Lhs=0,09; Lσs= Lσr=0,01; J=0,05; p=2; kz=0,02; ω1=314,1 (SI units)) then the 

expression of the mechanical characteristic is: 
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which is a straight line, A1 in Fig. 5. The two intersection points with the axes correspond to 

synchronism (Te=0, ΩR=ωs/2=157) and start-up (Te=995 Nm, ΩR=0) respectively.   

The pull-out torque is extremely high and acts at start-up. This behavior is caused by the 

hypothesis of maintaing constant the rotor flux at a value that corresponds to no-load 

operation (when the rotor reaction is null) no matter the load is. The compensation of the 

magnetic reaction of the rotor under load is hypothetical possible through an unreasonable 

increase of the supply voltage. Practically, the pull-out torque is much lower. 

Another unreasonable possibility is the maintaining of the rotor flux to a value that 

corresponds to start-up (s = 1) and the supply voltage has its rated value. In this case the 

expression of the mechanical characteristic is (50) and the intersection points with the axes 

(line A2, Fig. 5) correspond to synchronism (Te=0, ΩR=ωs/2=157)  and start-up (Te=78 Nm, 

ΩR=0) respectively.  

    23 2 32,14
2 0,25 2

2 96,43e rRk s R s RT   
           (50) 

The supply of the stator winding with constant voltage and rated pulsation determines a 

variation of the resultant rotor flux within the short-circuit value (ΨrRk=0,5Wb) and the 

synchronism value (ΨrR0=1,78Wb). The operation points lie between the two lines, A1 and 

A2, on a position that depends on the load torque. When the supply pulsation is two times 

smaller (and the voltage itself is two times smaller as well) and the resultant rotor flux is 

maintained constant to the value ΨrR0=1,78Wb, then the mechanical characteristic is 

described by the straight line B1, which is parallel to the line A1. Similarly, for ΨrRk=0,5Wb, 

the mechanical characteristic become the line B2, which is parallel to A2.    

 

Figure 5. Mechanical characteristics Te=f(ΩR), ΨrR=const.  
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Figure 6. Resultant stator voltage vs. pulsatance, UsR=f(ωs) at ΨrR=const. (1.3Wb) 

When the applied voltage and pulsation are two times smaller regarding the rated values 

then the operation points lie between B1 and B2 since the rotor flux varies within 

ΨrRk=0,5Wb (short-circuit) and ΨrR0=1,78Wb (synchronism).   

The control based on constant rotor flux strategy ensures parallel mechanical characteristics. 

This is an important advantage since the induction machine behaves like shunt D.C. motor. 

A second aspect is also favorable in the behavior under this strategy. The mechanical 

characteristic has no sector of unstable operation as the usual induction machine has.    

The modification of the flux value (generally with decrease) leads to a different slope of the 

characteristics, which means a significant decrease of the torque for a certain angular speed. 

The question is ″what variation rule of UsR/ωs must be used in order to have constant rotor 

flux″? The expression of the modulus of the resultant rotor flux can be written as: 
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Fig. 6 presents the variation of the stator voltage with pulsatance at constant resultant rotor 

flux (1,3 Wb), which are called the control characteristics of the  static converter connected to 

the induction machine. The presented characteristics correspond to three constant slip 

values, s=0,001 (no-load)-curve 1, s=0,1 (rated duty)-curve 2 and s=0,3 (close to pull-out 

point)-curve 3. It can be seen that the operation with high slip values (high loads) require an 

increased stator voltage for a certain pulsation. As a matter of fact, the ratio UsR3/ωs must be 

increased with the load when the pulsatance (pulsation) and the angular speed rise as well. 

Such a strategy is indicated for fans, pumps or load machines with speed-dependent torque.  
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When the pulsation of the stator voltage is low (small angular velocities) then the torque 

that has to be overcame is small too, but it will rise with the speed and the frequency along a 

parabolic variation. Since the upper limit of the torque is given by the limited power of the 

machine (thermal considerations) then this strategy requires additional precautions as 

concern the safety devices that protect both the static converter and the supply source itself. 

The analysis of the square root term from (51) generates similar remarks as in the above 

discussed control strategy.  

Finally is important to say that a control characteristic must be prescribed for the static 

converter. This characteristic should be simplified and generally reduced to a straight line 

placed between the curves 1 and 2 from Fig. 6. 

5. Study of the unbalanced duties  

The unbalanced duties (generated by supply asymmetries) are generally analyzed by using 

the theory of symmetric components, according to which any asymmetric three-phase 

system with single unbalance (the sum of the applied instantaneous voltages is always zero) 

can be equated with two symmetric systems of opposite sequences: positive (+) (or direct) 

and negative (-) (or inverse) respectively. There are two possible ways for the analysis of this 

problem.  

a. When the amplitudes of the phase voltages are different and/or the angles of phase 

difference are not equal to 2π/3 then the unbalanced three-phase system can be replaced 

with an equivalent unbalanced two-phase system, which further is taken apart in two 

systems, one of direct sequence with higher two-phase amplitude voltages and the other 

of inverse sequence with lower two-phase amplitude voltages. Usually, this equivalence 

process is obtained by using an orthogonal transformation. Not only voltages but also 

the total fluxes and eventually the currents must be established for the two resulted 

systems. The quantities of the unbalanced two-phase system can be written as follows:   
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   (52) 

Further, the unbalanced quantities are transformed to balanced quantities and we obtain:  
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The quantities of the three-phase system with single unbalance can be written as follows:  
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and further:  
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Modulus of these components can be determined at once with:  
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For the transformation of the unbalanced two-phase quantities in balanced two-phase 

components (53) must be used: 
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The matrix equation of the two-phase model is written in a convenient way hereinafter:  
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      (58) 

Using elementary math (multiplications with constants, addition and subtraction of 

different equations) we can obtain the equations of the two-phase direct (M2D) and inverse 

(M2I) models: 
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We have defined the slip values for the direct (+) and respectively inverse (-) machines: 

;s R s R
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 
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    with the interrelation expression: 2is s  . 

The two machine-models create self-contained torques, which act simultaneously upon 

rotor. The resultant torque emerges from superposition effects procedure (Simion et al., 

2009; Simion & Livadaru, 2010). The equation set (59), for M2D, gives two equations: 
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which give further 
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Similarly, for M2I we obtain: 
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     ( ) ( )

( ) ( ) ( )
( ) ( )

2
; ; 2

sr s sr
s xr s s r s s r

j s U U
j j s

 
  

  
      

  
 

                
 (64) 

To determine the electromagnetic torque developed under unbalanced supply condition we 

use the symmetric components and the superposition effect. The mean electromagnetic torque 

M2D results from (25) but transformed in simplified complex quantities: 

  
2

( )3
( ) ( )( ) 3 2

233
2Re

2 2 2

sr
s xre

s

U spp
T j

As Bs C







 
 


       

 
   (65) 

Similarly, the expression of the mean electromagnetic torque M2D is: 

    
   

2
( )3

( ) ( )( ) 3 2

2 233
2Re

2 2 2 2 2

sr
s xre

s

U spp
T j

A s B s C







 
 


       

   
   (66) 

The mean resultant torque, as a difference of the torques produced by M2D and M2I, can be 

written by using (65) and (66): 

 
 2 2

( ) ( )3
2 2

2 2 23

2 2 (2 ) 2 (2 )

s sr
erez

s

s U s Up
T

As Bs C A s B s C

 


 
      
       

    (67) 

where we have defined the notations: 2 2 2 2; ; ;s s s r r ttA B C            and 

 2 2
( ) ( )2 1 2 sin( / 6); 2 1 2 sin( / 6)s sU U k k U U k k                 (68) 

Finally, the expression of the mean resultant torque with the slip is: 

  
2 2 2

3
2 2

3 1 2 sin( / 6) 1 2 sin( / 6)
2

2 2 (2 ) 2 (2 )

r
erez

s

p U k k k k
T s s

As Bs C A s B s C

    


       
   

       
   (69) 

The influence of the supply unbalances upon Te=f(s) characteristic are presented in Fig. 7. To 

this effect, let us take again into discussion the machine with the following parameters: 

supply voltages with the amplitude of 490 V (Uas=346.5V) and 2π/3 rad. shifted in phase; 

Rs=Rr=2; Lhs=0,09; Lσs= Lσr=0,01; J=0,05; p=2; kz=0,02; ω1=314,1 (SI units). The characteristic 

corresponding to the three-phase symmetric machine is the curve A (the motoring pull-out 
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torque is equal to 124 Nm and obviously Uas(-) = 0). If the voltage on phase b keeps the same 

amplitude as the voltage in phase a, for example, but the angle of phase difference changes 

with π/24=7,5 degrees (from 2π/3=16π/24 to 17π/24 rad.) then the new characteristic is the B 

curve. The pull-out torque value decreases with approx. 12% but the pull-out slip keeps its 

value.  Other two unbalance degrees are presented in Fig. 7 as well. 

 

Figure 7. Te=f(s) characteristic for different unbalance degrees 

Usually, the unbalance degree of the supply voltage is defined as the ratio of inverse and 

direct components: 

 

2
( )

2
( )

1 2 sin( / 6)
100[%]

1 2 sin( / 6)

s
n

s

U k k
u

U k k





 

 





  
  

  
  (70) 

The curves A, B, C, and D from Fig. 7 correspond to the following values of the unbalance 

degree: un= 0; 8%; 16% and 27%. The highest unbalance degree (27% - curve D) causes a 

decrease of the pull-out torque by 40%.  

b. The second approach takes into consideration the following reasoning. When the 

amplitudes of the three-phase supply system and/or the angles of the phase difference 

are not equal to 2π/3 then the unbalanced system can be replaced by two balanced three-

phase systems that act in opposition. One of them is the direct sequence system and has 

higher voltages and the other is the inverse sequence system and has lower voltages. A 

transformation of the unbalanced voltages and total fluxes into two symmetric systems 

is again necessary. In other words, there is an unbalanced voltage system (Uas, Ubs, Ucs), 
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which is replaced by the direct and inverse symmetric systems. The mean resultant 

torque is the difference between the torques developed by the two symmetric machine-

models. Taking into consideration their slip values (sd = s and si = 2-s) we can deduce the 

torque expression:     

      1 1 2 233 / 2 [3Re 3Re ]as ar as arerezT p j j
                 (71) 
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23 1
2 2

3 23 3

2 2 (2 ) 2 (2 )

asr as
erez

s

s Up sU
T

As Bs C A s B s C




 
  
       

   (72) 

and this is the same with (69) as we expected. 

6. Simulation study upon some transient duties of the three-phase 

induction machine 

6.1. Symmetric supply system  

The mathematical model described by the equation system (26-1…8) allows a complete 

simulation study of the operation of the three-phase induction machine, which include start-

up, any sudden change of the load and braking to stop eventually. To this end, the machine 

parameters (resistances, main and leakage phase inductances, moments of inertia 

corresponding to the rotor and the load, coefficients that characterize the variable speed and 

torque, etc.) have to be calculated or experimentally deduced. At the same time, the values 

of the load torque and the expressions of the instantaneous voltages applied to each stator 

phase winding are known, as well. The rotor winding is considered short-circuited.  Using 

the above mentioned equation system, the structural diagram in the Matlab-Simulink 

environment can be carried out. Additionally, for a complete evaluation, virtual 

oscillographs for the visualization of the main physical parameters such as voltage, current, 

magnetic flux, torque, speed, rotation angle and current or specific characteristics 

(mechanical characteristic, angular characteristic or flux hodographs) fill out the structural 

diagram.    

The study of the symmetric three-phase condition in the Matlab-Simulink environment takes 

into consideration the following parameter values: three identical supply voltages with the 

amplitude of 490 V (Uas=346.5V) and 2π/3 rad. shifted in phase; uar=ubr=ucr=0 since the rotor 

winding is short-circuited; Rs=Rr=2; Lhs=0,09; Lσs= Lσr=0,01; J=0,05; p=2; kz=0,02; ω1=314,1 (SI 

units). The equation system becomes:   

     135,71 32,14 32,14 2 cos 55,67( )sinasas bs cs ar br cr cr brR Rs u                   

     135,71 32,14 32,14 2 cos 55,67( )sinbsbs cs as br cr ar ar crR Rs u                   
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     135,71 32,14 32,14 2 cos 55,67( )sincscs as bs cr ar br br arR Rs u                   

     135,71 0 32,14 32,14 2 cos 55,67( )sinar br cr as bs cs bs csR Rs                    

     135,71 0 32,14 32,14 2 cos 55,67( )sinbr cr ar bs cs as cs asR Rs                    

     135,71 0 32,14 32,14 2 cos 55,67( )sincr ar br cs as bs as bsR Rs                    
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(73-1-7) 

 
1

R R
s

       (73-8) 
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max max max

490 490 490
; ; ;

2 2 2

490

j t j t j t
as bs cs

as bs cs

u e u e u e

U U U

   

  
    (73-9) 

It has to be mentioned again that the above equation system allows the analysis of the three-

phase induction machine under any condition, that is transients, steady state, symmetric or 

unbalanced, with one or both windings (from stator and rotor) connected to a supply 

system. Generally, a supplementary requirement upon the stator supply voltages is not 

mandatory. The case of short-circuited rotor winding, when the rotor supply voltages are 

zero, include the wound rotor machine under rated operation since the starting rheostat is 

short-circuited as well.   

The presented simulation takes into discussion a varying duty, which consists in a no-load 

start-up (the load torque derives of frictions and ventilation and is proportional to the 

angular speed  and have a steady state rated value of approx. 3 Nm) followed after 0,25 

seconds by a sudden loading with a constant torque of 50 Nm. The simulation results are 

presented in Fig. 8, 10, 12, 14 and 15 and denoted by the symbol RS-50. A second simulation 

iterates the presented varying duty but with a load torque of 120 Nm, symbol RS-120, Fig. 9, 

11 and 13. Finally, a third simulation takes into consideration a load torque of 125 Nm, 

which is a value over the pull-out torque. Consequently, the falling out and the stop of the 

motor in t≈0,8 seconds mark the varying duty (symbol RS-125, Fig. 16, 17, 18 and 19).        

The RS-50 simulation shows an upward variation of the angular speed to the no-load value (in 

t ≈ 0,1 seconds), which has a weak overshoot at the end, Fig. 8. The 50 Nm torque enforcement 

determines a decrease of the speed corresponding to a slip value of s ≈ 6,5%. In the case of the 

RS-120 simulation, the start-up is obviously similar but the loading torque determines a much 

more significant decrease of the angular speed and the slip value gets to s ≈ 25%, Fig. 9. 
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Figure 8. Time variation of rotational pulsatance – RS-50  

 

Figure 9. Time variation of rotational pulsatance – RS-120 

In the first moments of the start-up, the electromagnetic torque oscillates around 100 Nm 

and after the load torque enforcement, it gets to approx. 53 Nm for RS-50, Fig. 10 and to 

approx. 122 Nm for RS-120, Fig. 11. The operation of the motor remains stable for the both 

duties.  

The behavior of the machine is very interesting described by the hodograph of the resultant 

rotor flux (the locus of the head of the resultant rotor flux phasor), Fig. 12 and 13. With the 

connecting moment, the rotor fluxes start from 0 (O points on the hodograph) and track a 

corkscrew to the maximum value that corresponds to synchronism (ideal no-load 

operation), S points on the hodographs.      
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Figure 10. Time variation of electromagnetic torque – RS-50 

 

 

Figure 11. Time variation of electromagnetic torque – RS-120 

 

Figure 12. Hodograph of resultant rotor flux – RS-50 
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Figure 13. Hodograph of resultant rotor flux – RS-120 

The enforcement of the load torque determines a decrease of the resultant rotor flux, which is 

proportional to the load degree, and is due to the rotor reaction. The locus of the head of the 

phasor becomes a circle whose radius is proportional to the amplitude of the resultant rotor 

flux. The speed on this circle is given by the rotor frequency that is by the slip value. It is 

interesting to notice that the load torque of 50 Nm causes a unique rotation of the rotor flux 

whose amplitude becomes equal to the segment ON (Fig. 12) whereas the 120 Nm torque causes 

approx. 4 rotations of the rotor flux and the amplitude OF is significantly smaller (Fig. 13).    

If the expressions (1) and (2) are also used in the structural diagram then both stator and 

rotor phase currents can be plotted. The stator current corresponding to as phase has the 

frequency f1=50 Hz and gets a start-up amplitude of approx. 70 A. This value decreases to 

approx. 6 A (no-load current) and after the torque enforcement (50 Nm) it rises to a stable 

value of approx. 14 A, Fig. 14. The rotor current on phase ar, which has a frequency value of 

f2 = s· f1, gets a similar (approx. 70 A) start-up variation but in opposition to the stator 

current, ias. Then, its value decrease and the frequency go close to zero. The loading of the 

machine has as result an increase of the rotor current up to 13 A and a frequency value of 

f2≈3Hz, Fig. 15. The fact that the current variations are sinusoidal and keep a constant 

frequency is an argument for a stable operation under symmetric supply conditions.       

 

Figure 14. Time variation of stator phase current – RS-50 
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Figure 15. Time variation of rotor phase current – RS-50 

 

Figure 16. Time variation of rotational pulsatance – RS-125 (start-up to locked-rotor)  

 

Figure 17. Time variation of electromagnetic torque – RS-125 
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determines a fast deceleration of the rotor. The pull-out slip (s≈33%) happens in t≈0,5 

seconds after which the machine falls out. The angular speed reaches the zero value in t≈0,8 

seconds, Fig. 16, and the electromagnetic torque get a value of approx. 78 Nm. This value 

can be considered the locked-rotor (starting) torque of the machine, Fig. 17.   
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The described critical duty that involves no-load start-up and operation, overloading, falling 

out and stop is plotted in terms of resultant rotor flux and angular speed versus 

electromagnetic torque. The hodograph (Fig. 18) put in view a cuasi corkscrew section, 

corresponding to the start-up, characterized by its maximum value represented by the 

segment OS. The falling out tracks the corkscrew SP with a decrease of the amplitude, which 

is proportional to the deceleration of the rotor. The point P corresponds to the locked-rotor 

position (s=1). Fig. 19 presents the dynamic mechanical characteristic, which shows the 

variation of the electromagnetic torque under variable operation condition. During the no-

load start-up, the operation point tracks successively the points O, M, L and S, that is from 

locked-rotor to synchronism with an oscillation of the electromagnetic torque inside certain 

limits (≈+200Nm to ≈-25Nm). The enforcement of the overload torque leads the operation 

point along the downward curve SK characterized by an oscillation section followed by the 

unstable falling out section, KP. The PKS curve, together with the marked points (Fig. 19) 

can be considered the natural mechanical characteristic under motoring duty.  

 

Figure 18. Hodograph of resultant rotor flux – RS-125 (start-up to locked-rotor)  

 

Figure 19. Rotational pulsatance vs. torque – RS-125 (start-up to locked-rotor) 
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eventually) is possible by using the same mathematical model described by the equation 

system (26-1…8). The values of the resistant torques and the expressions of the 

instantaneous phase voltages have to be stated. Since the rotor winding is short-circuited, 

the supply rotor voltages are uar=ubr=ucr=0. On this basis, the structural diagram has been put 

into effect in the Matlab-Simulink environment. As regards the unbalanced three-phase 

supply system, it has to be mentioned that the phase voltages are no more equal in 

amplitude and the angles of phase difference may have other values than 2π/3 rad. In any 

event, the sum of the instantaneous values of the applied voltages must be zero, that is 

uas+ubs+ucs=0. As an argument for this seemingly constraint stands the fact that the vast 

majority of the three-phase induction machines are connected to the industrial system via 

three supply leads (no neutral).       

The simulation presented here takes into discussion an induction machine with the same 

parameters as above that is: Rs=Rr=2; Lhs=0,09; Lσs= Lσr=0,01; J=0,05; p=2; kz=0,02; ω1=314,1 (SI 

units). Consequently, the equations (73-1) - (73-8) keep unchanged. The expressions (73-9) 

have to be modified in accordance with the asymmetry degree.     

Two varying duties under unbalanced condition have been simulated. The first (denoted 

RNS-1) is characterized by an asymmetry degree, un = 16,5% and the following supply 

voltages:    

 (314,1 ) (314,1 1,96) (314,1 3,927)490 375 490
; ; ; 16,5%

2 2 2

j t j t j t
as bs cs nu e u e u e u       (74) 

The simulation results are presented in Fig. 20, 22, 24, 25 and 28. The second study 

simulation (denoted RNS-2) has an asymmetry degree of un = 27% given by the following 

stator voltages: 

 (314,1 ) (314,1 2,357) (314,1 3,295)490 346,43 346,43
; ; ; 27%

2 2 2

j t j t j t
as bs cs nu e u e u e u       (75) 

The simulation results are presented in Fig. 21, 23, 26, 27 and 29. The varying duties are 

similar to those discussed above and consist in a no-load start-up (the load torque derives of 

frictions and ventilation and is proportional to the angular speed  and have a steady state 

rated value of approx. 3 Nm) followed after 0,25 seconds by a sudden loading with a 

constant torque of 50 Nm. 

In comparison to symmetric supply, the unbalanced voltage system causes a longer start-up 

time with approx. 20% for RNS-1 (Fig. 20) and with 50% for RNS-2 (Fig. 21). Moreover, the 

higher asymmetry degree of RNS-2 leads to the cancelation of the overshoot at the end of 

the start-up process. At the same time, significant speed oscillations are noticeable during 

the operation (no matter the load degree), which are higher with the increase of the 

asymmetry degree. These oscillations have a constant frequency, which is twice of the 

supply voltage frequency. They represent the main cause that determines the specific noise 

of the machines with unbalanced supply system.  
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Figure 20. Time variation of rotational pulsatance – RNS-1 (start-up + sudden load)  

 

Figure 21. Time variation of rotational pulsatance – RNS-2 (start-up + sudden load) 

The inspection of the electromagnetic torque variation (Fig. 22 and 23) shows the presence of a 

variable oscillating torque, whose frequency is twice the supply voltage frequency (in our case 

100 Hz) and overlaps the average torque. This oscillating component is demonstrated by the 

analytic expression of the instantaneous torque, which is written using nothing but total flux linkages 

(25). The symmetric components theory, for example, is not capable to provide information 

about these oscillating torques. At the most, this theory evaluates the average torque, probably 

with inherent errors. Coming back to the torque variations, one can see that the amplitude 

oscillations increase with the asymmetry degree, but their frequency keeps unchanged.      

 

Figure 22. Time variation of electromagnetic torque – RNS-1  
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Figure 23. Time variation of electromagnetic torque – RNS-2 

 

Figure 24. Time variation of stator phase current – RNS-1  

 

Figure 25. Time variation of rotor phase current – RNS-1 

 

Figure 26.  Time variation of stator phase current – RNS-2  
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Figure 27. Time variation of rotor phase current – RNS-2 

The stator currents variation, Fig. 24 and 26, have a sinusoidal shape and an unmodified 

frequency of 50 Hz. Their amplitude increases however with the asymmetry degree (approx. 

18 A for RNS-1 and approx. 32 A for RNS-2). As a consequence of this fact, both power 

factor and efficiency decrease. The rotor currents (Fig. 25 and 27) include besides the main 

component of f2=s· f1 frequency a second oscillating component of high frequency, f'2=(2-s)f1, 

which is responsible for parasitic torques and vibrations of the rotor. The amplitude of these 

oscillating currents increases with the asymmetry degree.  

 

Figure 28. Hodograph of resultant rotor flux – RNS-1  

 

Figure 29. Hodograph of resultant rotor flux – RNS-2 
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Figure 30. Structural diagram of the three-phase induction machine 
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The hodographs of the resultant rotor flux show a very interesting behavior of the 

unbalanced machines, Fig. 28 and 29. In comparison to the symmetric supply cases where 

the hodograph is a circle under steady state, the asymmetric system distort the curve into a 

„gear wheel” with a lot of teeth placed on a mean diameter whose magnitude depends 

inverse proportionally with the asymmetry degree. Generally, these curves do not overlap 

and prove that during the operation the interaction between stator and rotor fluxes is not 

constant in time since the rotor speed is not constant. Consequently, the rotor vibrations are 

usually propagated to the mechanical components and working machine.  

In order to point out the superiority of the proposed mathematical model, Fig. 30 shows the 

structural diagram used in Simulink environment. The diagram is capable to simulate any 

steady-state and transient duty under balanced or unbalanced state of the induction 

machine including doubly-fed operation as generator or motor by simple modification of 

the input data. To prove this statement, a simulation of an unbalanced doubly-fed operation 

has been performed. The operation cycle involves: I. A no-load start-up (the wound rotor 

winding is short-circuited); II. Application of a supplementary output torque of (-70) Nm (at 

the moment t=0.4 sec.) which leads the induction machine to the generating duty (over 

synchronous speed); III. Supply of two series connected rotor phases with d.c. current 

(Uar=+40V, Ubr= −40V, Ucr=0V), at the moment time t=0.6 sec., which change the operation of 

the induction generator into a synchronized induction generator (SIG).  

Fig. 31 and 32 show the dynamic mechanical characteristic, Te=f(ΩR) and the hodograph of 

the resultant rotor flux respectively. The start-up corresponds to A-S1 curve, the over 

synchronous acceleration is modeled by S1-S curve and the operation under SIG duty 

corresponds to S-S2 curve. A few observations regarding Fig. 32 are necessary as well. The 

rotor flux hodograph is rotating in a counterclockwise direction corresponding to motoring 

duty, in a clockwise direction for generating duty and stands still at synchronism. The “in 

time” modification and the position of the hodograph corresponding to SIG duty depend on 

the moment of d.c. supply and the load angle of the machine. 

 

 

Figure 31. Dynamic mechanical characteristic 
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Figure 32. Hodograph of resultant rotor flux  

7. Conclusion 

The mathematical model presented in this contribution is characterized by the total lack of 

the winding currents and angular speed in the voltage equations. Since these parameters are 

differential quantities of other electric parameters, they usually bring supplementary 

calculus errors mainly for the dynamic duty analysis. Their removal assures a high accuracy 

of the results. If their variation is however necessary to be known then simple subsequent 

calculations can be performed.  

The use of the mathematical model in total fluxes is appropriate for the study of the electric 

machines with permanent magnets where the definitive parameter is the magnetic flux and 

not the electric current. 

The coefficients defined by (28.1-4), which depend on resistances and inductances, take into 

consideration the saturation. Consequently, the study of the induction machine covers more 

than the linear behavior of the magnetization phenomenon.  

The most important advantage of the proposed mathematical model is its generality degree. 

Any operation duty, such as steady-state or transients, balanced or unbalanced, can be 

analyzed. In particular, the double feeding duty and the synchronized induction machine 

operation (feeding with D.C. current of a rotor phase while the other two are short-circuited) 

can be simulated as well. 

The results obtained by simulation are based on the transformation of the equations in 

structural diagrams under Matlab-Simulink environment. They present the variation of 

electrical quantities (voltages and currents corresponding to stator and rotor windings), of 

mechanical quantities (expressed through rotational pulsatance) and of magnetic 
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parameters (electromagnetic torque, resultant rotor and stator fluxes). They put in view the 

behavior of the induction machine for different transient duties. In particular, they prove 

that any unbalance of the supply system generates important variations of the 

electromagnetic torque and rotor speed. This fact causes vibrations and noise.   
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